1
|
Stockley JH, Vaquie AM, Xu Z, Bartels T, Jordan GD, Holmqvist S, Gunter S, Lam G, Yamamoto D, Pek RH, Chambers IG, Rock AS, Hill M, Zhao C, Dillon S, Franklin RJM, O'Connor R, Bodine DM, Hamza I, Rowitch DH. Oligodendrocyte Slc48a1 (Hrg1) encodes a functional heme transporter required for myelin integrity. Glia 2025; 73:399-421. [PMID: 39501820 PMCID: PMC11662986 DOI: 10.1002/glia.24641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 12/22/2024]
Abstract
Oligodendrocytes (OLs) of the central nervous system require iron for proteolipid biosynthesis during the myelination process. Although most heme is found complexed to hemoglobin in red blood cells, surprisingly, we found that Slc48a1, encoding the heme transporter Hrg1, is expressed at higher levels in OLs than any other cell type in rodent and humans. We confirmed in situ that Hrg1 is expressed in OLs but not their precursors (OPCs) and found that Hrg1 proteins in CNS white matter co-localized within myelin sheaths. In older Hrg1 null mutant mice we observed reduced expression of myelin associated glycoprotein (Mag) and ultrastructural myelin defects reminiscent of Mag-null animals, suggesting myelin adhesion deficiency. Further, we confirmed reduced myelin iron levels in Hrg1 null animals in vivo, and show that OLs in vitro can directly import both the fluorescent heme analogue ZnMP and heme itself, which rescued iron deficiency induced inhibition of OL differentiation in a heme-oxidase-dependent manner. Together these findings indicate OL Hrg1 encodes a functional heme transporter required for myelin integrity.
Collapse
Affiliation(s)
- John H. Stockley
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Adrien M. Vaquie
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Zhaoyang Xu
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Theresa Bartels
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Gregory D. Jordan
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Staffan Holmqvist
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Simon Gunter
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Guy Lam
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Daniel Yamamoto
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Rini H. Pek
- Department of PediatricsCenter for Blood Oxygen Transport and Hemostasis, University of Maryland School of MedicineBaltimoreMarylandUSA
- Department of Animal and Avian SciencesUniversity of MarylandMarylandUSA
| | - Ian G. Chambers
- Department of PediatricsCenter for Blood Oxygen Transport and Hemostasis, University of Maryland School of MedicineBaltimoreMarylandUSA
- Department of Animal and Avian SciencesUniversity of MarylandMarylandUSA
| | - Andrew S. Rock
- Department of PediatricsCenter for Blood Oxygen Transport and Hemostasis, University of Maryland School of MedicineBaltimoreMarylandUSA
- Department of Animal and Avian SciencesUniversity of MarylandMarylandUSA
| | - Myfanwy Hill
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesBiomedical Campus, University of CambridgeCambridgeUK
| | - Chao Zhao
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesBiomedical Campus, University of CambridgeCambridgeUK
| | - Scott Dillon
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
| | - Robin J. M. Franklin
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesBiomedical Campus, University of CambridgeCambridgeUK
| | - Rosemary O'Connor
- School of Biochemistry and Cell Biology, University College CorkCorkIreland
| | - David M. Bodine
- Haematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research InstituteBethesdaMarylandUSA
| | - Iqbal Hamza
- Department of PediatricsCenter for Blood Oxygen Transport and Hemostasis, University of Maryland School of MedicineBaltimoreMarylandUSA
- Department of Animal and Avian SciencesUniversity of MarylandMarylandUSA
| | - David H. Rowitch
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| |
Collapse
|
2
|
Dolma S, Joshi A. The Node of Ranvier as an Interface for Axo-Glial Interactions: Perturbation of Axo-Glial Interactions in Various Neurological Disorders. J Neuroimmune Pharmacol 2023; 18:215-234. [PMID: 37285016 DOI: 10.1007/s11481-023-10072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The action potential conduction along the axon is highly dependent on the healthy interactions between the axon and myelin-producing glial cells. Myelin, which facilitates action potential, is the protective insulation around the axon formed by Schwann cells and oligodendrocytes in the peripheral (PNS) and central nervous system (CNS), respectively. Myelin is a continuous structure with intermittent gaps called nodes of Ranvier, which are the sites enriched with ion channels, transmembrane, scaffolding, and cytoskeletal proteins. Decades-long extensive research has identified a comprehensive proteome with strictly regularized localization at the node of Ranvier. Concurrently, axon-glia interactions at the node of Ranvier have gathered significant attention as the pathophysiological targets for various neurodegenerative disorders. Numerous studies have shown the alterations in the axon-glia interactions culminating in neurological diseases. In this review, we have provided an update on the molecular composition of the node of Ranvier. Further, we have discussed in detail the consequences of disruption of axon-glia interactions during the pathogenesis of various CNS and PNS disorders.
Collapse
Affiliation(s)
- Sonam Dolma
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India
| | - Abhijeet Joshi
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India.
