1
|
Iqbal A, Bokhari SFH, Rehman MU, Faizan Sattar SM, Bakht D, Dost W, Basit A. Gut-brain connection in schizophrenia: A narrative review. World J Psychiatry 2025; 15:103751. [DOI: 10.5498/wjp.v15.i5.103751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/23/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Schizophrenia is a complex neuropsychiatric disorder characterized by cognitive, emotional, and behavioral impairments. The microbiota-gut-brain axis is crucial in its pathophysiology, mediating communication between the gut and brain through neural, immune, endocrine, and metabolic pathways. Dysbiosis, or an imbalance in gut microbiota, is linked to neuroinflammation, systemic inflammation, and neurotransmitter disruptions, all of which contribute to the symptoms of schizophrenia. Gut microbiota-derived metabolites, such as short-chain fatty acids, influence brain function, including immune responses and neurotransmitter synthesis. These findings suggest that microbial imbalances exacerbate schizophrenia, providing a novel perspective on the disorder’s underlying mechanisms. Emerging microbiota-targeted therapies—such as probiotics, prebiotics, dietary interventions, and fecal microbiota transplantation—show promise as adjunctive treatments, aiming to restore microbial balance and improve clinical outcomes. While further research is needed, targeting the microbiota-gut-brain axis offers an innovative approach to schizophrenia management, with the potential to enhance patient outcomes and quality of life.
Collapse
Affiliation(s)
- Asma Iqbal
- Department of Medicine and Surgery, King Edward Medical University, Lahore 54000, Punjab, Pakistan
| | | | - Muneeb Ur Rehman
- Department of Medicine and Surgery, King Edward Medical University, Lahore 54000, Punjab, Pakistan
| | | | - Danyal Bakht
- Department of Medicine and Surgery, King Edward Medical University, Lahore 54000, Punjab, Pakistan
| | - Wahidullah Dost
- Department of Curative Medicine, Kabul University of Medical Sciences, Kabul 10001, Afghanistan
| | - Abdul Basit
- Department of Medicine and Surgery, King Edward Medical University, Lahore 54000, Punjab, Pakistan
| |
Collapse
|
2
|
Ortega MA, Fraile-Martinez O, García-Montero C, Diaz-Pedrero R, Lopez-Gonzalez L, Monserrat J, Barrena-Blázquez S, Alvarez-Mon MA, Lahera G, Alvarez-Mon M. Understanding immune system dysfunction and its context in mood disorders: psychoneuroimmunoendocrinology and clinical interventions. Mil Med Res 2024; 11:80. [PMID: 39681901 DOI: 10.1186/s40779-024-00577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Mood disorders include a set of psychiatric manifestations of increasing prevalence in our society, being mainly represented by major depressive disorder (MDD) and bipolar disorder (BD). The etiopathogenesis of mood disorders is extremely complex, with a wide spectrum of biological, psychological, and sociocultural factors being responsible for their appearance and development. In this sense, immune system dysfunction represents a key mechanism in the onset and pathophysiology of mood disorders, worsening mainly the central nervous system (neuroinflammation) and the periphery of the body (systemic inflammation). However, these alterations cannot be understood separately, but as part of a complex picture in which different factors and systems interact with each other. Psychoneuroimmunoendocrinology (PNIE) is the area responsible for studying the relationship between these elements and the impact of mind-body integration, placing the immune system as part of a whole. Thus, the dysfunction of the immune system is capable of influencing and activating different mechanisms that promote disruption of the psyche, damage to the nervous system, alterations to the endocrine and metabolic systems, and disruption of the microbiota and intestinal ecosystem, as well as of other organs and, in turn, all these mechanisms are responsible for inducing and enhancing the immune dysfunction. Similarly, the clinical approach to these patients is usually multidisciplinary, and the therapeutic arsenal includes different pharmacological (for example, antidepressants, antipsychotics, and lithium) and non-pharmacological (i.e., psychotherapy, lifestyle, and electroconvulsive therapy) treatments. These interventions also modulate the immune system and other elements of the PNIE in these patients, which may be interesting to understand the therapeutic success or failure of these approaches. In this sense, this review aims to delve into the relationship between immune dysfunction and mood disorders and their integration in the complex context of PNIE. Likewise, an attempt will be made to explore the effects on the immune system of different strategies available in the clinical approach to these patients, in order to identify the mechanisms described and their possible uses as biomarkers.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806, Alcalá de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806, Alcalá de Henares, Spain
