1
|
Jerkins TW, Bell DSH. Stroke in the Patient With Type 2 Diabetes. Endocr Pract 2025; 31:547-553. [PMID: 39914491 DOI: 10.1016/j.eprac.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVE Persons living with type 2 diabetes mellitus (T2DM) have a significantly greater risk of stroke (1.5 to 3 times higher than normoglycemic individuals). The traditional approach to primary and secondary stroke prevention has been control of risk factors. While this has resulted in prolongation of life in patients with diabetes, the risk for recurrent stroke in these patients still remains higher than in the normoglycemic population, and patients with T2DM post stroke have a poorer quality of life (increases in handicap and death). METHODS Multiple publications on the pathophysiology which increases stroke in T2DM were reviewed as well as new publications looking at the effect of traditional and new risk factor modification on stroke are summarized. RESULTS Traditional risk factor modification is refined with recommended levels of lipids and blood pressure and methods of anticoagulation. More recently, studies with antidiabetic drugs (glucagon-like peptide 1 RA and pioglitazone) have been shown to prevent both primary and secondary stroke in patients with diabetes. CONCLUSIONS Worldwide, stroke is the second leading cause of death and the third leading cause of disability. Both risk and the outcomes are greatly worsened by the presence of T2DM. Newer recommendations can improve these outcomes.
Collapse
|
2
|
Ma LY, Liu SF, Ma ZQ, Guo YG, Li M, Gao Y, Wen YT, Niu Y, Sui HX, Li BS, Li Y, Lv YL, Huang Y, Zhai JJ. Liraglutide improves cognition function in streptozotocin-induced diabetic rats by downregulating β-secretase and γ-secretase and alleviating oxidative stress in HT-22 cells. Endocr J 2025; 72:285-294. [PMID: 39647916 PMCID: PMC11913553 DOI: 10.1507/endocrj.ej23-0723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/24/2024] [Indexed: 12/10/2024] Open
Abstract
Diabetes has been regarded as an independent risk factor for Alzheimer's disease (AD). Liraglutide could improve cognition in AD mouse models, but its precise mechanism remains unclear. In this study, we used STZ-induced diabetic rats and HT-22 cells to investigate the effects of liraglutide. The MWM test, MTT assay, ELISA, western blot, and immunofluorescence were used in this research. Diabetic rats induced by STZ displayed a longer escape latency and entered the target zone less frequently (p < 0.05) in the MWM test. Intraperitoneal injection of liraglutide improved the cognition of diabetic rats (p < 0.05) and reduced Aβ42 expression in the hippocampus (p < 0.05). In vivo experiments showed that HT-22 cell viability decreased in the HG group, but liraglutide (100 nmol/L and 1 μmol/L) enhanced HT-22 cell viability (p < 0.05). Oxidative stress markers were upregulated in HT-22 cells in the HG group, while liraglutide treatment significantly reduced these markers (p < 0.05). Western blot and immunofluorescence analyses demonstrated increased levels of Aβ, BACE1, and γ-secretase in HT-22 cells in the HG group (p < 0.05), whereas these levels were reduced in the liraglutide treatment group (p < 0.05). These effects were reversed by the nuclear factor kappa B (NF-κB) and extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitors (p < 0.05). These findings suggest that liraglutide improved the cognition of diabetic rats and might exert its protective effects by reducing oxidative stress, downregulating BACE1 and γ-secretase expression, and decreasing Aβ deposition via the NF-κB and ERK1/2 pathways.
Collapse
Affiliation(s)
- Lou-yan Ma
- Department of General Practice Medicine, Xi’an No. 9 Hospital, Xi’an 710054, China
| | - Song-fang Liu
- Department of Endocrinology, Xi’an No. 9 Hospital, Xi’an 710054, China
| | - Zheng-quan Ma
- Department of General Practice Medicine, Xi’an No. 9 Hospital, Xi’an 710054, China
| | - Ya-gang Guo
- Department of Clinical Laboratory, Xi’an No. 9 Hospital, Xi’an 710054, China
| | - Mo Li
- Department of General Practice Medicine, Xi’an No. 9 Hospital, Xi’an 710054, China
| | - Yuan Gao
- Department of General Practice Medicine, Xi’an No. 9 Hospital, Xi’an 710054, China
| | - Yu-ting Wen
- Department of Pathology, Xi’an No. 9 Hospital, Xi’an 710054, China
| | - Yu Niu
- Department of Endocrinology, Xi’an No. 9 Hospital, Xi’an 710054, China
| | - Hai-xia Sui
- Department of Neurology, Hejian People’s Hospital, Hejian 062450, China
| | - Bao-shan Li
- Department of Geriatrics, Chongqing Emergency Medical Center, Chongqing 400014, China
| | - Ya Li
- Department of Neurology, Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi’an No. 3 Hospital, Xi’an 710018, China
| | - Ya-li Lv
- Department of Neurology, Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, the Affiliated Hospital of Northwest University, Xi’an No. 3 Hospital, Xi’an 710018, China
| | - Yao Huang
- Department of Oncology, Xi’an No. 9 Hospital, Xi’an 710054, China
| | - Jia-jia Zhai
- Department of General Practice Medicine, Xi’an No. 9 Hospital, Xi’an 710054, China
| |
Collapse
|
3
|
Hussein MH, Alameen AA, Ansari MA, AlSharari SD, Ahmad SF, Attia MSM, Sarawi WS, Nadeem A, Bakheet SA, Attia SM. Semaglutide ameliorated autism-like behaviors and DNA repair efficiency in male BTBR mice by recovering DNA repair gene expression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111091. [PMID: 39032854 DOI: 10.1016/j.pnpbp.2024.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is marked by impaired social interactions, and increased repetitive behaviors. There is evidence of genetic changes in ASD, and several of these altered genes are linked to the process of DNA repair. Therefore, individuals with ASD must have improved DNA repair efficiency to mitigate risks associated with ASD. Despite numerous milestones in ASD research, the disease remains incurable, with a high occurrence rate and substantial financial burdens. This motivates scientists to search for new drugs to manage the disease. Disruption of glucagon-like peptide-1 (GLP-1) signaling, a regulator in neuronal development and maintains homeostasis, has been associated with the pathogenesis and progression of several neurological disorders, such as ASD. Our study aimed to assess the impact of semaglutide, a new GLP-1 analog antidiabetic medication, on behavioral phenotypes and DNA repair efficiency in the BTBR autistic mouse model. Furthermore, we elucidated the underlying mechanism(s) responsible for the ameliorative effects of semaglutide against behavioral problems and DNA repair deficiency in BTBR mice. The current results demonstrate that repeated treatment with semaglutide efficiently decreased autism-like behaviors in BTBR mice without affecting motor performance. Semaglutide also mitigated spontaneous DNA damage and enhanced DNA repair efficiency in the BTBR mice as determined by comet assay. Moreover, administering semaglutide recovered oxidant-antioxidant balance in BTBR mice. Semaglutide restored the disrupted DNA damage/repair pathways in the BTBR mice by reducing Gadd45a expression and increasing Ogg1 and Xrcc1 expression at both the mRNA and protein levels. This suggests that semaglutide holds great potential as a novel therapeutic candidate for treating ASD traits.
Collapse
Affiliation(s)
- Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Alaa A Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Wedad S Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Skrobucha A, Pindlowski P, Krajewska N, Grabowski M, Jonik S. Anti-inflammatory effects of glucagon-like peptide-1 (GLP-1) in coronary artery disease: a comprehensive review. Front Cardiovasc Med 2024; 11:1446468. [PMID: 39741663 PMCID: PMC11685754 DOI: 10.3389/fcvm.2024.1446468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
Coronary artery disease (CAD)-cardiovascular condition occuring due to atherosclerotic plaque accumulation in the epicardial arteries-is responsible for disabilities of millions of people worldwide and remains the most common single cause of death. Inflammation is the primary pathological mechanism underlying CAD, since is involved in atherosclerotic plaque formation. Glucagon-like peptide-1 (GLP-1) is a peptide hormone which role extends beyond well-known carbohydrates metabolism. In in vitro studies GLP-1 receptor agonism is associated with regulation of several inflammatory pathways, including cytokine production, lypotoxicity and macrophages differentiation. In this review, we aimed to provide a comprehensive summary of the potential relationship between anti-inflammatory effects of GLP-1 and CAD. We have described a well-established association of anti-inflammatory properties of GLP-1 and atherosclerosis in animals. Pre-clinical studies showed that anti-atherogenic effect of GLP-1 is independent of modulation of plasma lipid levels and depends on anti-inflammatory response. Human studies in this area are limited by small sample size and often nonrandomized character. However, beneficial impact of GLP-1 on endothelial function and microcirculatory integrity in patients with CAD have been described. Understanding atherosclerosis as a chronic inflammatory disease offers new opportunities for the prevention and treatment of CAD. Therefore, we emphasize the need for larger randomized controlled trials focusing on cardiovascular morbidity and mortality to verify the cardioprotective properties of GLP-1R agonists in patients with CAD.
Collapse
Affiliation(s)
- Alicja Skrobucha
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
5
|
Riemma MA, Mele E, Donniacuo M, Telesca M, Bellocchio G, Castaldo G, Rossi F, De Angelis A, Cappetta D, Urbanek K, Berrino L. Glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors, anti-diabetic drugs in heart failure and cognitive impairment: potential mechanisms of the protective effects. Front Pharmacol 2024; 15:1422740. [PMID: 38948473 PMCID: PMC11212466 DOI: 10.3389/fphar.2024.1422740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Heart failure and cognitive impairment emerge as public health problems that need to be addressed due to the aging global population. The conditions that often coexist are strongly related to advancing age and multimorbidity. Epidemiological evidence indicates that cardiovascular disease and neurodegenerative processes shares similar aspects, in term of prevalence, age distribution, and mortality. Type 2 diabetes increasingly represents a risk factor associated not only to cardiometabolic pathologies but also to neurological conditions. The pathophysiological features of type 2 diabetes and its metabolic complications (hyperglycemia, hyperinsulinemia, and insulin resistance) play a crucial role in the development and progression of both heart failure and cognitive dysfunction. This connection has opened to a potential new strategy, in which new classes of anti-diabetic medications, such as glucagon-like peptide-1 receptor (GLP-1R) agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors, are able to reduce the overall risk of cardiovascular events and neuronal damage, showing additional protective effects beyond glycemic control. The pleiotropic effects of GLP-1R agonists and SGLT2 inhibitors have been extensively investigated. They exert direct and indirect cardioprotective and neuroprotective actions, by reducing inflammation, oxidative stress, ions overload, and restoring insulin signaling. Nonetheless, the specificity of pathways and their contribution has not been fully elucidated, and this underlines the urgency for more comprehensive research.
Collapse
Affiliation(s)
- Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Donniacuo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Donato Cappetta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
6
|
Albar NY, Hassaballa H, Shikh H, Albar Y, Ibrahim AS, Mousa AH, Alshanberi AM, Elgebaly A, Bahbah EI. The interaction between insulin resistance and Alzheimer's disease: a review article. Postgrad Med 2024; 136:377-395. [PMID: 38804907 DOI: 10.1080/00325481.2024.2360887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Insulin serves multiple functions as a growth-promoting hormone in peripheral tissues. It manages glucose metabolism by promoting glucose uptake into cells and curbing the production of glucose in the liver. Beyond this, insulin fosters cell growth, drives differentiation, aids protein synthesis, and deters degradative processes like glycolysis, lipolysis, and proteolysis. Receptors for insulin and insulin-like growth factor-1 are widely expressed in the central nervous system. Their widespread presence in the brain underscores the varied and critical functions of insulin signaling there. Insulin aids in bolstering cognition, promoting neuron extension, adjusting the release and absorption of catecholamines, and controlling the expression and positioning of gamma-aminobutyric acid (GABA). Importantly, insulin can effortlessly traverse the blood-brain barrier. Furthermore, insulin resistance (IR)-induced alterations in insulin signaling might hasten brain aging, impacting its plasticity and potentially leading to neurodegeneration. Two primary pathways are responsible for insulin signal transmission: the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, which oversees metabolic responses, and the mitogen-activated protein kinase (MAPK) pathway, which guides cell growth, survival, and gene transcription. This review aimed to explore the potential shared metabolic traits between Alzheimer's disease (AD) and IR disorders. It delves into the relationship between AD and IR disorders, their overlapping genetic markers, and shared metabolic indicators. Additionally, it addresses existing therapeutic interventions targeting these intersecting pathways.
