1
|
Petäjä A, Zhu Y, Khodaverdi A, Erlöv T, Ahlgren ÅR, Cinthio M. Ultrasonographic Measurement of Common Carotid Artery Wall Pulse Dynamics and Longitudinal Motion - Method Validation and a Novel Parameter Ratio. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:559-567. [PMID: 39721847 DOI: 10.1016/j.ultrasmedbio.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVES The enormous burden that cardiovascular diseases put on individuals and societies warrants reliable biomarkers of disease risk to optimize disease prevention. We studied longitudinal movement (LMov) in arterial walls using ultrasound of the common carotid artery (CCA). We believe that LMov could be a sensitive biomarker of cardiovascular health and in this study, we evaluate the intra-observer repeatability and inter-observer precision of our method. We also present a novel parameter ratio. METHOD Four independent researchers, called "observers", analyzed CINE-loops of two separate ultrasound recordings of the CCA in 20 healthy individuals using an in-house developed program (ARTIC) based on MATLAB. Vessel wall displacement was measured in two dimensions and results between repeated measurements for one research subject and between observers were compared. We also present and evaluate a novel parameter ratio, the notch ratio (NR) which by combining velocities of phases B and X reduces variability and improves comparability of LMov analysis in late systole. RESULTS Most LMov parameters showed good repeatability with coefficient of variation (CV) values 10%-26%. CV values for radial and IMT measures were excellent between 1% and 7%. Intra-class correlation coefficients (ICC) for inter-observer precision of single measures showed excellent values ICC > 0.9. NR improved LMov analysis in late systole and showed homogenous values of 1.36-1.45 between observers and good CV values of 9%-20%. CONCLUSION We demonstrate good intra-observer repeatability and excellent inter-observer precision of LMov analysis using ARTIC. NR displays similar consistency. This promotes further research on larger study populations using the same method focusing on the possible pathophysiological link between LMov and cardiovascular disease.
Collapse
Affiliation(s)
- Artturi Petäjä
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Specialized Surgery, Otorhinolaryngology, Helsingborg Hospital, Helsingborg, Sweden.
| | - Yuxiang Zhu
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden; Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Azin Khodaverdi
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Tobias Erlöv
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Åsa Rydén Ahlgren
- Department of Translational Medicine, Lund University, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Yang J, Gao P, Li Q, Wang T, Guo S, Zhang J, Zhang T, Wu G, Guo Y, Wang Z, Tian Y. Arterial Adventitial Vasa Vasorum Density Reflects The Progression Of Unstable Plaques: A Retrospective Clinical Study. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:712-721. [PMID: 38365464 DOI: 10.1016/j.ultrasmedbio.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVE Arterial adventitial vasa vasorum (AVV) plays an important role in the occurrence and development of atherosclerotic (AS) disease. AS is a systemic disease, and plaque is not only a local vascular event, but also occurs at multiple sites throughout the vascular bed. Currently, effective anti-AVV therapies are lacking. Therefore, we posed the following scientific questions: "does human carotid adventitial vasa vasorum density reflect plaque neovascularization and intimal-media hyperplasia in carotid?"; and "is it possible to reduce human AVV density by sonodynamic therapy (SDT)?" METHODS A retrospective study was conducted on 160 patients with carotid atherosclerosis. Duplex ultrasound scanning (DUS), contrast-enhanced ultrasound (CEUS), coronary angiography, and coronary CT angiography (CTA) were used for diagnosis and screening. Pearson correlation tests and Receiver operating characteristic (ROC) curve were used to analyze the relationships between AVV hyperplasia, vasa vasorum (VV) hyperplasia and the intima-media thickness (IMT). SDT was developed for the treatment of arterial AVV hyperplasia and AS plaques. RESULTS The presence of local AVV in carotid unstable plaques correlated with the echogenic properties of the carotid plaque and the extent of plaque progression; Furthermore local AVV hyperplasia in patients with carotid atherosclerotic plaques was associated with acute coronary syndrome (ACS) events; Local AVV hyperplasia in patients with carotid atherosclerotic plaques was associated with coronary artery stenosis. Notably, SDT reduced local AVV hyperplasia and shrank the plaques in human femoral and carotid atherosclerotic lesions. CONCLUSIONS The presence of AVV in human carotid arteries reflects the severity of carotid and coronary artery AS. Further, SDT can reduce the hyperplasia of local AVV in human femoral and carotid plaques.
Collapse
Affiliation(s)
- Jiemei Yang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China; Cardiac Ultrasound Division, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Penghao Gao
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Qiannan Li
- Department of General Practice, the Second Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Tengyu Wang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Shuyuan Guo
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Jingyu Zhang
- Department of Geriatrics, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Tianyi Zhang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Guodong Wu
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Yuanyuan Guo
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China; Cardiac Ultrasound Division, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Zeng Wang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China
| | - Ye Tian
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P.R. China.
| |
Collapse
|
3
|
Kikuchi J, Sakakura Y, Ikushima K. Anisotropic properties of acoustically induced electric polarization in soft fibrous biological tissues. JAPANESE JOURNAL OF APPLIED PHYSICS 2024; 63:04SP17. [DOI: 10.35848/1347-4065/ad2d0a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
Acoustically induced electric polarization and its anisotropy in soft fibrous biological tissues were investigated under wet conditions. Assuming that fibrous tissues have polar uniaxial symmetry, stress-induced polarization should occur in the direction of fiber orientation in the non-shear terms of the piezoelectric tensor. Using the acoustically stimulated electromagnetic method, we measured the anisotropic properties of acoustically induced polarization in wet samples of Achilles tendon, skeletal muscle, and aortic wall. In all these tissues, the major non-shear term was confirmed to be
d
33
,
with polarization occurring along the fibrous direction. In Achilles tendon, which contains highly oriented collagen fibers, the uniaxially symmetric fiber structure explains the anisotropic polarization well. However, substantial polarization perpendicular to the fiber orientation (the
d
11
term) was observed in skeletal muscle and aortic wall, suggesting that the presence of fiber crimps and complex extracellular matrix produces polarization that does not occur in the uniaxially symmetric structures.
Collapse
|
4
|
Bianchini E, Guala A, Golemati S, Alastruey J, Climie RE, Dalakleidi K, Francesconi M, Fuchs D, Hartman Y, Malik AEF, Makūnaitė M, Nikita KS, Park C, Pugh CJA, Šatrauskienė A, Terentes-Printizios D, Teynor A, Thijssen D, Schmidt-Trucksäss A, Zupkauskienė J, Boutouyrie P, Bruno RM, Reesink KD. The Ultrasound Window Into Vascular Ageing: A Technology Review by the VascAgeNet COST Action. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2183-2213. [PMID: 37148467 DOI: 10.1002/jum.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Non-invasive ultrasound (US) imaging enables the assessment of the properties of superficial blood vessels. Various modes can be used for vascular characteristics analysis, ranging from radiofrequency (RF) data, Doppler- and standard B/M-mode imaging, to more recent ultra-high frequency and ultrafast techniques. The aim of the present work was to provide an overview of the current state-of-the-art non-invasive US technologies and corresponding vascular ageing characteristics from a technological perspective. Following an introduction about the basic concepts of the US technique, the characteristics considered in this review are clustered into: 1) vessel wall structure; 2) dynamic elastic properties, and 3) reactive vessel properties. The overview shows that ultrasound is a versatile, non-invasive, and safe imaging technique that can be adopted for obtaining information about function, structure, and reactivity in superficial arteries. The most suitable setting for a specific application must be selected according to spatial and temporal resolution requirements. The usefulness of standardization in the validation process and performance metric adoption emerges. Computer-based techniques should always be preferred to manual measures, as long as the algorithms and learning procedures are transparent and well described, and the performance leads to better results. Identification of a minimal clinically important difference is a crucial point for drawing conclusions regarding robustness of the techniques and for the translation into practice of any biomarker.