| |
Collapse
|
3
|
Tanaka M, Szabó Á, Vécsei L. Redefining Roles: A Paradigm Shift in Tryptophan-Kynurenine Metabolism for Innovative Clinical Applications. Int J Mol Sci 2024; 25:12767. [PMID: 39684480 DOI: 10.3390/ijms252312767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The tryptophan-kynurenine (KYN) pathway has long been recognized for its essential role in generating metabolites that influence various physiological processes. Traditionally, these metabolites have been categorized into distinct, often opposing groups, such as pro-oxidant versus antioxidant, excitotoxic/neurotoxic versus neuroprotective. This dichotomous framework has shaped much of the research on conditions like neurodegenerative and neuropsychiatric disorders, as well as cancer, where metabolic imbalances are a key feature. The effects are significantly influenced by various factors, including the concentration of metabolites and the particular cellular milieu in which they are generated. A molecule that acts as neuroprotective at low concentrations may exhibit neurotoxic effects at elevated levels. The oxidative equilibrium of the surrounding environment can alter the function of KYN from an antioxidant to a pro-oxidant. This narrative review offers a comprehensive examination and analysis of the contemporary understanding of KYN metabolites, emphasizing their multifaceted biological functions and their relevance in numerous physiological and pathological processes. This underscores the pressing necessity for a paradigm shift in the comprehension of KYN metabolism. Understanding the context-dependent roles of KYN metabolites is vital for novel therapies in conditions like Alzheimer's disease, multiple sclerosis, and cancer. Comprehensive pathway modulation, including balancing inflammatory signals and enzyme regulation, offers promising avenues for targeted, effective treatments.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
4
|
Yang J, Yuan M, Zhang W. The major biogenic amine metabolites in mood disorders. Front Psychiatry 2024; 15:1460631. [PMID: 39381610 PMCID: PMC11458445 DOI: 10.3389/fpsyt.2024.1460631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, have a profound impact on more than 300 million people worldwide. It has been demonstrated mood disorders were closely associated with deviations in biogenic amine metabolites, which are involved in numerous critical physiological processes. The peripheral and central alteration of biogenic amine metabolites in patients may be one of the potential pathogeneses of mood disorders. This review provides a concise overview of the latest research on biogenic amine metabolites in mood disorders, such as histamine, kynurenine, and creatine. Further studies need larger sample sizes and multi-center collaboration. Investigating the changes of biogenic amine metabolites in mood disorders can provide biological foundation for diagnosis, offer guidance for more potent treatments, and aid in elucidating the biological mechanisms underlying mood disorders.
Collapse
Affiliation(s)
- Jingyi Yang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Zhao Y, Li C, Wu K, Chen H, Wang Q, Xiao Y, Yao S, Hong A, Zhang M, Lei S, Yang W, Zhong S, Umar A, Huang J, Yu Z. Exploring the Impact of Short Term Travel on Gut Microbiota and Probiotic Bacteria Mediated Stability. Biomedicines 2024; 12:1378. [PMID: 39061954 PMCID: PMC11274169 DOI: 10.3390/biomedicines12071378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Although travelers are frequently accompanied by abdominal discomfort and even diarrhea, not every trip can cause this issue. Many studies have reported that intestinal microbes play an important role in it. However, little is known about the reason for the dynamics of these intestinal microbes. Here, we delved into the effects of short-term travel on the gut microbiota of 12 healthy individuals. A total of 72 fecal samples collected before and after one-week travel, alongside non-traveling controls, underwent amplicon sequencing and a series of bioinformatic analyses. We found that travel significantly increased intra-individual gut microbiota fluctuations without diarrhea symptoms. In addition, the initial composition of the gut microbiota before travel emerged as a crucial factor in understanding these fluctuations. Travelers with stable microbiota exhibited an enrichment of specific probiotic bacteria (Agathobaculum, Faecalibacterium, Bifidobacterium, Roseburia, Lactobacillus) before travel. Another batch of data validated their predictive role in distinguishing travelers with and without the gut microbial disorder. This work provided valuable insights into understanding the relationship between gut microbiota and travel. It offered a microbiota-centric perspective and a potential avenue for interventions to preserve gut health during travel.
