1
|
Erzurumlu RS, Gaspar P. How the Barrel Cortex Became a Working Model for Developmental Plasticity: A Historical Perspective. J Neurosci 2020; 40:6460-6473. [PMID: 32817388 PMCID: PMC7486654 DOI: 10.1523/jneurosci.0582-20.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
For half a century now, the barrel cortex of common laboratory rodents has been an exceptionally useful model for studying the formation of topographically organized maps, neural patterning, and plasticity, both in development and in maturity. We present a historical perspective on how barrels were discovered, and how thereafter, they became a workhorse for developmental neuroscientists and for studies on brain plasticity and activity-dependent modeling of brain circuits. What is particularly remarkable about this sensory system is a cellular patterning that is induced by signals derived from the sensory receptors surrounding the snout whiskers and transmitted centrally to the brainstem (barrelettes), the thalamus (barreloids), and the neocortex (barrels). Injury to the sensory receptors shortly after birth leads to predictable pattern alterations at all levels of the system. Mouse genetics have increased our understanding of how barrels are constructed and revealed the interplay of the molecular programs that direct axon growth and cell specification, with activity-dependent mechanisms. There is an ever-rising interest in this sensory system as a neurobiological model to study development of somatotopy, patterning, and plasticity at both the morphologic and physiological levels. This article is part of a group of articles commemorating the 50th anniversary of the Society for Neuroscience.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale, Paris Brain Institute, Sorbonne Universités, Paris, France 75013
| |
Collapse
|
2
|
Huang JY, Lu HC. mGluR5 Tunes NGF/TrkA Signaling to Orient Spiny Stellate Neuron Dendrites Toward Thalamocortical Axons During Whisker-Barrel Map Formation. Cereb Cortex 2019; 28:1991-2006. [PMID: 28453662 DOI: 10.1093/cercor/bhx105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Indexed: 12/12/2022] Open
Abstract
Neurons receive and integrate synaptic inputs at their dendrites, thus dendritic patterning shapes neural connectivity and behavior. Aberrant dendritogenesis is present in neurodevelopmental disorders such as Down's syndrome and autism. Abnormal glutamatergic signaling has been observed in these diseases, as has dysfunction of the metabotropic glutamate receptor 5 (mGluR5). Deleting mGluR5 in cortical glutamatergic neurons disrupted their coordinated dendritic outgrowth toward thalamocortical axons and perturbed somatosensory circuits. Here we show that mGluR5 loss-of-function disrupts dendritogenesis of cortical neurons by increasing mRNA levels of nerve growth factor (NGF) and fibroblast growth factor 10 (FGF10), in part through calcium-permeable AMPA receptors (CP-AMPARs), as the whisker-barrel map is forming. Postnatal NGF and FGF10 expression in cortical layer IV spiny stellate neurons differentially impacted dendritic patterns. Remarkably, NGF-expressing neurons exhibited dendritic patterns resembling mGluR5 knockout neurons: increased total dendritic length/complexity and reduced polarity. Furthermore, suppressing the kinase activity of TrkA, a major NGF receptor, prevents aberrant dendritic patterning in barrel cortex of mGluR5 knockout neurons. These results reveal novel roles for NGF-TrkA signaling and CP-AMPARs for proper dendritic development of cortical neurons. This is the first in vivo demonstration that cortical neuronal NGF expression modulates dendritic patterning during postnatal brain development.
Collapse
Affiliation(s)
- Jui-Yen Huang
- Department of Psychological and Brain Sciences, the Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN 47405, USA.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui-Chen Lu
- Department of Psychological and Brain Sciences, the Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN 47405, USA.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Gaspar P, Renier N. Constraints on somatosensory map development: mutants lead the way. Curr Opin Neurobiol 2018; 53:43-49. [PMID: 29753205 DOI: 10.1016/j.conb.2018.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
In the rodent somatosensory system, the disproportionally large whisker representation and their specialization into barrel-shaped units in the different sensory relays has offered experimentalists with an ideal tool to identify mechanisms involved in brain map formation. These combine three intertwined constraints: Firstly, fasciculation of the incoming axons; secondly, early neural activity; finally, molecular patterning. Sophisticated genetic manipulations in mice have now allowed dissecting these mechanisms with greater accuracy. Here we discuss some recent papers that provided novel insights into how these different mapping rules and constraints interact to shape the barrel map.
