1
|
Riesch R, Arriaga LR, Schlupp I. Sex-specific life-history trait expression in hybrids of a cave- and surface-dwelling fish ( Poecilia mexicana, Poeciliidae). Curr Zool 2024; 70:421-429. [PMID: 39176061 PMCID: PMC11336658 DOI: 10.1093/cz/zoad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/24/2023] [Indexed: 08/24/2024] Open
Abstract
Evaluating the fitness of hybrids can provide important insights into genetic differences between species or diverging populations. We focused on surface- and cave-ecotypes of the widespread Atlantic molly Poecilia mexicana and raised F1 hybrids of reciprocal crosses to sexual maturity in a common-garden experiment. Hybrids were reared in a fully factorial 2 × 2 design consisting of lighting (light vs. darkness) and resource availability (high vs. low food). We quantified survival, ability to realize their full reproductive potential (i.e., completed maturation for males and 3 consecutive births for females) and essential life-history traits. Compared to the performance of pure cave and surface fish from a previous experiment, F1s had the highest death rate and the lowest proportion of fish that reached their full reproductive potential. We also uncovered an intriguing pattern of sex-specific phenotype expression, because male hybrids expressed cave molly life histories, while female hybrids expressed surface molly life histories. Our results provide evidence for strong selection against hybrids in the cave molly system, but also suggest a complex pattern of sex-specific (opposing) dominance, with certain surface molly genes being dominant in female hybrids and certain cave molly genes being dominant in male hybrids.
Collapse
Affiliation(s)
- Rüdiger Riesch
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Luis R Arriaga
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Ingo Schlupp
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
2
|
Chen B, Dai W, Li X, Mao T, Liu Y, Pie MR, Yang J, Meegaskumbura M. Wall-following - Phylogenetic context of an enhanced behaviour in stygomorphic Sinocyclocheilus (Cypriniformes: Cyprinidae) cavefishes. Ecol Evol 2024; 14:e11575. [PMID: 38932953 PMCID: PMC11199845 DOI: 10.1002/ece3.11575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
With 75 known species, the freshwater fish genus Sinocyclocheilus is the largest cavefish radiation in the world and shows multiple adaptations for cave-dwelling (stygomorphic adaptations), which include a range of traits such as eye degeneration (normal-eyed, micro-eyed and eyeless), depigmentation of skin, and in some species, the presence of "horns". Their behavioural adaptations to subterranean environments, however, are poorly understood. Wall-following (WF) behaviour, where an organism remains in close contact with the boundary demarcating its habitat when in the dark, is a peculiar behaviour observed in a wide range of animals and is enhanced in cave dwellers. Hence, we hypothesise that wall-following is also present in Sinocyclocheilus, possibly enhanced in eyeless species compared to eye bearing (normal-/micro-eyed species). Using 13 species representative of Sinocyclocheilus radiation and eye morphs, we designed a series of assays, based on pre-existing methods for Astyanax mexicanus behavioural experiments, to examine wall-following behaviour under three conditions. Our results indicate that eyeless species exhibit significantly enhanced intensities of WF compared to normal-eyed species, with micro-eyed forms demonstrating intermediate intensities in the WF distance. Using a mtDNA based dated phylogeny (chronogram with four clades A-D), we traced the degree of WF of these forms to outline common patterns. We show that the intensity of WF behaviour is higher in the subterranean clades compared to clades dominated by normal-eyed free-living species. We also found that eyeless species are highly sensitive to vibrations, whereas normal-eyed species are the least sensitive. Since WF behaviour is presented to some degree in all Sinocyclocheilus species, and given that these fishes evolved in the late Miocene, we identify this behaviour as being ancestral with WF enhancement related to cave occupation. Results from this diversification-scale study of cavefish behaviour suggest that enhanced wall-following behaviour may be a convergent trait across all stygomorphic lineages.
Collapse
Affiliation(s)
- Bing Chen
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of ForestryGuangxi UniversityNanningChina
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life SciencesFudan UniversityShanghaiChina
| | - Wen‐Zhang Dai
- School of Life Science and Institute of Wetland EcologyNanjing UniversityNanjingChina
| | - Xiang‐Lin Li
- State Key Laboratory of Efficient Production of Forest ResourcesSchool of Ecology and Nature Conservation, Beijing Forestry UniversityBeijingChina
| | - Ting‐Ru Mao
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of ForestryGuangxi UniversityNanningChina
| | - Ye‐Wei Liu
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of ForestryGuangxi UniversityNanningChina
| | - Marcio R. Pie
- Biology DepartmentEdge Hill UniversityOrmskirkLancashireUK
| | - Jian Yang
- Key Laboratory of Environment Change and Resource Use, Beibu GulfNanning Normal UniversityNanningGuangxiChina
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of ForestryGuangxi UniversityNanningChina
| |
Collapse
|
3
|
Berisha H, Horváth G, Fišer Ž, Balázs G, Fišer C, Herczeg G. Sex-dependent increase of movement activity in the freshwater isopod Asellus aquaticus following adaptation to a predator-free cave habitat. Curr Zool 2023; 69:418-425. [PMID: 37614916 PMCID: PMC10443615 DOI: 10.1093/cz/zoac063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 08/25/2023] Open
Abstract
Populations experiencing negligible predation pressure are expected to evolve higher behavioral activity. However, when sexes have different expected benefits from high activity, the adaptive shift is expected to be sex-specific. Here, we compared movement activity of one cave (lack of predation) and three adjacent surface (high and diverse predation) populations of Asellus aquaticus, a freshwater isopod known for its independent colonization of several caves across Europe. We predicted 1) higher activity in cave than in surface populations, with 2) the difference being more pronounced in males as they are known for active mate searching behavior, while females are not. Activity was assessed both in the presence and absence of light. Our results supported both predictions: movement activity was higher in the cave than in the surface populations, particularly in males. Relaxed predation pressure in the cave-adapted population is most likely the main selective factor behind increased behavioral activity, but we also showed that the extent of increase is sex-specific.