Collapse
Affiliation(s)
| | - Andrea Guala
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Spyretta Golemati
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Jordi Alastruey
- Department of Biomedical Engineering, King's College London, London, UK
| | - Rachel E Climie
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Université de Paris, Hopital Europeen Georges Pompidou - APHP, Paris, France
| | - Kalliopi Dalakleidi
- Biomedical Simulations and Imaging (BIOSIM) Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Martina Francesconi
- Institute of Clinical Physiology, CNR, Pisa, Italy
- University of Pisa, Pisa, Italy
| | - Dieter Fuchs
- Fujifilm VisualSonics, Amsterdam, The Netherlands
| | - Yvonne Hartman
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Afrah E F Malik
- CARIM School for Cardiovascular Diseases and Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Monika Makūnaitė
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Konstantina S Nikita
- Biomedical Simulations and Imaging (BIOSIM) Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Chloe Park
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Christopher J A Pugh
- Cardiff School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Agnė Šatrauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Centre of Cardiology and Angiology, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Dimitrios Terentes-Printizios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Teynor
- Faculty of Computer Science, Augsburg University of Applied Sciences, Augsburg, Germany
| | - Dick Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, University of Basel, Basel, Switzerland
| | - Jūratė Zupkauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Pierre Boutouyrie
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Université de Paris, Hopital Europeen Georges Pompidou - APHP, Paris, France
| | - Rosa Maria Bruno
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Université de Paris, Hopital Europeen Georges Pompidou - APHP, Paris, France
| | - Koen D Reesink
- CARIM School for Cardiovascular Diseases and Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
5
|
Mukaddim RA, Liu Y, Graham M, Eickhoff JC, Weichmann AM, Tattersall MC, Korcarz CE, Stein JH, Varghese T, Eliceiri KW, Mitchell C. In Vivo Adaptive Bayesian Regularized Lagrangian Carotid Strain Imaging for Murine Carotid Arteries and Its Associations With Histological Findings. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2103-2112. [PMID: 37400303 PMCID: PMC10527160 DOI: 10.1016/j.ultrasmedbio.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVES Non-invasive methods for monitoring arterial health and identifying early injury to optimize treatment for patients are desirable. The objective of this study was to demonstrate the use of an adaptive Bayesian regularized Lagrangian carotid strain imaging (ABR-LCSI) algorithm for monitoring of atherogenesis in a murine model and examine associations between the ultrasound strain measures and histology. METHODS Ultrasound radiofrequency (RF) data were acquired from both the right and left common carotid artery (CCA) of 10 (5 male and 5 female) ApoE tm1Unc/J mice at 6, 16 and 24 wk. Lagrangian accumulated axial, lateral and shear strain images and three strain indices-maximum accumulated strain index (MASI), peak mean strain of full region of interest (ROI) index (PMSRI) and strain at peak axial displacement index (SPADI)-were estimated using the ABR-LCSI algorithm. Mice were euthanized (n = 2 at 6 and 16 wk, n = 6 at 24 wk) for histology examination. RESULTS Sex-specific differences in strain indices of mice at 6, 16 and 24 wk were observed. For male mice, axial PMSRI and SPADI changed significantly from 6 to 24 wk (mean axial PMSRI at 6 wk = 14.10 ± 5.33% and that at 24 wk = -3.03 ± 5.61%, p < 0.001). For female mice, lateral MASI increased significantly from 6 to 24 wk (mean lateral MASI at 6 wk = 10.26 ± 3.13% and that at 24 wk = 16.42 ± 7.15%, p = 0.048). Both cohorts exhibited strong associations with ex vivo histological findings (male mice: correlation between number of elastin fibers and axial PMSRI: rs = 0.83, p = 0.01; female mice: correlation between shear MASI and plaque score: rs = 0.77, p = 0.009). CONCLUSION The results indicate that ABR-LCSI can be used to measure arterial wall strain in a murine model and that changes in strain are associated with changes in arterial wall structure and plaque formation.
Collapse
Affiliation(s)
- Rashid Al Mukaddim
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Melissa Graham
- Research Animal Resources and Compliance, Comparative Pathology Laboratory, University of Wisconsin-Madison, Madison, WI, USA
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ashley M Weichmann
- Small Animal Imaging and Radiotherapy Facility, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Claudia E Korcarz
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - James H Stein
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin W Eliceiri
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA; Small Animal Imaging and Radiotherapy Facility, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Morgridge Institute for Research, Madison, WI, USA
| | - Carol Mitchell
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Mocan Çağlar Y, Bekis Bozkurt H, İsal Tosun Ö, Cavkaytar Ö, Arga M. Assessment of Subclinical Atherosclerosis in Children with Atopic Dermatitis. Int Arch Allergy Immunol 2023; 184:1071-1078. [PMID: 37586351 DOI: 10.1159/000531057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/11/2023] [Indexed: 08/18/2023] Open
Abstract
INTRODUCTION Data from studies conducted to date have evaluated clinical atherosclerotic conditions in adult patients with atopic dermatitis (AD). Subclinical atherosclerotic changes that are a precursor of atherosclerotic conditions may begin in childhood. The aim of this study was to investigate the presence of subclinical atherosclerosis in pediatric patients with AD and to determine the associated risk factors. METHODS A total of 59 patients who were referred to our department over a 6-month period and diagnosed with AD, and 53 healthy controls with a similar age and gender were included in the study. Subclinical atherosclerosis markers (carotid intima media thickness [CIMT], distensibility, stiffness, and strain) were measured using conventional echocardiography. The patients' age, SCORAD index, and duration of symptoms were recorded. Serum total immunoglobulin E, C-reactive protein (CRP), blood lipid profile, and complete blood count markers were measured. RESULTS The median age of the patients was 61 (10-103) months, and 59.3% of them were male. The patients with AD had a higher CIMT (1.60 ± 0.35 vs. 1.30 ± 0.50 mm) and a lower distensibility (0.006 ± 0.009 vs. 0.01 ± 0.008) and strain (0.10 ± 0.14 vs. 0.19 ± 0.14) than the healthy controls (p < 0.01 for all), but there was no significant difference with regard to stiffness (10.16 ± 21.75 vs. 8.99 ± 12.66). Significant correlations between CIMT and disease duration, age, and the SCORAD index were found (p < 0.01, p < 0.01, and p < 0.05, respectively). No correlation between the subclinical atherosclerosis markers and the other laboratory results was found (p > 0.05 for all). CONCLUSION This study demonstrates that pediatric patients with AD may express subclinical atherosclerosis markers. The evaluation of subclinical atherosclerosis in these patients revealed that CIMT may be the most important marker, as it displayed positive correlations with symptom duration, age, and disease severity.
Collapse
Affiliation(s)
- Yasemin Mocan Çağlar
- Department of Pediatrics, Faculty of Medicine, İstanbul Medeniyet University, İstanbul, Turkey
| | - Hayrunnisa Bekis Bozkurt
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, İstanbul Medeniyet University, İstanbul, Turkey
| | - Öykü İsal Tosun
- Department of Pediatric Cardiology, Faculty of Medicine, İstanbul Medeniyet University, İstanbul, Turkey
| | - Özlem Cavkaytar
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, İstanbul Medeniyet University, İstanbul, Turkey
| | - Mustafa Arga
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, İstanbul Medeniyet University, İstanbul, Turkey
| |
Collapse
|
7
|
Healy J, Searle E, Panta RK, Chernoglazov A, Roake J, Butler P, Butler A, Gieseg SP. Ex-vivo atherosclerotic plaque characterization using spectral photon-counting CT: Comparing material quantification to histology. Atherosclerosis 2023; 378:117160. [PMID: 37495488 DOI: 10.1016/j.atherosclerosis.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND AND AIMS Atherosclerotic plaques are characterized as being vulnerable to rupture based on a series of histologically defined features, including a lipid-rich necrotic core, spotty calcification and ulceration. Existing imaging modalities have limitations in their ability to distinguish between different materials and structural features. We examined whether X-ray spectral photon-counting computer tomography (SPCCT) images were able to distinguish key plaque features in a surgically excised specimen from the carotid artery with comparison to histological images. METHODS An excised carotid plaque was imaged in the diagnostic X-ray energy range of 30-120 keV using a small-bore SPCCT scanner equipped with a Medipix3RX photon-counting spectral X-ray detector with a cadmium telluride (CdTe) sensor. Material identification and quantification (MIQ) images of the carotid plaque were generated using proprietary MIQ software at 0.09 mm volumetric pixels (voxels). The plaque was sectioned, stained and photographed at high resolution for comparison. RESULTS A lipid-rich core with spotty calcification was identified in the MIQ images and confirmed by histology. MIQ showed a core region containing lipid, with a mean concentration of 260 mg lipid/ml corresponding to a mean value of -22HU. MIQ showed calcified regions with mean concentration of 41 mg Ca/ml corresponded to a mean value of 123HU. An ulceration of the carotid wall at the bifurcation was identified to be lipid-lined, with a small calcification identified near the breach of the artery wall. CONCLUSIONS SPCCT derived material identification and quantification images showed hallmarks of vulnerable plaque including a lipid-rich necrotic core, spotty calcifications and ulcerations.