Collapse
Affiliation(s)
- Nezar Y Albar
- Internal Medicine Department, Dr. Samir Abbas Hospital, Jeddah, Saudi Arabia
| | | | - Hamza Shikh
- Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Yassin Albar
- Fakeeh College of Medical Sciences, Jeddah, Saudi Arabia
| | | | - Ahmed Hafez Mousa
- Department of Neurosurgery, Postgraduate Medical Education, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Neurosurgery, Rashid Hospital, Dubai Academic Health Cooperation, Dubai, United Arab Emirates
| | - Asim Muhammed Alshanberi
- Department of Community Medicine and Pilgrims Health Care, Umm Alqura University, Makkah, Saudi Arabia
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed Elgebaly
- Smart Health Academic Unit, University of East London, London, UK
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| |
Collapse
|
7
|
Canário NS, Crisóstomo J, Moreno C, Duarte JV, Duarte IC, Ribeiro MJ, Caramelo B, Gomes LV, Matafome P, Oliveira FP, Castelo-Branco M. Functional reorganization of memory processing in the hippocampus is associated with neuroprotector GLP-1 levels in type 2 diabetes. Heliyon 2024; 10:e27412. [PMID: 38509913 PMCID: PMC10950584 DOI: 10.1016/j.heliyon.2024.e27412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Type 2 diabetes (T2D) often impairs memory functions, suggesting specific vulnerability of the hippocampus. In vivo neuroimaging studies relating encoding and retrieval of memory information with endogenous neuroprotection are lacking. The neuroprotector glucagon-like peptide (GLP-1) has a high receptor density in anterior/ventral hippocampus, as shown by animal models. Using an innovative event-related fMRI design in 34 participants we investigated patterns of hippocampal activity in T2D (n = 17) without mild cognitive impairment (MCI) versus healthy controls (n = 17) during an episodic memory task. We directly measured neurovascular coupling by estimating the hemodynamic response function using event-related analysis related to encoding and retrieval of episodic information in the hippocampus. We applied a mixed-effects general linear model analysis and a two-factor ANOVA to test for group differences. Significant between-group differences were found for memory encoding, showing evidence for functional reorganization: T2D patients showed an augmented activation in the posterior hippocampus while anterior activation was reduced. The latter was negatively correlated with both GLP-1 pre- and post-breakfast levels, in the absence of grey matter changes. These results suggest that patients with T2D without MCI have pre-symptomatic functional reorganization in brain regions underlying episodic memory, as a function of the concentration of the neuroprotective neuropeptide GLP-1.
Collapse
Affiliation(s)
- Nádia S. Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health, Portugal
- Faculty of Medicine, University of Coimbra, Portugal
| | - Joana Crisóstomo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health, Portugal
| | - Carolina Moreno
- Department of Endocrinology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - João V. Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health, Portugal
- Faculty of Medicine, University of Coimbra, Portugal
| | - Isabel C. Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health, Portugal
| | - Mário J. Ribeiro
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health, Portugal
- The Faculty of Science and Technology, University of Coimbra, Portugal
| | - Beatriz Caramelo
- Faculty of Medicine, University of Coimbra, Portugal
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center of Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Leonor V. Gomes
- Department of Endocrinology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Paulo Matafome
- Faculty of Medicine, University of Coimbra, Portugal
- Coimbra Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center of Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | | | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health, Portugal
- Faculty of Medicine, University of Coimbra, Portugal
| |
Collapse
|
8
|
Kong F, Wu T, Dai J, Zhai Z, Cai J, Zhu Z, Xu Y, Sun T. Glucagon-like peptide 1 (GLP-1) receptor agonists in experimental Alzheimer's disease models: a systematic review and meta-analysis of preclinical studies. Front Pharmacol 2023; 14:1205207. [PMID: 37771725 PMCID: PMC10525376 DOI: 10.3389/fphar.2023.1205207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the nervous system. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), a drug used to treat type 2 diabetes, have been shown to have neuroprotective effects. This systematic review and meta-analysis evaluated the effects and potential mechanisms of GLP-1 RAs in AD animal models. 26 studies were included by searching relevant studies from seven databases according to a predefined search strategy and inclusion criteria. Methodological quality was assessed using SYRCLE's risk of bias tool, and statistical analysis was performed using ReviewManger 5.3. The results showed that, in terms of behavioral tests, GLP-1 RAs could improve the learning and memory abilities of AD rodents; in terms of pathology, GLP-1 RAs could reduce Aβ deposition and phosphorylated tau levels in the brains of AD rodents. The therapeutic potential of GLP-1 RAs in AD involves a range of mechanisms that work synergistically to enhance the alleviation of various pathological manifestations associated with the condition. A total of five clinical trials were retrieved from ClinicalTrials.gov. More large-scale and high-quality preclinical trials should be conducted to more accurately assess the therapeutic effects of GLP-1 RAs on AD.
Collapse
Affiliation(s)
- Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyu Wu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyi Dai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
García-Casares N, González-González G, de la Cruz-Cosme C, Garzón-Maldonado FJ, de Rojas-Leal C, Ariza MJ, Narváez M, Barbancho MÁ, García-Arnés JA, Tinahones FJ. Effects of GLP-1 receptor agonists on neurological complications of diabetes. Rev Endocr Metab Disord 2023; 24:655-672. [PMID: 37231200 PMCID: PMC10404567 DOI: 10.1007/s11154-023-09807-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Emerging evidence suggests that treatment with glucagon-like peptide-1 receptor agonists (GLP-1 RAs) could be an interesting treatment strategy to reduce neurological complications such as stroke, cognitive impairment, and peripheral neuropathy. We performed a systematic review to examine the evidence concerning the effects of GLP-1 RAs on neurological complications of diabetes. The databases used were Pubmed, Scopus and Cochrane. We selected clinical trials which analysed the effect of GLP-1 RAs on stroke, cognitive impairment, and peripheral neuropathy. We found a total of 19 studies: 8 studies include stroke or major cardiovascular events, 7 involve cognitive impairment and 4 include peripheral neuropathy. Semaglutide subcutaneous and dulaglutide reduced stroke cases. Liraglutide, albiglutide, oral semaglutide and efpeglenatide, were not shown to reduce the number of strokes but did reduce major cardiovascular events. Exenatide, dulaglutide and liraglutide improved general cognition but no significant effect on diabetic peripheral neuropathy has been reported with GLP-1 RAs. GLP-1 RAs are promising drugs that seem to be useful in the reduction of some neurological complications of diabetes. However, more studies are needed.
Collapse
Affiliation(s)
- Natalia García-Casares
- Facultad de Medicina, Departamento de Medicina, Universidad de Málaga, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga (I.B.I.M.A), Málaga, Spain.
- Centro de Investigaciones Médico-Sanitarias (C.I.M.ES), Málaga, Spain.
- Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, Centro de Investigaciones Médico Sanitarias (C.I.M.E.S), Universidad de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Campus Universitario de Teatinos s/n., Málaga, 29010, España.
| | | | - Carlos de la Cruz-Cosme
- Instituto de Investigación Biomédica de Málaga (I.B.I.M.A), Málaga, Spain
- Hospital Universitario Virgen de la Victoria de Málaga, Málaga, Spain
| | - Francisco J Garzón-Maldonado
- Instituto de Investigación Biomédica de Málaga (I.B.I.M.A), Málaga, Spain
- Hospital Universitario Virgen de la Victoria de Málaga, Málaga, Spain
| | - Carmen de Rojas-Leal
- Facultad de Medicina, Departamento de Medicina, Universidad de Málaga, Málaga, Spain
| | - María J Ariza
- Facultad de Medicina, Departamento de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (I.B.I.M.A), Málaga, Spain
- Centro de Investigaciones Médico-Sanitarias (C.I.M.ES), Málaga, Spain
| | - Manuel Narváez
- Facultad de Medicina, Departamento de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (I.B.I.M.A), Málaga, Spain
| | - Miguel Ángel Barbancho
- Facultad de Medicina, Departamento de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (I.B.I.M.A), Málaga, Spain
- Centro de Investigaciones Médico-Sanitarias (C.I.M.ES), Málaga, Spain
| | | | - Francisco J Tinahones
- Facultad de Medicina, Departamento de Medicina, Universidad de Málaga, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga (I.B.I.M.A), Málaga, Spain.
- Hospital Universitario Virgen de la Victoria de Málaga, Málaga, Spain.
- Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Campus Universitario de Teatinos s/n., Málaga, 29010, España.
| |
Collapse
|
10
|
Mehdi SF, Pusapati S, Anwar MS, Lohana D, Kumar P, Nandula SA, Nawaz FK, Tracey K, Yang H, LeRoith D, Brownstein MJ, Roth J. Glucagon-like peptide-1: a multi-faceted anti-inflammatory agent. Front Immunol 2023; 14:1148209. [PMID: 37266425 PMCID: PMC10230051 DOI: 10.3389/fimmu.2023.1148209] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammation contributes to many chronic conditions. It is often associated with circulating pro-inflammatory cytokines and immune cells. GLP-1 levels correlate with disease severity. They are often elevated and can serve as markers of inflammation. Previous studies have shown that oxytocin, hCG, ghrelin, alpha-MSH and ACTH have receptor-mediated anti-inflammatory properties that can rescue cells from damage and death. These peptides have been studied well in the past century. In contrast, GLP-1 and its anti-inflammatory properties have been recognized only recently. GLP-1 has been proven to be a useful adjuvant therapy in type-2 diabetes mellitus, metabolic syndrome, and hyperglycemia. It also lowers HbA1C and protects cells of the cardiovascular and nervous systems by reducing inflammation and apoptosis. In this review we have explored the link between GLP-1, inflammation, and sepsis.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Muhammad Saad Anwar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Durga Lohana
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Parkash Kumar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Fatima Kausar Nawaz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kevin Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
11
|
Siebert HC, Eckert T, Bhunia A, Klatte N, Mohri M, Siebert S, Kozarova A, Hudson JW, Zhang R, Zhang N, Li L, Gousias K, Kanakis D, Yan M, Jiménez-Barbero J, Kožár T, Nifantiev NE, Vollmer C, Brandenburger T, Kindgen-Milles D, Haak T, Petridis AK. Blood pH Analysis in Combination with Molecular Medical Tools in Relation to COVID-19 Symptoms. Biomedicines 2023; 11:biomedicines11051421. [PMID: 37239092 DOI: 10.3390/biomedicines11051421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The global outbreak of SARS-CoV-2/COVID-19 provided the stage to accumulate an enormous biomedical data set and an opportunity as well as a challenge to test new concepts and strategies to combat the pandemic. New research and molecular medical protocols may be deployed in different scientific fields, e.g., glycobiology, nanopharmacology, or nanomedicine. We correlated clinical biomedical data derived from patients in intensive care units with structural biology and biophysical data from NMR and/or CAMM (computer-aided molecular modeling). Consequently, new diagnostic and therapeutic approaches against SARS-CoV-2 were evaluated. Specifically, we tested the suitability of incretin mimetics with one or two pH-sensitive amino acid residues as potential drugs to prevent or cure long-COVID symptoms. Blood pH values in correlation with temperature alterations in patient bodies were of clinical importance. The effects of biophysical parameters such as temperature and pH value variation in relation to physical-chemical membrane properties (e.g., glycosylation state, affinity of certain amino acid sequences to sialic acids as well as other carbohydrate residues and lipid structures) provided helpful hints in identifying a potential Achilles heel against long COVID. In silico CAMM methods and in vitro NMR experiments (including 31P NMR measurements) were applied to analyze the structural behavior of incretin mimetics and SARS-CoV fusion peptides interacting with dodecylphosphocholine (DPC) micelles. These supramolecular complexes were analyzed under physiological conditions by 1H and 31P NMR techniques. We were able to observe characteristic interaction states of incretin mimetics, SARS-CoV fusion peptides and DPC membranes. Novel interaction profiles (indicated, e.g., by 31P NMR signal splitting) were detected. Furthermore, we evaluated GM1 gangliosides and sialic acid-coated silica nanoparticles in complex with DPC micelles in order to create a simple virus host cell membrane model. This is a first step in exploring the structure-function relationship between the SARS-CoV-2 spike protein and incretin mimetics with conserved pH-sensitive histidine residues in their carbohydrate recognition domains as found in galectins. The applied methods were effective in identifying peptide sequences as well as certain carbohydrate moieties with the potential to protect the blood-brain barrier (BBB). These clinically relevant observations on low blood pH values in fatal COVID-19 cases open routes for new therapeutic approaches, especially against long-COVID symptoms.
