1
|
Desole C, Gallo S, Vitacolonna A, Montarolo F, Bertolotto A, Vivien D, Comoglio P, Crepaldi T. HGF and MET: From Brain Development to Neurological Disorders. Front Cell Dev Biol 2021; 9:683609. [PMID: 34179015 PMCID: PMC8220160 DOI: 10.3389/fcell.2021.683609] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its tyrosine kinase receptor, encoded by the MET cellular proto-oncogene, are expressed in the nervous system from pre-natal development to adult life, where they are involved in neuronal growth and survival. In this review, we highlight, beyond the neurotrophic action, novel roles of HGF-MET in synaptogenesis during post-natal brain development and the connection between deregulation of MET expression and developmental disorders such as autism spectrum disorder (ASD). On the pharmacology side, HGF-induced MET activation exerts beneficial neuroprotective effects also in adulthood, specifically in neurodegenerative disease, and in preclinical models of cerebral ischemia, spinal cord injuries, and neurological pathologies, such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). HGF is a key factor preventing neuronal death and promoting survival through pro-angiogenic, anti-inflammatory, and immune-modulatory mechanisms. Recent evidence suggests that HGF acts on neural stem cells to enhance neuroregeneration. The possible therapeutic application of HGF and HGF mimetics for the treatment of neurological disorders is discussed.
Collapse
Affiliation(s)
- Claudia Desole
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simona Gallo
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Annapia Vitacolonna
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Denis Vivien
- INSERM U1237, University of Caen, Gyp Cyceron, Caen, France.,Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Paolo Comoglio
- IFOM, FIRC Institute for Molecular Oncology, Milan, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
2
|
Benavente F, Piltti KM, Hooshmand MJ, Nava AA, Lakatos A, Feld BG, Creasman D, Gershon PD, Anderson A. Novel C1q receptor-mediated signaling controls neural stem cell behavior and neurorepair. eLife 2020; 9:e55732. [PMID: 32894219 PMCID: PMC7476762 DOI: 10.7554/elife.55732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
C1q plays a key role as a recognition molecule in the immune system, driving autocatalytic complement cascade activation and acting as an opsonin. We have previously reported a non-immune role of complement C1q modulating the migration and fate of human neural stem cells (hNSC); however, the mechanism underlying these effects has not yet been identified. Here, we show for the first time that C1q acts as a functional hNSC ligand, inducing intracellular signaling to control cell behavior. Using an unbiased screening strategy, we identified five transmembrane C1q signaling/receptor candidates in hNSC (CD44, GPR62, BAI1, c-MET, and ADCY5). We further investigated the interaction between C1q and CD44 , demonstrating that CD44 mediates C1q induced hNSC signaling and chemotaxis in vitro, and hNSC migration and functional repair in vivo after spinal cord injury. These results reveal a receptor-mediated mechanism for C1q modulation of NSC behavior and show that modification of C1q receptor expression can expand the therapeutic window for hNSC transplantation.