Collapse
Affiliation(s)
- Hajriz Berisha
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Biological Institute, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117
| | - Gergely Horváth
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Biological Institute, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117
- ELKH-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117
| | - Žiga Fišer
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Gergely Balázs
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Biological Institute, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117
- ELKH-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117
| | - Cene Fišer
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Gábor Herczeg
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Biological Institute, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117
- ELKH-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117
| |
Collapse
|
4
|
Horváth G, Kerekes K, Nyitrai V, Balázs G, Berisha H, Herczeg G. Exploratory behaviour divergence between surface populations, cave colonists and a cave population in the water louse, Asellus aquaticus. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-022-03288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
Behaviour is considered among the most important factors in colonising new
habitats. While population divergence in behaviour is well-documented, intraspecific
variation in exploratory behaviour in species with populations successfully colonising and
adapting to extreme (compared to the ‘typical’) habitats is less understood. Here, by studying
surface- vs. cave-adapted populations of water louse (Asellus aquaticus), we tested whether (i)
adaptation to the special, ecologically isolated cave habitat includes a decrease in
explorativeness and (ii) recent, surface-type cave colonists are more explorative than their
surface conspecifics from the source population. We repeatedly tested dispersal related novel
area exploration and dispersal speed in both the presence and absence of light. We found that
surface populations showed higher behavioural activity in dark than in light, and they were
more explorative and dispersed faster than their cave conspecifics. Recent colonists showed a
trend of higher dispersal speed compared to their source surface population. We suggest that
extreme and isolated habitats like caves might work as ‘dispersal traps’ following successful
colonisation, because adaptation to these habitats includes the reduction of explorativeness.
Furthermore, we suggest that individuals with higher explorativeness are likely to
colonise markedly new environments. Finally, we provide experimental evidence about
surface A. aquaticus moving more in dark than in light.
Significance statement
Environmental conditions in caves are differing drastically from those of the surface. Consequently, animals colonising subterranean habitats are subject to different selective forces than those experienced by the ancestral surface-living population. Behaviour is believed to be a key factor in successful colonisation to novel habitats; however, intraspecific behavioural variation in species with both surface- and cave-adapted populations is less known. Here, we compared dispersal related novel area exploration and dispersal speed across surface and cave-adapted populations of the freshwater crustacean Asellus aquaticus. Our results show that cave-adapted A. aquaticus are significantly less explorative and disperse slower than surface-type populations, indicating that caves may act as ‘dispersal traps’, where adaptation includes the loss of explorativeness. Also, recent cave colonists show a trend to be faster dispersers than peers from the surface source population, suggesting that individuals with higher explorativeness are likely to colonise markedly different new environments.
Collapse
|
5
|
Bierbach D, Krause S, Romanczuk P, Lukas J, Arias-Rodriguez L, Krause J. An interaction mechanism for the maintenance of fission-fusion dynamics under different individual densities. PeerJ 2020; 8:e8974. [PMID: 32461823 PMCID: PMC7231501 DOI: 10.7717/peerj.8974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/24/2020] [Indexed: 11/20/2022] Open
Abstract
Animals often show high consistency in their social organisation despite facing changing environmental conditions. Especially in shoaling fish, fission-fusion dynamics that describe for which periods individuals are solitary or social have been found to remain unaltered even when density changed. This compensatory ability is assumed to be an adaptation towards constant predation pressure, but the mechanism through which individuals can actively compensate for density changes is yet unknown. The aim of the current study is to identify behavioural patterns that enable this active compensation. We compared the fission-fusion dynamics of two populations of the live-bearing Atlantic molly (Poecilia mexicana) that live in adjacent habitats with very different predator regimes: cave mollies that inhabit a low-predation environment inside a sulfidic cave with a low density of predatory water bugs (Belostoma sp.), and mollies that live directly outside the cave (henceforth called "surface" mollies) in a high-predation environment. We analysed their fission-fusion dynamics under two different fish densities of 12 and 6 fish per 0.36 m2. As expected, surface mollies spent more time being social than cave mollies, and this difference in social time was a result of surface mollies being less likely to discontinue social contact (once they had a social partner) and being more likely to resume social contact (once alone) than cave mollies. Interestingly, surface mollies were also less likely to switch among social partners than cave mollies. A random walk simulation predicted each population to show reduced social encounters in the low density treatment. While cave mollies largely followed this prediction, surface mollies maintained their interaction probabilities even at low density. Surface mollies achieved this by a reduction in the size of a convex polygon formed by the group as density decreased. This may allow them to largely maintain their fission-fusion dynamics while still being able to visit large parts of the available area as a group. A slight reduction (21%) in the area visited at low densities was also observed but insufficient to explain how the fish maintained their fission-fusion dynamics. Finally, we discuss potential movement rules that could account for the reduction of polygon size and test their performance.