| |
Collapse
|
3
|
Bullock G, Johnson GS, Mhlanga-Mutangadura T, Petesch SC, Thompson S, Goebbels S, Katz ML. Lysosomal storage disease associated with a CNP sequence variant in Dalmatian dogs. Gene X 2022; 830:146513. [PMID: 35447247 DOI: 10.1016/j.gene.2022.146513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022] Open
Abstract
A progressive neurological disorder was identified in purebred Dalmatian dogs. The disease is characterized by anxiety, pacing and circling, hypersensitivity, cognitive decline, sleep disturbance, loss of coordination, loss of control over urination and defecation, and visual impairment. Neurological signs first became apparent when the dogs were approximately 18 months of age and progressed slowly. Two affected littermates were euthanized at approximately 7 years, 5 months and 8 years, 2 months of age due to the severity of neurological impairment. The mother of the affected dogs and four other relatives exhibited milder, later-onset neurological signs. Pronounced accumulations of autofluorescent intracellular inclusions were found in cerebral cortex, cerebellum, optic nerve, and cardiac muscle of the affected dogs. These inclusions co-localized with immunolabeling of the lysosomal marker protein LAMP2 and bound antibodies to mitochondrial ATPase subunit c, indicating that the dogs suffered from a lysosomal storage disease with similarities to the neuronal ceroid lipofuscinoses. Ultrastructural analysis indicated that the storage bodies were surrounded by a single-layer membrane, but the storage granules were distinct from those reported for other lysosomal storage diseases. Whole genome sequences, generated with DNA from the two euthanized Dalmatians, both contained a rare, homozygous single-base deletion and reading-frame shift in CNP which encodes the enzyme CNPase (EC 3.1.4.37). The late-onset disease was exhibited by five of seven related Dalmatians that were heterozygous for the deletion allele and over 8 years of age, whereas none of 16 age-matched reference-allele homozygotes developed neurologic signs. No CNPase antigen could be detected with immunohistochemical labeling in tissues from the dogs with the earlier-onset disorder. Similar to the later-onset Dalmatians, autofluorescent storage granules were apparent in brain and cardiac tissue from transgenic mice that were nullizygous for Cnp. Based on the clinical signs, the histopathological, immunohistochemical, ultrastructural, and molecular-genetic findings, and the finding that nullizygous Cnp mice accumulate autofluorescent storage granules, we propose that the earlier-onset Dalmatian disorder is a novel lysosomal storage disease that results from a loss-of-function mutation in CNP and that shares features characteristic of the neuronal ceroid lipofuscinoses. That the later-onset disorder occurred only in dogs heterozygous for the CNP deletion variant suggests that this disorder is a result of the variant allele's presence.
Collapse
Affiliation(s)
- Garrett Bullock
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Gary S Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Scott C Petesch
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | | | - Sandra Goebbels
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
4
|
Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Solís-Chagoyán H, Argueta J, López-Riquelme GO. Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry 2022; 12:264-285. [PMID: 35317338 PMCID: PMC8900585 DOI: 10.5498/wjp.v12.i2.264] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia and bipolar disorder are disabling psychiatric disorders with a worldwide prevalence of approximately 1%. Both disorders present chronic and deteriorating prognoses that impose a large burden, not only on patients but also on society and health systems. These mental illnesses share several clinical and neurobiological traits; of these traits, oligodendroglial dysfunction and alterations to white matter (WM) tracts could underlie the disconnection between brain regions related to their symptomatic domains. WM is mainly composed of heavily myelinated axons and glial cells. Myelin internodes are discrete axon-wrapping membrane sheaths formed by oligodendrocyte processes. Myelin ensheathment allows fast and efficient conduction of nerve impulses through the nodes of Ranvier, improving the overall function of neuronal circuits. Rapid and precisely synchronized nerve impulse conduction through fibers that connect distant brain structures is crucial for higher-level functions, such as cognition, memory, mood, and language. Several cellular and subcellular anomalies related to myelin and oligodendrocytes have been found in postmortem samples from patients with schizophrenia or bipolar disorder, and neuroimaging techniques have revealed consistent alterations at the macroscale connectomic level in both disorders. In this work, evidence regarding these multilevel alterations in oligodendrocytes and myelinated tracts is discussed, and the involvement of proteins in key functions of the oligodendroglial lineage, such as oligodendrogenesis and myelination, is highlighted. The molecular components of the axo-myelin unit could be important targets for novel therapeutic approaches to schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Marcela Valdés-Tovar
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Leslye Rodríguez-Cárdenas
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Carlo E Sotelo-Ramírez
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Beatriz Camarena
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Jesús Argueta
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Germán Octavio López-Riquelme
- Laboratorio de Socioneurobiología, Centro de Investigación en Ciencias Cognitivas, Universidad del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
5
|
Francisco RD, Fernando V, Norma E, Madai ME, Marcelo B. Glial changes in schizophrenia: Genetic and epigenetic approach. Indian J Psychiatry 2022; 64:3-12. [PMID: 35400734 PMCID: PMC8992743 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_104_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/24/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe mental illness that affects one percent of the population, affecting how people think, feel, and behave. Evidence suggests glial cell alteration and some researchers have found genetic risk loci and epigenetic marks that may regulate glia-related genes implicated in SCZ. AIM The aim of this study is to identify genetic and epigenetic changes that have been reported in glial cells or glial-associated genes in SCZ. MATERIALS AND METHODS We searched the articles from PubMed, PubMed Central, Medline, Medscape, and Embase databases up to December 2020 to identify relevant peer-reviewed articles in English. The titles and abstracts were screened to eliminate irrelevant citations. RESULTS Twenty-four original articles were included in the review. Studies were categorized into the following four thematic via: (1) oligodendrocytes, (2) microglia, (3) astrocytes, and (4) perspectives. CONCLUSION This study is the first of its kind to review research on genetic variants and epigenetic modifications associated with glia-related genes implicated in SCZ. Epigenetic evidence is considerably less than genetic evidence in this field. Understanding the pathways of some risk genes and their genetic and epigenetic regulation allows us to understand and find potential targets for future interventions in this mental illness.