Collapse
Affiliation(s)
- Francisca Benavente
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
- Department of Anatomy and NeurobiologyIrvineUnited States
- Center of Regenerative Medicine, Facultad de Medicina, Universidad del DesarrolloSantiagoChile
| | - Katja M Piltti
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
- Institute for Memory Impairments and Neurological DisordersIrvineUnited States
| | - Mitra J Hooshmand
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
- Institute for Memory Impairments and Neurological DisordersIrvineUnited States
| | - Aileen A Nava
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
| | - Anita Lakatos
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
- Institute for Memory Impairments and Neurological DisordersIrvineUnited States
| | - Brianna G Feld
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
- Bridges to Stem Cell Research Program (BSCR), California State UniversityLong BeachUnited States
| | - Dana Creasman
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
- Department of Anatomy and NeurobiologyIrvineUnited States
| | - Paul D Gershon
- Department of Physical Medicine and RehabilitationIrvineUnited States
- Department of Molecular Biology & Biochemistry, UC-IrvineIrvineUnited States
| | - Aileen Anderson
- Sue and Bill Gross Stem Cell Research CenterIrvineUnited States
- Department of Anatomy and NeurobiologyIrvineUnited States
- Institute for Memory Impairments and Neurological DisordersIrvineUnited States
| |
Collapse
|
3
|
Curcumin-Activated Mesenchymal Stem Cells Derived from Human Umbilical Cord and Their Effects on MPTP-Mouse Model of Parkinson's Disease: A New Biological Therapy for Parkinson's Disease. Stem Cells Int 2020; 2020:4636397. [PMID: 32148518 PMCID: PMC7048946 DOI: 10.1155/2020/4636397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background The aim of this study was to investigate the effects of human umbilical cord mesenchymal stem cell activated by curcumin (hUC-MSCs-CUR) on Parkinson's disease (PD). hUC-MSCs can differentiate into many types of adult tissue cells including dopaminergic (DA) neurons. CUR could protect DA neurons from apoptosis induced by 6-hydroxydopamine (6-OHDA). Therefore, we used the hUC-MSCs activated by CUR for the treatment of PD in an animal model. Methods The hUC-MSCs-CUR was transplanted into the MPTP-induced PD mouse models via the tail vein. We found that hUC-MSCs-CUR significantly improved the motor ability, increased the tyrosine hydroxylase (TH), dopamine (DA), and Bcl-2 levels, and reduced nitric oxide synthase, Bax, and cleaved caspase 3 expression in PD mice. The supernatant of hUC-MSCs-CUR (CM-CUR) was used to stimulate the SH-SY5Y cellular model of PD; cell proliferation, differentiation, TH, and neuronal-specific marker microtubular-associated protein 2 (MAP2) expressions were examined. Results Our data showed that CM-CUR significantly promoted cell proliferation and gradually increased TH and MAP2 expression in SH-SY5Y PD cells. The beneficial effects could be associated with significant increase of rough endoplasmic reticulum in the hUC-MSCs-CUR, which secretes many cytokines and growth factors beneficial for PD treatment. Conclusions Transplantation of hUC-MSCs-CUR could show promise for improving the motor recovery of PD.
Collapse
|
4
|
Hu W, Lu H, Wang S, Yin W, Liu X, Dong L, Chiu R, Shen L, Lu WJ, Lan F. Suppression of Nestin reveals a critical role for p38-EGFR pathway in neural progenitor cell proliferation. Oncotarget 2018; 7:87052-87063. [PMID: 27894083 PMCID: PMC5349970 DOI: 10.18632/oncotarget.13498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
The expression of intermediate filament Nestin is necessary for the neural progenitor cells (NPCs) to maintain stemness, but the underlying cellular and molecular mechanism remains unclear. In this study, we demonstrated that Nestin is required for the self-renew of NPCs through activating MAPK and EGFR pathways. Knockdown of Nestin by shRNA inhibited cell cycle progression and proliferation in mouse NPCs. Moreover, suppression of Nestin reduced expression of the epidermal growth factor receptor (EGFR) in NPCs and inhibited the mitogenic effects of EGF on these cells. Treatment of NPCs with p38-MAPK inhibitor PD169316 reversed cell cycle arrest caused by the knockdown of Nestin. Our findings indicate that Nestin promotes NPC proliferation via p38-MAPK and EGFR pathways, and reveals the necessity of these pathways in NPCs self-renewal.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenhan Yin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xujie Liu
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China.,Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Deparment of Radiological Medicine, Chongqing Medical University, Chongqing, China
| | - Lin Dong