Collapse
Affiliation(s)
- Joe Healy
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; MARS Bioimaging Ltd., Christchurch, New Zealand
| | - Emily Searle
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; MARS Bioimaging Ltd., Christchurch, New Zealand
| | - Raj Kumar Panta
- Department of Radiology, University of Otago, Christchurch, New Zealand; MARS Bioimaging Ltd., Christchurch, New Zealand; European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | | | - Justin Roake
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Phil Butler
- Department of Physics and Astronomy, University of Canterbury, New Zealand; MARS Bioimaging Ltd., Christchurch, New Zealand; European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Anthony Butler
- Department of Physics and Astronomy, University of Canterbury, New Zealand; Department of Radiology, University of Otago, Christchurch, New Zealand; MARS Bioimaging Ltd., Christchurch, New Zealand; European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Steven P Gieseg
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Department of Radiology, University of Otago, Christchurch, New Zealand; European Organization for Nuclear Research (CERN), Geneva, Switzerland.
| |
Collapse
|
8
|
Shin J, Choi EY, Kwon HM, Rhee K. Estimation of viscoelasticity of a carotid artery from ultrasound cine images and brachial pressure waveforms: Viscous parameters as a new index of detecting low plaque burden. Med Eng Phys 2022; 108:103886. [DOI: 10.1016/j.medengphy.2022.103886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/27/2022]
|
9
|
Circulating Biomarkers Reflecting Destabilization Mechanisms of Coronary Artery Plaques: Are We Looking for the Impossible? Biomolecules 2021; 11:biom11060881. [PMID: 34198543 PMCID: PMC8231770 DOI: 10.3390/biom11060881] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022] Open
Abstract
Despite significant strides to mitigate the complications of acute coronary syndrome (ACS), this clinical entity still represents a major global health burden. It has so far been well-established that most of the plaques leading to ACS are not a result of gradual narrowing of the vessel lumen, but rather a result of sudden disruption of vulnerable atherosclerotic plaques. As most of the developed imaging modalities for vulnerable plaque detection are invasive, multiple biomarkers were proposed to identify their presence. Owing to the pivotal role of lipids and inflammation in the pathophysiology of atherosclerosis, most of the biomarkers originated from one of those processes, whereas recent advancements in molecular sciences shed light on the use of microRNAs. Yet, at present there are no clinically implemented biomarkers or any other method for that matter that could non-invasively, yet reliably, diagnose the vulnerable plaque. Hence, in this review we summarized the available knowledge regarding the pathophysiology of plaque instability, the current evidence on potential biomarkers associated with plaque destabilization and finally, we discussed if search for biomarkers could one day bring us to non-invasive, cost-effective, yet valid way of diagnosing the vulnerable, rupture-prone coronary artery plaques.
Collapse
|
10
|
Cismaru G, Serban T, Tirpe A. Ultrasound Methods in the Evaluation of Atherosclerosis: From Pathophysiology to Clinic. Biomedicines 2021; 9:418. [PMID: 33924492 PMCID: PMC8070406 DOI: 10.3390/biomedicines9040418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a key pathological process that causes a plethora of pathologies, including coronary artery disease, peripheral artery disease, and ischemic stroke. The silent progression of the atherosclerotic disease prompts for new surveillance tools that can visualize, characterize, and provide a risk evaluation of the atherosclerotic plaque. Conventional ultrasound methods-bright (B)-mode US plus Doppler mode-provide a rapid, cost-efficient way to visualize an established plaque and give a rapid risk stratification of the patient through the Gray-Weale standardization-echolucent plaques with ≥50% stenosis have a significantly greater risk of ipsilateral stroke. Although rather disputed, the measurement of carotid intima-media thickness (C-IMT) may prove useful in identifying subclinical atherosclerosis. In addition, contrast-enhanced ultrasonography (CEUS) allows for a better image resolution and the visualization and quantification of plaque neovascularization, which has been correlated with future cardiovascular events. Newly emerging elastography techniques such as strain elastography and shear-wave elastography add a new dimension to this evaluation-the biomechanics of the arterial wall, which is altered in atherosclerosis. The invasive counterpart, intravascular ultrasound (IVUS), enables an individualized assessment of the anti-atherosclerotic therapies, as well as a direct risk assessment of these lesions through virtual histology IVUS.
Collapse
Affiliation(s)
- Gabriel Cismaru
- Fifth Department of Internal Medicine, Cardiology-Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Teodora Serban
- Medical Imaging Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania;
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Karakaya Z, Cavkaytar Ö, Tosun Ö, Arga M. Subclinical cardiovascular dysfunction in children and adolescents with asthma. J Asthma 2020; 59:451-461. [PMID: 33251886 DOI: 10.1080/02770903.2020.1856866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND There is close association between asthma and cardiovascular functions as both diseases share common inflammatory pathways. The current study was aimed at investigating the risk factors, associated with endothelial and cardiac functions in children with newly-diagnosed mild-persistent asthma. METHODS A total of 33 steroid-naive asthmatic children [median(interquartile-range); 9.1 years(7.8-13.5)] and 16 healthy controls [11.5 years(9.9-13.6)] were included. Their demographic, clinical and laboratory findings were recorded. Carotid Artery intima-media thickness (CIMT), stiffness, distensibility and strain were measured as atheroclerosis markers. Conventional and tissue Doppler imaging was performed to evaluate ventricular function. RESULTS The patients with asthma had higher CIMT and stiffness and lower strain and distensibility compared to controls (p < 0.001 for all). There was a significant correlation between the duration of asthmatic symptoms and subclinical-atherosclerosis as well as peripheral eosinophil count (p < 0.001, p < 0.05). The patients had lower tricuspid-annular-plane-systolic-excursion (TAPSE), ejection time, and higher isovolumetric relaxation time (IRT), isovolumetric contraction time (ICT), and left ventricle myocardial performance index (LVMPI) than the control subjects (p < 0.001 for all). A positive correlation was also observed between the duration of asthmatic-symptoms and cardiac-function parameters. CONCLUSION Children with mild persistent asthma had subclinical atherosclerosis and ventricular dysfunction even in the early stage of disease. Symptom duration was closely associated with both subclinical atherosclerosis and ventricular dysfunction. Myocardial performance index was abnormal in the asthmatic children when assessed by tissue Doppler Imaging even though they had normal ejection fraction in conventional echocardiography. Future prospective studies with larger sample sizes are needed to confirm these findings and to assess the possible protective effect of ICSs in the prevention of subclinical atherosclerosis.