Collapse
Affiliation(s)
- David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Faculty of Life Sciences, Thaer Institute, Humboldt Universität Berlin, Berlin, Germany
| | - Stefan Krause
- Department of Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, Lübeck, Germany
| | - Pawel Romanczuk
- Department of Biology, Institute for Theoretical Biology, Humboldt Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt Universität Berlin, Berlin, Germany
| | - Juliane Lukas
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Faculty of Life Sciences, Thaer Institute, Humboldt Universität Berlin, Berlin, Germany
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Jens Krause
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Faculty of Life Sciences, Thaer Institute, Humboldt Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Camarillo H, Arias Rodriguez L, Tobler M. Functional consequences of phenotypic variation between locally adapted populations: Swimming performance and ventilation in extremophile fish. J Evol Biol 2020; 33:512-523. [DOI: 10.1111/jeb.13586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Henry Camarillo
- Division of Biology Kansas State University Manhattan KS USA
| | - Lenin Arias Rodriguez
- División Académica de Ciencias Biológicas Universidad Juárez Autónoma de Tabasco Villahermosa México
| | - Michael Tobler
- Division of Biology Kansas State University Manhattan KS USA
| |
Collapse
|
7
|
Zimmer C, Riesch R, Jourdan J, Bierbach D, Arias-Rodriguez L, Plath M. Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies ( Poecilia mexicana). Genes (Basel) 2018; 9:E232. [PMID: 29724050 PMCID: PMC5977172 DOI: 10.3390/genes9050232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022] Open
Abstract
Divergent selection between ecologically dissimilar habitats promotes local adaptation, which can lead to reproductive isolation (RI). Populations in the Poecilia mexicana species complex have independently adapted to toxic hydrogen sulfide and show varying degrees of RI. Here, we examined the variation in the mate choice component of prezygotic RI. Mate choice tests across drainages (with stimulus males from another drainage) suggest that specific features of the males coupled with a general female preference for yellow color patterns explain the observed variation. Analyses of male body coloration identified the intensity of yellow fin coloration as a strong candidate to explain this pattern, and common-garden rearing suggested heritable population differences. Male sexual ornamentation apparently evolved differently across sulfide-adapted populations, for example because of differences in natural counterselection via predation. The ubiquitous preference for yellow color ornaments in poeciliid females likely undermines the emergence of strong RI, as female discrimination in favor of own males becomes weaker when yellow fin coloration in the respective sulfide ecotype increases. Our study illustrates the complexity of the (partly non-parallel) pathways to divergence among replicated ecological gradients. We suggest that future work should identify the genomic loci involved in the pattern reported here, making use of the increasing genomic and transcriptomic datasets available for our study system.
Collapse
Affiliation(s)
- Claudia Zimmer
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, China.
- Department of Ecology and Evolution, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Rüdiger Riesch
- Centre for Ecology, Evolution and Behaviour, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, D-63571 Gelnhausen, Germany.
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany.
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 86150 Villahermosa, Tabasco, Mexico.
| | - Martin Plath
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
8
|
Bierbach D, Arias-Rodriguez L, Plath M. Intrasexual competition enhances reproductive isolation between locally adapted populations. Curr Zool 2017; 64:125-133. [PMID: 29492045 PMCID: PMC5809038 DOI: 10.1093/cz/zox071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023] Open
Abstract
During adaptation to different habitat types, both morphological and behavioral traits can undergo divergent selection. Males often fight for status in dominance hierarchies and rank positions predict reproductive success. Ecotypes with reduced fighting abilities should have low reproductive success when migrating into habitats that harbor ecotypes with superior fighting abilities. Livebearing fishes in the Poecilia mexicana-species complex inhabit not only regular freshwater environments, but also independently colonized sulfidic (H2S-containing) habitats in three river drainages. In the current study, we found fighting intensities in staged contests to be considerably lower in some but not all sulfidic surface ecotypes and the sulfidic cave ecotype compared with populations from non-sulfidic surface sites. This is perhaps due to selection imposed by H2S, which hampers oxygen uptake and transport, as well as cellular respiration. Furthermore, migrants from sulfidic habitats may lose fights even if they do not show overall reduced aggressiveness, as physiological performance is likely to be challenged in the non-sulfidic environment to which they are not adapted. To test this hypothesis, we simulated migration of H2S-adapted males into H2S-free waters, as well as H2S-adapted cave-dwelling males into sulfidic surface waters. We found that intruders established dominance less often than resident males, independent of whether or not they showed reduced aggressiveness overall. Our study shows that divergent evolution of male aggressive behavior may also contribute to the maintenance of genetic differentiation in this system and we call for more careful evaluation of male fighting abilities in studies on ecological speciation.
Collapse
Affiliation(s)
- David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 86150 Villahermosa, Tabasco, México
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Passow CN, Brown AP, Arias-Rodriguez L, Yee MC, Sockell A, Schartl M, Warren WC, Bustamante C, Kelley JL, Tobler M. Complexities of gene expression patterns in natural populations of an extremophile fish (Poecilia mexicana, Poeciliidae). Mol Ecol 2017; 26:4211-4225. [PMID: 28598519 PMCID: PMC5731456 DOI: 10.1111/mec.14198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022]
Abstract
Variation in gene expression can provide insights into organismal responses to environmental stress and physiological mechanisms mediating adaptation to habitats with contrasting environmental conditions. We performed an RNA-sequencing experiment to quantify gene expression patterns in fish adapted to habitats with different combinations of environmental stressors, including the presence of toxic hydrogen sulphide (H2 S) and the absence of light in caves. We specifically asked how gene expression varies among populations living in different habitats, whether population differences were consistent among organs, and whether there is evidence for shared expression responses in populations exposed to the same stressors. We analysed organ-specific transcriptome-wide data from four ecotypes of Poecilia mexicana (nonsulphidic surface, sulphidic surface, nonsulphidic cave and sulphidic cave). The majority of variation in gene expression was correlated with organ type, and the presence of specific environmental stressors elicited unique expression differences among organs. Shared patterns of gene expression between populations exposed to the same environmental stressors increased with levels of organismal organization (from transcript to gene to physiological pathway). In addition, shared patterns of gene expression were more common between populations from sulphidic than populations from cave habitats, potentially indicating that physiochemical stressors with clear biochemical consequences can constrain the diversity of adaptive solutions that mitigate their adverse effects. Overall, our analyses provided insights into transcriptional variation in a unique system, in which adaptation to H2 S and darkness coincide. Functional annotations of differentially expressed genes provide a springboard for investigating physiological mechanisms putatively underlying adaptation to extreme environments.