Collapse
Affiliation(s)
- Ramos Daniel Francisco
- Faculty of Chemical Sciences, Juarez University of the State of Durango, Durango, Mexico
| | - Vazquez Fernando
- Faculty of Chemical Sciences, Juarez University of the State of Durango, Durango, Mexico.,Research Unit, General Hospital 450, Durango, Mexico
| | - Estrada Norma
- Faculty of Chemical Sciences, Juarez University of the State of Durango, Durango, Mexico
| | - Méndez Edna Madai
- Scientific Research Institute, Juarez University of the State of Durango, Durango, Mexico
| | - Barraza Marcelo
- Faculty of Chemical Sciences, Juarez University of the State of Durango, Durango, Mexico
| |
Collapse
|
6
|
Chai Z, Wu Z, Ji Q, Wang J, Wang J, Wang H, Zhang C, Zhong J, Xin J. Genome-Wide DNA Methylation and Hydroxymethylation Changes Revealed Epigenetic Regulation of Neuromodulation and Myelination in Yak Hypothalamus. Front Genet 2021; 12:592135. [PMID: 34646294 PMCID: PMC8503545 DOI: 10.3389/fgene.2021.592135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are important epigenetic modifications in neurodevelopment. However, there is little research examining the genome-wide patterns of 5mC and 5hmC in brain regions of animals under natural high-altitude conditions. We used oxidative reduced representation bisulfite sequencing (oxRRBS) to determine the 5mC and 5hmC sites in the brain, brainstem, cerebellum, and hypothalamus of yak and cattle. We reported the first map of genome-wide DNA methylation and hydroxymethylation in the brain, brainstem, cerebellum, and hypothalamus of yak (living at high altitudes) and cattle. Overall, we found striking differences in 5mC and 5hmC between the hypothalamus and other brain regions in both yak and cattle. Genome-wide profiling revealed that 5mC level decreased and 5hmC level increased in the hypothalamus than in other regions. Furthermore, we identified differentially methylated regions (DMRs) and differentially hydroxymethylated regions (DhMRs), most of which overlapped with each other. Interestingly, transcriptome results for these brain regions also showed distinctive gene levels in the hypothalamus. Finally, differentially expressed genes (DEGs) regulated by DMRs and DhMRs may play important roles in neuromodulation and myelination. Overall, our results suggested that mediation of 5mC and 5hmC on epigenetic regulation may broadly impact the development of hypothalamus and its biological functions.
Collapse
Affiliation(s)
- Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Qiumei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Chengfu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jinwei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
7
|
Chen X, Duan H, Xiao L, Gan J. Genetic and Epigenetic Alterations Underlie Oligodendroglia Susceptibility and White Matter Etiology in Psychiatric Disorders. Front Genet 2018; 9:565. [PMID: 30524471 PMCID: PMC6262033 DOI: 10.3389/fgene.2018.00565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
Numerous genetic risk loci are found to associate with major neuropsychiatric disorders represented by schizophrenia. The pathogenic roles of genetic risk loci in psychiatric diseases are further complicated by the association with cell lineage- and/or developmental stage-specific epigenetic alterations. Besides aberrant assembly and malfunction of neuronal circuitry, an increasing volume of discoveries clearly demonstrate impairment of oligodendroglia and disruption of white matter integrity in psychiatric diseases. Nonetheless, whether and how genetic risk factors and epigenetic dysregulations for neuronal susceptibility may affect oligodendroglia is largely unknown. In this mini-review, we will discuss emerging evidence regarding the functional interplay between genetic risk loci and epigenetic factors, which may underlie compromised oligodendroglia and myelin development in neuropsychiatric disorders. Transcriptional and epigenetic factors are the major aspects affected in oligodendroglia. Moreover, multiple disease susceptibility genes are connected by epigenetically modulated transcriptional and post-transcriptional mechanisms. Oligodendroglia specific complex molecular orchestra may explain how distinct risk factors lead to the common clinical expression of white matter pathology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xianjun Chen
- Department of Psychiatry, Mental Diseases Prevention and Treatment Institute of PLA, PLA 91st Central Hospital, Jiaozuo, China
| | - Huifeng Duan
- Department of Psychiatry, Mental Diseases Prevention and Treatment Institute of PLA, PLA 91st Central Hospital, Jiaozuo, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingli Gan
- Department of Psychiatry, Mental Diseases Prevention and Treatment Institute of PLA, PLA 91st Central Hospital, Jiaozuo, China
| |
Collapse
|
8
|
Folsom TD, Higgins L, Markowski TW, Griffin TJ, Fatemi SH. Quantitative proteomics of forebrain subcellular fractions in fragile X mental retardation 1 knockout mice following acute treatment with 2-Methyl-6-(phenylethynyl)pyridine: Relevance to developmental study of schizophrenia. Synapse 2018; 73:e22069. [PMID: 30176067 DOI: 10.1002/syn.22069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022]
Abstract
The fragile X mental retardation 1 knockout (Fmr1 KO) mouse replicates behavioral deficits associated with autism, fragile X syndrome, and schizophrenia. Less is known whether protein expression changes are consistent with findings in subjects with schizophrenia. In the current study, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics to determine the protein expression of four subcellular fractions in the forebrains of Fmr1 KO mice vs. C57BL/6 J mice and the effect of a negative allosteric modulator of mGluR5-2-Methyl-6-(phenylethynyl)pyridine (MPEP)-on protein expression. Strain- and treatment-specific differential expression of proteins was observed, many of which have previously been observed in the brains of subjects with schizophrenia. Western blotting verified the direction and magnitude of change for several proteins in different subcellular fractions as follows: neurofilament light protein (NEFL) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) in the total homogenate; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) in the nuclear fraction; excitatory amino acid transporter 2 (EAAT2) and ras-related protein rab 3a (RAB3A) in the synaptic fraction; and ras-related protein rab 35 (RAB35) and neuromodulin (GAP43) in the rough endoplasmic reticulum fraction. Individuals with FXS do not display symptoms of schizophrenia. However, the biomarkers that have been identified suggest that the Fmr1 KO model could potentially be useful in the study of schizophrenia.
Collapse
Affiliation(s)
- Timothy D Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
9
|
Pina-Camacho L, Parellada M, Kyriakopoulos M. Autism spectrum disorder and schizophrenia: boundaries and uncertainties. BJPSYCH ADVANCES 2018. [DOI: 10.1192/apt.bp.115.014720] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SummaryAutism and schizophrenia were placed in different diagnostic categories in DSM-III, having previously been considered as related diagnostic entities. New evidence suggests that these disorders show clinical and cognitive deficit overlaps and shared neurobiological characteristics. Furthermore, children presenting with both autism spectrum disorder (ASD) and psychotic experiences may represent a subgroup of ASD more closely linked to psychosis. The study of ASD and childhood schizophrenia, and their clinical boundaries and overlapping pathophysiological characteristics, may clarify their relationship and lead to more effective interventions. This article discusses the relationship through a critical review of current and historical dilemmas surrounding the phenomenology and pathophysiology of these disorders. It provides a framework for working with children and young people with mixed clinical presentations, illustrated by three brief fictional case vignettes.