Collapse
Affiliation(s)
- Yiming Zhao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410013, China; (Y.Z.); (C.L.); (H.C.); (Q.W.); (Y.X.); (S.Y.); (M.Z.); (S.L.); (A.U.)
| | - Chunyan Li
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410013, China; (Y.Z.); (C.L.); (H.C.); (Q.W.); (Y.X.); (S.Y.); (M.Z.); (S.L.); (A.U.)
| | - Kaijuan Wu
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha 410013, China; (K.W.); (A.H.); (W.Y.); (S.Z.); (J.H.)
| | - Hao Chen
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410013, China; (Y.Z.); (C.L.); (H.C.); (Q.W.); (Y.X.); (S.Y.); (M.Z.); (S.L.); (A.U.)
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha 410013, China; (K.W.); (A.H.); (W.Y.); (S.Z.); (J.H.)
| | - Qingqun Wang
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410013, China; (Y.Z.); (C.L.); (H.C.); (Q.W.); (Y.X.); (S.Y.); (M.Z.); (S.L.); (A.U.)
| | - Ying Xiao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410013, China; (Y.Z.); (C.L.); (H.C.); (Q.W.); (Y.X.); (S.Y.); (M.Z.); (S.L.); (A.U.)
| | - Siqi Yao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410013, China; (Y.Z.); (C.L.); (H.C.); (Q.W.); (Y.X.); (S.Y.); (M.Z.); (S.L.); (A.U.)
| | - Ao Hong
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha 410013, China; (K.W.); (A.H.); (W.Y.); (S.Z.); (J.H.)
| | - Man Zhang
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410013, China; (Y.Z.); (C.L.); (H.C.); (Q.W.); (Y.X.); (S.Y.); (M.Z.); (S.L.); (A.U.)
| | - Shibo Lei
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410013, China; (Y.Z.); (C.L.); (H.C.); (Q.W.); (Y.X.); (S.Y.); (M.Z.); (S.L.); (A.U.)
| | - Wenyu Yang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha 410013, China; (K.W.); (A.H.); (W.Y.); (S.Z.); (J.H.)
| | - Shukun Zhong
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha 410013, China; (K.W.); (A.H.); (W.Y.); (S.Z.); (J.H.)
| | - Abdulrahim Umar
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410013, China; (Y.Z.); (C.L.); (H.C.); (Q.W.); (Y.X.); (S.Y.); (M.Z.); (S.L.); (A.U.)
| | - Jing Huang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha 410013, China; (K.W.); (A.H.); (W.Y.); (S.Z.); (J.H.)
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410013, China; (Y.Z.); (C.L.); (H.C.); (Q.W.); (Y.X.); (S.Y.); (M.Z.); (S.L.); (A.U.)
| |
Collapse
|
6
|
Kreuzer K, Birkl-Toeglhofer AM, Haybaeck J, Reiter A, Dalkner N, Fellendorf FT, Maget A, Platzer M, Seidl M, Mendel LM, Lenger M, Birner A, Queissner R, Mairinger M, Obermayer A, Kohlhammer-Dohr A, Stross TM, Häussl A, Hamm C, Schöggl H, Amberger-Otti D, Painold A, Lahousen-Luxenberger T, Leitner-Afschar B, Färber T, Mörkl S, Wagner-Skacel J, Meier-Allard N, Lackner S, Holasek S, Habisch H, Madl T, Reininghaus E, Bengesser SA. PROVIT-CLOCK: A Potential Influence of Probiotics and Vitamin B7 Add-On Treatment and Metabolites on Clock Gene Expression in Major Depression. Neuropsychobiology 2024; 83:135-151. [PMID: 38776887 PMCID: PMC11548105 DOI: 10.1159/000538781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/28/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION An increasing body of evidence suggests a strong relationship between gut health and mental state. Lately, a connection between butyrate-producing bacteria and sleep quality has been discussed. The PROVIT study, as a randomized, double-blind, 4-week, multispecies probiotic intervention study, aims at elucidating the potential interconnection between the gut's metabolome and the molecular clock in individuals with major depressive disorder (MDD). METHODS The aim of the PROVIT-CLOCK study was to analyze changes in core clock gene expression during treatment with probiotic intervention versus placebo in fasting blood and the connection with the serum- and stool-metabolome in patients with MDD (n = 53). In addition to clinical assessments in the PROVIT study, metabolomics analyses with 1H nuclear magnetic resonance spectroscopy (stool and serum) and gene expression (RT-qPCR) analysis of the core clock genes ARNTL, PER3, CLOCK, TIMELESS, NR1D1 in peripheral blood mononuclear cells of fasting blood were performed. RESULTS The gene expression levels of the clock gene CLOCK were significantly altered only in individuals receiving probiotic add-on treatment. TIMELESS and ARNTL gene expression changed significantly over the 4-week intervention period in both groups. Various positive and negative correlations between metabolites in serum/stool and core clock gene expression levels were observed. CONCLUSION Changing the gut microbiome by probiotic treatment potentially influences CLOCK gene expression. The preliminary results of the PROVIT-CLOCK study indicate a possible interconnection between the gut microbiome and circadian rhythm potentially orchestrated by metabolites.