Collapse
Affiliation(s)
| | - Anthony P. Brown
- Department of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Muh-Ching Yee
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Manfred Schartl
- Physiological Chemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg, Germany
- Texas A&M Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX, USA
| | - Wesley C. Warren
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Joanna L. Kelley
- Department of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
10
|
Porter CK, Benkman CW. Assessing the Potential Contributions of Reduced Immigrant Viability and Fecundity to Reproductive Isolation. Am Nat 2017; 189:580-591. [DOI: 10.1086/691191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Schulz‐Mirbach T, Eifert C, Riesch R, Farnworth MS, Zimmer C, Bierbach D, Klaus S, Tobler M, Streit B, Indy JR, Arias‐Rodriguez L, Plath M. Toxic hydrogen sulphide shapes brain anatomy: a comparative study of sulphide‐adapted ecotypes in the
Poecilia mexicana
complex. J Zool (1987) 2016. [DOI: 10.1111/jzo.12366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- T. Schulz‐Mirbach
- Department Biology II Ludwig‐Maximilians‐University Munich Planegg‐Martinsried Germany
| | - C. Eifert
- Ecology and Evolution J. W. Goethe University Frankfurt Frankfurt am Main Germany
| | - R. Riesch
- School of Biological Sciences Royal Holloway University of London Egham UK
| | - M. S. Farnworth
- Göttingen Center for Molecular Biosciences Georg‐August‐University Göttingen Göttingen Germany
| | - C. Zimmer
- Ecology and Evolution J. W. Goethe University Frankfurt Frankfurt am Main Germany
| | - D. Bierbach
- Department of Biology and Ecology of Fishes Leibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - S. Klaus
- Ecology and Evolution J. W. Goethe University Frankfurt Frankfurt am Main Germany
| | - M. Tobler
- Division of Biology Kansas State University Manhattan KS USA
| | - B. Streit
- Ecology and Evolution J. W. Goethe University Frankfurt Frankfurt am Main Germany
| | - J. R. Indy
- División Académica de Ciencias Biológicas Universidad Juárez Autónoma de Tabasco (UJAT) Villahermosa Tabasco México
| | - L. Arias‐Rodriguez
- División Académica de Ciencias Biológicas Universidad Juárez Autónoma de Tabasco (UJAT) Villahermosa Tabasco México
| | - M. Plath
- College of Animal Science and Technology Northwest A&F University Yangling China
| |
Collapse
|
12
|
Sex-specific local life-history adaptation in surface- and cave-dwelling Atlantic mollies (Poecilia mexicana). Sci Rep 2016; 6:22968. [PMID: 26960566 PMCID: PMC4785371 DOI: 10.1038/srep22968] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/22/2016] [Indexed: 11/08/2022] Open
Abstract
Cavefishes have long been used as model organisms showcasing adaptive diversification, but does adaptation to caves also facilitate the evolution of reproductive isolation from surface ancestors? We raised offspring of wild-caught surface- and cave-dwelling ecotypes of the neotropical fish Poecilia mexicana to sexual maturity in a 12-month common garden experiment. Fish were raised under one of two food regimes (high vs. low), and this was crossed with differences in lighting conditions (permanent darkness vs. 12:12 h light:dark cycle) in a 2 × 2 factorial design, allowing us to elucidate potential patterns of local adaptation in life histories. Our results reveal a pattern of sex-specific local life-history adaptation: Surface molly females had the highest fitness in the treatment best resembling their habitat of origin (high food and a light:dark cycle), and suffered from almost complete reproductive failure in darkness, while cave molly females were not similarly affected in any treatment. Males of both ecotypes, on the other hand, showed only weak evidence for local adaptation. Nonetheless, local life-history adaptation in females likely contributes to ecological diversification in this system and other cave animals, further supporting the role of local adaptation due to strong divergent selection as a major force in ecological speciation.