Collapse
|
10
|
Raasakka A, Myllykoski M, Laulumaa S, Lehtimäki M, Härtlein M, Moulin M, Kursula I, Kursula P. Determinants of ligand binding and catalytic activity in the myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase. Sci Rep 2015; 5:16520. [PMID: 26563764 PMCID: PMC4643303 DOI: 10.1038/srep16520] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022] Open
Abstract
2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an enzyme highly abundant in the central nervous system myelin of terrestrial vertebrates. The catalytic domain of CNPase belongs to the 2H phosphoesterase superfamily and catalyzes the hydrolysis of nucleoside 2',3'-cyclic monophosphates to nucleoside 2'-monophosphates. The detailed reaction mechanism and the essential catalytic amino acids involved have been described earlier, but the roles of many amino acids in the vicinity of the active site have remained unknown. Here, several CNPase catalytic domain mutants were studied using enzyme kinetics assays, thermal stability experiments, and X-ray crystallography. Additionally, the crystal structure of a perdeuterated CNPase catalytic domain was refined at atomic resolution to obtain a detailed view of the active site and the catalytic mechanism. The results specify determinants of ligand binding and novel essential residues required for CNPase catalysis. For example, the aromatic side chains of Phe235 and Tyr168 are crucial for substrate binding, and Arg307 may affect active site electrostatics and regulate loop dynamics. The β5-α7 loop, unique for CNPase in the 2H phosphoesterase family, appears to have various functions in the CNPase reaction mechanism, from coordinating the nucleophilic water molecule to providing a binding pocket for the product and being involved in product release.
Collapse
Affiliation(s)
- Arne Raasakka
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Helmholtz Centre for Infection Research at German Electron Synchrotron (DESY), Hamburg, Germany
| | - Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Saara Laulumaa
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Helmholtz Centre for Infection Research at German Electron Synchrotron (DESY), Hamburg, Germany
- European Spallation Source (ESS), Lund, Sweden
| | - Mari Lehtimäki
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | | | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Helmholtz Centre for Infection Research at German Electron Synchrotron (DESY), Hamburg, Germany
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Helmholtz Centre for Infection Research at German Electron Synchrotron (DESY), Hamburg, Germany
| |
Collapse
|
11
|
Wang C, Aleksic B, Ozaki N. Glia-related genes and their contribution to schizophrenia. Psychiatry Clin Neurosci 2015; 69:448-61. [PMID: 25759284 DOI: 10.1111/pcn.12290] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2015] [Indexed: 12/24/2022]
Abstract
Schizophrenia, a debilitating disease with 1% prevalence in the general population, is characterized by major neuropsychiatric symptoms, including delusions, hallucinations, and deficits in emotional and social behavior. Previous studies have directed their investigations on the mechanism of schizophrenia towards neuronal dysfunction and have defined schizophrenia as a 'neuron-centric' disorder. However, along with the development of genetics and systematic biology approaches in recent years, the crucial role of glial cells in the brain has also been shown to contribute to the etiopathology of schizophrenia. Here, we summarize comprehensive data that support the involvement of glial cells (including oligodendrocytes, astrocytes, and microglial cells) in schizophrenia and list several acknowledged glia-related genes or molecules associated with schizophrenia. Instead of purely an abnormality of neurons in schizophrenia, an additional 'glial perspective' provides us a novel and promising insight into the causal mechanisms and treatment for this disease.
Collapse
Affiliation(s)
- Chenyao Wang
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
12
|
Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res 2015; 161:4-18. [PMID: 24948484 DOI: 10.1016/j.schres.2014.03.035] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 02/07/2023]
Abstract
The past decade has witnessed an explosion of knowledge on the impact of glia for the neurobiological foundation of schizophrenia. A plethora of studies have shown structural and functional abnormalities in all three types of glial cells. There is convincing evidence of reduced numbers of oligodendrocytes, impaired cell maturation and altered gene expression of myelin/oligodendrocyte-related genes that may in part explain white matter abnormalities and disturbed inter- and intra-hemispheric connectivity, which are characteristic signs of schizophrenia. Earlier reports of astrogliosis could not be confirmed by later studies, although the expression of a variety of astrocyte-related genes is abnormal in psychosis. Since astrocytes play a key role in the synaptic metabolism of glutamate, GABA, monoamines and purines, astrocyte dysfunction may contribute to certain aspects of disturbed neurotransmission in schizophrenia. Finally, increased densities of microglial cells and aberrant expression of microglia-related surface markers in schizophrenia suggest that immunological/inflammatory factors are of considerable relevance for the pathophysiology of psychosis. This review describes current evidence for the multifaceted role of glial cells in schizophrenia and discusses efforts to develop glia-directed therapies for the treatment of the disease.