- Department of Cell Biology Peking University Health Science Center, Beijing, China
| | - Richard Chiu
- Deparment of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Li Shen
- Department of Cell Biology Peking University Health Science Center, Beijing, China
| | - Wen-Jing Lu
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China.,Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Feng Lan
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China.,Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Cortical gene expression correlates of temporal lobe epileptogenicity. ACTA ACUST UNITED AC 2016; 23:181-90. [PMID: 27354343 DOI: 10.1016/j.pathophys.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/19/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Despite being one of the most common neurological diseases, it is unknown whether there may be a genetic basis to temporal lobe epilepsy (TLE). Whole genome analyses were performed to test the hypothesis that temporal cortical gene expression differs between TLE patients with high vs. low baseline seizure frequency. METHODS Baseline seizure frequency was used as a clinical measure of epileptogenicity. Twenty-four patients in high or low seizure frequency groups (median seizures/month) underwent anterior temporal lobectomy with amygdalohippocampectomy for intractable TLE. RNA was isolated from the lateral temporal cortex and submitted for expression analysis. Genes significantly associated with baseline seizure frequency on likelihood ratio test were identified based on >0.90 area under the ROC curve, P value of <0.05. RESULTS Expression levels of forty genes were significantly associated with baseline seizure frequency. Of the seven most significant, four have been linked to other neurologic diseases. Expression levels associated with high seizure frequency included low expression of Homeobox A10, Forkhead box A2, Lymphoblastic leukemia derived sequence 1, HGF activator, Kelch repeat and BTB (POZ) domain containing 11, Thanatos-associated protein domain containing 8 and Heparin sulfate (glucosamine) 3-O-sulfotransferase 3A1. CONCLUSIONS This study describes novel associations between forty known genes and a clinical marker of epileptogenicity, baseline seizure frequency. Four of the seven discussed have been previously related to other neurologic diseases. Future investigation of these genes could establish new biomarkers for predicting epileptogenicity, and could have significant implications for diagnosis and management of temporal lobe epilepsy, as well as epilepsy pathogenesis.
Collapse
|
6
|
Wright JW, Kawas LH, Harding JW. The development of small molecule angiotensin IV analogs to treat Alzheimer's and Parkinson's diseases. Prog Neurobiol 2014; 125:26-46. [PMID: 25455861 DOI: 10.1016/j.pneurobio.2014.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's (AD) and Parkinson's (PD) diseases are neurodegenerative diseases presently without effective drug treatments. AD is characterized by general cognitive impairment, difficulties with memory consolidation and retrieval, and with advanced stages episodes of agitation and anger. AD is increasing in frequency as life expectancy increases. Present FDA approved medications do little to slow disease progression and none address the underlying progressive loss of synaptic connections and neurons. New drug design approaches are needed beyond cholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists. Patients with PD experience the symptomatic triad of bradykinesis, tremor-at-rest, and rigidity with the possibility of additional non-motor symptoms including sleep disturbances, depression, dementia, and autonomic nervous system failure. This review summarizes available information regarding the role of the brain renin-angiotensin system (RAS) in learning and memory and motor functions, with particular emphasis on research results suggesting a link between angiotensin IV (AngIV) interacting with the AT4 receptor subtype. Currently there is controversy over the identity of this AT4 receptor protein. Albiston and colleagues have offered convincing evidence that it is the insulin-regulated aminopeptidase (IRAP). Recently members of our laboratory have presented evidence that the brain AngIV/AT4 receptor system coincides with the brain hepatocyte growth factor/c-Met receptor system. In an effort to resolve this issue we have synthesized a number of small molecule AngIV-based compounds that are metabolically stable, penetrate the blood-brain barrier, and facilitate compromised memory and motor systems. These research efforts are described along with details concerning a recently synthesized molecule, Dihexa that shows promise in overcoming memory and motor dysfunctions by augmenting synaptic connectivity via the formation of new functional synapses.