Collapse
Affiliation(s)
- Zeynep Karakaya
- Department of Pediatrics, Istanbul Medeniyet University Medical Faculty, İstanbul, Turkey
| | - Özlem Cavkaytar
- Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University Medical Faculty, İstanbul, Turkey
| | - Öykü Tosun
- Department of Pediatric Cardiology, Istanbul Medeniyet University Medical Faculty, İstanbul, Turkey
| | - Mustafa Arga
- Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University Medical Faculty, İstanbul, Turkey
| |
Collapse
|
12
|
Rizi FY, Au J, Yli-Ollila H, Golemati S, Makūnaitė M, Orkisz M, Navab N, MacDonald M, Laitinen TM, Behnam H, Gao Z, Gastounioti A, Jurkonis R, Vray D, Laitinen T, Sérusclat A, Nikita KS, Zahnd G. Carotid Wall Longitudinal Motion in Ultrasound Imaging: An Expert Consensus Review. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2605-2624. [PMID: 32709520 DOI: 10.1016/j.ultrasmedbio.2020.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Motion extracted from the carotid artery wall provides unique information for vascular health evaluation. Carotid artery longitudinal wall motion corresponds to the multiphasic arterial wall excursion in the direction parallel to blood flow during the cardiac cycle. While this motion phenomenon has been well characterized, there is a general lack of awareness regarding its implications for vascular health assessment or even basic vascular physiology. In the last decade, novel estimation strategies and clinical investigations have greatly advanced our understanding of the bi-axial behavior of the carotid artery, necessitating an up-to-date review to summarize and classify the published literature in collaboration with technical and clinical experts in the field. Within this review, the state-of-the-art methodologies for carotid wall motion estimation are described, and the observed relationships between longitudinal motion-derived indices and vascular health are reported. The vast number of studies describing the longitudinal motion pattern in plaque-free arteries, with its putative application to cardiovascular disease prediction, point to the need for characterizing the added value and applicability of longitudinal motion beyond established biomarkers. To this aim, the main purpose of this review was to provide a strong base of theoretical knowledge, together with a curated set of practical guidelines and recommendations for longitudinal motion estimation in patients, to foster future discoveries in the field, toward the integration of longitudinal motion in basic science as well as clinical practice.
Collapse
Affiliation(s)
- Fereshteh Yousefi Rizi
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Jason Au
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo, Ontario, Canada
| | - Heikki Yli-Ollila
- Department of Radiology, Kanta-Häme Central Hospital, Hämeenlinna, Finland; Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Spyretta Golemati
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Monika Makūnaitė
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Maciej Orkisz
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69621 Villeurbanne cedex, France
| | - Nassir Navab
- Computer Aided Medical Procedures, Technische Universität München, Garching bei München, Germany; Computer Aided Medical Procedures, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maureen MacDonald
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tiina Marja Laitinen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Hamid Behnam
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Zhifan Gao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Aimilia Gastounioti
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rytis Jurkonis
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Didier Vray
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69621 Villeurbanne cedex, France
| | - Tomi Laitinen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - André Sérusclat
- Department of Radiology, Louis Pradel Hospital; Hospices Civils de Lyon; Université Lyon 1, Lyon, France
| | - Konstantina S Nikita
- Biomedical Simulations and Imaging Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Guillaume Zahnd
- Computer Aided Medical Procedures, Technische Universität München, Garching bei München, Germany
| |
Collapse
|
13
|
Feng GH, Wang LC. Electroactive polymer-based inner vessel-wall pressure transducer capable of integration with a PTA balloon catheter for examining blood vessel health. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111047. [PMID: 32994009 DOI: 10.1016/j.msec.2020.111047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/10/2020] [Accepted: 05/01/2020] [Indexed: 11/19/2022]
Abstract
This study presents a state-of-the-art soft and biocompatible transducer capable of detecting vessel inner-wall pressure for biomedical applications. The device includes a 3D electroactive polymer core element encapsulated by polydimethylsiloxane with an ellipsoidal structure. The device produces a voltage output when its sensing mechanism experiences different pressures, resulting in deformation at different orientations. Thus, it can be employed to detect the pressure exerted by inner vessel walls of different stiffness values. The output voltage is induced by the strain experienced by the sensing mechanism of the device without the need for any external electrical power source. The core element, which is made of an ionic polymer-metal composite, possesses a unique hollow design; this allows a catheter to pass through, and the core element can be anchored at an arbitrary position on the catheter. We also demonstrate that the fabricated device can be integrated with a medically used percutaneous transluminal angioplasty balloon catheter to form a smart sensing module. This module can detect different levels of fat accumulation around the inner wall of a blood vessel phantom. Evaluating vessel blockage and stiffness using the signals acquired from the developed device is discussed.
Collapse
Affiliation(s)
- Guo-Hua Feng
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Liang-Chao Wang
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 621, Taiwan
| |
Collapse
|
14
|
El Jalbout R, Cloutier G, Roy-Cardinal MH, Henderson M, Levy E, Lapierre C, Soulez G, Dubois J. The value of non-invasive vascular elastography (NIVE) in detecting early vascular changes in overweight and obese children. Eur Radiol 2019; 29:3854-3861. [DOI: 10.1007/s00330-019-06051-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
|
15
|
Liu Z, Bai Z, Huang C, Huang M, Huang L, Xu D, Zhang H, Yuan C, Luo J. Interoperator Reproducibility of Carotid Elastography for Identification of Vulnerable Atherosclerotic Plaques. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:505-516. [PMID: 30575532 DOI: 10.1109/tuffc.2018.2888479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrasound-based carotid elastography has been developed to evaluate the vulnerability of carotid atherosclerotic plaques. The aim of this study was to investigate the in vivo interoperator reproducibility of carotid elastography for the identification of vulnerable plaques, with high-resolution magnetic resonance imaging (MRI) as reference. Ultrasound radio-frequency data of 45 carotid arteries (including 53 plaques) from 32 volunteers were acquired separately by two experienced operators in the longitudinal view and then were used to estimate the interframe axial strain rate (ASR) with a two-step optical flow method. The maximum 99th percentile of absolute ASR of all plaques in a carotid artery was used as the elastographic index. MRI scanning was also performed on each volunteer to identify the vulnerable plaque. The results showed no systematic bias in the Bland-Altman plot and an intraclass correlation coefficient of 0.66 between the two operators. In addition, no statistical significance was found between the receiver operating characteristic (ROC) curves from the two operators ( ), and their areas under the ROC curves were 0.83 and 0.77, respectively. Using the mean measurements of the two operators as the classification criterion, a sensitivity of 71.4%, a specificity of 87.1%, and an accuracy of 82.2% were obtained with a cutoff value of 1.37 [Formula: see text]. This study validates the interoperator reproducibility of ultrasound-based carotid elastography for identifying vulnerable carotid plaques.
Collapse
|
16
|
Lee J, Chang JH. Dual-Element Intravascular Ultrasound Transducer for Tissue Harmonic Imaging and Frequency Compounding: Development and Imaging Performance Assessment. IEEE Trans Biomed Eng 2019; 66:3146-3155. [PMID: 30835204 DOI: 10.1109/tbme.2019.2901005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE For accurate diagnosis of atherosclerosis, the high spatial and contrast resolutions of intravascular ultrasound (IVUS) images are a key requirement. Increasing the center frequency of IVUS is a simple solution to meet this requirement. However, this leads to a reduction in imaging depth due to the frequency-dependent attenuation of ultrasound. Here, we report a recently developed dual-element IVUS transducer for tissue harmonic imaging (THI) and frequency compounding to increase the spatial and contrast resolutions of IVUS images, while maintaining the imaging depth to assess the overall morphological change of blood vessels. METHODS One 35-MHz element is used for producing general IVUS images and the other 70-MHz element is for receiving the second harmonic signals induced by the 35-MHz ultrasound. The fundamental and second harmonic signals can also be used for frequency compound imaging to further improve contrast resolution. The spatial and contrast resolutions achieved by the developed transducer were evaluated through wire and tissue-mimicking phantom imaging tests. Additionally, the images of a stent deployed in a tissue-mimicking phantom and an excised pig artery were acquired to assess clinical usefulness of the transducer. RESULTS The results demonstrated that the developed IVUS transducer enables us to simultaneously examine the overall morphological change of blood vessels by the 35-MHz ultrasound images and the near vessel layers such as the intima, the media, and the adventitia by either THI or compound images with high spatial and contrast resolutions. In addition, the developed transducer facilitates the simultaneous acquisition of 35- and 70-MHz fundamental images when needed. CONCLUSION The developed dual-element IVUS transducer makes it possible to fully realize the potential benefits of IVUS in the diagnosis of atherosclerosis.