Collapse
|
13
|
Mighdoll MI, Tao R, Kleinman JE, Hyde TM. Myelin, myelin-related disorders, and psychosis. Schizophr Res 2015; 161:85-93. [PMID: 25449713 DOI: 10.1016/j.schres.2014.09.040] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/18/2014] [Accepted: 09/21/2014] [Indexed: 12/14/2022]
Abstract
The neuropathological basis of schizophrenia and related psychoses remains elusive despite intensive scientific investigation. Symptoms of psychosis have been reported in a number of conditions where normal myelin development is interrupted. The nature, location, and timing of white matter pathology seem to be key factors in the development of psychosis, especially during the critical adolescent period of association area myelination. Numerous lines of evidence implicate myelin and oligodendrocyte function as critical processes that could affect neuronal connectivity, which has been implicated as a central abnormality in schizophrenia. Phenocopies of schizophrenia with a known pathological basis involving demyelination or dysmyelination may offer insights into the biology of schizophrenia itself. This article reviews the pathological changes in white matter of patients with schizophrenia, as well as demyelinating diseases associated with psychosis. In an attempt to understand the potential role of dysmyelination in schizophrenia, we outline the evidence from a number of both clinically-based and post-mortem studies that provide evidence that OMR genes are genetically associated with increased risk for schizophrenia. To further understand the implication of white matter dysfunction and dysmyelination in schizophrenia, we examine diffusion tensor imaging (DTI), which has shown volumetric and microstructural white matter differences in patients with schizophrenia. While classical clinical-neuropathological correlations have established that disruption in myelination can produce a high fidelity phenocopy of psychosis similar to schizophrenia, the role of dysmyelination in schizophrenia remains controversial.
Collapse
Affiliation(s)
- Michelle I Mighdoll
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA.
| | - Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA.
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA.
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Institutions, 855 N. Wolfe Street, Suite 300, Baltimore, MD 21205, USA; Department of Psychiatry & Behavioral Sciences, Johns Hopkins Medical School, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins Medical School, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Angata T. Associations of genetic polymorphisms of Siglecs with human diseases. Glycobiology 2014; 24:785-93. [PMID: 24841380 DOI: 10.1093/glycob/cwu043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic polymorphism studies in humans provide unique opportunities to understand human biology and the mechanisms of diseases. Correlations between polymorphisms in the genes encoding human Siglecs and various diseases have been reported. Leading examples, such as the CD33 polymorphism associated with late-onset Alzheimer's disease, are well supported by genetic replication and mechanistic studies, while some others (such as SIGLEC8 polymorphism associated with bronchial asthma and SIGLEC14 polymorphism associated with exacerbation of chronic obstructive pulmonary disease) may benefit reinforcement by independent genetic replication or mechanistic studies. In a few cases, such as MAG polymorphism associated with psychological disorder and CD22 polymorphism associated with autoimmune disease, the phenotype associated with a genetic polymorphism of a Siglec gene and that of an enzyme gene involved in the biosynthesis of Siglec ligand show some overlap, providing indirect support for the observed genotype-phenotype association. Although studies using engineered mutant mice have provided invaluable insights into the biological functions and mechanisms of diseases, it is not always possible to develop appropriate mouse model to replicate human situations because of significant species-to-species differences, which can be a major obstacle in understanding the biology of some of human CD33/Siglec-3-related Siglecs. Further studies in genetic polymorphisms of human Siglecs, combined with appropriate functional studies, may reveal unexpected biological roles of human Siglecs, and identify possible targets for prevention and/or treatment of certain diseases.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang District, Taipei 11529, Taiwan
| |
Collapse
|
15
|
Raasakka A, Kursula P. The myelin membrane-associated enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase: on a highway to structure and function. Neurosci Bull 2014; 30:956-966. [PMID: 24807122 DOI: 10.1007/s12264-013-1437-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/23/2014] [Indexed: 11/30/2022] Open
Abstract
The membrane-anchored myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) was discovered in the early 1960s and has since then troubled scientists with its peculiar catalytic activity and high expression levels in the central nervous system. Despite decades of research, the actual physiological relevance of CNPase has only recently begun to unravel. In addition to a role in myelination, CNPase is also involved in local adenosine production in traumatic brain injury and possibly has a regulatory function in mitochondrial membrane permeabilization. Although research focusing on the CNPase phosphodiesterase activity has been helpful, several open questions concerning the protein function in vivo remain unanswered. This review is focused on past research on CNPase, especially in the fields of structural biology and enzymology, and outlines the current understanding regarding the biochemical and physiological significance of CNPase, providing ideas and directions for future research.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Petri Kursula
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland. .,Department of Chemistry, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
16
|
Roussos P, Haroutunian V. Schizophrenia: susceptibility genes and oligodendroglial and myelin related abnormalities. Front Cell Neurosci 2014; 8:5. [PMID: 24478629 PMCID: PMC3896818 DOI: 10.3389/fncel.2014.00005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/06/2014] [Indexed: 12/29/2022] Open
Abstract
Given that the genetic risk for schizophrenia is highly polygenic and the effect sizes, even for rare or de novo events, are modest at best, it has been suggested that multiple biological pathways are likely to be involved in the etiopathogenesis of the disease. Most efforts in understanding the cellular basis of schizophrenia have followed a “neuron-centric” approach, focusing on alterations in neurotransmitter systems and synapse cytoarchitecture. However, multiple lines of evidence coming from genetics and systems biology approaches suggest that apart from neurons, oligodendrocytes and potentially other glia are affected from schizophrenia risk loci. Neurobiological abnormalities linked with genetic association signal could identify abnormalities that are more likely to be primary, versus environmentally induced changes or downstream events. Here, we summarize genetic data that support the involvement of oligodendrocytes in schizophrenia, providing additional evidence for a causal role with the disease. Given the undeniable evidence of both neuronal and glial abnormalities in schizophrenia, we propose a neuro-glial model that invokes abnormalities at the node of Ranvier as a functional unit in the etiopathogenesis of the disease.
Collapse
Affiliation(s)
- Panos Roussos
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Vahram Haroutunian
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
17
|
Improving myelin/oligodendrocyte-related dysfunction: a new mechanism of antipsychotics in the treatment of schizophrenia? Int J Neuropsychopharmacol 2013; 16:691-700. [PMID: 23164411 DOI: 10.1017/s1461145712001095] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Schizophrenia is a severe psychiatric disorder with complex clinical manifestations and its aetiological factors remain unclear. During the past decade, the oligodendrocyte-related myelin dysfunction was proposed as a hypothesis for schizophrenia, supported initially by a series of neuroimaging studies and genetic evidence. Recently, the effects of antipsychotics on myelination and oligodendroglial lineage development and their underlying molecular mechanisms were evaluated. Data from those studies suggest that the antipsychotics-resulting improvement in myelin/oligodendrocyte-related dysfunction may contribute, at least in part, to their therapeutic effect on schizophrenia. Importantly, these findings may provide the basis for a new insight into the therapeutic strategy by targeting the oligodendroglia lineage cells against schizophrenia.