Collapse
Affiliation(s)
- John W Wright
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA.
| | - Leen H Kawas
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| | - Joseph W Harding
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| |
Collapse
|
7
|
Benoist CC, Kawas LH, Zhu M, Tyson KA, Stillmaker L, Appleyard SM, Wright JW, Wayman GA, Harding JW. The procognitive and synaptogenic effects of angiotensin IV-derived peptides are dependent on activation of the hepatocyte growth factor/c-met system. J Pharmacol Exp Ther 2014; 351:390-402. [PMID: 25187433 PMCID: PMC4201273 DOI: 10.1124/jpet.114.218735] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/02/2014] [Indexed: 12/18/2022] Open
Abstract
A subset of angiotensin IV (AngIV)-related molecules are known to possess procognitive/antidementia properties and have been considered as templates for potential therapeutics. However, this potential has not been realized because of two factors: 1) a lack of blood-brain barrier-penetrant analogs, and 2) the absence of a validated mechanism of action. The pharmacokinetic barrier has recently been overcome with the synthesis of the orally active, blood-brain barrier-permeable analog N-hexanoic-tyrosine-isoleucine-(6) aminohexanoic amide (dihexa). Therefore, the goal of this study was to elucidate the mechanism that underlies dihexa's procognitive activity. Here, we demonstrate that dihexa binds with high affinity to hepatocyte growth factor (HGF) and both dihexa and its parent compound Norleucine 1-AngIV (Nle(1)-AngIV) induce c-Met phosphorylation in the presence of subthreshold concentrations of HGF and augment HGF-dependent cell scattering. Further, dihexa and Nle(1)-AngIV induce hippocampal spinogenesis and synaptogenesis similar to HGF itself. These actions were inhibited by an HGF antagonist and a short hairpin RNA directed at c-Met. Most importantly, the procognitive/antidementia capacity of orally delivered dihexa was blocked by an HGF antagonist delivered intracerebroventricularly as measured using the Morris water maze task of spatial learning.
Collapse
Affiliation(s)
- Caroline C Benoist
- Department of Integrative Physiology and Neuroscience (C.C.B., L.H.K., M.Z., K.A.T., L.S., S.M.A., J.W.W., G.A.W., J.W.H.) and Department of Psychology (J.W.W., J.W.H.), Washington State University, Pullman, Washington; and M Biotechnology, Inc., Seattle, Washington (L.H.K., J.W.W., J.W.H.)
| | - Leen H Kawas
- Department of Integrative Physiology and Neuroscience (C.C.B., L.H.K., M.Z., K.A.T., L.S., S.M.A., J.W.W., G.A.W., J.W.H.) and Department of Psychology (J.W.W., J.W.H.), Washington State University, Pullman, Washington; and M Biotechnology, Inc., Seattle, Washington (L.H.K., J.W.W., J.W.H.)
| | - Mingyan Zhu
- Department of Integrative Physiology and Neuroscience (C.C.B., L.H.K., M.Z., K.A.T., L.S., S.M.A., J.W.W., G.A.W., J.W.H.) and Department of Psychology (J.W.W., J.W.H.), Washington State University, Pullman, Washington; and M Biotechnology, Inc., Seattle, Washington (L.H.K., J.W.W., J.W.H.)
| | - Katherine A Tyson
- Department of Integrative Physiology and Neuroscience (C.C.B., L.H.K., M.Z., K.A.T., L.S., S.M.A., J.W.W., G.A.W., J.W.H.) and Department of Psychology (J.W.W., J.W.H.), Washington State University, Pullman, Washington; and M Biotechnology, Inc., Seattle, Washington (L.H.K., J.W.W., J.W.H.)
| | - Lori Stillmaker
- Department of Integrative Physiology and Neuroscience (C.C.B., L.H.K., M.Z., K.A.T., L.S., S.M.A., J.W.W., G.A.W., J.W.H.) and Department of Psychology (J.W.W., J.W.H.), Washington State University, Pullman, Washington; and M Biotechnology, Inc., Seattle, Washington (L.H.K., J.W.W., J.W.H.)