Collapse
Affiliation(s)
- Patricia Gaspar
- Inserm, U839, Institut du Fer à Moulin, Paris, France; Sorbonne Universités, Paris, France.
| | - Nicolas Renier
- Sorbonne Universités, Paris, France; Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Inserm, CNRS, Paris, France
| |
Collapse
|
4
|
Wang CF, Hsing HW, Zhuang ZH, Wen MH, Chang WJ, Briz CG, Nieto M, Shyu BC, Chou SJ. Lhx2 Expression in Postmitotic Cortical Neurons Initiates Assembly of the Thalamocortical Somatosensory Circuit. Cell Rep 2017; 18:849-856. [PMID: 28122236 DOI: 10.1016/j.celrep.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/03/2016] [Accepted: 12/29/2016] [Indexed: 11/15/2022] Open
Abstract
Cortical neurons must be specified and make the correct connections during development. Here, we examine a mechanism initiating neuronal circuit formation in the barrel cortex, a circuit comprising thalamocortical axons (TCAs) and layer 4 (L4) neurons. When Lhx2 is selectively deleted in postmitotic cortical neurons using conditional knockout (cKO) mice, L4 neurons in the barrel cortex are initially specified but fail to form cellular barrels or develop polarized dendrites. In Lhx2 cKO mice, TCAs from the thalamic ventral posterior nucleus reach the barrel cortex but fail to further arborize to form barrels. Several activity-regulated genes and genes involved in regulating barrel formation are downregulated in the Lhx2 cKO somatosensory cortex. Among them, Btbd3, an activity-regulated gene controlling dendritic development, is a direct downstream target of Lhx2. We find that Lhx2 confers neuronal competency for activity-dependent dendritic development in L4 neurons by inducing the expression of Btbd3.
Collapse
Affiliation(s)
- Chia-Fang Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsiang-Wei Hsing
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Zi-Hui Zhuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Hsuan Wen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Carlos G Briz
- Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Campus de Cantoblanco, Madrid 28049, Spain
| | - Marta Nieto
- Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Campus de Cantoblanco, Madrid 28049, Spain
| | - Bai Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
5
|
Matsumoto N, Hoshiko M, Sugo N, Fukazawa Y, Yamamoto N. Synapse-dependent and independent mechanisms of thalamocortical axon branching are regulated by neuronal activity. Dev Neurobiol 2015; 76:323-36. [PMID: 26061995 DOI: 10.1002/dneu.22317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/06/2015] [Indexed: 12/23/2022]
Abstract
Axon branching and synapse formation are critical processes for establishing precise circuit connectivity. These processes are tightly regulated by neural activity, but the relationship between them remains largely unclear. We use organotypic coculture preparations to examine the role of synapse formation in the activity-dependent axon branching of thalamocortical (TC) projections. To visualize TC axons and their presynaptic sites, two plasmids encoding DsRed and EGFP-tagged synaptophysin (SYP-EGFP) were cotransfected into a small number of thalamic neurons. Time-lapse imaging of individual TC axons showed that most branches emerged from SYP-EGFP puncta, indicating that synapse formation precedes emergences of axonal branches. We also investigated the effects of neuronal activity on axon branching and synapse formation by manipulating spontaneous firing activity of thalamic cells. An inward rectifying potassium channel, Kir2.1, and a bacterial voltage-gated sodium channel, NaChBac, were used to suppress and promote firing activity, respectively. We found suppressing neural activity reduced both axon branching and synapse formation. In contrast, increasing neural activity promoted only axonal branch formation. Time-lapse imaging of NaChBac-expressing cells further revealed that new branches frequently appeared from the locations other than SYP-EGFP puncta, indicating that enhancing activity promotes axonal branch formation due to an increase of branch emergence at nonsynaptic sites. These results suggest that presynaptic locations are hotspots for branch emergence, and that frequent firing activity can shift branch emergence to a synapse-independent process.