Collapse
Affiliation(s)
- Kathrin Kreuzer
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anna Maria Birkl-Toeglhofer
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular BioMedicine, Medical University of Graz, Graz, Austria
- Institute of Psychology, University of Bamberg, Bamberg, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular BioMedicine, Medical University of Graz, Graz, Austria
- Institute of Psychology, University of Bamberg, Bamberg, Germany
| | - Alexandra Reiter
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Nina Dalkner
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Frederike T. Fellendorf
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Maget
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Martina Platzer
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Matthias Seidl
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Lilli-Marie Mendel
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Melanie Lenger
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Armin Birner
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Robert Queissner
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Marco Mairinger
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Anna Obermayer
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Alexandra Kohlhammer-Dohr
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Tatjana Maria Stross
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Alfred Häussl
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Carlo Hamm
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Helmut Schöggl
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Daniela Amberger-Otti
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Annamaria Painold
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | - Birgitta Leitner-Afschar
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Tanja Färber
- Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular BioMedicine, Medical University of Graz, Graz, Austria
- Institute of Psychology, University of Bamberg, Bamberg, Germany
| | - Sabrina Mörkl
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Jolana Wagner-Skacel
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Nathalie Meier-Allard
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Sonja Lackner
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Sandra Holasek
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Hansjörg Habisch
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Tobias Madl
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Eva Reininghaus
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Susanne Astrid Bengesser
- Clinical Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Qu Z, Zheng Y, Wu S, Bing Y, Sun Z, Zhu S, Li W, Zou X. Two Omics Methods Expose Anti-Depression Mechanism of Raw and Vinegar-Baked Bupleurum Scorzonerifolium Willd. Chem Biodivers 2024; 21:e202301733. [PMID: 38217462 DOI: 10.1002/cbdv.202301733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
Bupleurum scorzonerifolium willd. (BS) and its vinegar-baked product (VBS) has been frequently utilized for depression management in clinical Chinese medicine. This paper aims to elucidate the antidepressant mechanism of BS and VBS from the perspectives of metabonomics and gut microbiota. A rat model of depression was established by CUMS combined with feeding alone to evaluate the antidepressant effects of BS and VBS. UPLC-Q-TOF-MS/MS-based metabolomics and 16S rRNA sequencing of rat feces were applied and the correlation of differential metabolic markers and intestinal floras was analyzed. The result revealed that BS and VBS significantly improved depression-like behaviors and the levels of monoamine neurotransmitters in CUMS rats. There were 27 differential endogenous metabolites between CUMS and normal rats, which were involved in 8 metabolic pathways. Whereas, BS and VBS could regulate 18 and 20 metabolites respectively, wherein fifteen of them were shared metabolites. On the genus level, BS and VBS could regulate twenty-five kinds of intestinal floras in CUMS rats, that is, they increased the abundance of beneficial bacteria and decreased the abundance of harmful bacteria. In conclusion, both BS and VBS exert excellent antidepressant effects by regulating various metabolic pathways and ameliorating intestinal microflora dysfunction.