| | - Suzanne M Appleyard
- Department of Integrative Physiology and Neuroscience (C.C.B., L.H.K., M.Z., K.A.T., L.S., S.M.A., J.W.W., G.A.W., J.W.H.) and Department of Psychology (J.W.W., J.W.H.), Washington State University, Pullman, Washington; and M Biotechnology, Inc., Seattle, Washington (L.H.K., J.W.W., J.W.H.)
| | - John W Wright
- Department of Integrative Physiology and Neuroscience (C.C.B., L.H.K., M.Z., K.A.T., L.S., S.M.A., J.W.W., G.A.W., J.W.H.) and Department of Psychology (J.W.W., J.W.H.), Washington State University, Pullman, Washington; and M Biotechnology, Inc., Seattle, Washington (L.H.K., J.W.W., J.W.H.)
| | - Gary A Wayman
- Department of Integrative Physiology and Neuroscience (C.C.B., L.H.K., M.Z., K.A.T., L.S., S.M.A., J.W.W., G.A.W., J.W.H.) and Department of Psychology (J.W.W., J.W.H.), Washington State University, Pullman, Washington; and M Biotechnology, Inc., Seattle, Washington (L.H.K., J.W.W., J.W.H.)
| | - Joseph W Harding
- Department of Integrative Physiology and Neuroscience (C.C.B., L.H.K., M.Z., K.A.T., L.S., S.M.A., J.W.W., G.A.W., J.W.H.) and Department of Psychology (J.W.W., J.W.H.), Washington State University, Pullman, Washington; and M Biotechnology, Inc., Seattle, Washington (L.H.K., J.W.W., J.W.H.)
| |
Collapse
|
8
|
Human umbilical cord mesenchymal stem cells infected with adenovirus expressing HGF promote regeneration of damaged neuron cells in a Parkinson's disease model. BIOMED RESEARCH INTERNATIONAL 2014; 2014:909657. [PMID: 25276829 PMCID: PMC4167956 DOI: 10.1155/2014/909657] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 07/22/2014] [Accepted: 08/05/2014] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative movement disorder that is characterized by the progressive degeneration of the dopaminergic (DA) pathway. Mesenchymal stem cells derived from human umbilical cord (hUC-MSCs) have great potential for developing a therapeutic agent as such. HGF is a multifunctional mediator originally identified in hepatocytes and has recently been reported to possess various neuroprotective properties. This study was designed to investigate the protective effect of hUC-MSCs infected by an adenovirus carrying the HGF gene on the PD cell model induced by MPP+ on human bone marrow neuroblastoma cells. Our results provide evidence that the cultural supernatant from hUC-MSCs expressing HGF could promote regeneration of damaged PD cells at higher efficacy than the supernatant from hUC-MSCs alone. And intracellular free Ca2+ obviously decreased after treatment with cultural supernatant from hUC-MSCs expressing HGF, while the expression of CaBP-D28k, an intracellular calcium binding protein, increased. Therefore our study clearly demonstrated that cultural supernatant of MSC overexpressing HGF was capable of eliciting regeneration of damaged PD model cells. This effect was probably achieved through the regulation of intracellular Ca2+ levels by modulating of CaBP-D28k expression.