Collapse
|
13
|
Ingley SJ, Johnson JB. Divergent natural selection promotes immigrant inviability at early and late stages of evolutionary divergence. Evolution 2016; 70:600-16. [DOI: 10.1111/evo.12872] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/21/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Spencer J. Ingley
- Evolutionary Ecology Laboratories, Department of Biology; Brigham Young University; Provo Utah 84602
| | - Jerald B. Johnson
- Evolutionary Ecology Laboratories, Department of Biology; Brigham Young University; Provo Utah 84602
- Monte L. Bean Life Science Museum; Brigham Young University; Provo Utah 84602
| |
Collapse
|
14
|
Fišer Ž, Novak L, Luštrik R, Fišer C. Light triggers habitat choice of eyeless subterranean but not of eyed surface amphipods. Naturwissenschaften 2016; 103:7. [PMID: 26757929 DOI: 10.1007/s00114-015-1329-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/04/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
Abstract
Boundaries of species distributions are the result of colonization-extinction processes. Survival on the boundary depends on how well individuals discriminate optimal from suboptimal habitat patches. Such behaviour is called habitat choice and was only rarely applied to macroecology, although it links species ecological niche and species distribution. Surface and subterranean aquatic species are spatially strongly segregated, even in the absence of physical barriers. We explored whether a behavioural response to light functions as a habitat choice mechanism that could explain species turnover between surface and subterranean aquatic ecosystems. In a controlled laboratory experiment, we studied the behavioural response to light of ten pairs of surface and subterranean amphipods that permanently co-occur in springs. Surface species showed a weak photophobic, photoneutral, and in one case, photophilic response, whereas all subterranean species showed a strong photophobic response. Eyeless subterranean but not eyed surface amphipods appear to orient themselves with light cues. On a local scale, this difference possibly diminishes harmful interactions between the co-occurring amphipods, whereas on a regional scale, photophobia could explain limited dispersal and a high degree of endemism observed among subterranean species.
Collapse
Affiliation(s)
- Žiga Fišer
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Luka Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Roman Luštrik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Cene Fišer
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Passow CN, Greenway R, Arias-Rodriguez L, Jeyasingh PD, Tobler M. Reduction of Energetic Demands through Modification of Body Size and Routine Metabolic Rates in Extremophile Fish. Physiol Biochem Zool 2015; 88:371-83. [PMID: 26052634 DOI: 10.1086/681053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Variation in energy availability or maintenance costs in extreme environments can exert selection for efficient energy use, and reductions in organismal energy demand can be achieved in two ways: reducing body mass or metabolic suppression. Whether long-term exposure to extreme environmental conditions drives adaptive shifts in body mass or metabolic rates remains an open question. We studied body size variation and variation in routine metabolic rates in locally adapted populations of extremophile fish (Poecilia mexicana) living in toxic, hydrogen sulfide-rich springs and caves. We quantified size distributions and routine metabolic rates in wild-caught individuals from four habitat types. Compared with ancestral populations in nonsulfidic surface habitats, extremophile populations were characterized by significant reductions in body size. Despite elevated metabolic rates in cave fish, the body size reduction precipitated in significantly reduced energy demands in all extremophile populations. Laboratory experiments on common garden-raised fish indicated that elevated routine metabolic rates in cave fish likely have a genetic basis. The results of this study indicate that adaptation to extreme environments directly impacts energy metabolism, with fish living in cave and sulfide spring environments expending less energy overall during routine metabolism.
Collapse
Affiliation(s)
- Courtney N Passow
- Department of Zoology, Oklahoma State University, 501 Life Sciences West, Stillwater, Oklahoma 74078; 2División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | | | | | | | | |
Collapse
|
16
|
Eifert C, Farnworth M, Schulz-Mirbach T, Riesch R, Bierbach D, Klaus S, Wurster A, Tobler M, Streit B, Indy JR, Arias-Rodriguez L, Plath M. Brain size variation in extremophile fish: local adaptation versus phenotypic plasticity. J Zool (1987) 2014. [DOI: 10.1111/jzo.12190] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- C. Eifert
- Department of Ecology and Evolution; J.W. Goethe University Frankfurt; Frankfurt am Main Germany
| | - M. Farnworth
- Department of Ecology and Evolution; J.W. Goethe University Frankfurt; Frankfurt am Main Germany
| | - T. Schulz-Mirbach
- Department Biology II; Ludwig-Maximilians-University; Planegg Germany
| | - R. Riesch
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
- School of Biological Sciences; Centre for Ecology, Evolution and Behaviour; Royal Holloway University of London; Egham Surrey UK
| | - D. Bierbach
- Department of Ecology and Evolution; J.W. Goethe University Frankfurt; Frankfurt am Main Germany
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries; Berlin Germany
| | - S. Klaus
- Department of Ecology and Evolution; J.W. Goethe University Frankfurt; Frankfurt am Main Germany
| | - A. Wurster
- Department of Ecology and Evolution; J.W. Goethe University Frankfurt; Frankfurt am Main Germany
| | - M. Tobler
- Department of Zoology; Oklahoma State University; Stillwater OK USA
| | - B. Streit
- Department of Ecology and Evolution; J.W. Goethe University Frankfurt; Frankfurt am Main Germany
| | - J. R. Indy
- División Académica de Ciencias Biológicas; Universidad Juárez Autónoma de Tabasco (UJAT); Villahermosa Tabasco México
| | - L. Arias-Rodriguez
- División Académica de Ciencias Biológicas; Universidad Juárez Autónoma de Tabasco (UJAT); Villahermosa Tabasco México
| | - M. Plath
- College of Animal Science and Technology; Northwest A&F University; Yangling China
| |
Collapse
|
17
|
Patterns of Macroinvertebrate and Fish Diversity in Freshwater Sulphide Springs. DIVERSITY-BASEL 2014. [DOI: 10.3390/d6030597] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Extreme environments are characterised by the presence of physicochemical stressors and provide unique study systems to address problems in evolutionary ecology research. Sulphide springs provide an example of extreme freshwater environments; because hydrogen sulphide’s adverse physiological effects induce mortality in metazoans even at micromolar concentrations. Sulphide springs occur worldwide, but while microbial communities in sulphide springs have received broad attention, little is known about macroinvertebrates and fish inhabiting these toxic environments. We reviewed qualitative occurrence records of sulphide spring faunas on a global scale and present a quantitative case study comparing diversity patterns in sulphidic and adjacent non-sulphidic habitats across replicated river drainages in Southern Mexico. While detailed studies in most regions of the world remain scarce, available data suggests that sulphide spring faunas are characterised by low species richness. Dipterans (among macroinvertebrates) and cyprinodontiforms (among fishes) appear to dominate the communities in these habitats. At least in fish, there is evidence for the presence of highly endemic species and populations exclusively inhabiting sulphide springs. We provide a detailed discussion of traits that might predispose certain taxonomic groups to colonize sulphide springs, how colonizers subsequently adapt to cope with sulphide toxicity, and how adaptation may be linked to speciation processes.