Collapse
|
17
|
Wang J, Pei Y, Chen K, Yan W, Wang A, Li Y, Li J, Wang H, An P, Zhang L, Ye Y, Jin X, Ning G, Mu Y, Gu W. Association between the Number of Childbirths and the Progress of Atherosclerosis among Women with Diabetes: A Cohort Study Based on Chinese Population. Int J Endocrinol 2019; 2019:4874121. [PMID: 30809258 PMCID: PMC6369472 DOI: 10.1155/2019/4874121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 09/27/2018] [Accepted: 10/25/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The aim of this study is to explore the association between the number of childbirths and the progress of atherosclerosis among Chinese women with hypertension or diabetes. METHODS In total, 1159 Chinese parous women from a community longitudinal survey conducted in the communities of Shijingshan district, Beijing, China, were included in our study. They were divided into three groups according to the number of childbirths, and the change in pulse wave velocity (PWV) was as an indicator of the progression of atherosclerosis because the increased PWV reflected the more serious atherosclerosis. After 3 years, we conducted follow-up visits to the subjects. Logistical regression analyses were applied to investigate the relationship between the number of childbirths and the progression of atherosclerotic stiffness and a stratification analysis was performed for history of hypertension and diabetes. RESULTS After 3-year follow-up, among women with diabetes, the OR of women with 2 childbirths was significant [3.5 (95% confidence interval 1.5, 7.9)] in model I, [3.1 (95% confidence interval 1.3, 7.2)] in model II, and the OR of women with ≥3 childbirths was significant [4.4 (95% confidence interval 1.3, 14.5)] in model I, [4.1 (95% confidence interval 1.2, 14.3)] in model II. Among women with hypertension, the risk of the progress of atherosclerosis was not significant. CONCLUSION The increasing number of childbirths is associated with the progression of atherosclerotic stiffness among Chinese women with diabetes, independent of a variety of confounding factors.
Collapse
Affiliation(s)
- Jie Wang
- School of Medicine, Nankai University, Tianjin, China
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Yu Pei
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Kang Chen
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Wenhua Yan
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Anping Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Yijun Li
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Jia Li
- School of Medicine, Nankai University, Tianjin, China
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Haibing Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Ping An
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Linxi Zhang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Yingnan Ye
- School of Medicine, Nankai University, Tianjin, China
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Xinye Jin
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Guang Ning
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiming Mu
- School of Medicine, Nankai University, Tianjin, China
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Weijun Gu
- School of Medicine, Nankai University, Tianjin, China
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Janjic J, Tan M, Daeichin V, Noothout E, Chen C, Chen Z, Chang ZY, Beurskens RHSH, van Soest G, van der Steen AFW, Verweij MD, Pertijs MAP, de Jong N. A 2-D Ultrasound Transducer With Front-End ASIC and Low Cable Count for 3-D Forward-Looking Intravascular Imaging: Performance and Characterization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1832-1844. [PMID: 30047876 DOI: 10.1109/tuffc.2018.2859824] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intravascular ultrasound (IVUS) is an imaging modality used to visualize atherosclerosis from within the inner lumen of human arteries. Complex lesions like chronic total occlusions require forward-looking IVUS (FL-IVUS), instead of the conventional side-looking geometry. Volumetric imaging can be achieved with 2-D array transducers, which present major challenges in reducing cable count and device integration. In this work, we present an 80-element lead zirconium titanate matrix ultrasound transducer for FL-IVUS imaging with a front-end application-specific integrated circuit (ASIC) requiring only four cables. After investigating optimal transducer designs, we fabricated the matrix transducer consisting of 16 transmit (TX) and 64 receive (RX) elements arranged on top of an ASIC having an outer diameter of 1.5 mm and a central hole of 0.5 mm for a guidewire. We modeled the transducer using finite-element analysis and compared the simulation results to the values obtained through acoustic measurements. The TX elements showed uniform behavior with a center frequency of 14 MHz, a -3-dB bandwidth of 44%, and a transmit sensitivity of 0.4 kPa/V at 6 mm. The RX elements showed center frequency and bandwidth similar to the TX elements, with an estimated receive sensitivity of /Pa. We successfully acquired a 3-D FL image of three spherical reflectors in water using delay-and-sum beamforming and the coherence factor method. Full synthetic-aperture acquisition can be achieved with frame rates on the order of 100 Hz. The acoustic characterization and the initial imaging results show the potential of the proposed transducer to achieve 3-D FL-IVUS imaging.
Collapse
|
19
|
Kumar PK, Araki T, Rajan J, Laird JR, Nicolaides A, Suri JS. State-of-the-art review on automated lumen and adventitial border delineation and its measurements in carotid ultrasound. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 163:155-168. [PMID: 30119850 DOI: 10.1016/j.cmpb.2018.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 04/29/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Accurate, reliable, efficient, and precise measurements of the lumen geometry of the common carotid artery (CCA) are important for (a) managing the progression/regression of atherosclerotic build-up and (b) the risk of stroke. The image-based degree of stenosis in the carotid artery and the plaque burden can be predicted using the automated carotid lumen diameter (LD)/inter-adventitial diameter (IAD) measurements from B-mode ultrasound images. The objective of this review is to present the state-of-the-art methods and systems for the measurement of LD/IAD in CCA based on automated or semi-automated strategies. Further, the performance of these systems is compared based on various metrics for its measurements. METHODS The automated algorithms proposed for the segmentation of carotid lumen are broadly classified into two different categories as: region-based and boundary-based. These techniques are discussed in detail specifying their pros and cons. Further, we discuss the challenges encountered in the segmentation process along with its quantitative assessment. Lastly, we present stenosis quantification and risk stratification strategies. RESULTS Even though, we have found more boundary-based approaches compared to region-based approaches in the literature, however, the region-based strategy yield more satisfactory performance. Novel risk stratification strategies are presented. On a patient database containing 203 patients, 9 patients are identified as high risk patients, whereas 27 patients are identified as medium risk patients. CONCLUSIONS We have presented different techniques for the lumen segmentation of the common carotid artery from B-mode ultrasound images and measurement of lumen diameter and inter-adventitial diameter. We believe that the issue regarding boundary-based techniques can be compensated by taking regional statistics embedded with boundary-based information.
Collapse
Affiliation(s)
- P Krishna Kumar
- Department of Computer Science and Engineering, National Institute of Technology Calicut, Kerala, India
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Jeny Rajan
- Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - John R Laird
- Heart and Vascular Institute, Adventist Health, St. Helena, CA, USA
| | | | - Jasjit S Suri
- Stroke Monitoring Division, AtheroPoint, Roseville, CA, USA; Department of Electrical Engineering, University of Idaho (Affl.), ID, USA.
| |
Collapse
|
20
|
Lee J, Shin EJ, Lee C, Chang JH. Development of Dual-Frequency Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Tissue Harmonic Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1571-1582. [PMID: 29994203 DOI: 10.1109/tuffc.2018.2844869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tissue harmonic imaging (THI), an essential mode of commercial ultrasound imaging scanners, can provide images with high spatial and contrast resolutions. For THI, the frequency spectrum of a transducer is generally divided for the transmission of fundamental signal and the reception of its second harmonic. Therefore, it is difficult to use the THI mode for intravascular ultrasound (IVUS) imaging because typical IVUS transducers have a narrow -6-dB fractional bandwidth of about 50%. Due to its small aperture (about 0.5 mm) and the strength of IVUS being too weak, it is difficult to construct a high-quality tissue harmonic image. In this paper, we report a recently developed dual-frequency oblong-shaped-focused IVUS transducer for high-quality intravascular THI; the transducer consists of three elements arranged side by side in the horizontal (i.e., elevation) direction. The two outer elements with a center frequency of 35 MHz are responsible for ultrasound transmission and the center element has a center frequency of 70 MHz for the reception of the second-harmonic signals. All three elements have a spherical shape with a radius of 3 mm to efficiently generate harmonics in the region of interest. This configuration of the developed IVUS transducer was determined to facilitate high-quality THI, which was based on the results of Field II simulation and finite-element analysis. The images of wires and a tissue-mimicking phantom indicated that the tissue harmonic images produced by the developed transducer have not only a high spatial resolution but also a deep imaging depth, compared to the 35- and 70-MHz fundamental images.