Collapse
|
18
|
Nogo and Nogo receptor: relevance to schizophrenia? Neurobiol Dis 2013; 54:150-7. [PMID: 23369871 DOI: 10.1016/j.nbd.2013.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 12/14/2022] Open
Abstract
The membrane protein Nogo-A and its receptor NgR have been extensively characterized for their role in restricting axonal growth, regeneration, and plasticity in the central nervous system. Recent evidence suggests that Nogo and NgR might constitute candidate genes for schizophrenia susceptibility. In this article, we critically review the possibility that dysfunctions related to Nogo-A and NgR might contribute to increased risk for schizophrenia. To this end, we consider the most important insights that have emerged from human genetic and pathological studies and from experimental animal work. Furthermore, we discuss potential mechanisms of Nogo/NgR involvement in neural circuit development and stability, and how mutations or changes in expression levels of these proteins could be developmental risk factors contributing to schizophrenia.
Collapse
|
19
|
Cannon DM, Walshe M, Dempster E, Collier DA, Marshall N, Bramon E, Murray RM, McDonald C. The association of white matter volume in psychotic disorders with genotypic variation in NRG1, MOG and CNP: a voxel-based analysis in affected individuals and their unaffected relatives. Transl Psychiatry 2012; 2:e167. [PMID: 23032943 PMCID: PMC3565820 DOI: 10.1038/tp.2012.82] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 04/16/2012] [Accepted: 05/31/2012] [Indexed: 02/05/2023] Open
Abstract
We investigated the role of variation in putative psychosis genes coding for elements of the white matter system by examining the contribution of genotypic variation in three single-nucleotide polymorphisms (SNPs) neuregulin 1 (NRG1) SNP8NRG221533, myelin oligodendrocytes glycoprotein (MOG) rs2857766 and CNP (rs2070106) and one haplotype HAP(ICE) (deCODE) to white matter volume in patients with psychotic disorder and their unaffected relatives. Structural magnetic resonance imaging and blood samples for genotyping were collected on 189 participants including patients with schizophrenia (SZ) or bipolar I disorder (BDI), unaffected first-degree relatives of these patients and healthy volunteers. The association of genotypic variation with white matter volume was assessed using voxel-based morphometry in SPM5. The NRG1 SNP and the HAP(ICE) haplotype were associated with abnormal white matter volume in the BDI group in the fornix, cingulum and parahippocampal gyrus circuit. In SZ the NRG1 SNP risk allele was associated with lower white matter volume in the uncinate fasciculus (UF), right inferior longitudinal fasciculus and the anterior limb of the internal capsule. Healthy G-homozygotes of the MOG SNP had greater white matter volume in areas of the brainstem and cerebellum; this relationship was absent in those with a psychotic disorder and the unaffected relatives groups. The CNP SNP did not contribute to white matter volume variation in the diagnostic groups studied. Variation in the genes coding for structural and protective components of myelin are implicated in abnormal white matter volume in the emotion circuitry of the cingulum, fornix, parahippocampal gyrus and UF in psychotic disorders.
Collapse
Affiliation(s)
- D M Cannon
- Clinical Neuroimaging Laboratory, Department of Psychiatry and Anatomy, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Voineskos AN, Felsky D, Kovacevic N, Tiwari AK, Zai C, Chakravarty MM, Lobaugh NJ, Shenton ME, Rajji TK, Miranda D, Pollock BG, Mulsant BH, McIntosh AR, Kennedy JL. Oligodendrocyte genes, white matter tract integrity, and cognition in schizophrenia. ACTA ACUST UNITED AC 2012; 23:2044-57. [PMID: 22772651 DOI: 10.1093/cercor/bhs188] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte genes and white matter tracts have been implicated in the pathophysiology of schizophrenia and may play an important etiopathogenic role in cognitive dysfunction in schizophrenia. The objective of the present study in 60 chronic schizophrenia patients individually matched to 60 healthy controls was to determine whether 1) white matter tract integrity influences cognitive performance, 2) oligodendrocyte gene variants influence white matter tract integrity and cognitive performance, and 3) effects of oligodendrocyte gene variants on cognitive performance are mediated via white matter tract integrity. We used the partial least-squares multivariate approach to ascertain relationships among oligodendrocyte gene variants, integrity of cortico-cortical and subcortico-cortical white matter tracts, and cognitive performance. Robust relationships among oligodendrocyte gene variants, white matter tract integrity, and cognitive performance were found in both patients and controls. We also showed that effects of gene variants on cognitive performance were mediated by the integrity of white matter tracts. Our results were strengthened by bioinformatic analyses of gene variant function. To our knowledge, this is the first study that has brought together these lines of investigation in the same population and highlights the importance of the oligodendrocyte/white matter pathway in schizophrenia, particularly as it pertains to cognitive function.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Xu H, Li XM. White matter abnormalities and animal models examining a putative role of altered white matter in schizophrenia. SCHIZOPHRENIA RESEARCH AND TREATMENT 2011; 2011:826976. [PMID: 22937274 PMCID: PMC3420616 DOI: 10.1155/2011/826976] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 06/21/2011] [Indexed: 11/18/2022]
Abstract
Schizophrenia is a severe mental disorder affecting about 1% of the population worldwide. Although the dopamine (DA) hypothesis is still keeping a dominant position in schizophrenia research, new advances have been emerging in recent years, which suggest the implication of white matter abnormalities in schizophrenia. In this paper, we will briefly review some of recent human studies showing white matter abnormalities in schizophrenic brains and altered oligodendrocyte-(OL-) and myelin-related genes in patients with schizophrenia and will consider abnormal behaviors reported in patients with white matter diseases. Following these, we will selectively introduce some animal models examining a putative role of white matter abnormalities in schizophrenia. The emphasis will be put on the cuprizone (CPZ) model. CPZ-fed mice show demyelination and OLs loss, display schizophrenia-related behaviors, and have higher DA levels in the prefrontal cortex. These features suggest that the CPZ model is a novel animal model of schizophrenia.