Collapse
Affiliation(s)
- Hans-Christian Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Thomas Eckert
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- RISCC-Research Institute for Scientific Computing and Consulting, Ludwig-Schunk-Str. 15, 35452 Heuchelheim, Germany
- Institut für Veterinärphysiologie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Nele Klatte
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
| | - Marzieh Mohri
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Simone Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Anna Kozarova
- Department of Biomedical Sciences, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - John W Hudson
- Department of Biomedical Sciences, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Ruiyan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ning Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Lan Li
- Klinik für Neurochirurgie, Alfried Krupp Krankenhaus, Rüttenscheid, Alfried-Krupp-Straße 21, 45131 Essen, Germany
| | - Konstantinos Gousias
- Klinik für Neurochirurgie, Klinikum Lünen, St.-Marien-Hospital, Akad. Lehrkrankenhaus der Westfälische Wilhelms-Universität Münster, 44534 Lünen, Germany
| | - Dimitrios Kanakis
- Institute of Pathology, University of Nicosia Medical School, 2408 Egkomi, Cyprus
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | | | - Tibor Kožár
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Jesenná 5, 04001 Košice, Slovakia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Timo Brandenburger
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Detlef Kindgen-Milles
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Thomas Haak
- Diabetes Klinik Bad Mergentheim, Theodor-Klotzbücher-Str. 12, 97980 Bad Mergentheim, Germany
| | - Athanasios K Petridis
- Medical School, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Siddiqui N, Ali J, Parvez S, Najmi AK, Akhtar M. Neuroprotective Role of DPP-4 Inhibitor Linagliptin Against Neurodegeneration, Neuronal Insulin Resistance and Neuroinflammation Induced by Intracerebroventricular Streptozotocin in Rat Model of Alzheimer's Disease. Neurochem Res 2023:10.1007/s11064-023-03924-w. [PMID: 37079222 DOI: 10.1007/s11064-023-03924-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023]
Abstract
Alzheimer's disease (AD) is an age-related, multifactorial progressive neurodegenerative disorder manifested by cognitive impairment and neuronal death in the brain areas like hippocampus, yet the precise neuropathology of AD is still unclear. Continuous failure of various clinical trial studies demands the utmost need to explore more therapeutic targets against AD. Type 2 Diabetes Mellitus and neuronal insulin resistance due to serine phosphorylation of Insulin Receptor Substrate-1 at 307 exhibits correlation with AD. Dipeptidyl Peptidase-4 inhibitors (DPP-4i) have also indicated therapeutic effects in AD by increasing the level of Glucagon-like peptide-1 in the brain after crossing Blood Brain Barrier. The present study is hypothesized to examine Linagliptin, a DPP-4i in intracerebroventricular streptozotocin induced neurodegeneration, and neuroinflammation and hippocampal insulin resistance in rat model of AD. Following infusion on 1st and 3rd day, animals were treated orally with Linagliptin (0.513 mg/kg, 3 mg/kg, and 5 mg/kg) and donepezil (5 mg/kg) as a standard for 8 weeks. Neurobehavioral, biochemical and histopathological analysis was done at the end of treatment. Dose-dependently Linagliptin significantly reversed behavioral alterations done through locomotor activity (LA) and morris water maze (MWM) test. Moreover, Linagliptin augmented hippocampal GLP-1 and Akt-ser473 level and mitigated soluble Aβ (1-42), IRS-1 (s307), GSK-3β, TNF-α, IL-1β, IL-6, AchE and oxidative/nitrosative stress level. Histopathological analysis also exhibited neuroprotective and anti-amylodogenic effect in Hematoxylin and eosin and Congo red staining respectively. The findings of our study concludes remarkable dose-dependent therapeutic potential of Linagliptin against neuronal insulin resistance via IRS-1 and AD-related complication. Thus, demonstrates unique molecular mechanism that underlie AD.
Collapse
Affiliation(s)
- Nazia Siddiqui
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| |
Collapse
|
13
|
Liu Y, Cao LX, Wang WY, Piao YR, Wang JY, Chu CP, Bing YH, Qiu DL. GLP-1 enhances hyperpolarization-activated currents of mouse cerebellar Purkinje cell in vitro. Front Mol Neurosci 2023; 16:1126447. [PMID: 37089690 PMCID: PMC10113493 DOI: 10.3389/fnmol.2023.1126447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is mainly secreted by preglucagonergic neurons in the nucleus tractus solitarius, which plays critical roles in regulation of neuronal activity in the central nervous system through its receptor. In the cerebellar cortex, GLP-1 receptor is abundantly expressed in the molecular layer, Purkinje cell (PC) layer and granular layer, indicating that GLP-1 may modulate the cerebellar neuronal activity. In this study, we investigated the mechanism by which GLP1 modulates mouse cerebellar PC activity in vitro. After blockade of glutamatergic and GABAergic synaptic transmission in PCs, GLP1 increased the spike firing rate accompanied by depolarization of membrane potential and significantly depressed the after-hyperpolarizing potential and outward rectifying current of spike firing discharges via GLP1 receptors. In the presence of TTX and Ba2+, GLP1 significantly enhanced the hyperpolarized membrane potential-evoked instant current, steady current, tail current (I-tail) and hyperpolarization-activated (IH) current. Application of a selective IH channel antagonist, ZD7288, blocked IH and abolished the effect of GLP1 on PC membrane currents. The GLP1 induced enhancement of membrane currents was also abolished by a selective GLP1 receptor antagonist, exendin-9-39, as well as by protein kinase A (PKA) inhibitors, KT5720 and H89. In addition, immunofluorescence detected GLP1 receptor in the mouse cerebellar cortex, mostly in PCs. These results indicated that GLP1 receptor activation enhanced IH channel activity via PKA signaling, resulting in increased excitability of mouse cerebellar PCs in vitro. The present findings indicate that GLP1 plays a critical role in modulating cerebellar function by regulating the spike firing activity of mouse cerebellar PCs.
Collapse
Affiliation(s)
- Yang Liu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Li-Xin Cao
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Wei-Yao Wang
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, Jilin, China
| | - Yong-Rui Piao
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Department of Urology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Jun-Ya Wang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Chun-Ping Chu
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, Jilin, China
| | - Yan-Hua Bing
- Functional Experiment Center, College of Medicine, Yanbian University, Yanji, Jilin, China
- *Correspondence: Yan-Hua Bing,
| | - De-Lai Qiu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Department of Physiology, College of Basic Medicine, Jilin Medical University, Jilin, Jilin, China
- De-Lai Qiu, ;
| |
Collapse
|
14
|
Punapart M, Reimets R, Seppa K, Kirillov S, Gaur N, Eskla KL, Jagomäe T, Vasar E, Plaas M. Chronic Stress Alters Hippocampal Renin-Angiotensin-Aldosterone System Component Expression in an Aged Rat Model of Wolfram Syndrome. Genes (Basel) 2023; 14:genes14040827. [PMID: 37107585 PMCID: PMC10137641 DOI: 10.3390/genes14040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Biallelic mutations in the gene encoding WFS1 underlie the development of Wolfram syndrome (WS), a rare neurodegenerative disorder with no available cure. We have previously shown that Wfs1 deficiency can impair the functioning of the renin-angiotensin-aldosterone system (RAAS). The expression of two key receptors, angiotensin II receptor type 2 (Agtr2) and bradykinin receptor B1 (Bdkrb1), was downregulated both in vitro and in vivo across multiple organs in a rat model of WS. Here, we show that the expression of key RAAS components is also dysregulated in neural tissue from aged WS rats and that these alterations are not normalized by pharmacological treatments (liraglutide (LIR), 7,8-dihydroxyflavone (7,8-DHF) or their combination). We found that the expression of angiotensin II receptor type 1a (Agtr1a), angiotensin II receptor type 1b (Agtr1b), Agtr2 and Bdkrb1 was significantly downregulated in the hippocampus of WS animals that experienced chronic experimental stress. Treatment-naïve WS rats displayed different gene expression patterns, underscoring the effect of prolonged experiment-induced stress. Altogether, we posit that Wfs1 deficiency disturbs RAAS functioning under chronic stressful conditions, thereby exacerbating neurodegeneration in WS.
Collapse
Affiliation(s)
- Marite Punapart
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Riin Reimets
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Kadri Seppa
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Silvia Kirillov
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Nayana Gaur
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Toomas Jagomäe
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Mario Plaas
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Correspondence:
| |
Collapse
|
15
|
The Anti-Seizure Effect of Liraglutide on Ptz-Induced Convulsions Through its Anti-Oxidant and Anti-Inflammatory Properties. Neurochem Res 2023; 48:188-195. [PMID: 36040609 DOI: 10.1007/s11064-022-03736-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/11/2023]
Abstract
Epilepsy is a prevalent and frequently devastating neurological disorder defined by recurring spontaneous seizures caused by aberrant electrical activity in the brain. Over ten million people worldwide suffer from drug-resistant epilepsy. This severe condition requires novel treatment approaches. Both oxidative and nitrosative stress are thought to have a role in the etiology of epilepsy. Liraglutide is a glucagon-like peptide-1 (GLP-1) analogue that is used to treat type-2 diabetes mellitus. According to recent studies, Liraglutide also shows neuroprotective properties, improving memory retention and total hippocampus pyramidal neuronal population in mice. The purpose of this investigation was to determine the anti-seizure and anti-oxidative effects of liraglutide in a pentylenetetrazole (PTZ)-induced rat model of epilepsy. 48 rats were randomly assigned to two groups: those who had electroencephalography (EEG) recordings and those who underwent behavioral assessment. Rats received either intraperitoneal (IP) liraglutide at two different dosages (3-6 mg/kg) or a placebo, followed by pentylenetetrazole (IP). To determine if liraglutide has anti-seizure characteristics, we examined seizure activity in rats using EEG, the Racine convulsion scale (RCS), the time of first myoclonic jerk (FMJ), and MDA, SOD, TNF-α, IL-1β and GAD-67 levels. The mean EEG spike wave percentage score was reduced from 75.8% (placebo) to 59.4% (lower-dose) and 41.5% (higher-dose). FMJ had increased from a mean of 70.6 s (placebo) to 181.2 s (lower-dose) and 205.2 s (higher-dose). RCS was reduced from a mean of 5.5 (placebo) to 2.7 (lower-dose) and 2.4 (higher-dose). Liraglutide (3 and 6 mg/kg i.p.) successfully decreased the spike percentages and RCS associated with PTZ induced epilepsy, as well as considerably decreased MDA, TNF-α, IL-1β and elevated SOD, GAD-67 levels in rat brain. Liraglutide significantly decreased seizure activity at both dosages when compared to control, most likely due to its anti-oxidant and anti-inflammatory properties. The potential clinical role of liraglutide as an anti-seizure medication should be further explored.
Collapse
|
16
|
Vergès B, Aboyans V, Angoulvant D, Boutouyrie P, Cariou B, Hyafil F, Mohammedi K, Amarenco P. Protection against stroke with glucagon-like peptide-1 receptor agonists: a comprehensive review of potential mechanisms. Cardiovasc Diabetol 2022; 21:242. [PMID: 36380358 PMCID: PMC9667639 DOI: 10.1186/s12933-022-01686-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Several randomized controlled trials have demonstrated the benefits of glucagon-like peptide-1 receptor agonists (GLP-1RAs) on ischemic stroke in patients with diabetes. In this review, we summarize and discuss the potential mechanisms of stroke protection by GLP-1RAs. GLP-1RAs exert multiple anti-atherosclerotic effects contributing to stroke prevention such as enhanced plaque stability, reduced vascular smooth muscle proliferation, increased nitric oxide, and improved endothelial function. GLP-1RAs also lower the risk of stroke by reducing traditional stroke risk factors including hyperglycemia, hypertension, and dyslipidemia. Independently of these peripheral actions, GLP-1RAs show direct cerebral effects in animal stroke models, such as reduction of infarct volume, apoptosis, oxidative stress, neuroinflammation, excitotoxicity, blood-brain barrier permeability, and increased neurogenesis, neuroplasticity, angiogenesis, and brain perfusion. Despite these encouraging findings, further research is still needed to understand more thoroughly the mechanisms by which GLP-1RAs may mediate stroke protection specifically in the human diabetic brain.