Collapse
Affiliation(s)
- Naoyuki Matsumoto
- Laboratory of Cellular and Molecular Neurobiology Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Maki Hoshiko
- Laboratory of Cellular and Molecular Neurobiology Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Noriyuki Sugo
- Laboratory of Cellular and Molecular Neurobiology Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Eiheiji, Yoshida, 910-1193, Japan
| | - Nobuhiko Yamamoto
- Laboratory of Cellular and Molecular Neurobiology Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Stettler O, Moya KL. Distinct roles of homeoproteins in brain topographic mapping and in neural circuit formation. Semin Cell Dev Biol 2014; 35:165-72. [PMID: 25042849 DOI: 10.1016/j.semcdb.2014.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 01/02/2023]
Abstract
The construction of the brain is a highly regulated process, requiring coordination of various cellular and molecular mechanisms that together ensure the stability of the cerebrum architecture and functions. The mature brain is an organ that performs complex computational operations using specific sensory information from the outside world and this requires precise organization within sensory networks and a separation of sensory modalities during development. We review here the role of homeoproteins in the arealization of the brain according to sensorimotor functions, the micropartition of its cytoarchitecture, and the maturation of its sensory circuitry. One of the most interesting observation about homeoproteins in recent years concerns their ability to act both in a cell-autonomous and non-cell-autonomous manner. The highlights in the present review collectively show how these two modes of action of homeoproteins confer various functions in shaping cortical maps.
Collapse
Affiliation(s)
- Olivier Stettler
- Laboratoire CRRET EAC 7149, Université Paris-Est Créteil, 61, Av. du Général de Gaulle, 94010 Créteil Cedex, France.
| | - Kenneth L Moya
- Collège de France, Center for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM U1050, 11 place Marcelin Berthelot, 75005 Paris, France; Labex Memolife, PSL Research University, France
| |
Collapse
|
7
|
Steinecke A, Gampe C, Zimmer G, Rudolph J, Bolz J. EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence. Development 2014; 141:460-71. [DOI: 10.1242/dev.101691] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhibitory interneurons control the flow of information and synchronization in the cerebral cortex at the circuit level. During embryonic development, multiple subtypes of cortical interneurons are generated in different regions of the ventral telencephalon, such as the medial and caudal ganglionic eminence (MGE and CGE), as well as the preoptic area (POA). These neurons then migrate over long distances towards their cortical target areas. Diverse families of diffusible and cell-bound signaling molecules, including the Eph/ephrin system, regulate and orchestrate interneuron migration. Ephrin A3 and A5, for instance, are expressed at the borders of the pathway of MGE-derived interneurons and prevent these cells from entering inappropriate regions via EphA4 forward signaling. We found that MGE-derived interneurons, in addition to EphA4, also express ephrin A and B ligands, suggesting Eph/ephrin forward and reverse signaling in the same cell. In vitro and in vivo approaches showed that EphA4-induced reverse signaling in MGE-derived interneurons promotes their migration and that this effect is mediated by ephrin A2 ligands. In EphA4 mutant mice, as well as after ephrin A2 knockdown using in utero electroporation, we found delayed interneuron migration at embryonic stages. Thus, besides functions in guiding MGE-derived interneurons to the cortex through forward signaling, here we describe a novel role of the ephrins in driving these neurons to their target via reverse signaling.