Collapse
|
18
|
Tobler M, Plath M, Riesch R, Schlupp I, Grasse A, Munimanda GK, Setzer C, Penn DJ, Moodley Y. Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations. J Evol Biol 2014; 27:960-74. [PMID: 24725091 DOI: 10.1111/jeb.12370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/09/2014] [Indexed: 11/26/2022]
Abstract
The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans-species evolution).
Collapse
Affiliation(s)
- M Tobler
- Department of Zoology, Oklahoma State University, Stillwater, OK, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tobler M, Roach K, Winemiller KO, Morehouse RL, Plath M. Population Structure, Habitat Use, and Diet of Giant Waterbugs in a Sulfidic Cave. SOUTHWEST NAT 2013. [DOI: 10.1894/0038-4909-58.4.420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Gradient evolution of body colouration in surface- and cave-dwelling Poecilia mexicana and the role of phenotype-assortative female mate choice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:148348. [PMID: 24175282 PMCID: PMC3794506 DOI: 10.1155/2013/148348] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/16/2013] [Indexed: 12/11/2022]
Abstract
Ecological speciation assumes reproductive isolation to be the product of ecologically based divergent selection. Beside natural selection, sexual selection via phenotype-assortative mating is thought to promote reproductive isolation. Using the neotropical fish Poecilia mexicana from a system that has been described to undergo incipient ecological speciation in adjacent, but ecologically divergent habitats characterized by the presence or absence of toxic H2S and darkness in cave habitats, we demonstrate a gradual change in male body colouration along the gradient of light/darkness, including a reduction of ornaments that are under both inter- and intrasexual selection in surface populations. In dichotomous choice tests using video-animated stimuli, we found surface females to prefer males from their own population over the cave phenotype. However, female cave fish, observed on site via infrared techniques, preferred to associate with surface males rather than size-matched cave males, likely reflecting the female preference for better-nourished (in this case: surface) males. Hence, divergent selection on body colouration indeed translates into phenotype-assortative mating in the surface ecotype, by selecting against potential migrant males. Female cave fish, by contrast, do not have a preference for the resident male phenotype, identifying natural selection against migrants imposed by the cave environment as the major driver of the observed reproductive isolation.
Collapse
|
21
|
Plath M, Pfenninger M, Lerp H, Riesch R, Eschenbrenner C, Slattery PA, Bierbach D, Herrmann N, Schulte M, Arias-Rodriguez L, Rimber Indy J, Passow C, Tobler M. Genetic differentiation and selection against migrants in evolutionarily replicated extreme environments. Evolution 2013; 67:2647-61. [PMID: 24033173 DOI: 10.1111/evo.12133] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/02/2013] [Indexed: 01/18/2023]
Abstract
We investigated mechanisms of reproductive isolation in livebearing fishes (genus Poecilia) inhabiting sulfidic and nonsulfidic habitats in three replicate river drainages. Although sulfide spring fish convergently evolved divergent phenotypes, it was unclear if mechanisms of reproductive isolation also evolved convergently. Using microsatellites, we found strongly reduced gene flow between adjacent populations from different habitat types, suggesting that local adaptation to sulfidic habitats repeatedly caused the emergence of reproductive isolation. Reciprocal translocation experiments indicate strong selection against immigrants into sulfidic waters, but also variation among drainages in the strength of selection against immigrants into nonsulfidic waters. Mate choice experiments revealed the evolution of assortative mating preferences in females from nonsulfidic but not from sulfidic habitats. The inferred strength of sexual selection against immigrants (RI(s)) was negatively correlated with the strength of natural selection (RI(m)), a pattern that could be attributed to reinforcement, whereby natural selection strengthens behavioral isolation due to reduced hybrid fitness. Overall, reproductive isolation and genetic differentiation appear to be replicated and direct consequences of local adaptation to sulfide spring environments, but the relative contributions of different mechanisms of reproductive isolation vary across these evolutionarily independent replicates, highlighting both convergent and nonconvergent evolutionary trajectories of populations in each drainage.