Collapse
|
9
|
Fang JD, Lee SL. Matriptase is required for the active form of hepatocyte growth factor induced Met, focal adhesion kinase and protein kinase B activation on neural stem/progenitor cell motility. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1285-94. [DOI: 10.1016/j.bbamcr.2014.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/19/2014] [Accepted: 03/23/2014] [Indexed: 12/31/2022]
|
10
|
Dooley D, Vidal P, Hendrix S. Immunopharmacological intervention for successful neural stem cell therapy: New perspectives in CNS neurogenesis and repair. Pharmacol Ther 2013; 141:21-31. [PMID: 23954656 DOI: 10.1016/j.pharmthera.2013.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/11/2022]
Abstract
The pharmacological support and stimulation of endogenous and transplanted neural stem cells (NSCs) is a major challenge in brain repair. Trauma to the central nervous system (CNS) results in a distinct inflammatory response caused by local and infiltrating immune cells. This makes NSC-supported regeneration difficult due to the presence of inhibitory immune factors which are upregulated around the lesion site. The continual and dual role of the neuroinflammatory response leaves it difficult to decipher upon a single modulatory strategy. Therefore, understanding the influence of cytokines upon regulation of NSC self-renewal, proliferation and differentiation is crucial when designing therapies for CNS repair. There is a plethora of partially conflicting data in vitro and in vivo on the role of cytokines in modulating the stem cell niche and the milieu around NSC transplants. This is mainly due to the pleiotropic role of many factors. In order for cell-based therapy to thrive, treatment must be phase-specific to the injury and also be personalized for each patient, i.e. taking age, sex, neuroimmune and endocrine status as well as other key parameters into consideration. In this review, we will summarize the most relevant information concerning interleukin (IL)-1, IL-4, IL-10, IL-15, IFN-γ, the neuropoietic cytokine family and TNF-α in order to extract promising therapeutic approaches for further research. We will focus on the consequences of neuroinflammation on endogenous brain stem cells and the transplantation environment, the effects of the above cytokines on NSCs, as well as immunopharmacological manipulation of the microenvironment for potential therapeutic use.
Collapse
Affiliation(s)
- Dearbhaile Dooley
- Dep. of Morphology & Biomedical Research Institute, Hasselt University, Belgium
| | - Pia Vidal
- Dep. of Morphology & Biomedical Research Institute, Hasselt University, Belgium
| | - Sven Hendrix
- Dep. of Morphology & Biomedical Research Institute, Hasselt University, Belgium.
| |
Collapse
|
11
|
Differentiation of hUC-MSC into dopaminergic-like cells after transduction with hepatocyte growth factor. Mol Cell Biochem 2013; 381:183-90. [PMID: 23737134 DOI: 10.1007/s11010-013-1701-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/24/2013] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative condition causing significant disability and thus negatively impacting quality of life. The recent advent of stem cell-based therapy has heralded the prospect of a potential restorative treatment option for PD. In particular, mesenchymal stem cells derived from human umbilical cord (hUC-MSCs) have great potential for developing a therapeutic agent as such. Furthermore, hepatocyte growth factor (HGF), which shows mitogenic and morphogenetic activities in a variety of cells, including MSC, and may be implicated in the pathophysiology of PD. As such, HGF may represent a new therapeutic target for the disease. In this study, we successfully isolated and facilitated the transduction of an adenoviral vector expressing HGF (Ad-HGF) into isolated hUC-MSCs. Following transduction, the hUC-MSCs can differentiate into dopaminergic neuron-like cells secreting dopamine, tyrosine hydroxylase, and dopamine transporter. Our data suggest that hUC-MSCs have the ability to differentiate into dopaminergic neurons after transduction with Ad-HGF, providing encouraging evidence to further explore this approach to the treatment of PD.