Collapse
Affiliation(s)
- André Steinecke
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie, 07743 Jena, Germany
| | - Christin Gampe
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie, 07743 Jena, Germany
| | - Geraldine Zimmer
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie, 07743 Jena, Germany
| | - Judith Rudolph
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie, 07743 Jena, Germany
| | - Jürgen Bolz
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie, 07743 Jena, Germany
| |
Collapse
|
8
|
Torii M, Rakic P, Levitt P. Role of EphA/ephrin--a signaling in the development of topographic maps in mouse corticothalamic projections. J Comp Neurol 2013; 521:626-37. [PMID: 22821544 DOI: 10.1002/cne.23195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/12/2012] [Accepted: 07/19/2012] [Indexed: 01/22/2023]
Abstract
Corticothalamic (CT) feedback outnumbers thalamocortical projections and regulates sensory information processing at the level of the thalamus. It is well established that EphA7, a member of EphA receptor family, is involved in the topographic mapping of CT projections. The aim of the present study was to dissect the precise impact of EphA7 on each step of CT growth. We used in utero electroporation-mediated EphA7 overexpression in developing somatosensory CT axons to dissect EphA7/ephrin-A-dependent mechanisms involved in regulating both initial targeting and postnatal growth of the CT projections. Our data revealed that topographic maps of cortical afferents in the ventrobasal complex and medial part of the posterior complex in the thalamus become discernible shortly after birth and are fully established by the second postnatal week. This process starts with the direct ingrowth of the CT axons to the designated areas within target thalamic nuclei and by progressive increase of axonal processes in the terminal zones. Large-scale overproduction and elimination of exuberant widespread axonal branches outside the target zone was not observed. Each developmental event was coordinated by spatially and temporally different responsiveness of CT axons to the ephrin-A gradient in thalamic nuclei, as well as by the matching levels of EphA7 in CT axons and ephrin-As in thalamic nuclei. These results support the concept that the topographic connections between the maps in the cerebral cortex and corresponding thalamic nuclei are genetically prespecified to a large extent, and established by precise spatiotemporal molecular mechanisms that involve the Eph family of genes.
Collapse
Affiliation(s)
- Masaaki Torii
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | |
Collapse
|
9
|
A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proc Natl Acad Sci U S A 2012; 109:E2230-9. [PMID: 22837401 DOI: 10.1073/pnas.1204386109] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stroke causes loss of neurological function. Recovery after stroke is facilitated by forced use of the affected limb and is associated with sprouting of new connections, a process that is sharply confined in the adult brain. We show that ephrin-A5 is induced in reactive astrocytes in periinfarct cortex and is an inhibitor of axonal sprouting and motor recovery in stroke. Blockade of ephrin-A5 signaling using a unique tissue delivery system induces the formation of a new pattern of axonal projections in motor, premotor, and prefrontal circuits and mediates recovery after stroke in the mouse through these new projections. Combined blockade of ephrin-A5 and forced use of the affected limb promote new and surprisingly widespread axonal projections within the entire cortical hemisphere ipsilateral to the stroke. These data indicate that stroke activates a newly described membrane-bound astrocyte growth inhibitor to limit neuroplasticity, activity-dependent axonal sprouting, and recovery in the adult.
Collapse
|
10
|
Molnár Z, Garel S, López-Bendito G, Maness P, Price DJ. Mechanisms controlling the guidance of thalamocortical axons through the embryonic forebrain. Eur J Neurosci 2012; 35:1573-85. [PMID: 22607003 PMCID: PMC4370206 DOI: 10.1111/j.1460-9568.2012.08119.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thalamocortical axons must cross a complex cellular terrain through the developing forebrain, and this terrain has to be understood for us to learn how thalamocortical axons reach their destinations. Selective fasciculation, guidepost cells and various diencephalic and telencephalic gradients have been implicated in thalamocortical guidance. As our understanding of the relevant forebrain patterns has increased, so has our knowledge of the guidance mechanisms. Our aim here is to review recent observations of cellular and molecular mechanisms related to: the growth of thalamofugal projections to the ventral telencephalon, thalamic axon avoidance of the hypothalamus and extension into the telencephalon to form the internal capsule, the crossing of the pallial-subpallial boundary, and the growth towards the cerebral cortex. We shall review current theories for the explanation of the maintenance and alteration of topographic order in the thalamocortical projections to the cortex. It is now increasingly clear that several mechanisms are involved at different stages of thalamocortical development, and each contributes substantially to the eventual outcome. Revealing the molecular and cellular mechanisms can help to link specific genes to details of actual developmental mechanisms.