Collapse
Affiliation(s)
- Bruno Vergès
- grid.5613.10000 0001 2298 9313Department of Endocrinology, Diabetes and Metabolic Disorders, Dijon University Hospital, INSERM Unit, LNC-UMR 1231, University of Burgundy, Dijon, France
| | - Victor Aboyans
- Department of Cardiology, EpiMaCT - INSERM UMR, Dupuytren University Hospital, Limoges University, 1094 & IRD 270, Limoges, France
| | - Denis Angoulvant
- EA4245 Transplantation, Immunity & Inflammation, Department of Cardiology, University of Tours, Tours University Hospital, Tours, France
| | - Pierre Boutouyrie
- Paris Cardiovascular Research CenterUMR-970Department of Pharmacology, INSERM, Georges-Pompidou European Hospital, Paris City University, Paris, France
| | - Bertrand Cariou
- grid.462318.aUniversity of Nantes, Nantes University Hospital Centre, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Fabien Hyafil
- grid.414093.b0000 0001 2183 5849Department of Nuclear Medicine, DMU IMAGINA, Georges-Pompidou European Hospital, APHP, Paris City University, Paris, France
| | - Kamel Mohammedi
- grid.412041.20000 0001 2106 639XDepartment of Endocrinology, Diabetes, and Nutrition, University of Bordeaux, INSERM U1034, Pessac, France
| | - Pierre Amarenco
- Neurology and Stroke Center, SOS-TIA Clinic, Bichat Hospital, University of Paris, Paris, France
| |
Collapse
|
17
|
Ferrari F, Moretti A, Villa RF. Incretin-based drugs as potential therapy for neurodegenerative diseases: current status and perspectives. Pharmacol Ther 2022; 239:108277. [DOI: 10.1016/j.pharmthera.2022.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
18
|
Protective role of IGF-1 and GLP-1 signaling activation in neurological dysfunctions. Neurosci Biobehav Rev 2022; 142:104896. [PMID: 36191807 DOI: 10.1016/j.neubiorev.2022.104896] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022]
Abstract
Insulin-like growth factor-1 (IGF-1), a pleiotropic polypeptide, plays an essential role in CNS development and maturation. Glucagon-like peptide-1 (GLP-1) is an endogenous incretin hormone that regulates blood glucose levels and fatty acid oxidation in the brain. GLP-1 also exhibits similar functions and growth factor-like properties to IGF-1, which is likely how it exerts its neuroprotective effects. Recent preclinical and clinical evidence indicate that IGF-1 and GLP-1, apart from regulating growth and development, prevent neuronal death mediated by amyloidogenesis, cerebral glucose deprivation, neuroinflammation and apoptosis through modulation of PI3/Akt kinase, mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK/ERK). IGF-1 resistance and GLP-1 deficiency impair protective cellular signaling mechanisms, contributing to the progression of neurodegenerative diseases. Over the past decades, IGF-1 and GLP-1 have emerged as an essential component of the neuronal system and as potential therapeutic targets for several neurodegenerative and neuropsychiatric dysfunctions. There is substantial evidence that IGF-1 and GLP-1 analogues penetrate the blood-brain barrier (BBB) and exhibit neuroprotective functions, including synaptic formation, neuronal plasticity, protein synthesis, and autophagy. Conclusively, this review represents the therapeutic potential of IGF-1 and GLP-1 signaling target activators in ameliorating neurological disorders.
Collapse
|
19
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
20
|
Hölscher C. Glucagon-like peptide 1 and glucose-dependent insulinotropic peptide hormones and novel receptor agonists protect synapses in Alzheimer’s and Parkinson’s diseases. Front Synaptic Neurosci 2022; 14:955258. [PMID: 35965783 PMCID: PMC9363704 DOI: 10.3389/fnsyn.2022.955258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are peptide hormones and growth factors. A major pathological feature of both Alzheimer’s dis-ease (AD) and Parkinson’s disease (PD) is the loss of synaptic transmission in the cortex in AD and the loss of dopaminergic synapses in the nigra-striatal dopaminergic projection. Several studies demonstrate that GLP-1 and GIP receptor agonists protect synapses and synaptic transmission from the toxic events that underlie AD and PD. In a range of AD animal models, treatment with GLP-1, GIP, or dual-GLP-1/GIP receptor agonists effectively protected cognition, synaptic trans-mission, long-term potentiation (LTP), and prevented the loss of synapses and neurons. In PD models, dopaminergic production resumed and synapses became functional again. Importantly, the GLP-1 receptor agonists exendin-4 and liraglutide have shown good protective effects in clinical trials in AD and PD patients. Studies show that growth factors and peptide drugs that can cross the blood–brain barrier (BBB) better are more potent than those that do not cross the BBB. We therefore developed dual-GLP-1/GIP receptor agonists that can cross the BBB at an enhanced rate and showed superior protective properties on synapses in animal models of AD and PD.
Collapse
Affiliation(s)
- Christian Hölscher
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
21
|
GLP-1 mediates the neuroprotective action of crocin against cigarette smoking-induced cognitive disorders via suppressing HMGB1-RAGE/TLR4-NF-κB pathway. Int Immunopharmacol 2022; 110:108995. [PMID: 35785730 DOI: 10.1016/j.intimp.2022.108995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
Cigarette smoking (CS) has been associated with an increased risk of cognitive disorders. Although HMGB1 has been connected to various neurological ailments, its role in the pathogenesis of CS-induced cognitive impairments is undefined. With the ability of GLP-1 to lower HMGB1 expression and improve learning and memory performance, we sought to assess the potential neuroprotective efficacy of Crocin (Cro) as a GLP-1 stimulator against CS-induced cognitive impairments, with a focus on the HMGB1-RAGE/TLR4-NF-κB pathway. Fifty adult rats were specified into: Control; Cro (30 mg/kg); CS; Cro then CS and CS concurrently with Cro. Cognitive functions were assessed by MWM, EMP, and passive avoidance tests. Hippocampal levels of GLP-1, HMGB1, pro-inflammatory cytokines, and apoptotic markers were detected using ELISA, western blotting, and immunohistochemistry. Hippocampal oxidant/antioxidant status was evaluated via colorimetric determination of MDA and TAC. The results revealed that Cro either before or along with CS produced a significant improvement in learning and memory. Cro markedly hindered HMGB1-RAGE/TLR4-NF-κB pathway through enhancing GLP-1 level and expression, which in turn suppressed TNF-α and IL-1β levels and alleviated CS-induced neuroinflammation. Cro significantly counteracted CS-triggered oxidative stress as evidenced by reducing MDA level and raising TAC. Histopathologically, Cro lessened neuronal apoptosis by lowering Bax/Bcl-2 ratio at hippocampal CA2 region. These findings confirmed a GLP-1-dependent neuroprotective action of Cro against CS-induced cognitive disorders via suppressing HMGB1-RAGE/TLR4-NF-κB axis.
Collapse
|
22
|
GLP-1 Receptor Agonists in Neurodegeneration: Neurovascular Unit in the Spotlight. Cells 2022; 11:cells11132023. [PMID: 35805109 PMCID: PMC9265397 DOI: 10.3390/cells11132023] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Defects in brain energy metabolism and proteopathic stress are implicated in age-related degenerative neuronopathies, exemplified by Alzheimer’s disease (AD) and Parkinson’s disease (PD). As the currently available drug regimens largely aim to mitigate cognitive decline and/or motor symptoms, there is a dire need for mechanism-based therapies that can be used to improve neuronal function and potentially slow down the underlying disease processes. In this context, a new class of pharmacological agents that achieve improved glycaemic control via the glucagon-like peptide 1 (GLP-1) receptor has attracted significant attention as putative neuroprotective agents. The experimental evidence supporting their potential therapeutic value, mainly derived from cellular and animal models of AD and PD, has been discussed in several research reports and review opinions recently. In this review article, we discuss the pathological relevance of derangements in the neurovascular unit and the significance of neuron–glia metabolic coupling in AD and PD. With this context, we also discuss some unresolved questions with regard to the potential benefits of GLP-1 agonists on the neurovascular unit (NVU), and provide examples of novel experimental paradigms that could be useful in improving our understanding regarding the neuroprotective mode of action associated with these agents.
Collapse
|
23
|
Exercise Improves Spatial Learning and Memory Performance through the Central GLP-1 Receptors. Behav Neurol 2022; 2022:2900628. [PMID: 35774081 PMCID: PMC9239811 DOI: 10.1155/2022/2900628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/05/2022] [Indexed: 11/27/2022] Open
Abstract
The glucagon-like peptide 1 (GLP-1) is a hormone which is produced in the enteroendocrine L-cells in the ileum and the neurons of nucleus tractus solitarius (NTS) in the brain which has numerous metabolic effects. The central GLP-1R's role in cognitive functioning is well known. On the contrary, it has been shown that exercise has positive effects on brain function. So, we decided to elucidate whether the central GLP-1 has a role in memory and learning. Thirty-two rats were used in this experiment in 4 groups. After anesthetizing the rats, the right lateral ventricle was detected, and a cannula was directed to the ventricle. Ten micrograms of exendin-3 or sterile saline, according to the group, was injected via ICV once daily for seven days. The rats in the exercise group considered an exercise period of one hour each day (17 meters per minute) for seven consecutive days. To evaluate the performance of memory and learning, a standard Morris water maze (MWM) tank was utilized. According to the results, the TE-exendin group showed a statistically significant difference from the TE-SAL group in both parameters of latency and time in the zone. In summary, memory and learning were improved by GLP-1R in the exercise group, but not in the sedentary group, which we can hypothesize that exercise can affect memory and learning through this pathway.
Collapse
|
24
|
De Sarro C, Tallarico M, Pisano M, Gallelli L, Citraro R, De Sarro G, Leo A. Liraglutide chronic treatment prevents development of tolerance to antiseizure effects of diazepam in genetically epilepsy prone rats. Eur J Pharmacol 2022; 928:175098. [PMID: 35700834 DOI: 10.1016/j.ejphar.2022.175098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a hormone that can regulate several neuronal functions. The modulation of GLP-1 receptors emerged as a potential target to treat several neurological diseases, such as epilepsy. Here, we studied the effects of acute and chronic treatment with liraglutide (LIRA), in genetically epilepsy prone rats (GEPR-9s). We have also investigated the possible development of tolerance to antiseizure effects of diazepam, and how LIRA could affect this phenomenon over the same period of treatment. The present data indicate that an acute treatment with LIRA did not diminish the severity score of audiogenic seizures (AGS) in GEPR-9s. By contrast, a chronic treatment with LIRA has shown only a modest antiseizure effect that was maintained until the end of treatment, in GEPR-9s. Not surprisingly, acute administration of diazepam reduced, in a dose dependent manner, the severity of the AGS in GEPR-9s. However, when diazepam was chronically administered, an evident development of tolerance to its antiseizure effects was detected. Interestingly, following an add-on treatment with LIRA, a reduced development of tolerance and an enhanced diazepam antiseizure effect was observed in GEPR-9s. Overall, an add-on therapy with LIRA demonstrate benefits superior to single antiseizure medications and could be utilized to treat epilepsy as well as associated issues. Therefore, the potential use of GLP1 analogs for the treatment of epilepsy in combination with existing antiseizure medications could thus add a new and long-awaited dimension to its management.
Collapse
Affiliation(s)
- Caterina De Sarro
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Martina Tallarico
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maria Pisano
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Luca Gallelli
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy.
| | - Giovambattista De Sarro
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy.
| | - Antonio Leo
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
25
|
Yang X, Feng P, Ji R, Ren Y, Wei W, Hölscher C. Therapeutic application of GLP-1 and GIP receptor agonists in Parkinson's disease. Expert Opin Ther Targets 2022; 26:445-460. [PMID: 35584372 DOI: 10.1080/14728222.2022.2079492] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes is a risk factor for Parkinson's disease (PD) and shares similar dysregulated insulin pathways. Glucagon-like peptide-1 (GLP-1) analogs originally designed to treat diabetes have shown potent neuroprotective activity in preclinical studies of PD. They are neuroprotective by inhibiting inflammation, improving neuronal survival, maintenance of synapses, and dopaminergic transmission in the brain. Building on this, three clinical studies have reported impressive effects in patients with PD, testing exendin-4 (Exenatide, Bydureon) or liraglutide (Victoza, Saxenda). Glucose-dependent insulinotropic peptide (GIP) is another peptide hormone that has shown good effects in animal models of PD. Novel dual GLP-1/GIP agonists have been developed that can penetrate the blood-brain barrier (BBB) and show superior effects in animal models compared to GLP-1 drugs. AREAS COVERED The review summarizes preclinical and clinical studies testing GLP-1R agonists and dual GLP-1/GIPR agonists in PD and discusses possible mechanisms of action. EXPERT OPINION Current strategies to treat PD by lowering the levels of alpha-synuclein have not shown effects in clinical trials. It is time to move on from the 'misfolding protein' hypothesis. Growth factors such as GLP-1 that can cross the BBB have already shown impressive effects in patients and are the future of drug discovery in PD.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Peng Feng
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, Shanxi Province, China
| | - Rong Ji
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Yiqing Ren
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Christian Hölscher
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, Shanxi Province, China.,Academy of Chinese Medical Science, Henan University of Traditional Chinese Medicine, No. 233 Zhongyuan Road, Zhengzhou, China
| |
Collapse
|
26
|
Yang X, Qiang Q, Li N, Feng P, Wei W, Hölscher C. Neuroprotective Mechanisms of Glucagon-Like Peptide-1-Based Therapies in Ischemic Stroke: An Update Based on Preclinical Research. Front Neurol 2022; 13:844697. [PMID: 35370875 PMCID: PMC8964641 DOI: 10.3389/fneur.2022.844697] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
The public and social health burdens of ischemic stroke have been increasing worldwide. Hyperglycemia leads to a greater risk of stroke. This increased risk is commonly seen among patients with diabetes and is in connection with worsened clinical conditions and higher mortality in patients with acute ischemic stroke (AIS). Therapy for stroke focuses mainly on restoring cerebral blood flow (CBF) and ameliorating neurological impairment caused by stroke. Although choices of stroke treatment remain limited, much advance have been achieved in assisting patients in recovering from ischemic stroke, along with progress of recanalization therapy through pharmacological and mechanical thrombolysis. However, it is still necessary to develop neuroprotective therapies for AIS to protect the brain against injury before and during reperfusion, prolong the time window for intervention, and consequently improve neurological prognosis. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are broadly regarded as effective drugs in the treatment of type 2 diabetes mellitus (T2DM). Preclinical data on GLP-1 and GLP-1 RAs have displayed an impressive neuroprotective efficacy in stroke, Parkinson's disease (PD), Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS), and other neurodegenerative diseases. Based on the preclinical studies in the past decade, we review recent progress in the biological roles of GLP-1 and GLP-1 RAs in ischemic stroke. Emphasis will be placed on their neuroprotective effects in experimental models of cerebral ischemia stroke at cellular and molecular levels.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiang Qiang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Nan Li
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Peng Feng
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Christian Hölscher
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China.,Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
27
|
Hölscher C. Protective properties of GLP-1 and associated peptide hormones in neurodegenerative disorders. Br J Pharmacol 2022; 179:695-714. [PMID: 33900631 PMCID: PMC8820183 DOI: 10.1111/bph.15508] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus and the associated desensitisation of insulin signalling has been identified as a risk factor for progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and others. Glucagon-like peptide 1 (GLP-1) is a hormone that has growth factor-like and neuroprotective properties. Several clinical trials have been conducted, testing GLP-1 receptor agonists in patients with Alzheimer's disease, Parkinson's disease or diabetes-induced memory impairments. The trials showed clear improvements in Alzheimer's disease, Parkinson's disease and diabetic patients. Glucose-dependent insulinotropic polypeptide/gastric inhibitory peptide (GIP) is the 'sister' incretin hormone of GLP-1. GIP analogues have shown neuroprotective effects in animal models of disease and can improve on the effects of GLP-1. Novel dual GLP-1/GIP receptor agonists have been developed that can enter the brain at an enhanced rate. The improved neuroprotective effects of these drugs suggest that they are superior to single GLP-1 receptor agonists and could provide disease-modifying care for Alzheimer's disease and Parkinson's disease patients. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.