Collapse
Affiliation(s)
- Martin Plath
- J. W. Goethe-University Frankfurt/M., Evolutionary Ecology Group, Max-von-Laue Str. 13, 60438, Frankfurt, a. M., Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kelley JL, Passow CN, Plath M, Arias Rodriguez L, Yee MC, Tobler M. Genomic resources for a model in adaptation and speciation research: characterization of the Poecilia mexicana transcriptome. BMC Genomics 2012; 13:652. [PMID: 23170846 PMCID: PMC3585874 DOI: 10.1186/1471-2164-13-652] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/22/2012] [Indexed: 01/12/2023] Open
Abstract
Background Elucidating the genomic basis of adaptation and speciation is a major challenge in natural systems with large quantities of environmental and phenotypic data, mostly because of the scarcity of genomic resources for non-model organisms. The Atlantic molly (Poecilia mexicana, Poeciliidae) is a small livebearing fish that has been extensively studied for evolutionary ecology research, particularly because this species has repeatedly colonized extreme environments in the form of caves and toxic hydrogen sulfide containing springs. In such extreme environments, populations show strong patterns of adaptive trait divergence and the emergence of reproductive isolation. Here, we used RNA-sequencing to assemble and annotate the first transcriptome of P. mexicana to facilitate ecological genomics studies in the future and aid the identification of genes underlying adaptation and speciation in the system. Description We provide the first annotated reference transcriptome of P. mexicana. Our transcriptome shows high congruence with other published fish transcriptomes, including that of the guppy, medaka, zebrafish, and stickleback. Transcriptome annotation uncovered the presence of candidate genes relevant in the study of adaptation to extreme environments. We describe general and oxidative stress response genes as well as genes involved in pathways induced by hypoxia or involved in sulfide metabolism. To facilitate future comparative analyses, we also conducted quantitative comparisons between P. mexicana from different river drainages. 106,524 single nucleotide polymorphisms were detected in our dataset, including potential markers that are putatively fixed across drainages. Furthermore, specimens from different drainages exhibited some consistent differences in gene regulation. Conclusions Our study provides a valuable genomic resource to study the molecular underpinnings of adaptation to extreme environments in replicated sulfide spring and cave environments. In addition, this study adds to the increasing number of genomic resources in the family Poeciliidae, which are widely used in comparative analyses of behavior, ecology, evolution, and medical genetics.
Collapse
Affiliation(s)
- Joanna L Kelley
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
23
|
SCHILTHUIZEN MENNO, RUTTEN ELISEMJ, HAASE MARTIN. Small-scale genetic structuring in a tropical cave snail and admixture with its above-ground sister species†. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2011.01835.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Divergent evolution of male aggressive behaviour: another reproductive isolation barrier in extremophile poeciliid fishes? INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2012:148745. [PMID: 22315695 PMCID: PMC3270405 DOI: 10.1155/2012/148745] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/20/2011] [Accepted: 10/14/2011] [Indexed: 11/17/2022]
Abstract
Reproductive isolation among locally adapted populations may arise when immigrants from foreign habitats are selected against via natural or (inter-)sexual selection (female mate choice). We asked whether also intrasexual selection through male-male competition could promote reproductive isolation among populations of poeciliid fishes that are locally adapted to extreme environmental conditions [i.e., darkness in caves and/or toxic hydrogen sulphide (H(2)S)]. We found strongly reduced aggressiveness in extremophile P. oecilia mexicana, and darkness was the best predictor for the evolutionary reduction of aggressiveness, especially when combined with presence of H(2)S. We demonstrate that reduced aggression directly translates into migrant males being inferior when paired with males from non-sulphidic surface habitats. By contrast, the phylogenetically old sulphur endemic P. sulphuraria from another sulphide spring area showed no overall reduced aggressiveness, possibly indicating evolved mechanisms to better cope with H(2)S.
Collapse
|
25
|
Riesch R, Plath M, Schlupp I. Speciation in caves: experimental evidence that permanent darkness promotes reproductive isolation. Biol Lett 2011; 7:909-12. [PMID: 21561964 DOI: 10.1098/rsbl.2011.0237] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Divergent selection through biotic factors like predation or parasitism can promote reproductive isolation even in the absence of geographical barriers. On the other hand, evidence for a role of adaptation to abiotic factors during ecological speciation in animals is scant. In particular, the role played by perpetual darkness in establishing reproductive isolation in cave animals (troglobites) remains elusive. We focused on two reproductively isolated ecotypes (surface- and cave-dwelling) of the widespread livebearer Poecilia mexicana, and raised offspring of wild-caught females to sexual maturity in a 12-month common-garden experiment. Fish were reared in light or darkness combined with high- or low-food conditions. Females, but not males, of the surface ecotype suffered from almost complete reproductive failure in darkness, especially in the low-food treatment. Furthermore, surface fish suffered from a significantly higher rate of spontaneous, stress-related infection with bacterial columnaris disease. This experimental evidence for strong selection by permanent darkness on non-adapted surface-dwelling animals adds depth to our understanding of the selective forces establishing and maintaining reproductive isolation in cave faunas.
Collapse
Affiliation(s)
- Rüdiger Riesch
- Department of Zoology, University of Oklahoma, Norman, OK 73019, USA.
| | | | | |
Collapse
|
26
|
Tobler M, Culumber ZW, Plath M, Winemiller KO, Rosenthal GG. An indigenous religious ritual selects for resistance to a toxicant in a livebearing fish. Biol Lett 2011; 7:229-32. [PMID: 20826470 DOI: 10.1098/rsbl.2010.0663] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human-induced environmental change can affect the evolutionary trajectory of populations. In Mexico, indigenous Zoque people annually introduce barbasco, a fish toxicant, into the Cueva del Azufre to harvest fish during a religious ceremony. Here, we investigated tolerance to barbasco in fish from sites exposed and unexposed to the ritual. We found that barbasco tolerance increases with body size and differs between the sexes. Furthermore, fish from sites exposed to the ceremony had a significantly higher tolerance. Consequently, the annual ceremony may not only affect population structure and gene flow among habitat types, but the increased tolerance in exposed fish may indicate adaptation to human cultural practices in a natural population on a very small spatial scale.