Collapse
Affiliation(s)
- Zoltán Molnár
- University of Oxford, Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, UK
| | - Sonia Garel
- Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, 46 rue d’Ulm, 75230 PARIS cedex 05, France
- INSERM, U1024, Avenir Team
- CNRS, UMR 8197
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Joan d’Alacant, 03550, Spain
| | - Patricia Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - David J Price
- Genes and Development Group, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
11
|
Wu CS, Ballester Rosado CJ, Lu HC. What can we get from 'barrels': the rodent barrel cortex as a model for studying the establishment of neural circuits. Eur J Neurosci 2012; 34:1663-76. [PMID: 22103423 DOI: 10.1111/j.1460-9568.2011.07892.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensory inputs triggered by external stimuli are projected into discrete arrays of neuronal modules in the primary sensory cortex. This whisker-to-barrel pathway has gained in popularity as a model system for studying the development of cortical circuits and sensory processing because its clear patterns facilitate the identification of genetically modified mice with whisker map deficits and make possible coordinated in vitro and in vivo electrophysiological studies. Numerous whisker map determinants have been identified in the past two decades. In this review, we summarize what have we learned from the detailed studies conducted in various mutant mice with cortical whisker map deficits. We will specifically focus on the anatomical and functional establishment of the somatosensory thalamocortical circuits.
Collapse
Affiliation(s)
- Chia-Shan Wu
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | | | | |
Collapse
|
12
|
Bidirectional ephrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence- and preoptic area-derived interneurons in the deep and superficial migratory stream. J Neurosci 2012; 31:18364-80. [PMID: 22171039 DOI: 10.1523/jneurosci.4690-11.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The integration of interneuron subtypes into specific microcircuits is essential for proper cortical function. Understanding to what extent interneuron diversity is regulated and maintained during development might help to reveal the principles that govern their role as synchronizing elements as well as causes for dysfunction. Particular interneuron subtypes are generated in a temporally regulated manner in the medial ganglionic eminence (MGE), the caudal ganglionic eminence, and the preoptic area (POA) of the basal telencephalon. Long-range tangential migration from their site of origin to cortical targets is orchestrated by a variety of attractive, repulsive, membrane-bound, and secreted signaling molecules, to establish the critical balance of inhibition and excitation. It remains unknown whether interneurons deriving from distinct domains are predetermined to migrate in particular routes and whether this process underlies cell type-specific regulation. We found that POA- and MGE-derived cortical interneurons migrate within spatially segregated corridors. EphrinB3, expressed in POA-derived interneurons traversing the superficial route, acts as a repellent signal for deeply migrating interneurons born in the MGE, which is mediated by EphA4 forward signaling. In contrast, EphA4 induces repulsive ephrinB3 reverse signaling in interneurons generated in the POA, restricting this population to the superficial path. Perturbation of this bidirectional ephrinB3/EphA4 signaling in vitro and in vivo leads to a partial intermingling of cells in these segregated migratory pathways. Thus, we conclude that cell contact-mediated bidirectional ephrinB3/EphA4 signaling mediates the sorting of MGE- and POA-derived interneurons in the deep and superficial migratory stream.