Collapse
|
21
|
Nauleau P, Apostolakis I, McGarry M, Konofagou E. Cross-correlation analysis of pulse wave propagation in arteries: in vitro validation and in vivo feasibility. Phys Med Biol 2018; 63:115006. [PMID: 29658889 PMCID: PMC5975195 DOI: 10.1088/1361-6560/aabe57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The stiffness of the arteries is known to be an indicator of the progression of various cardiovascular diseases. Clinically, the pulse wave velocity (PWV) is used as a surrogate for arterial stiffness. Pulse wave imaging (PWI) is a non-invasive, ultrasound-based imaging technique capable of mapping the motion of the vessel walls, allowing the local assessment of arterial properties. Conventionally, a distinctive feature of the displacement wave (e.g. the 50% upstroke) is tracked across the map to estimate the PWV. However, the presence of reflections, such as those generated at the carotid bifurcation, can bias the PWV estimation. In this paper, we propose a two-step cross-correlation based method to characterize arteries using the information available in the PWI spatio-temporal map. First, the area under the cross-correlation curve is proposed as an index for locating the regions of different properties. Second, a local peak of the cross-correlation function is tracked to obtain a less biased estimate of the PWV. Three series of experiments were conducted in phantoms to evaluate the capabilities of the proposed method compared with the conventional method. In the ideal case of a homogeneous phantom, the two methods performed similarly and correctly estimated the PWV. In the presence of reflections, the proposed method provided a more accurate estimate than conventional processing: e.g. for the soft phantom, biases of -0.27 and -0.71 m · s-1 were observed. In a third series of experiments, the correlation-based method was able to locate two regions of different properties with an error smaller than 1 mm. It also provided more accurate PWV estimates than conventional processing (biases: -0.12 versus -0.26 m · s-1). Finally, the in vivo feasibility of the proposed method was demonstrated in eleven healthy subjects. The results indicate that the correlation-based method might be less precise in vivo but more accurate than the conventional method.
Collapse
Affiliation(s)
- Pierre Nauleau
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | | | | | | |
Collapse
|
22
|
van den Munckhof IC, Jones H, Hopman MT, de Graaf J, Nyakayiru J, van Dijk B, Eijsvogels TM, Thijssen DH. Relation between age and carotid artery intima-medial thickness: a systematic review. Clin Cardiol 2018; 41:698-704. [PMID: 29752816 PMCID: PMC6489962 DOI: 10.1002/clc.22934] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/29/2022] Open
Abstract
Carotid artery intima-medial thickness (cIMT) represents a popular measure of atherosclerosis and is predictive of future cardiovascular and cerebrovascular events. Although older age is associated with a higher cIMT, little is known about whether this increase in cIMT follows a linear relationship with age or it is affected under influence of cardiovascular diseases (CVD) or CVD risk factors. We hypothesize that the relationship between cIMT and age is nonlinear and is affected by CVD or risk factors. A systematic review of studies that examined cIMT in the general population and human populations free from CVD/risk factors was undertaken. The literature search was conducted in PubMed, Scopus, and Web of Science. Seventeen studies with 32 unique study populations, involving 10,124 healthy individuals free from CVD risk factors, were included. Furthermore, 58 studies with 115 unique study populations were included, involving 65,774 individuals from the general population (with and without CVD risk factors). A strong positive association was evident between age and cIMT in the healthy population, demonstrating a gradual, linear increase in cIMT that did not differ between age decades (r = 0.91, P < 0.001). Although populations with individuals with CVD demonstrated a higher cIMT compared to populations free of CVD, a linear relation between age and cIMT was also present in this population. Our data suggest that cIMT is strongly and linearly related to age. This linear relationship was not affected by CVD or risk factors.
Collapse
Affiliation(s)
| | - Helen Jones
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUnited Kingdom
| | - Maria T.E. Hopman
- Department of PhysiologyRadboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Jacqueline de Graaf
- Department of Internal MedicineRadboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Jean Nyakayiru
- Department of PhysiologyRadboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Bart van Dijk
- Department of PhysiologyRadboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Thijs M.H. Eijsvogels
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUnited Kingdom
- Department of PhysiologyRadboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Dick H.J. Thijssen
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUnited Kingdom
- Department of PhysiologyRadboud University Nijmegen Medical CentreNijmegenNetherlands
| |
Collapse
|
23
|
Saba L, Banchhor SK, Araki T, Viskovic K, Londhe ND, Laird JR, Suri HS, Suri JS. Intra- and inter-operator reproducibility of automated cloud-based carotid lumen diameter ultrasound measurement. Indian Heart J 2018; 70:649-664. [PMID: 30392503 PMCID: PMC6205023 DOI: 10.1016/j.ihj.2018.01.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/14/2017] [Accepted: 01/14/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Common carotid artery lumen diameter (LD) ultrasound measurement systems are either manual or semi-automated and lack reproducibility and variability studies. This pilot study presents an automated and cloud-based LD measurements software system (AtheroCloud) and evaluates its: (i) intra/inter-operator reproducibility and (ii) intra/inter-observer variability. METHODS 100 patients (83M, mean age: 68±11years), IRB approved, consisted of L/R CCA artery (200 ultrasound images), acquired using a 7.5-MHz linear transducer. The intra/inter-operator reproducibility was verified using three operator's readings. Near-wall and far carotid wall borders were manually traced by two observers for intra/inter-observer variability analysis. RESULTS The mean coefficient of correlation (CC) for intra- and inter-operator reproducibility between all the three automated reading pairs were: 0.99 (P<0.0001) and 0.97 (P<0.0001), respectively. The mean CC for intra- and inter-observer variability between both the manual reading pairs were 0.98 (P<0.0001) and 0.98 (P<0.0001), respectively. The Figure-of-Merit between the mean of the three automated readings against the four manuals were 98.32%, 99.50%, 98.94% and 98.49%, respectively. CONCLUSIONS The AtheroCloud LD measurement system showed high intra/inter-operator reproducibility hence can be adapted for vascular screening mode or pharmaceutical clinical trial mode.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Sumit K Banchhor
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Disease, Zagreb, Croatia
| | - Narendra D Londhe
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India
| | - John R Laird
- UC Davis Vascular Centre, University of California, Davis, CA, USA
| | - Harman S Suri
- Monitoring and Diagnostic Division, AtheroPointÔ, Roseville, CA, USA, USA
| | - Jasjit S Suri
- Monitoring and Diagnostic Division, AtheroPointÔ, Roseville, CA, USA, USA; Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA; Department of Electrical Engineering, University of Idaho (Affl.), ID, USA.
| |
Collapse
|
24
|
Huang C, He Q, Huang M, Huang L, Zhao X, Yuan C, Luo J. Non-Invasive Identification of Vulnerable Atherosclerotic Plaques Using Texture Analysis in Ultrasound Carotid Elastography: An In Vivo Feasibility Study Validated by Magnetic Resonance Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:817-830. [PMID: 28153351 DOI: 10.1016/j.ultrasmedbio.2016.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/04/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
The aims of this study were to quantify the textural information of strain rate images in ultrasound carotid elastography and evaluate the feasibility of using the textural features in discriminating stable and vulnerable plaques with magnetic resonance imaging as an in vivo reference. Ultrasound radiofrequency data were acquired in 80 carotid plaques from 52 patients, mainly in the longitudinal imaging view, and axial strain rate images were estimated with an ultrasound carotid elastography technique based on an optical flow algorithm. Four textural features of strain rate images-contrast, homogeneity, correlation and angular second moment-were derived based on the gray-level co-occurrence matrix in plaque regions to quantify the deformation distribution pattern. Conventional elastographic indices based on the magnitude of the absolute strain rate, such as the maximum, mean, median, standard deviation and 99th percentile of the axial strain rate, were also obtained for comparison. Composition measurement with magnetic resonance imaging identified 30 plaques as vulnerable and the other 50 as stable. The four textural features, as well as the magnitude of strain rate images, significantly differed between the two groups of plaques. The best performing features for plaque classification were found to be the contrast and 99th percentile of the absolute strain rate, with a comparative area under the receiver operating characteristic curve of 0.81; a slightly higher maximum accuracy of plaque classification can be achieved by the textural feature of contrast (83.8% vs. 81.3%). The results indicate that the use of texture analysis in plaque classification is feasible and that larger local deformations and higher level of complexity in deformation patterns (associated with the elastic or stiffness heterogeneity of plaque tissues) are more likely to occur in vulnerable plaques.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Manwei Huang
- Department of Sonography, China Meitan General Hospital, Beijing, China
| | - Lingyun Huang
- Clinical Sites Research Program, Philips Research China, Shanghai, China
| | - Xihai Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Chun Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China; Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China.