Collapse
Affiliation(s)
- Zhongyuan Qu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Yan Zheng
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Shuang Wu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Yifan Bing
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Zhiwei Sun
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Shiru Zhu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
- Engineering Research Center on Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, Ha Er Bin Shi, 150076, China
| | - Xiang Zou
- Engineering Research Center on Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, Ha Er Bin Shi, 150076, China
- School of Life Sciences, University of Sussex, Brighton BN19RH, UK
| |
Collapse
|
8
|
Ryan T, Nagle S, Daly E, Pearce AJ, Ryan L. A Potential Role Exists for Nutritional Interventions in the Chronic Phase of Mild Traumatic Brain Injury, Concussion and Sports-Related Concussion: A Systematic Review. Nutrients 2023; 15:3726. [PMID: 37686758 PMCID: PMC10490336 DOI: 10.3390/nu15173726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Mild traumatic brain injury (mTBI) represents a significant burden for individuals, economies, and healthcare systems worldwide. Recovery protocols focus on medication and physiotherapy-based interventions. Animal studies have shown that antioxidants, branched-chain amino acids and omega-3 fatty acids may improve neurophysiological outcomes after TBI. However, there appears to be a paucity of nutritional interventions in humans with chronic (≥1 month) symptomology post-mTBI. This systematic literature review aimed to consolidate evidence for nutrition and dietary-related interventions in humans with chronic mTBI. The review was registered with the International Prospective Register of Systematic Reviews (PROSPERO; CRD42021277780) and conducted following the Preferred Reporting for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Three reviewers searched five databases (PubMed/MEDLINE, Web of Science, SPORTDiscus, CINAHL Complete and Cochrane), which yielded 6164 studies. Nine studies met the inclusion criteria. The main finding was the lack of interventions conducted to date, and a quality assessment of the included studies was found to be fair to good. Due to heterogeneity, a meta-analysis was not feasible. The six nutrition areas identified (omega-3 fatty acids, melatonin, Enzogenol®, MLC901, ketogenic diet and phytocannabinoids) were safe and well-tolerated. It was found that these nutritional interventions may improve cognitive failures, sleep disturbances, anxiety, physical disability, systolic blood pressure volume and sport concussion assessment tool scores following mTBI. Potential areas of improvement identified for future studies included blinding, reporting compliance, and controlling for confounders. In conclusion, further research of higher quality is needed to investigate the role of nutrition in recovery from mTBI to reduce the burden of chronic outcomes following mTBI.
Collapse
Affiliation(s)
- Tansy Ryan
- Department of Sport Exercise & Nutrition, Atlantic Technological University, Dublin Road, H91 T8NW Galway City, Galway, Ireland; (T.R.); (E.D.)
| | - Sarah Nagle
- Department of Sport Exercise & Nutrition, Atlantic Technological University, Dublin Road, H91 T8NW Galway City, Galway, Ireland; (T.R.); (E.D.)
| | - Ed Daly
- Department of Sport Exercise & Nutrition, Atlantic Technological University, Dublin Road, H91 T8NW Galway City, Galway, Ireland; (T.R.); (E.D.)
| | - Alan J. Pearce
- College of Sport, Health and Engineering, La Trobe University, Plenty Road and Kingsbury Drive, Melbourne, VIC 3086, Australia;
| | - Lisa Ryan
- Department of Sport Exercise & Nutrition, Atlantic Technological University, Dublin Road, H91 T8NW Galway City, Galway, Ireland; (T.R.); (E.D.)
| |
Collapse
|
9
|
Hu S, Ding Q, Zhang W, Kang M, Ma J, Zhao L. Gut microbial beta-glucuronidase: a vital regulator in female estrogen metabolism. Gut Microbes 2023; 15:2236749. [PMID: 37559394 PMCID: PMC10416750 DOI: 10.1080/19490976.2023.2236749] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
A growing amount of evidence has supported that gut microbiota plays a vital role in the reproductive endocrine system throughout a woman's whole life, and gut microbial β-glucuronidase (gmGUS) is a key factor in regulating host estrogen metabolism. Moreover, estrogen levels also influence the composition as well as the diversity of gut microbiota. In normal condition, the gmGUS-estrogen crosstalk maintains body homeostasis of physiological estrogen level. Once this homeostasis is broken, the estrogen metabolism will be disturbed, resulting in estrogen-related diseases, such as gynecological cancers, menopausal syndrome, etc. together with gut microbial dysbiosis, which may accelerate these pathological processes. In this review, we highlight the regulatory role of gmGUS on the physical estrogen metabolism and estrogen-related diseases, summarize the present evidence of the interaction between gmGUS and estrogen metabolism, and unwrap the potential mechanisms behind them. Finally, gmGUS may become a potential biomarker for early diagnosis of estrogen-induced diseases. Regulating gmGUS activity or transplanting gmGUS-producing microbes shows promise for treating estrogen-related diseases.
Collapse
Affiliation(s)
- Shiwan Hu
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyou Ding
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhang
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Mengjiao Kang
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Jing Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|