Collapse
|
13
|
Kenmuir CL, Chiaia NL, Lane RD, Mooney RD. Laminar expression of ephrin-A2 in primary somatosensory cortex of postnatal rats. Anat Rec (Hoboken) 2011; 295:105-12. [PMID: 22147308 DOI: 10.1002/ar.21485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 08/18/2011] [Indexed: 11/10/2022]
Abstract
Several Eph receptors, prominently EphA4 and EphA7, and their corresponding ligands are known to influence neocortical development, including topographic sorting of thalamocortical axons within primary somatosensory cortex (SI). This study investigated postnatal expression of a ligand that can bind to these receptors, ephrin-A2. Quantitative methods revealed that expression of ephrin-A2 mRNA in SI reached maximum levels on postnatal day (P) 4 and dropped thereafter to background by P18. Ephrin-A2 mRNA expression assessed by in situ hybridization qualitatively revealed a similar time course and localized the expression pattern primarily in two broad laminae in SI, comprising the supragranular and infragranular layers, and with additional expression in the subplate. This expression pattern was investigated in greater detail using immunohistochemistry for ephrin-A2 protein. Immunoreactivity generally showed the same laminar distribution as seen with in situ hybridization, except that it persisted longer, lasting to approximately P14. Expression in the cortical plate was low or absent within presumptive layer IV, and it remained so as cortical lamination progressed. Double-labeling immunohistochemistry with confocal microscopy revealed that cortical neurons were the principal elements expressing ephrin-A2 protein. These findings are consistent with possible involvement of ephrin-A2, in concert with one or more Eph receptors, in influencing arbor development of thalamocortical axons at cortical layer IV boundaries.
Collapse
Affiliation(s)
- Cynthia L Kenmuir
- Department of Neurosciences, College of Medicine, University of Toledo, Ohio, USA
| | | | | | | |
Collapse
|
14
|
Fukunishi A, Maruyama T, Zhao H, Tiwari M, Kang S, Kumanogoh A, Yamamoto N. The action of Semaphorin7A on thalamocortical axon branching. J Neurochem 2011; 118:1008-15. [PMID: 21781117 DOI: 10.1111/j.1471-4159.2011.07390.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Developing axons form extensive branches to make synaptic contacts with their target cells. Despite the important role of axon branching in neural circuit formation, its underlying molecular mechanism is still largely unknown. In this study, we investigated the involvement of Semaphorin7A (Sema7A) in thalamocortical (TC) axon branching. In situ hybridization demonstrated that sema7a was expressed specifically in layer 4, the TC recipient layer, when TC axons form extensive arbors. A similar protein expression pattern was observed by immunohistochemistry with an anti-Sema7A antibody. The effect of Sema7A on axon branching was investigated in dissociated cell cultures from embryonic rat thalamus. TC axon branching increased dramatically on Sema7A-coated dishes. We further studied the activity of Sema7A in vivo using loss- and gain-of-function analyses. The number of vesicular glutamate transporter 2-positive puncta was markedly reduced in the Sema7A-deficient cortex. In contrast, their number increased significantly when Sema7A was over-expressed in layer 4 cells by in utero electroporation. Taken together, these findings suggest that Sema7A acts as a positive regulator for TC axon branching and/or pre-synaptic puncta formation.
Collapse
Affiliation(s)
- Akiko Fukunishi
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
mGluR5 in cortical excitatory neurons exerts both cell-autonomous and -nonautonomous influences on cortical somatosensory circuit formation. J Neurosci 2011; 30:16896-909. [PMID: 21159961 DOI: 10.1523/jneurosci.2462-10.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Glutamatergic neurotransmission plays important roles in sensory map formation. The absence of the group I metabotropic glutamate receptor 5 (mGluR5) leads to abnormal sensory map formation throughout the mouse somatosensory pathway. To examine the role of cortical mGluR5 expression on barrel map formation, we generated cortex-specific mGluR5 knock-out (KO) mice. Eliminating mGluR5 function solely in cortical excitatory neurons affects, not only the whisker-related organization of cortical neurons (barrels), but also the patterning of their presynaptic partners, the thalamocortical axons (TCAs). In contrast, subcortical whisker maps develop normally in cortical-mGluR5 KO mice. In the S1 cortex of cortical-mGluR5 KO, layer IV neurons are homogenously distributed and have no clear relationship to the location of TCA clusters. The altered dendritic morphology of cortical layer IV spiny stellate neurons in cortical-mGluR5 KO mice argues for a cell-autonomous role of mGluR5 in dendritic patterning. Furthermore, morphometric analysis of single TCAs in both cortical- and global-mGluR5 KO mice demonstrated that in these mice, the complexity of axonal arbors is reduced, while the area covered by TCA arbors is enlarged. Using voltage-clamp whole-cell recordings in acute thalamocortical brain slices, we found that KO of mGluR5 from cortical excitatory neurons reduced inhibitory but not excitatory inputs onto layer IV neurons. This suggests that mGluR5 signaling in cortical excitatory neurons nonautonomously modulates the functional development of GABAergic circuits. Together, our data provide strong evidence that mGluR5 signaling in cortical principal neurons exerts both cell-autonomous and -nonautonomous influences to modulate the formation of cortical sensory circuits.