Collapse
Affiliation(s)
- Haiyun Xu
- Department of Anatomy, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|
22
|
Myllykoski M, Baumgärtel P, Kursula P. Conformations of peptides derived from myelin-specific proteins in membrane-mimetic conditions probed by synchrotron radiation CD spectroscopy. Amino Acids 2011; 42:1467-74. [PMID: 21505824 DOI: 10.1007/s00726-011-0911-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/02/2011] [Indexed: 12/22/2022]
Abstract
Myelin is a tightly packed membrane multilayer in the nervous system, which harbours a specific set of quantitatively major proteins. All these proteins interact with the lipid bilayer, being either peripheral or integral membrane proteins. In this study, we examined the conformational properties of peptides from the myelin proteins P0, CNPase, MOBP, P2 and MOG, using trifluoroethanol and micelles of different detergents as membrane-like mimics. The peptides showed significant differences in their folding under the employed conditions, as evidenced by synchrotron radiation circular dichroism spectroscopy. Our experiments provide new structural information on the interactions between myelin proteins and membranes, using a simplified model system of synthetic peptides and micelles.
Collapse
|
23
|
Llorens F, Gil V, del Río JA. Emerging functions of myelin-associated proteins during development, neuronal plasticity, and neurodegeneration. FASEB J 2010; 25:463-75. [PMID: 21059749 DOI: 10.1096/fj.10-162792] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adult mammalian central nervous system (CNS) axons have a limited regrowth capacity following injury. Myelin-associated inhibitors (MAIs) limit axonal outgrowth, and their blockage improves the regeneration of damaged fiber tracts. Three of these proteins, Nogo-A, MAG, and OMgp, share two common neuronal receptors: NgR1, together with its coreceptors [p75(NTR), TROY, and Lingo-1]; and the recently described paired immunoglobulin-like receptor B (PirB). These proteins impair neuronal regeneration by limiting axonal sprouting. Some of the elements involved in the myelin inhibitory pathways may still be unknown, but the discovery that blocking both PirB and NgR1 activities leads to near-complete release from myelin inhibition, sheds light on one of the most competitive and intense fields of neuroregeneration study in recent decades. In parallel with the identification and characterization of the roles and functions of these inhibitory molecules in axonal regeneration, data gathered in the field strongly suggest that most of these proteins have roles other than axonal growth inhibition. The discovery of a new group of interacting partners for myelin-associated receptors and ligands, as well as functional studies within or outside the CNS environment, highlights the potential new physiological roles for these proteins in processes, such as development, neuronal homeostasis, plasticity, and neurodegeneration.
Collapse
Affiliation(s)
- Franc Llorens
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, and Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
24
|
Martins-De-Souza D, Dias-Neto E, Schmitt A, Falkai P, Gormanns P, Maccarrone G, Turck CW, Gattaz WF. Proteome analysis of schizophrenia brain tissue. World J Biol Psychiatry 2010; 11:110-20. [PMID: 20109112 DOI: 10.3109/15622970903490626] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Proteome analysis has emerged as a promising strategy to the identification of potential biomarkers and to further confirm the importance of certain pathways in the schizophrenia (SCZ) pathophysiology. Reviewing the results of 13 proteome studies in SCZ brain tissue, we aimed to provide information regarding potential proteins biomarkers as well as information about the pathophysiology of the disease. METHODS AND RESULTS Using two-dimensional gel electrophoresis and shotgun mass spectrometry, 31 proteins were consistently found differentially expressed in the brains of SCZ patients. The most frequent protein alterations reported in SCZ were related to brain energy metabolism, brain plasticity, and synaptic function, processes that are thought to belong to the core of the biology of this disease. The recurrent identification and validation of inter-related protein clusters, determined in different samples and approaches, strongly reinforces the putative involvement of certain pathways in SCZ. CONCLUSIONS The availability of reliable markers not only paves the way to the development of new therapeutic strategies but also points out the possibility of their use as peripheral blood markers that may potentially contribute to the early SCZ detection and early therapeutic intervention, both of which can reduce the social and cognitive consequences of the disease.