Collapse
|
12
|
Wright JW, Harding JW. Importance of the brain Angiotensin system in Parkinson's disease. PARKINSON'S DISEASE 2012; 2012:860923. [PMID: 23213621 PMCID: PMC3503402 DOI: 10.1155/2012/860923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) has become a major health problem affecting 1.5% of the world's population over 65 years of age. As life expectancy has increased so has the occurrence of PD. The primary direct consequence of this disease is the loss of dopaminergic (DA) neurons in the substantia nigra and striatum. As the intensity of motor dysfunction increases, the symptomatic triad of bradykinesia, tremors-at-rest, and rigidity occur. Progressive neurodegeneration may also impact non-DA neurotransmitter systems including cholinergic, noradrenergic, and serotonergic, often leading to the development of depression, sleep disturbances, dementia, and autonomic nervous system failure. L-DOPA is the most efficacious oral delivery treatment for controlling motor symptoms; however, this approach is ineffective regarding nonmotor symptoms. New treatment strategies are needed designed to provide neuroprotection and encourage neurogenesis and synaptogenesis to slow or reverse this disease process. The hepatocyte growth factor (HGF)/c-Met receptor system is a member of the growth factor family and has been shown to protect against degeneration of DA neurons in animal models. Recently, small angiotensin-based blood-brain barrier penetrant mimetics have been developed that activate this HGF/c-Met system. These compounds may offer a new and novel approach to the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- John W. Wright
- Departments of Psychology, Veterinary and Comparative Anatomy, Pharmacology, and Physiology and Programs in Neuroscience and Biotechnology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA
| | - Joseph W. Harding
- Departments of Psychology, Veterinary and Comparative Anatomy, Pharmacology, and Physiology and Programs in Neuroscience and Biotechnology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA
| |
Collapse
|
13
|
Schwartz CM, Tavakoli T, Jamias C, Park SS, Maudsley S, Martin B, Phillips TM, Yao PJ, Itoh K, Ma W, Rao MS, Arenas E, Mattson MP. Stromal factors SDF1α, sFRP1, and VEGFD induce dopaminergic neuron differentiation of human pluripotent stem cells. J Neurosci Res 2012; 90:1367-81. [PMID: 22535492 PMCID: PMC3350575 DOI: 10.1002/jnr.23064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 03/16/2012] [Indexed: 12/21/2022]
Abstract
Human embryonic stem cell (hESC)-derived dopaminergic (DA) neurons hold potential for treating Parkinson's disease (PD) through cell replacement therapy. Generation of DA neurons from hESCs has been achieved by coculture with the stromal cell line PA6, a source of stromal cell-derived inducing activity (SDIA). However, the factors produced by stromal cells that result in SDIA are largely undefined. We previously reported that medium conditioned by PA6 cells can generate functional DA neurons from NTera2 human embryonal carcinoma stem cells. Here we show that PA6-conditioned medium can induce DA neuronal differentiation in both NTera2 cells and the hESC I6 cell line. To identify the factor(s) responsible for SDIA, we used large-scale microarray analysis of gene expression combined with mass spectrometric analysis of PA6-conditioned medium (CM). The candidate factors, hepatocyte growth factor (HGF), stromal cell-derived factor-1 α (SDF1α), secreted frizzled-related protein 1 (sFRP1), and vascular endothelial growth factor D (VEGFD) were identified, and their concentrations in PA6 CM were established by immunoaffinity capillary electrophoresis. Upon addition of SDF1α, sFRP1, and VEGFD to the culture medium, we observed an increase in the number of cells expressing tyrosine hydroxylase (a marker for DA neurons) and βIII-tubulin (a marker for immature neurons) in both the NTera2 and I6 cell lines. These results indicate that SDF1α, sFRP1, and VEGFD are major components of SDIA and suggest the potential use of these defined factors to elicit DA differentiation of pluripotent human stem cells for therapeutic intervention in PD.