Collapse
|
16
|
Rudolph J, Zimmer G, Steinecke A, Barchmann S, Bolz J. Ephrins guide migrating cortical interneurons in the basal telencephalon. Cell Adh Migr 2010; 4:400-8. [PMID: 20473036 DOI: 10.4161/cam.4.3.11640] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cortical interneurons are born in the proliferative zones of the ganglionic eminences in the subpallium and migrate to the developing cortex along well-defined tangential routes. The mechanisms regulating interneuron migration are not completely understood. Here we examine the role of class-A members of the Eph/ephrin system in directing the migration of interneurons. In situ hybridizations demonstrated that ephrin-A3 is expressed in the developing striatum, an area that is strictly avoided by migrating cortical interneurons in vivo, which express the EphA4 receptor. We then examined interneuron migration in grafting experiments, where explants of the medial ganglionic eminence (MGE) from enhanced green fluorescent protein-expressing transgenic mice were homotopically grafted into host slices from wildtype littermate embryos. After blocking ephrin-A ligands, many interneurons invaded the striatal anlage. Moreover, stripe assay experiments revealed that ephrin-A3 acts as a repellent cue for neurons from the medial ganglionic eminence. Downregulation of the EphA4 receptor via siRNA transfection reduced the repulsive effect of ephrin-A3, indicating that EphA4 mediates at least in part the repulsive effect of ephrin-A3 on these cells. Together, these results suggest that ephrin-A3 acts as a repulsive cue that restricts cortical interneurons from entering inappropriate regions and thus contributes to define the migratory route of cortical interneurons.
Collapse
Affiliation(s)
- Judith Rudolph
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie, Jena, Germany
| | | | | | | | | |
Collapse
|
17
|
Guellmar A, Rudolph J, Bolz J. Structural alterations of spiny stellate cells in the somatosensory cortex in ephrin-A5-deficient mice. J Comp Neurol 2010; 517:645-54. [PMID: 19827157 DOI: 10.1002/cne.22198] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies demonstrated that in ephrin-A5-deficient mice corticothalamic arbors are reduced by more than 50% in layer 4 of the somatosensory cortex (S1), where ephrin-A5 is normally expressed. Here we examined possible consequences of the reduced thalamic input on spiny stellate cells, the target neurons of thalamocortical afferents. Using ballistic delivery of particles coated with lipophilic dyes in fixed slices and confocal laser-microscopy, we could quantitatively analyze the morphology of these neurons. Cells were examined in S1 at postnatal day 8 (P8), when thalamic afferents establish synaptic contacts and the dendrites of their target cells are covered with filopodia, and at P23, after synapse formation and replacement of filopodia by spines. Our results indicate that at P8 the dendrites of cells in mutant animals exhibit more filopodia and are more branched than dendrites of wildtype cells. In contrast, there is no difference in the extent of the dendritic tree between knockout and control animals. At P23, dendrites of neurons in ephrin-A5-deficient mice are still more branched, but possess fewer spines than wildtype cells. Thus, at early stages layer 4 neurons appear to compensate the reduced thalamic input by increasing dendritic branching and the density of filopodia. However, while at later stages the dendrites of layer 4 neurons in mutants are still more branched, their spine density is now lower than in wildtype cells. Taken together, these data demonstrate that the structure of spiny stellate cells is shaped by thalamic input and Eph receptor signaling.
Collapse
Affiliation(s)
- André Guellmar
- Universität Jena, Institut für Allgemeine Zoologie und Tierphysiologie, 07743 Jena, Germany
| | | | | |
Collapse
|