Collapse
Affiliation(s)
- M Tobler
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | |
Collapse
|
27
|
Riesch R, Plath M, Schlupp I. Toxic hydrogen sulphide and dark caves: pronounced male life-history divergence among locally adapted Poecilia mexicana (Poeciliidae). J Evol Biol 2010; 24:596-606. [PMID: 21159007 DOI: 10.1111/j.1420-9101.2010.02194.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic environmental stress is known to induce evolutionary change. Here, we assessed male life-history trait divergence in the neotropical fish Poecilia mexicana from a system that has been described to undergo incipient ecological speciation in adjacent, but reproductively isolated toxic/nontoxic and surface/cave habitats. Examining both field-caught and common garden-reared specimens, we investigated the extent of differentiation and plasticity of life-history strategies employed by male P. mexicana. We found strong site-specific life-history divergence in traits such as fat content, standard length and gonadosomatic index. The majority of site-specific life-history differences were also expressed under common garden-rearing conditions. We propose that apparent conservatism of male life histories is the result of other (genetically based) changes in physiology and behaviour between populations. Together with the results from previous studies, this is strong evidence for local adaptation as a result of ecologically based divergent selection.
Collapse
Affiliation(s)
- R Riesch
- Department of Zoology, University of Oklahoma, Norman, OK, USA.
| | | | | |
Collapse
|
28
|
RIESCH RÜDIGER, ORANTH ALEXANDRA, DZIENKO JUSTINA, KARAU NORA, SCHIEßL ANGELA, STADLER STEFAN, WIGH ADRIANA, ZIMMER CLAUDIA, ARIAS-RODRIGUEZ LENIN, SCHLUPP INGO, PLATH MARTIN. Extreme habitats are not refuges: poeciliids suffer from increased aerial predation risk in sulphidic southern Mexican habitats. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01522.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Plath M, Hermann B, Schröder C, Riesch R, Tobler M, García de León FJ, Schlupp I, Tiedemann R. Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event. BMC Evol Biol 2010; 10:256. [PMID: 20731863 PMCID: PMC2936308 DOI: 10.1186/1471-2148-10-256] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 08/23/2010] [Indexed: 11/21/2022] Open
Abstract
Background Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Results Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. Conclusions The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations to physico-chemical stressors may directly affect the survival probability in divergent habitat types.
Collapse
Affiliation(s)
- Martin Plath
- Institute of Biochemistry & Biology, Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, Karl-Liebknecht Str 24-25, D-14476 Potsdam, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Complementary effect of natural and sexual selection against immigrants maintains differentiation between locally adapted fish. Naturwissenschaften 2010; 97:769-74. [PMID: 20574847 DOI: 10.1007/s00114-010-0691-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
Abstract
Adaptation to ecologically heterogeneous environments can drive speciation. But what mechanisms maintain reproductive isolation among locally adapted populations? Using poeciliid fishes in a system with naturally occurring toxic hydrogen sulfide, we show that (a) fish from non-sulfidic sites (Poecilia mexicana) show high mortality (95 %) after 24 h when exposed to the toxicant, while locally adapted fish from sulfidic sites (Poecilia sulphuraria) experience low mortality (13 %) when transferred to non-sulfidic water. (b) Mate choice tests revealed that P. mexicana females exhibit a preference for conspecific males in non-sulfidic water, but not in sulfidic water, whereas P. sulphuraria females never showed a preference. Increased costs of mate choice in sulfidic, hypoxic water, and the lack of selection for reinforcement due to the low survival of P. mexicana may explain the absence of a preference in P. sulphuraria females. Taken together, our study may be the first to demonstrate independent-but complementary-effects of natural and sexual selection against immigrants maintaining differentiation between locally adapted fish populations.
Collapse
|
31
|
Riesch R, Plath M, Schlupp I. Toxic hydrogen sulfide and dark caves: life-history adaptations in a livebearing fish (Poecilia mexicana, Poeciliidae). Ecology 2010; 91:1494-505. [PMID: 20503881 DOI: 10.1890/09-1008.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Rüdiger Riesch
- Graduate Program in Ecology and Evolutionary Biology, Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, Oklahoma 73019, USA.
| | | | | |
Collapse
|
32
|
Tobler M, Riesch R, Tobler CM, Schulz-Mirbach T, Plath M. Natural and sexual selection against immigrants maintains differentiation among micro-allopatric populations. J Evol Biol 2009; 22:2298-304. [PMID: 19807829 DOI: 10.1111/j.1420-9101.2009.01844.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence lead to speciation. But what mechanisms contribute to reproductive isolation among diverging populations? We tested for natural and sexual selection against immigrants in a fish species inhabiting (and adapting to) nonsulphidic surface habitats, sulphidic surface habitats and a sulphidic cave. Gene flow is strong among sample sites situated within the same habitat type, but low among divergent habitat types. Our results indicate that females of both sulphidic populations discriminate against immigrant males during mate choice. Furthermore, using reciprocal translocation experiments, we document natural selection against migrants between nonsulphidic and sulphidic habitats, whereas migrants between sulphidic cave and surface habitats did not exhibit increased mortality within the same time period. Consequently, both natural and sexual selection may contribute to isolation among parapatric populations, and selection against immigrants may be a powerful mechanism facilitating speciation among locally adapted populations even over very small spatial distances.
Collapse
Affiliation(s)
- M Tobler
- Department of Biology and Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|