Collapse
Affiliation(s)
- Christian Hölscher
- The Second Associated Hospital, Neurology DepartmentShanxi Medical UniversityTaiyuanChina
- Academy of Chinese Medical ScienceHenan University of Chinese MedicineZhengzhouChina
| |
Collapse
|
28
|
Carranza-Naval MJ, Del Marco A, Hierro-Bujalance C, Alves-Martinez P, Infante-Garcia C, Vargas-Soria M, Herrera M, Barba-Cordoba B, Atienza-Navarro I, Lubian-Lopez S, Garcia-Alloza M. Liraglutide Reduces Vascular Damage, Neuronal Loss, and Cognitive Impairment in a Mixed Murine Model of Alzheimer's Disease and Type 2 Diabetes. Front Aging Neurosci 2022; 13:741923. [PMID: 34975451 PMCID: PMC8716860 DOI: 10.3389/fnagi.2021.741923] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease is the most common form of dementia, and epidemiological studies support that type 2 diabetes (T2D) is a major contributor. The relationship between both diseases and the fact that Alzheimer's disease (AD) does not have a successful treatment support the study on antidiabetic drugs limiting or slowing down brain complications in AD. Among these, liraglutide (LRGT), a glucagon-like peptide-1 agonist, is currently being tested in patients with AD in the Evaluating Liraglutide in Alzheimer's Disease (ELAD) clinical trial. However, the effects of LRGT on brain pathology when AD and T2D coexist have not been assessed. We have administered LRGT (500 μg/kg/day) to a mixed murine model of AD and T2D (APP/PS1xdb/db mice) for 20 weeks. We have evaluated metabolic parameters as well as the effects of LRGT on learning and memory. Postmortem analysis included assessment of brain amyloid-β and tau pathologies, microglia activation, spontaneous bleeding and neuronal loss, as well as insulin and insulin-like growth factor 1 receptors. LRGT treatment reduced glucose levels in diabetic mice (db/db and APP/PS1xdb/db) after 4 weeks of treatment. LRGT also helped to maintain insulin levels after 8 weeks of treatment. While we did not detect any effects on cortical insulin or insulin-like growth factor 1 receptor m-RNA levels, LRGT significantly reduced brain atrophy in the db/db and APP/PS1xdb/db mice. LRGT treatment also rescued neuron density in the APP/PS1xdb/db mice in the proximity (p = 0.008) far from amyloid plaques (p < 0.001). LRGT reduced amyloid plaque burden in the APP/PS1 animals (p < 0.001), as well as Aβ aggregates levels (p = 0.046), and tau hyperphosphorylation (p = 0.009) in the APP/PS1xdb/db mice. Spontaneous bleeding was also ameliorated in the APP/PS1xdb/db animals (p = 0.012), and microglia burden was reduced in the proximity of amyloid plaques in the APP/PS1 and APP/PS1xdb/db mice (p < 0.001), while microglia was reduced in areas far from amyloid plaques in the db/db and APP/PS1xdb/db mice (p < 0.001). This overall improvement helped to rescue cognitive impairment in AD-T2D mice in the new object discrimination test (p < 0.001) and Morris water maze (p < 0.001). Altogether, our data support the role of LRGT in reduction of associated brain complications when T2D and AD occur simultaneously, as regularly observed in the clinical arena.
Collapse
Affiliation(s)
- Maria Jose Carranza-Naval
- Division of Physiology, School of Medicine, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cádiz (INIBICA), Cádiz, Spain.,Salus Infirmorum-Universidad de Cádiz, Cádiz, Spain
| | - Angel Del Marco
- Division of Physiology, School of Medicine, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cádiz (INIBICA), Cádiz, Spain
| | - Carmen Hierro-Bujalance
- Division of Physiology, School of Medicine, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cádiz (INIBICA), Cádiz, Spain
| | - Pilar Alves-Martinez
- Division of Physiology, School of Medicine, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cádiz (INIBICA), Cádiz, Spain
| | - Carmen Infante-Garcia
- Division of Physiology, School of Medicine, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cádiz (INIBICA), Cádiz, Spain
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cádiz (INIBICA), Cádiz, Spain
| | - Marta Herrera
- Division of Physiology, School of Medicine, Universidad de Cádiz, Cádiz, Spain
| | - Belen Barba-Cordoba
- Division of Physiology, School of Medicine, Universidad de Cádiz, Cádiz, Spain
| | - Isabel Atienza-Navarro
- Division of Physiology, School of Medicine, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cádiz (INIBICA), Cádiz, Spain
| | - Simon Lubian-Lopez
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cádiz (INIBICA), Cádiz, Spain.,Section of Neonatology, Division of Pediatrics, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cádiz (INIBICA), Cádiz, Spain
| |
Collapse
|
29
|
Troshneva A, Ametov A. Parkinson’s disease and type 2 diabetes mellitus: interrelation of pathogenetic mechanisms and general therapeutic approaches. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:12-18. [DOI: 10.17116/jnevro202212211212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Iwasa K, Yamamoto S, Yamashina K, Yagishita-Kyo N, Maruyama K, Awaji T, Takei Y, Hirasawa A, Yoshikawa K. A peripheral lipid sensor GPR120 remotely contributes to suppression of PGD 2-microglia-provoked neuroinflammation and neurodegeneration in the mouse hippocampus. J Neuroinflammation 2021; 18:304. [PMID: 34961526 PMCID: PMC8711188 DOI: 10.1186/s12974-021-02361-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Neuroinflammation is a key pathological component of neurodegenerative disease and is characterized by microglial activation and the secretion of proinflammatory mediators. We previously reported that a surge in prostaglandin D2 (PGD2) production and PGD2-induced microglial activation could provoke neuroinflammation. We also reported that a lipid sensor GPR120 (free fatty acid receptor 4), which is expressed in intestine, could be activated by polyunsaturated fatty acids (PUFA), thereby mediating secretion of glucagon-like peptide-1 (GLP-1). Dysfunction of GPR120 results in obesity in both mice and humans. METHODS To reveal the relationship between PGD2-microglia-provoked neuroinflammation and intestinal PUFA/GPR120 signaling, we investigated neuroinflammation and neuronal function with gene and protein expression, histological, and behavioral analysis in GPR120 knockout (KO) mice. RESULTS In the current study, we discovered notable neuroinflammation (increased PGD2 production and microglial activation) and neurodegeneration (declines in neurogenesis, hippocampal volume, and cognitive function) in GPR120 KO mice. We also found that Hematopoietic-prostaglandin D synthase (H-PGDS) was expressed in microglia, microglia were activated by PGD2, H-PGDS expression was upregulated in GPR120 KO hippocampus, and inhibition of PGD2 production attenuated this neuroinflammation. GPR120 KO mice exhibited reduced intestinal, plasma, and intracerebral GLP-1 contents. Peripheral administration of a GLP-1 analogue, liraglutide, reduced PGD2-microglia-provoked neuroinflammation and further neurodegeneration in GPR120 KO mice. CONCLUSIONS Our results suggest that neurological phenotypes in GPR120 KO mice are probably caused by dysfunction of intestinal GPR120. These observations raise the possibility that intestinal GLP-1 secretion, stimulated by intestinal GPR120, may remotely contributed to suppress PGD2-microglia-provoked neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Shinji Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kota Yamashina
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Nan Yagishita-Kyo
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Takeo Awaji
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Yoshinori Takei
- Department of Translational Research and Cellular Therapeutics, School of Medicine, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Institute for Integrated Medical Sciences, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.
| |
Collapse
|
31
|
Safar MM, Abdelkader NF, Ramadan E, Kortam MA, Mohamed AF. Novel mechanistic insights towards the repositioning of alogliptin in Parkinson's disease. Life Sci 2021; 287:120132. [PMID: 34774622 DOI: 10.1016/j.lfs.2021.120132] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease that impairs people's lives tremendously. The development of innovative treatment modalities for PD is a significant unmet medical need. The critical function of glucagon-like peptide-1 (GLP-1) in neurodegenerative diseases has raised impetus in investigating the repositioning of a dipeptidyl peptidase IV inhibitor, alogliptin (ALO), as an effective treatment for PD. As a result, the focus of this research was to assess the effect of ALO in a rat rotenone (ROT) model of PD. For 21 days, ROT (1.5 mg/kg) was delivered subcutaneously every other day. ALO (30 mg/kg/day), delivered by gavage for 21 days, recovered motor performance and improved motor coordination in the open-field and rotarod testing. These impacts were highlighted by restoring striatal dopamine content and correcting histological changes that occurred concurrently. The ALO molecular signaling was determined by increasing the quantity of GLP-1 and the protein expression of its downstream signaling pathway, pT172-AMPK/SIRT1/PGC-1α. Furthermore, it curbed neuroinflammation via hampering HMGB1/TLR4/NLRP3 inflammasome activation and conquered striatal microglia activation. Pre-administration of dorsomorphin reversed the neuroprotective effects. In conclusion, the promising neuroprotective effect of ALO highlights the repositioning of ALO as a prospective revolutionary candidate for combating PD.
Collapse
Affiliation(s)
- Marwa M Safar
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, the British University in Egypt, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Noha F Abdelkader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Eman Ramadan
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, the British University in Egypt, Cairo, Egypt
| | - Mona A Kortam
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Ikeda Y, Nagase N, Tsuji A, Kitagishi Y, Matsuda S. Neuroprotection by dipeptidyl-peptidase-4 inhibitors and glucagon-like peptide-1 analogs via the modulation of AKT-signaling pathway in Alzheimer’s disease. World J Biol Chem 2021; 12:104-113. [PMID: 34904048 PMCID: PMC8637616 DOI: 10.4331/wjbc.v12.i6.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common reason for progressive dementia in the elderly. It has been shown that disorders of the mammalian/mechanistic target of rapamycin (mTOR) signaling pathways are related to the AD. On the other hand, diabetes mellitus (DM) is a risk factor for the cognitive dysfunction. The pathogenesis of the neuronal impairment caused by diabetic hyperglycemia is intricate, which contains neuro-inflammation and/or neurodegeneration and dementia. Glucagon-like peptide-1 (GLP1) is interesting as a possible link between metabolism and brain impairment. Modulation of GLP1 activity can influence amyloid-beta peptide aggregation via the phosphoinositide-3 kinase/AKT/mTOR signaling pathway in AD. The GLP1 receptor agonists have been shown to have favorable actions on the brain such as the improvement of neurological deficit. They might also exert a beneficial effect with refining learning and memory on the cognitive impairment induced by diabetes. Recent experimental and clinical evidence indicates that dipeptidyl-peptidase-4 (DPP4) inhibitors, being currently used for DM therapy, may also be effective for AD treatment. The DPP-4 inhibitors have demonstrated neuroprotection and cognitive improvements in animal models. Although further studies for mTOR, GLP1, and DPP4 signaling pathways in humans would be intensively required, they seem to be a promising approach for innovative AD-treatments. We would like to review the characteristics of AD pathogenesis, the key roles of mTOR in AD and the preventive and/ or therapeutic suggestions of directing the mTOR signaling pathway.