| |
Collapse
|
25
|
Daeichin V, van Rooij T, Skachkov I, Ergin B, Specht PAC, Lima A, Ince C, Bosch JG, van der Steen AFW, de Jong N, Kooiman K. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and In Vivo Evaluation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:555-567. [PMID: 28113312 DOI: 10.1109/tuffc.2016.2640342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited commercially available UCAs for high-frequency CEUS (hfCEUS) is largely unknown, while shell properties have been shown to be an important factor for their performance. The aim of our study was to produce UCAs in-house for hfCEUS. Twelve different UCA formulations A-L were made by either sonication or mechanical agitation. The gas core consisted of C4F10 and the main coating lipid was either 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC; A-F formulation) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC; G-L formulation). Mechanical agitation resulted in UCAs with smaller microbubbles (number weighted mean diameter ~1 [Formula: see text]) than sonication (number weighted mean diameter ~2 [Formula: see text]). UCA formulations with similar size distributions but different main lipid components showed that the DPPC-based UCA formulations had higher nonlinear responses at both the fundamental and subharmonic frequencies in vitro for hfCEUS using the Vevo2100 high-frequency preclinical scanner (FUJIFILM VisualSonics, Inc.). In addition, UCA formulations F (DSPC-based) and L (DPPC-based) that were made by mechanical agitation performed similar in vitro to the commercially available Target-Ready MicroMarker (FUJIFILM VisualSonics, Inc.). UCA formulation F also performed similar to Target-Ready MicroMarker in vivo in pigs with similar mean contrast intensity within the kidney ( n = 7 ), but formulation L did not. This is likely due to the lower stability of formulation L in vivo. Our study shows that DSPC-based microbubbles produced by mechanical agitation resulted in small microbubbles with high nonlinear responses suitable for hfCEUS imaging.
Collapse
|
26
|
Chee AJY, Ho CK, Yiu BYS, Yu ACH. Walled Carotid Bifurcation Phantoms for Imaging Investigations of Vessel Wall Motion and Blood Flow Dynamics. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1852-1864. [PMID: 27429436 DOI: 10.1109/tuffc.2016.2591946] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
As a major application domain of vascular ultrasound, the carotid artery has long been the subject of anthropomorphic phantom design. It is nevertheless not trivial to develop walled carotid phantoms that are compatible for use in integrative imaging of carotid wall motion and flow dynamics. In this paper, we present a novel phantom design protocol that can enable efficient fabrication of walled carotid bifurcation phantoms with: (i) high acoustic compatibility, (ii) artery-like vessel elasticity, and (iii) stenotic narrowing feature. Our protocol first involved direct fabrication of the vessel core and an outer mold using computer-aided design tools and 3-D printing technology; these built parts were then used to construct an elastic vessel tube through investment casting of a polyvinyl alcohol containing mixture, and an agar-gelatin tissue mimicking slab was formed around the vessel tube. For demonstration, we applied our protocol to develop a set of healthy and stenosed (25%, 50%, 75%) carotid bifurcation phantoms. Plane wave imaging experiments were performed on these phantoms using an ultrasound scanner with channel-level configurability. Results show that the wall motion dynamics of our phantoms agreed with pulse wave propagation in an elastic vessel (pulse wave velocity of 4.67±0.71 m/s measured at the common carotid artery), and their flow dynamics matched the expected ones in healthy and stenosed bifurcation (recirculation and flow jet formation observed). Integrative imaging of vessel wall motion and blood flow dynamics in our phantoms was also demonstrated, from which we observed fluid-structure interaction differences between healthy and diseased bifurcation phantoms. These findings show that the walled bifurcation phantoms developed with our new protocol are useful in vascular imaging studies that individually or jointly assess wall motion and flow dynamics.
Collapse
|
27
|
Fekkes S, Swillens AES, Hansen HHG, Saris AECM, Nillesen MM, Iannaccone F, Segers P, de Korte CL. 2-D Versus 3-D Cross-Correlation-Based Radial and Circumferential Strain Estimation Using Multiplane 2-D Ultrafast Ultrasound in a 3-D Atherosclerotic Carotid Artery Model. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1543-1553. [PMID: 27576246 DOI: 10.1109/tuffc.2016.2603189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three-dimensional (3-D) strain estimation might improve the detection and localization of high strain regions in the carotid artery (CA) for identification of vulnerable plaques. This paper compares 2-D versus 3-D displacement estimation in terms of radial and circumferential strain using simulated ultrasound (US) images of a patient-specific 3-D atherosclerotic CA model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on the literature data. A Philips L11-3 linear array transducer was simulated, which transmitted plane waves at three alternating angles at a pulse repetition rate of 10 kHz. Interframe (IF) radio-frequency US data were simulated in Field II for 191 equally spaced longitudinal positions of the internal CA. Accumulated radial and circumferential displacements were estimated using tracking of the IF displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least-squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2-D and 3-D methods was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3-D displacement estimation for the entire cardiac cycle. The 3-D technique clearly outperformed the 2-D technique in phases with high IF longitudinal motion. In fact, the large IF longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2-D technique.
Collapse
|
28
|
Noninvasive measurement of regional pulse wave velocity in human ascending aorta with ultrasound imaging. J Hypertens 2016; 34:2026-37. [DOI: 10.1097/hjh.0000000000001060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Mcgarry M, Li R, Apostolakis I, Nauleau P, Konofagou EE. An inverse approach to determining spatially varying arterial compliance using ultrasound imaging. Phys Med Biol 2016; 61:5486-507. [PMID: 27384105 DOI: 10.1088/0031-9155/61/15/5486] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mechanical properties of arteries are implicated in a wide variety of cardiovascular diseases, many of which are expected to involve a strong spatial variation in properties that can be depicted by diagnostic imaging. A pulse wave inverse problem (PWIP) is presented, which can produce spatially resolved estimates of vessel compliance from ultrasound measurements of the vessel wall displacements. The 1D equations governing pulse wave propagation in a flexible tube are parameterized by the spatially varying properties, discrete cosine transform components of the inlet pressure boundary conditions, viscous loss constant and a resistance outlet boundary condition. Gradient descent optimization is used to fit displacements from the model to the measured data by updating the model parameters. Inversion of simulated data showed that the PWIP can accurately recover the correct compliance distribution and inlet pressure under realistic conditions, even under high simulated measurement noise conditions. Silicone phantoms with known compliance contrast were imaged with a clinical ultrasound system. The PWIP produced spatially and quantitatively accurate maps of the phantom compliance compared to independent static property estimates, and the known locations of stiff inclusions (which were as small as 7 mm). The PWIP is necessary for these phantom experiments as the spatiotemporal resolution, measurement noise and compliance contrast does not allow accurate tracking of the pulse wave velocity using traditional approaches (e.g. 50% upstroke markers). Results from simulations indicate reflections generated from material interfaces may negatively affect wave velocity estimates, whereas these reflections are accounted for in the PWIP and do not cause problems.