Collapse
|
25
|
Bernstein HG, Steiner J, Bogerts B. Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. Expert Rev Neurother 2009; 9:1059-71. [PMID: 19589054 DOI: 10.1586/ern.09.59] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last 10 years, structural, molecular and functional changes in glial cells have become a major focus of interest in the search for the neurobiological foundations of schizophrenia. While neuronal degeneration, as seen in typical degenerative brain diseases, cannot be found in post-mortem brains of psychotic disorders called 'schizophrenia', many studies show abnormalities in the connecting elements between the nerve cell bodies (synapses, dendrites and axons) and in all three types of glial cells. There is accumulating evidence of reduced numbers of oligodendrocytes and altered gene expression of myelin/oligodendrocyte-related genes that might explain white matter abnormalities and disturbed inter- and intra-hemispheric connectivity, which have frequently been described in schizophrenia. Earlier reports of increased astrocyte densities as a sign of gliosis could not be confirmed by later studies; however, the expression of several astrocyte-related genes is abnormal. Since astrocytes play a key role in the synaptic metabolism of glutamate and monamines, astrocyte dysfunction may well be related to the current transmitter theories of schizophrenia. Results in increased densities of microglial cells, which act as the main cells for immune defence in the brain, are more controversial. There are, however, higher microglial cell numbers in psychotic patients dying from suicide, and several studies reported altered expression of microglia-related surface markers in schizophrenia, suggesting that immunological/inflammatory factors may be relevant for the pathophysiology of psychosis. Searches for future therapeutic options should aim at compensating disturbed functions of oligodendrocytes, astrocytes and microglial cells, by which at least some aspects of the pathophysiology of the very inhomogeneous clinical syndrome of schizophrenia might be explained.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Otto von Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | |
Collapse
|
26
|
Höistad M, Segal D, Takahashi N, Sakurai T, Buxbaum JD, Hof PR. Linking white and grey matter in schizophrenia: oligodendrocyte and neuron pathology in the prefrontal cortex. Front Neuroanat 2009; 3:9. [PMID: 19636386 PMCID: PMC2713751 DOI: 10.3389/neuro.05.009.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/16/2009] [Indexed: 11/21/2022] Open
Abstract
Neuronal circuitry relies to a large extent on the presence of functional myelin produced in the brain by oligodendrocytes. Schizophrenia has been proposed to arise partly from altered brain connectivity. Brain imaging and neuropathologic studies have revealed changes in white matter and reduction in myelin content in patients with schizophrenia. In particular, alterations in the directionality and alignment of axons have been documented in schizophrenia. Moreover, the expression levels of several myelin-related genes are decreased in postmortem brains obtained from patients with schizophrenia. These findings have led to the formulation of the oligodendrocyte/myelin dysfunction hypothesis of schizophrenia. In this review, we present a brief overview of the neuropathologic findings obtained on white matter and oligodendrocyte status observed in schizophrenia patients, and relate these changes to the processes of brain maturation and myelination. We also review recent data on oligodendrocyte/myelin genes, and present some recent mouse models of myelin deficiencies. The use of transgenic and mutant animal models offers a unique opportunity to analyze oligodendrocyte and neuronal changes that may have a clinical impact. Lastly, we present some recent morphological findings supporting possible causal involvement of white and grey matter abnormalities, in the aim of determining the morphologic characteristics of the circuits whose alteration leads to the cortical dysfunction that possibly underlies the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Malin Höistad
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| | - Devorah Segal
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| | - Nagahide Takahashi
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Takeshi Sakurai
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Joseph D. Buxbaum
- Department of Psychiatry, Mount Sinai School of MedicineNew York, NY, USA
| | - Patrick R. Hof
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
| |
Collapse
|
27
|
Fatemi SH, Folsom TD, Reutiman TJ, Abu-Odeh D, Mori S, Huang H, Oishi K. Abnormal expression of myelination genes and alterations in white matter fractional anisotropy following prenatal viral influenza infection at E16 in mice. Schizophr Res 2009; 112:46-53. [PMID: 19487109 PMCID: PMC2735410 DOI: 10.1016/j.schres.2009.04.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/03/2009] [Accepted: 04/09/2009] [Indexed: 01/26/2023]
Abstract
Prenatal viral infection has been associated with the development of schizophrenia and autism. Our laboratory has previously shown that viral infection causes deleterious effects on brain structure and function in mouse offspring following late first trimester (E9) and late second trimester (E18) administration of influenza virus. We hypothesized that middle second trimester infection (E16) in mice may lead to a different pattern of brain gene expression and structural defects in the developing offspring. C57BL6 mice were infected on E16 with a sublethal dose of human influenza virus or sham-infected using vehicle solution. Male offspring of the infected mice were collected at P0, P14, P35, and P56, their brains removed and cerebella dissected and flash frozen. Microarray, DTI and MRI scanning, as well as qRT-PCR and SDS-PAGE and western blotting analyses were performed to detect differences in gene expression and brain atrophy. Expression of several genes associated with myelination, including Mbp, Mag, and Plp1 were found to be altered, as were protein levels of Mbp, Mag, and DM20. Brain imaging revealed significant atrophy in cerebellum at P14, reduced fractional anisotropy in white matter of the right internal capsule at P0, and increased fractional anisotropy in white matter in corpus callosum at P14 and right middle cerebellar peduncle at P56. We propose that maternal infection in mouse impacts myelination genes.
Collapse
Affiliation(s)
- S. Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
- Department of Pharmacology, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455
- Department of Neuroscience, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455
| | - Timothy D. Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
| | - Teri J. Reutiman
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
| | - Desiree Abu-Odeh
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455
| | - Susumu Mori
- Department of Radiology, Division of NMR, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287
| | - Hao Huang
- Department of Radiology, Division of NMR, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287
| | - Kenichi Oishi
- Department of Radiology, Division of NMR, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Baltimore, MD 21287
| |
Collapse
|
28
|
Che R, Tang W, Zhang J, Wei Z, Zhang Z, Huang K, Zhao X, Gao J, Zhou G, Huang P, He L, Shi Y. No relationship between 2',3'-cyclic nucleotide 3'-phosphodiesterase and schizophrenia in the Chinese Han population: an expression study and meta-analysis. BMC MEDICAL GENETICS 2009; 10:31. [PMID: 19348671 PMCID: PMC2670820 DOI: 10.1186/1471-2350-10-31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 04/06/2009] [Indexed: 11/28/2022]
Abstract
Background 2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP), one of the promising candidate genes for schizophrenia, plays a key part in the oligodendrocyte function and in myelination. The present study aims to investigate the relationship between CNP and schizophrenia in the Chinese population and the effect of different factors on the expression level of CNP in schizophrenia. Methods Five CNP single nucleotide polymorphisms (SNPs) were investigated in a Chinese Han schizophrenia case-control sample set (n = 180) using direct sequencing. The results were included in the following meta-analysis. Quantitative real-time polymerase chain reaction (PCR) was conducted to examine CNP expression levels in peripheral blood lymphocytes. Results Factors including gender, genotype, sub-diagnosis and antipsychotics-treatment were found not to contribute to the expression regulation of the CNP gene in schizophrenia. Our meta-analysis produced similar negative results. Conclusion The results suggest that the CNP gene may not be involved in the etiology and pathology of schizophrenia in the Chinese population.
Collapse
Affiliation(s)
- Ronglin Che
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|