Collapse
Affiliation(s)
- Yuka Ikeda
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Nozomi Nagase
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Ai Tsuji
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Food Science and Nutrition, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
33
|
Elabi OF, Davies JS, Lane EL. L-dopa-Dependent Effects of GLP-1R Agonists on the Survival of Dopaminergic Cells Transplanted into a Rat Model of Parkinson Disease. Int J Mol Sci 2021; 22:ijms222212346. [PMID: 34830228 PMCID: PMC8618072 DOI: 10.3390/ijms222212346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022] Open
Abstract
Cell therapy is a promising treatment for Parkinson's disease (PD), however clinical trials to date have shown relatively low survival and significant patient-to-patient variability. Glucagon Like Peptide-1 receptor (GLP-1R) agonists have potential neuroprotective effects on endogenous dopaminergic neurons. This study explores whether these agents could similarly support the growth and survival of newly transplanted neurons. 6-OHDA lesioned Sprague Dawley rats received intra-striatal grafts of dopaminergic ventral mesencephalic cells from embryonic day 14 Wistar rat embryos. Transplanted rats then received either saline or L-dopa (12 mg/kg) administered every 48 h prior to, and following cell transplantation. Peripheral GLP-1R agonist administration (exendin-4, 0.5 μg/kg twice daily or liraglutide, 100 μg/kg once daily) commenced immediately after cell transplantation and was maintained throughout the study. Graft survival increased under administration of exendin-4, with motor function improving significantly following treatment with both exendin-4 and liraglutide. However, this effect was not observed in rats administered with L-dopa. In contrast, L-dopa treatment with liraglutide increased graft volume, with parallel increases in motor function. However, this improvement was accompanied by an increase in leukocyte infiltration around the graft. The co-administration of L-dopa and exendin-4 also led to indicators of insulin resistance not seen with liraglutide, which may underpin the differential effects observed between the two GLP1-R agonists. Overall, there may be some benefit to the supplementation of grafted patients with GLP-1R agonists but the potential interaction with other pharmacological treatments needs to be considered in more depth.
Collapse
Affiliation(s)
- Osama F. Elabi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
- Correspondence: (O.F.E.); (E.L.L.)
| | - Jeffrey S. Davies
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea SA2 8PP, UK;
| | - Emma L. Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
- Correspondence: (O.F.E.); (E.L.L.)
| |
Collapse
|
34
|
Liu XY, Zhang N, Zhang SX, Xu P. Potential new therapeutic target for Alzheimer's disease: Glucagon-like peptide-1. Eur J Neurosci 2021; 54:7749-7769. [PMID: 34676939 DOI: 10.1111/ejn.15502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence shows a close relationship between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Recently, glucagon-like peptide-1 (GLP-1), a gut incretin hormone, has become a well-established treatment for T2DM and is likely to be involved in treating cognitive impairment. In this mini review, the similarities between AD and T2DM are summarised with the main focus on GLP-1-based therapeutics in AD.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ni Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China.,Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
35
|
Yassine HN, Solomon V, Thakral A, Sheikh-Bahaei N, Chui HC, Braskie MN, Schneider LS, Talbot K. Brain energy failure in dementia syndromes: Opportunities and challenges for glucagon-like peptide-1 receptor agonists. Alzheimers Dement 2021; 18:478-497. [PMID: 34647685 PMCID: PMC8940606 DOI: 10.1002/alz.12474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Medications for type 2 diabetes (T2DM) offer a promising path for discovery and development of effective interventions for dementia syndromes. A common feature of dementia syndromes is an energy failure due to reduced energy supply to neurons and is associated with synaptic loss and results in cognitive decline and behavioral changes. Among diabetes medications, glucagon‐like peptide‐1 (GLP‐1) receptor agonists (RAs) promote protective effects on vascular, microglial, and neuronal functions. In this review, we present evidence from animal models, imaging studies, and clinical trials that support developing GLP‐1 RAs for dementia syndromes. The review examines how changes in brain energy metabolism differ in conditions of insulin resistance and T2DM from dementia and underscores the challenges that arise from the heterogeneity of dementia syndromes. The development of GLP‐1 RAs as dementia therapies requires a deeper understanding of the regional changes in brain energy homeostasis guided by novel imaging biomarkers.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Victoria Solomon
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Angad Thakral
- Department of Medicine, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Nasim Sheikh-Bahaei
- Department of Radiology, Keck School of Medicine USC, Los Angeles, California, USA
| | - Helena C Chui
- Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Lon S Schneider
- Department of Neurology, University of Southern California, Keck School of Medicine USC, Los Angeles, California, USA.,Department of Psychiatry and Behavioral Sciences, Keck School of Medicine USC, Los Angeles, California, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
36
|
Chalichem NSS, Jupudi S, Yasam VR, Basavan D. Dipeptidyl peptidase-IV inhibitory action of Calebin A: An in silico and in vitro analysis. J Ayurveda Integr Med 2021; 12:663-672. [PMID: 34756798 PMCID: PMC8642699 DOI: 10.1016/j.jaim.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Dipeptidyl peptidase-IV (DPP-IV) inhibitors, the enhancers of incretin are used for the treatment of diabetes. The non-glycaemic actions of these drugs (under developmental stage) also proved that repurposing of these molecules may be advantageous for other few complicated disorders like cardiovascular diseases, Parkinson's disease, Alzheimer's disease, etc. OBJECTIVE: The present study was aimed to investigate the DPP-IV inhibitory potential of Calebin-A, one of the constituents of Curcuma longa. MATERIAL AND METHODS The phytoconstituent was subjected for various in silico studies (using Schrödinger Suite) like, Docking analysis, molecular mechanics combined with generalized Born model and solvent accessibility method (MMGBSA) and Induced fit docking (IFD) after validating the protein using Ramachandran plot. Further, the protein-ligand complex was subjected to molecular dynamic simulation studies for 50 nanoseconds. And finally, the results were confirmed through enzyme inhibition study. RESULTS Insilico results revealed possible inhibitory binding interactions in the catalytic pocket (importantly Glu205, Glu206 and Tyr 662 etc.) and binding affinity in terms of glide g-score and MMGBSA dG bind values were found to be -6.2 kcal/mol and -98.721 kcal/mol. Further, the inhibitory action towards the enzyme was confirmed by an enzyme inhibition assay, in which it showed dose-dependent inhibition, with maximum % inhibition of 55.9 at 26.3 μM. From molecular dynamic studies (50 nanoseconds), it was understood that Calebin A was found to be stable for about 30 nanoseconds in maintaining inhibitory interactions. CONCLUSION From the in silico and in vitro analysis, the current research emphasizes the consideration of Calebin A to be as a promising or lead compound for the treatment of several ailments where DPP-IV action is culprit.
Collapse
Affiliation(s)
- Nehru Sai Suresh Chalichem
- Department of Pharmacognosy and Phytochemistry, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru, INDIA), Ooty, 643001, India.
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru, INDIA), Ooty, 643001, India
| | - Venkata Ramesh Yasam
- Department of Pharmaceutics, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru, INDIA), Ooty, 643001, India
| | - Duraiswamy Basavan
- Department of Pharmacognosy and Phytochemistry, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru, INDIA), Ooty, 643001, India
| |
Collapse
|
37
|
Vaccari C, Grotto D, Pereira TDV, de Camargo JLV, Lopes LC. GLP-1 and GIP receptor agonists in the treatment of Parkinson's disease: Translational systematic review and meta-analysis protocol of clinical and preclinical studies. PLoS One 2021; 16:e0255726. [PMID: 34383800 PMCID: PMC8360366 DOI: 10.1371/journal.pone.0255726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive multifactorial neurodegenerative condition. Epidemiological studies have shown that patients with type 2 diabetes mellitus (T2DM2) are at increased risk for developing PD, indicating a possible insulin-modulating role in this latter condition. We hypothesized that drugs similar to glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP), used in the treatment of T2DM2, may play a role in PD. OBJECTIVES The purpose of this study is to systematically review and meta-analyze data of preclinical and clinical studies evaluating the efficacy and safety of GLP-1 and GIP drugs in the treatment of PD. METHODS Two reviewers will independently evaluate the studies available in the Ovid Medline, Ovid Embase, Web of Science, Cochrane Central Register of Controlled Trials, Cinahl, and Lilacs databases. Preclinical rodent or non-human primate studies and randomized controlled human clinical trials will be included, without language or publication period restrictions. Outcomes of interest in preclinical studies will be primarily locomotor improvements and adverse effects in animal models of PD. For clinical trials, we will evaluate clinical improvements rated by the Movement Disorders Society Unified Parkinson's Disease Rating Scale-parts I, II, III, and IV, and adverse effects. The risk of bias of preclinical studies will be assessed by the SYRCLE tool and CAMARADES checklist and the clinical studies by the Cochrane tool; the certainty of the evidence will be rated by GRADE. DISCUSSION AND CONCLUSION There is an urge for new PD treatments that may slow the progression of the disease rather than just restoring dopamine levels. This study will comprehensively review and update the state of the art of what is known about incretin hormones and PD and highlight the strengths and limitations of translating preclinical data to the clinic whenever possible. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42020223435.
Collapse
Affiliation(s)
- Carolina Vaccari
- Department of Pathology, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Denise Grotto
- Graduate Course of Pharmaceutical Sciences, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Tiago da V. Pereira
- Applied Health Research Centre, St. Michael’s Hospital, University of Toronto, Toronto, Canada
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Luciane C. Lopes
- Graduate Course of Pharmaceutical Sciences, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| |
Collapse
|
38
|
Lv M, Xue G, Cheng H, Meng P, Lian X, Hölscher C, Li D. The GLP-1/GIP dual-receptor agonist DA5-CH inhibits the NF-κB inflammatory pathway in the MPTP mouse model of Parkinson's disease more effectively than the GLP-1 single-receptor agonist NLY01. Brain Behav 2021; 11:e2231. [PMID: 34125470 PMCID: PMC8413783 DOI: 10.1002/brb3.2231] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/01/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The GLP-1 receptor agonist exendin-4 has recently shown good effects in a phase II clinical trial in Parkinson's disease (PD) patients. Here, a comparison of the new GLP-1/GIP dual receptor agonist DA5-CH and NLY01, a 40 kDa pegylated form of exendin-4, on motor impairments and reducing inflammation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) PD mouse model is provided. The drug groups received either DA5-CH or NLY01 (25 nmol/kg) i.p. after daily MPTP intraperitoneal injection. Both drugs showed improvements in motor activity, open field experiments, rotarod tests, and gait analysis, but DA5-CH was more potent. Tyrosine hydroxylase expression in dopaminergic neurons was much reduced by MPTP and improved by DA5-CH, while NLY01 showed weak effects. When analyzing levels of α-synuclein (α-Syn), DA5-CH reduced levels effectively while NLY01 had no effect. When measuring the levels of the inflammation markers Toll-like receptor 4 (TLR4), specific markers of microglia activation (Iba-1), the marker of astrocyte activation glial fibrillary acidic protein (GFAP), nuclear factor-κB (NF-κB), tumor necrosis factor (TNF-α), and transforming growth factor β1 (TGF-β1), DA5-CH was very effective in reducing the chronic inflammation response, while NLY01 did not show significant effects. Levels of key growth factors such as Glial cell-derived neurotrophic factor (GDNF) and Brain-derived neurotrophic factor (BDNF) were much reduced by MPTP, and DA5-CH was able to normalize levels in the brain, while NLY01 showed little effect. The levels of pro-inflammatory cytokines (IL-6 and IL-Iβ) were much reduced by DA5-CH, too, while NLY01 showed no effect. In a separate experiment, we tested the ability of the two drugs to cross the blood-brain barrier. After injecting fluorescin-labelled peptides peripherally, the fluorescence in brain tissue was measured. It was found that the pegylated NLY01 peptide did not cross the BBB in meaningful quantities while exendin-4 and the dual agonist DA5-CH did. The results show that DA5-CH shows promise as a therapeutic drug for PD.