Collapse
Affiliation(s)
- Catherine M. Schwartz
- National Institute on Aging Intramural Research Program, National Institutes of Health, Laboratory of Neurosciences, Baltimore, MD
- Department of Medical Biochemistry and Biophysics, Laboratory of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Tahereh Tavakoli
- Stem Cell Center, Developmental Biology, American Type Culture Collection, Manassas, VA
| | - Charmaine Jamias
- National Institute on Aging Intramural Research Program, National Institutes of Health, Laboratory of Neurosciences, Baltimore, MD
| | - Sung-Soo Park
- National Institute on Aging Intramural Research Program, National Institutes of Health, Laboratory of Neurosciences, Baltimore, MD
| | - Stuart Maudsley
- National Institute on Aging Intramural Research Program, National Institutes of Health, Laboratory of Neurosciences, Baltimore, MD
| | - Bronwen Martin
- National Institute on Aging Intramural Research Program, National Institutes of Health, Laboratory of Neurosciences, Baltimore, MD
| | - Terry M. Phillips
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Laboratory of Bioengineering and Physical Science, Bethesda, MD
| | - Pamela J. Yao
- National Institute on Aging Intramural Research Program, National Institutes of Health, Laboratory of Neurosciences, Baltimore, MD
| | - Katsuhiko Itoh
- Department of Clinical Molecular Biology, Kyoto University, Kyoto, Japan
| | - Wu Ma
- Stem Cell Center, Developmental Biology, American Type Culture Collection, Manassas, VA
| | | | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Laboratory of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Mark P. Mattson
- National Institute on Aging Intramural Research Program, National Institutes of Health, Laboratory of Neurosciences, Baltimore, MD
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Neuroprotective effects of human mesenchymal stem cells on neural cultures exposed to 6-hydroxydopamine: implications for reparative therapy in Parkinson’s disease. Apoptosis 2011; 17:289-304. [DOI: 10.1007/s10495-011-0679-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Mashayekhi F, Gholizadeh L. Administration of hepatocyte growth factor increases reelin and disabled 1 expression in the mouse cerebral cortex: an in vivo study. Cell Mol Neurobiol 2011; 31:1267-70. [PMID: 21701912 PMCID: PMC11498641 DOI: 10.1007/s10571-011-9728-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
Hepatocyte growth factor (HGF) and its receptor, c-Met, are widely expressed in the developing brain. HGF also known as scatter factor enhances cell proliferation and cell growth, and stimulates cell migration and motility. Neurons and glia produced in the neuroepithelium migrate along radial glial fibers into the cortical plate. Reelin, a glycoprotein which is produced by Cajal-Retzius cells in the marginal zone directs neuronal migration indirectly via the radial glial cells. It has been demonstrated that Disabled 1 functions downstream of reelin in a tyrosin kinase signal transduction pathway that controls appropriate cell positioning in the developing brain. In this study, administration of HGF on reelin and Disabled 1 expression in the cerebral cortex has been studied. Using Western blot, it was shown that the expression of reelin and Disabled 1 is increased in response to infusion of HGF when compared to control group. It is concluded that HGF is essential for reelin and Disabled 1 expression in the cerebral cortex of the newborn mouse. Moreover, this method may be applied to the other factors, allowing identification of molecules involved in neural cell migration.
Collapse
|
16
|
Archer T. Effects of exogenous agents on brain development: stress, abuse and therapeutic compounds. CNS Neurosci Ther 2010; 17:470-89. [PMID: 20553311 DOI: 10.1111/j.1755-5949.2010.00171.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The range of exogenous agents likely to affect, generally detrimentally, the normal development of the brain and central nervous system defies estimation although the amount of accumulated evidence is enormous. The present review is limited to certain types of chemotherapeutic and "use-and-abuse" compounds and environmental agents, exemplified by anesthetic, antiepileptic, sleep-inducing and anxiolytic compounds, nicotine and alcohol, and stress as well as agents of infection; each of these agents have been investigated quite extensively and have been shown to contribute to the etiopathogenesis of serious neuropsychiatric disorders. To greater or lesser extent, all of the exogenous agents discussed in the present treatise have been investigated for their influence upon neurodevelopmental processes during the period of the brain growth spurt and during other phases uptill adulthood, thereby maintaining the notion of critical phases for the outcome of treatment whether prenatal, postnatal, or adolescent. Several of these agents have contributed to the developmental disruptions underlying structural and functional brain abnormalities that are observed in the symptom and biomarker profiles of the schizophrenia spectrum disorders and the fetal alcohol spectrum disorders. In each case, the effects of the exogenous agents upon the status of the affected brain, within defined parameters and conditions, is generally permanent and irreversible.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|