Collapse
Affiliation(s)
- MiaoJun Lv
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - GuoFang Xue
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - HuiFeng Cheng
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - PengFei Meng
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - Xia Lian
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - Christian Hölscher
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - DongFang Li
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| |
Collapse
|
39
|
Jing F, Zou Q, Wang Y, Cai Z, Tang Y. Activation of microglial GLP-1R in the trigeminal nucleus caudalis suppresses central sensitization of chronic migraine after recurrent nitroglycerin stimulation. J Headache Pain 2021; 22:86. [PMID: 34325647 PMCID: PMC8323319 DOI: 10.1186/s10194-021-01302-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
Background Central sensitization is considered a critical pathogenic mechanism of chronic migraine (CM). Activation of microglia in the trigeminal nucleus caudalis (TNC) contributes to this progression. Microglial glucagon-like peptide-1 receptor (GLP-1R) activation can alleviate pain; however, whether it is involved in the mechanism of CM has not been determined. Thus, this study aims to investigate the precise role of GLP-1R in the central sensitization of CM. Methods Repeated nitroglycerin injection-treated mice were used as a CM animal model in the experiment. To identify the distribution and cell localization of GLP-1R in the TNC, we performed immunofluorescence staining. Changes in the expression of GLP-1R, Iba-1, PI3K and p-Akt in the TNC were examined by western blotting. To confirm the effect of GLP-1R and PI3K/Akt in CM, a GLP-1R selective agonist (liraglutide) and antagonist (exendin(9–39)) and a PI3K selective antagonist (LY294002) were administered. Mechanical hypersensitivity was measured through von Frey filaments. To investigate the role of GLP-1R in central sensitization, calcitonin gene-related peptide (CGRP) and c-fos were determined using western blotting and immunofluorescence. To determine the changes in microglial activation, IL-1β and TNF-α were examined by western blotting, and the number and morphology of microglia were measured by immunofluorescence. We also confirmed the effect of GLP-1R on microglial activation in lipopolysaccharide-treated BV-2 microglia. Results The protein expression of GLP-1R was increased in the TNC after nitroglycerin injection. GLP-1R was colocalized with microglia and astrocytes in the TNC and was fully expressed in BV-2 microglia. The GLP-1R agonist liraglutide alleviated basal allodynia and suppressed the upregulation of CGRP, c-fos and PI3K/p-Akt in the TNC. Similarly, the PI3K inhibitor LY294002 prevented nitroglycerin-induced hyperalgesia. In addition, activating GLP-1R reduced Iba-1, IL-1β and TNF-α release and inhibited TNC microglial number and morphological changes (process retraction) following nitroglycerin administration. In vitro, the protein levels of IL-1β and TNF-α in lipopolysaccharide-stimulated BV-2 microglia were also decreased by liraglutide. Conclusions These findings suggest that microglial GLP-1R activation in the TNC may suppress the central sensitization of CM by regulating TNC microglial activation via the PI3K/Akt pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01302-x.
Collapse
Affiliation(s)
- Feng Jing
- Department of Histology and Embryology, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, No.118 Xingguang Avenue, Liangjiang New Area, 401147, Chongqing, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, No.312 Zhongshan First Road, Yuzhong District, 400013, Chongqing, China
| | - Yangyang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, No.312 Zhongshan First Road, Yuzhong District, 400013, Chongqing, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, No.118 Xingguang Avenue, Liangjiang New Area, 401147, Chongqing, China. .,Chongqing Key Laboratory of Neurodegenerative Diseases, No.312 Zhongshan First Road, Yuzhong District, 400013, Chongqing, China.
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China.
| |
Collapse
|
40
|
Zhu C, Tao H, Rong S, Xiao L, Li X, Jiang S, Guo B, Wang L, Ding J, Gao C, Chang H, Sun T, Wang F. Glucagon-Like Peptide-1 Analog Exendin-4 Ameliorates Cocaine-Mediated Behavior by Inhibiting Toll-Like Receptor 4 Signaling in Mice. Front Pharmacol 2021; 12:694476. [PMID: 34349653 PMCID: PMC8327264 DOI: 10.3389/fphar.2021.694476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Exendin-4 (Ex4), a long-lasting glucagon-like peptide-1 analog, was reported to exert favourable actions on inhibiting cocaine-associated rewarding and reinforcing effects of drug in animal models of addiction. However, the therapeutic potential of different dose of GLP-1 receptor agonist Ex4 in different behavioral paradigms and the underlying pharmacological mechanisms of action are incompletely understood. Herein, we firstly investigated the effects of Ex4 on cocaine-induced condition place preference (CPP) as well as extinction and reinstatement in male C57BL/6J mice. Additionally, we sought to elucidate the underlying pharmacological mechanism of these actions of Ex4. The paradigm of cocaine-induced CPP was established using 20 mg/kg cocaine or saline alternately during conditioning, while the reinstatement paradigm was modeled using 10 mg/kg cocaine on the reinstatement day. Different dose of Ex4 was administrated intraperitoneally either during conditioning or during extinction state or only on the test day. To elucidate the molecular mechanism underlying the potential effects of Ex4 on maladaptive behaviors of cocaine, the TLR4-related inflammation within the hippocampus was observed by immunofluorescence staining, and the expression levels of toll-like receptor 4 (TLR4), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were detected by Western blotting. As a consequence, systemic administration of different dose of Ex4 was sufficient to inhibit the acquisition and expression of cocaine-induced CPP, facilitate the extinction of cocaine-associated reward and attenuate reinstatement of cocaine-induced behavior. Furthermore, Ex4 treatment diminished expression levels of TLR4, TNF-α, and IL-1β, which were up-regulated by cocaine exposure. Altogether, our results indicated that Ex4 effectively ameliorated cocaine-induced behaviors likely through neurobiological mechanisms partly attributable to the inhibition of TLR4, TNF-α and IL-1β in mice. Consequently, our findings improved our understanding of the efficacy of Ex4 for the amelioration of cocaine-induced behavior and suggested that Ex4 may be applied as a drug candidate for cocaine addiction.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Hong Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shikuo Rong
- Department of General Surgery, Chengdu Second Hospital, Chendu, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Baorui Guo
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Caibing Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Haigang Chang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
41
|
Effect of Exenatide Use on Cognitive and Affective Functioning in Obese Patients With Type 2 Diabetes Mellitus: Exenatide Use Mediates Depressive Scores Through Increased Perceived Stress Levels. J Clin Psychopharmacol 2021; 41:428-435. [PMID: 34016830 DOI: 10.1097/jcp.0000000000001409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE/BACKGROUND Glucagon-like peptide-1 (GLP-1) is a molecule used to treat type 2 diabetes mellitus (T2DM). Given their widespread expression in the nervous system, GLP-1 receptors also play a role in regulating mood and cognitive function. Here, we aimed to compare obese patients with T2DM, with or without exenatide (a GLP-1R agonist) use on cognitive and affective functioning. METHODS/PROCEDURES A total of 43 patients with T2DM (23 on exenatide and 20 without exenatide) were evaluated with the Snaith-Hamilton Pleasure Scale, Cognitive Failures Questionnaire, Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder-7, Childhood Trauma Questionnaire, Perceived Stress Scale (PSS), and Chronic Stress Scale, in addition to laboratory-based measures of reward learning (the probabilistic reward task) and working memory (Letter-N-Back task). FINDINGS/RESULTS Patients on exenatide had higher body mass index (BMI) (37.88 ± 5.44 vs 35.29 ± 6.30; P = 0.015), PHQ-9 (9.70 ± 4.92 vs 6.70 ± 4.66; P = 0.026), and PSS (29.39 ± 6.70 vs 23.35 ± 7.69; P = 0.015) scores. Other stress scales (Childhood Trauma Questionnaire and Chronic Stress Scale), Generalized Anxiety Disorder-7 scores, response bias, or discriminability as assessed by probabilistic reward task and self-report (Cognitive Failures Questionnaire) and laboratory-based (Letter-N-Back) cognitive measures were not significantly different between groups (both Ps > 0.05). Multivariate linear regression analyses adding BMI and PSS as covariates revealed that although BMI had no effect (P = 0.5), PSS significantly predicted PHQ-9 scores (P = 0.004). Mediation analysis showed that exenatide users reported higher PSS, with greater PSS associated with higher PHQ-9 levels (b = 0.236). There was no evidence on exenatide directly influencing PHQ-9 independent of PSS (c' = 1.573; P = 0.305; 95% bootstrap confidence interval, -1.487 to 4.634). IMPLICATIONS/CONCLUSIONS Based on previous research and our findings, exenatide use might be mediating depression scores through disrupting stress responses.
Collapse
|
42
|
Turan I, Sayan Ozacmak H, Ozacmak VH, Ergenc M, Bayraktaroğlu T. The effects of glucagon-like peptide 1 receptor agonist (exenatide) on memory impairment, and anxiety- and depression-like behavior induced by REM sleep deprivation. Brain Res Bull 2021; 174:194-202. [PMID: 34146656 DOI: 10.1016/j.brainresbull.2021.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Previous investigations have shown that REM sleep deprivation impairs the hippocampus-dependent memory, long-term potentiation and causing mood changes. The aim of the present study was to explore the effects of exenatide on memory performance, anxiety- and depression like behavior, oxidative stress markers, and synaptic protein levels in REM sleep deprived rats. A total of 40 male Wistar rats were randomly divided to control, exenatide-treated control, sleep deprivation (SD), wide platform (WP) and exenatide-treated SD groups. During experiments, exenatide treatment (0.5 μg/kg, subcutaneously) was applied daily in a single dose for 9 days. Modified multiple platform method was employed to generate REM sleep deprivation for 72 h. The Morris water maze test was used to assess memory performance. Anxiety- and depression-like behaviors were evaluated by open field test (OFT), elevated plus maze (EPM) forced swimming test (FST), respectively 72 h after REMSD. The levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and postsynaptic density proteins 95 (PSD95) were measured in tissues of hippocampus and prefrontal cortex. The content of malondialdehyde (MDA) and reduced glutathione (GSH) were also measured. In the present study, an impairment in memory was observed in SD rats at the 24th hour of SD in compare to those of other groups. REMSD increased depression-like behavior in FST as well as the number of rearing and crossing square in OFT. Anxiety is the most common comorbid condition with depressive disorders. Contents of CaMKII and PSD95 decreased in hippocampus of SD rats. Exenatide treatment improved the impaired memory of SD rats and increased CaMKII content in hippocampus There was no difference in MDA and GSH levels among groups. Exenatide treatment also diminished locomotor activity in OFT. In conclusion, treatment with exenatide, at least in part, prevented from these cognitive and behavioral changes possibly through normalizing CaMKII levels in the hippocampus.
Collapse
Affiliation(s)
- Inci Turan
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Physiology, Zonguldak, Turkey.
| | - Hale Sayan Ozacmak
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Physiology, Zonguldak, Turkey
| | - V Haktan Ozacmak
- Zonguldak Bulent Ecevit University Faculty of Medicine, Department of Physiology, Zonguldak, Turkey
| | - Meryem Ergenc
- Zonguldak Bulent Ecevit University Faculty of Medicine, Institute of Health Sciences Department of Physiology, Zonguldak, Turkey
| | - Taner Bayraktaroğlu
- Zonguldak Bulent Ecevit Unıversity Faculty of Medicine, Department of Endocrinology, Zonguldak, Turkey
| |
Collapse
|
43
|
Siddiqui N, Ali J, Parvez S, Zameer S, Najmi AK, Akhtar M. Linagliptin, a DPP-4 inhibitor, ameliorates Aβ (1-42) peptides induced neurodegeneration and brain insulin resistance (BIR) via insulin receptor substrate-1 (IRS-1) in rat model of Alzheimer's disease. Neuropharmacology 2021; 195:108662. [PMID: 34119519 DOI: 10.1016/j.neuropharm.2021.108662] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is the most devastating neurodegenerative disorder, accounting over 46 million cases of dementia globally. Evidence supports that Brain Insulin Resistance (BIR) due to serine phosphorylation of Insulin Receptor Substrate-1 (IRS-1) has an association with AD. GLP-1 an incretin hormone, rapidly degraded by Dipeptidyl Peptidase-4 (DPP-4) has also confirmed its efficacious role in AD. Linagliptin, a DPP-4 inhibitor is hypothesized to increase GLP-1 level, which then crosses Blood Brain Barrier (BBB), decreases Amyloid-beta (Aβ) and insulin resistance in hippocampus. Thus, the present study was designed to evaluate Linagliptin in Aβ (1-42) peptides induced rat model of AD. Following 1 week of induction, rats were administered with Linagliptin (0.513 mg/kg, 3 mg/kg, and 5 mg/kg) orally for 8 weeks and donepezil (5 mg/kg) as a reference standard. At the end of scheduled treatment neurobehavioral parameters were assessed. After this, rats were sacrificed, hippocampus was isolated from the whole brain for histopathological analysis and biochemical parameters estimation. Linagliptin dose-dependently and significantly reversed motor and cognitive impairment, assessed through locomotor activity (LA) and Morris water maze (MWM) test respectively. Moreover, Linagliptin augmented GLP-1 level and attenuated soluble Aβ (1-42), IRS-1 (s307), GSK-3β, TNF-α, IL-1β, IL-6, AchE and oxidative/nitrosative stress level in hippocampus. H&E and Congo red staining also exhibited neuroprotective and anti-amylodogenic effect respectively. Our study findings implies the significant effect of Linagliptin in reversing the behavioural and biochemical deficits by altering Aβ (1-42) and BIR via IRS-1 confirming one of the mechanism underlying the pathophysiology of AD.
Collapse
Affiliation(s)
- Nazia Siddiqui
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Zameer
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
44
|
Shandilya A, Mehan S. Dysregulation of IGF-1/GLP-1 signaling in the progression of ALS: potential target activators and influences on neurological dysfunctions. Neurol Sci 2021; 42:3145-3166. [PMID: 34018075 DOI: 10.1007/s10072-021-05328-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022]
Abstract
The prominent causes for motor neuron diseases like ALS are demyelination, immune dysregulation, and neuroinflammation. Numerous research studies indicate that the downregulation of IGF-1 and GLP-1 signaling pathways plays a significant role in the progression of ALS pathogenesis and other neurological disorders. In the current review, we discussed the dysregulation of IGF-1/GLP-1 signaling in neurodegenerative manifestations of ALS like a genetic anomaly, oligodendrocyte degradation, demyelination, glial overactivation, immune deregulation, and neuroexcitation. In addition, the current review reveals the IGF-1 and GLP-1 activators based on the premise that the restoration of abnormal IGF-1/GLP-1 signaling could result in neuroprotection and neurotrophic effects for the clinical-pathological presentation of ALS and other brain diseases. Thus, the potential benefits of IGF-1/GLP-1 signal upregulation in the development of disease-modifying therapeutic strategies may prevent ALS and associated neurocomplications.
Collapse
Affiliation(s)
- Ambika Shandilya
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
45
|
Mi Y, Qi G, Brinton RD, Yin F. Mitochondria-Targeted Therapeutics for Alzheimer's Disease: The Good, the Bad, the Potential. Antioxid Redox Signal 2021; 34:611-630. [PMID: 32143551 PMCID: PMC7891225 DOI: 10.1089/ars.2020.8070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
Significance: Alzheimer's disease (AD) is the leading cause of dementia. Thus far, 99.6% of clinical trials, including those targeting energy metabolism, have failed to exert disease-modifying efficacy. Altered mitochondrial function and disruption to the brain bioenergetic system have long-been documented as early events during the pathological progression of AD. Recent Advances: While therapeutic approaches that directly promote mitochondrial bioenergetic machinery or eliminate reactive oxygen species have exhibited limited translatability, emerging strategies targeting nonenergetic aspects of mitochondria provide novel therapeutic targets with the potential to modify AD risk and progression. Growing evidence also reveals a critical link between mitochondrial phenotype and neuroinflammation via metabolic reprogramming of glial cells. Critical Issues: Herein, we summarize major classes of mitochondrion-centered AD therapeutic strategies. In addition, the discrepancy in their efficacy when translated from preclinical models to clinical trials is addressed. Key factors that differentiate the responsiveness to bioenergetic interventions, including sex, apolipoprotein E genotype, and cellular diversity in the brain, are discussed. Future Directions: We propose that the future development of mitochondria-targeted AD therapeutics should consider the interactions between bioenergetics and other disease mechanisms, which may require cell-type-specific targeting to distinguish neurons and non-neuronal cells. Moreover, a successful strategy will likely include stratification by metabolic phenotype, which varies by sex and genetic risk profile and dynamically changes throughout the course of disease. As the network of mitochondrial integration expands across intracellular and systems level biology, assessment of intended, the good, versus unintended consequences, the bad, will be required to reach the potential of mitochondrial therapeutics.
Collapse
Affiliation(s)
- Yashi Mi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Guoyuan Qi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
- Department of Pharmacology, College of Medicine Tucson, Tucson, Arizona, USA
- Department of Neurology, College of Medicine Tucson, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, USA
| | - Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, USA
- Department of Pharmacology, College of Medicine Tucson, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
46
|
Yip HK, Lee MS, Li YC, Shao PL, Chiang JY, Sung PH, Yang CH, Chen KH. Dipeptidyl Peptidase-4 deficiency effectively protects the brain and neurological function in rodent after acute Hemorrhagic Stroke. Int J Biol Sci 2020; 16:3116-3132. [PMID: 33162819 PMCID: PMC7645992 DOI: 10.7150/ijbs.42677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/05/2020] [Indexed: 11/05/2022] Open
Abstract
This study tested the hypothesis that abrogated dipeptidyl peptidase-4 (DPP4) activity played a crucial role on reducing stroke volume and preserving neurological function in rodent after acute hemorrhagic stroke (AHS). Animals (n=6/each group) were categorized into group 1 (sham-control of F344 rat), group 2 (sham-control of DPP4-deficiency rat), group 3 [AHS by right cerebral injection of autologous blood (100 µL) in F344 rat], group 4 (AHS + sitagliptin/600 mg/kg 3 h prior to and at 3 h then once per day after AHS) and group 5 (AHS in DPP4-deficiency rat). The results of corner test showed the neurological function was significantly improved from days 3, 7, and 14 in groups 4 and 5 than in group 3 (all p<0.001). By days 1 and 14 after AHS procedure, the circulating levels of SDF-1α and GLP-1 were significantly increased from groups 1/2 to group 5 (all p<0.001), whereas circulating DPP4 activity was significantly increased in group 3 than other groups (all p<0.001). The brain ischemic area (BIA) was highest in group 3, lowest in groups 1/2 and significantly lower in group 5 than in group 4 (all p<0.0001). The protein expressions of oxidative-stress/inflammatory/apoptotic/cell-proliferation signaling, and the cellular expressions of inflammatory/DNA-damaged biomarkers exhibited a similar pattern to BIA among the groups (all p<0.01). In conclusion, deprivation of DPP4 activity protected the brain from AHS damage and preserved neurological function.
Collapse
Affiliation(s)
- Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.,Department of Nursing, Asia University, Taichung, 41354, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen 361028, Fujian, China
| | - Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, 41354, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chien-Hui Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| |
Collapse
|
47
|
Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp Neurol 2020; 335:113518. [PMID: 33144066 DOI: 10.1016/j.expneurol.2020.113518] [Citation(s) in RCA: 418] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Stroke is the leading cause of disability and thesecond leading cause of death worldwide. With the global population aged 65 and over growing faster than all other age groups, the incidence of stroke is also increasing. In addition, there is a shift in the overall stroke burden towards younger age groups, particularly in low and middle-income countries. Stroke in most cases is caused due to an abrupt blockage of an artery (ischemic stroke), but in some instances stroke may be caused due to bleeding into brain tissue when a blood vessel ruptures (hemorrhagic stroke). Although treatment options for stroke are still limited, with the advancement in recanalization therapy using both pharmacological and mechanical thrombolysis some progress has been made in helping patients recover from ischemic stroke. However, there is still a substantial need for the development of therapeutic agents for neuroprotection in acute ischemic stroke to protect the brain from damage prior to and during recanalization, extend the therapeutic time window for intervention and further improve functional outcome. The current review has assessed the past challenges in developing neuroprotective strategies, evaluated the recent advances in clinical trials, discussed the recent initiative by the National Institute of Neurological Disorders and Stroke in USA for the search of novel neuroprotectants (Stroke Preclinical Assessment Network, SPAN) and identified emerging neuroprotectants being currently evaluated in preclinical studies. The underlying molecular mechanism of each of the neuroprotective strategies have also been summarized, which could assist in the development of future strategies for combinational therapy in stroke treatment.
Collapse
Affiliation(s)
- Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
48
|
Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Lamas JA, Mallo F. Glucagon-Like Peptide-1 (GLP-1) in the Integration of Neural and Endocrine Responses to Stress. Nutrients 2020; 12:nu12113304. [PMID: 33126672 PMCID: PMC7692797 DOI: 10.3390/nu12113304] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Glucagon like-peptide 1 (GLP-1) within the brain is produced by a population of preproglucagon neurons located in the caudal nucleus of the solitary tract. These neurons project to the hypothalamus and another forebrain, hindbrain, and mesolimbic brain areas control the autonomic function, feeding, and the motivation to feed or regulate the stress response and the hypothalamic-pituitary-adrenal axis. GLP-1 receptor (GLP-1R) controls both food intake and feeding behavior (hunger-driven feeding, the hedonic value of food, and food motivation). The activation of GLP-1 receptors involves second messenger pathways and ionic events in the autonomic nervous system, which are very relevant to explain the essential central actions of GLP-1 as neuromodulator coordinating food intake in response to a physiological and stress-related stimulus to maintain homeostasis. Alterations in GLP-1 signaling associated with obesity or chronic stress induce the dysregulation of eating behavior. This review summarized the experimental shreds of evidence from studies using GLP-1R agonists to describe the neural and endocrine integration of stress responses and feeding behavior.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| | - Salvador Herrera-Pérez
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | | | - José Antonio Lamas
- CINBIO, Universidade de Vigo, Grupo FB3B, Laboratorio de Neurociencia, 36310 Vigo, Spain; (S.H.-P.); (J.A.L.)
| | - Federico Mallo
- CINBIO, Universidade de Vigo, Grupo FB3A, Laboratorio de Endocrinología, 36310 Vigo, Spain;
- Correspondence: (Y.D.-C.); (F.M.); Tel.: +34-(986)-130226 (Y.D.-C.); +34-(986)-812393 (F.M.)
| |
Collapse
|
49
|
Bomba M, Granzotto A, Castelli V, Onofrj M, Lattanzio R, Cimini A, Sensi SL. Exenatide Reverts the High-Fat-Diet-Induced Impairment of BDNF Signaling and Inflammatory Response in an Animal Model of Alzheimer's Disease. J Alzheimers Dis 2020; 70:793-810. [PMID: 31256135 DOI: 10.3233/jad-190237] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial condition in which, along with amyloid-β (Aβ) and tau-related pathology, the synergistic activity of co-morbidity factors promote the onset and progression of the disease. Epidemiological evidence indicates that glucose intolerance, deficits in insulin secretion, or type-2 diabetes mellitus (T2DM) participate in increasing cognitive impairment or dementia risk. Insulin plays a pivotal role in the process as the hormone critically regulates brain functioning. GLP-1, the glucagon-like peptide 1, facilitates insulin signaling, regulates glucose homeostasis, and modulates synaptic plasticity. Exenatide is a synthetic GLP-1 analog employed in T2DM. However, exenatide has also been shown to affect the signaling of the brain-derived neurotrophic factor (BDNF), synaptic plasticity, and cognitive performances in animal models. In this study, we tested whether exenatide exerts neuroprotection in a preclinical AD model set to mimic the clinical complexity of the human disease. We investigated the effects of exenatide treatment in 3xTg-AD mice challenged with a high-fat diet (HFD). Endpoints of the study were variations in systemic metabolism, insulin and neurotrophic signaling, neuroinflammation, Aβ and tau pathology, and cognitive performances. Results of the study indicate that exenatide reverts the adverse changes of BDNF signaling and the neuroinflammation status of 3xTg-AD mice undergoing HFD without affecting systemic metabolism or promoting changes in cognitive performances.
Collapse
Affiliation(s)
- Manuela Bomba
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Alberto Granzotto
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| | - Marco Onofrj
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Rossano Lattanzio
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy.,Department of Medical, Oral, and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, USA.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Stefano L Sensi
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy.,Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders - iMIND, University of California - Irvine, Irvine, CA, USA
| |
Collapse
|
50
|
Mullins RJ, Mustapic M, Chia CW, Carlson O, Gulyani S, Tran J, Li Y, Mattson MP, Resnick S, Egan JM, Greig NH, Kapogiannis D. A Pilot Study of Exenatide Actions in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:741-752. [PMID: 31518224 DOI: 10.2174/1567205016666190913155950] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 07/10/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Strong preclinical evidence suggests that exenatide, a glucagon-like peptide-1 (GLP- 1) receptor agonist used for treating type 2 diabetes, is neuroprotective and disease-modifying in Alzheimer's Disease (AD). OBJECTIVE We performed an 18-month double-blind randomized placebo-controlled Phase II clinical trial to assess the safety and tolerability of exenatide and explore treatment responses for clinical, cognitive, and biomarker outcomes in early AD. METHOD Eighteen participants with high probability AD based on cerebrospinal fluid (CSF) biomarkers completed the entire study prior to its early termination by the sponsor; partial outcomes were available for twentyone. RESULTS Exenatide was safe and well-tolerated, showing an expectedly higher incidence of nausea and decreased appetite compared to placebo and decreasing glucose and GLP-1 during Oral Glucose Tolerance Tests. Exenatide treatment produced no differences or trends compared to placebo for clinical and cognitive measures, MRI cortical thickness and volume, or biomarkers in CSF, plasma, and plasma neuronal extracellular vesicles (EV) except for a reduction of Aβ42 in EVs. CONCLUSION The positive finding of lower EV Aβ42 supports emerging evidence that plasma neuronal EVs provide an effective platform for demonstrating biomarker responses in clinical trials in AD. The study was underpowered due to early termination and therefore we cannot draw any firm conclusions. However, the analysis of secondary outcomes shows no trends in support of the hypothesis that exenatide is diseasemodifying in clinical AD, and lowering EV Aβ42 in and of itself may not improve cognitive outcomes in AD.
Collapse
Affiliation(s)
- Roger J Mullins
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Maja Mustapic
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Chee W Chia
- Laboratory of Clinical Investigation, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Olga Carlson
- Laboratory of Clinical Investigation, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Seema Gulyani
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Joyce Tran
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Yazhou Li
- Translational Gerontology Branch, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Susan Resnick
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Nigel H Greig
- Translational Gerontology Branch, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, National Institute on Aging/National Institutes of Health (NIA/NIH), 3001 S. Hanover St, NM531, Baltimore, MD, 21225, United States
| |
Collapse
|