Collapse
Affiliation(s)
- Matthew Mcgarry
- Department of Biomedical Engineering, Columbia University, New York, NY, USA. Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | | | | | | |
Collapse
|
30
|
Two Automated Techniques for Carotid Lumen Diameter Measurement: Regional versus Boundary Approaches. J Med Syst 2016; 40:182. [PMID: 27299355 DOI: 10.1007/s10916-016-0543-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
The degree of stenosis in the carotid artery can be predicted using automated carotid lumen diameter (LD) measured from B-mode ultrasound images. Systolic velocity-based methods for measurement of LD are subjective. With the advancement of high resolution imaging, image-based methods have started to emerge. However, they require robust image analysis for accurate LD measurement. This paper presents two different algorithms for automated segmentation of the lumen borders in carotid ultrasound images. Both algorithms are modeled as a two stage process. Stage one consists of a global-based model using scale-space framework for the extraction of the region of interest. This stage is common to both algorithms. Stage two is modeled using a local-based strategy that extracts the lumen interfaces. At this stage, the algorithm-1 is modeled as a region-based strategy using a classification framework, whereas the algorithm-2 is modeled as a boundary-based approach that uses the level set framework. Two sets of databases (DB), Japan DB (JDB) (202 patients, 404 images) and Hong Kong DB (HKDB) (50 patients, 300 images) were used in this study. Two trained neuroradiologists performed manual LD tracings. The mean automated LD measured was 6.35 ± 0.95 mm for JDB and 6.20 ± 1.35 mm for HKDB. The precision-of-merit was: 97.4 % and 98.0 % w.r.t to two manual tracings for JDB and 99.7 % and 97.9 % w.r.t to two manual tracings for HKDB. Statistical tests such as ANOVA, Chi-Squared, T-test, and Mann-Whitney test were conducted to show the stability and reliability of the automated techniques.
Collapse
|
31
|
The simulation of magnetic resonance elastography through atherosclerosis. J Biomech 2016; 49:1781-1788. [PMID: 27130475 DOI: 10.1016/j.jbiomech.2016.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 11/23/2022]
Abstract
The clinical diagnosis of atherosclerosis via the measurement of stenosis size is widely acknowledged as an imperfect criterion. The vulnerability of an atherosclerotic plaque to rupture is associated with its mechanical properties. The potential to image these mechanical properties using magnetic resonance elastography (MRE) was investigated through synthetic datasets. An image of the steady state wave propagation, equivalent to the first harmonic, can be extracted directly from finite element analysis. Inversion of this displacement data yields a map of the shear modulus, known as an elastogram. The variation of plaque composition, stenosis size, Gaussian noise, filter thresholds and excitation frequency were explored. A decreasing mean shear modulus with an increasing lipid composition was identified through all stenosis sizes. However the inversion algorithm showed sensitivity to parameter variation leading to artefacts which disrupted both the elastograms and quantitative trends. As noise was increased up to a realistic level, the contrast was maintained between the fully fibrous and lipid plaques but lost between the interim compositions. Although incorporating a Butterworth filter improved the performance of the algorithm, restrictive filter thresholds resulted in a reduction of the sensitivity of the algorithm to composition and noise variation. Increasing the excitation frequency improved the techniques ability to image the magnitude of the shear modulus and identify a contrast between compositions. In conclusion, whilst the technique has the potential to image the shear modulus of atherosclerotic plaques, future research will require the integration of a heterogeneous inversion algorithm.
Collapse
|
32
|
Wirgin A. Retrieval of the equivalent acoustic constitutive parameters of an inhomogeneous fluid-like object by nonlinear full waveform inversion. ULTRASONICS 2016; 65:353-369. [PMID: 26421526 DOI: 10.1016/j.ultras.2015.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
This study addresses the problem of the acoustic characterization of an inhomogeneous object such as a soft-tissue organ containing a cyst or tumor whose size and/or composition evolve either negatively due to increased disease or positively due to increased response to treatment. The so-called 'corrupted' binary object, probed by a transient, acoustic plane wave, is a tube composed of a homogenous fluid-like (or assumed as such) mantle (medium 1: three acoustic constitutive parameters, one geometric parameter) surrounding a homogeneous fluid-like (or assumed as such) core (medium 2: three acoustic constitutive parameters, one geometric parameter), immersed in a spatially-infinite, homogeneous fluid (host medium 0: two acoustic parameters). The complete inversion of the diffracted acoustic field response of this object involves the retrieval of seven (six acoustic and one geometric) parameters, assuming we know beforehand the outer radius of the tube and acoustic parameters of the host. An alternative to this time-consuming, hazardous (due to the ill-posed nature of the) procedure, is to minimize the discrepancy, between the full waveform response of the binary object to a transient plane wave and the response of a homogeneous cylinder (medium characterized by three acoustic parameters, one geometric parameter) to the same transient plane wave, so as to retrieve the (three so-called equivalent) acoustic parameters of the homogeneous object. Thus, the first inverse problem is replaced by a second one (same assumptions concerning the outer radius of the objects, the host medium, the probe radiation and the sensing configuration as the first one) involving the retrieval of only three (instead of six) acoustic parameters. This procedure is potentially useful if the variation of at least one of the three equivalent parameters is sensitive to the variation of a key parameter of the inhomogeneous body (usually the characteristic dimension or the wavespeed of the core) and this variation can be expressed in a simple algebraic form (such as by a mixing formula). It is shown that this situation can arise if the average frequency of the acoustic probe radiation is sufficiently low. A sidelight of this investigation is the discovery that the equivalent constitutive parameters of the homogeneous cylinder are dispersive even when the component materials of the tube are not dispersive.
Collapse
Affiliation(s)
- Armand Wirgin
- LMA, CNRS, UPR 7051, Aix-Marseille Univ, Centrale Marseille, F-13402 Marseille Cedex 20, France
| |
Collapse
|
33
|
Calcagno C, Mulder WJM, Nahrendorf M, Fayad ZA. Systems Biology and Noninvasive Imaging of Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:e1-8. [PMID: 26819466 PMCID: PMC4861402 DOI: 10.1161/atvbaha.115.306350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Claudia Calcagno
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.).
| | - Willem J M Mulder
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.)
| | - Matthias Nahrendorf
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.)
| | - Zahi A Fayad
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.)
| |
Collapse
|
34
|
Huang C, Pan X, He Q, Huang M, Huang L, Zhao X, Yuan C, Bai J, Luo J. Ultrasound-Based Carotid Elastography for Detection of Vulnerable Atherosclerotic Plaques Validated by Magnetic Resonance Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:365-377. [PMID: 26553205 DOI: 10.1016/j.ultrasmedbio.2015.09.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/27/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Ultrasound-based carotid elastography has been developed to estimate the mechanical properties of atherosclerotic plaques. The objective of this study was to evaluate the in vivo capability of carotid elastography in vulnerable plaque detection using high-resolution magnetic resonance imaging as reference. Ultrasound radiofrequency data of 46 carotid plaques from 29 patients (74 ± 5 y old) were acquired and inter-frame axial strain was estimated with an optical flow method. The maximum value of absolute strain rate for each plaque was derived as an indicator for plaque classification. Magnetic resonance imaging of carotid arteries was performed on the same patients to classify the plaques into stable and vulnerable groups for carotid elastography validation. The maximum value of absolute strain rate was found to be significantly higher in vulnerable plaques (2.15 ± 0.79 s(-1), n = 27) than in stable plaques (1.21 ± 0.37 s(-1), n = 19) (p < 0.0001). Receiver operating characteristic curve analysis was performed, and the area under the curve was 0.848. Therefore, the in vivo capability of carotid elastography to detect vulnerable plaques, validated by magnetic resonance imaging, was proven, revealing the potential of carotid elastography as an important tool in atherosclerosis assessment and stroke prevention.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Xiaochang Pan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Manwei Huang
- Department of Sonography, China Meitan General Hospital, Beijing, China
| | - Lingyun Huang
- Clinical Sites Research Program, Philips Research China, Shanghai, China
| | - Xihai Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China.
| | - Chun Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China; Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jing Bai
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China.
| |
Collapse
|
35
|
Wang Z, Liu N, Zhang L, Li X, Han X, Peng Y, Dang M, Sun L, Tian J. Real-Time Elastography Visualization and Histopathological Characterization of Rabbit Atherosclerotic Carotid Arteries. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:176-184. [PMID: 26381920 DOI: 10.1016/j.ultrasmedbio.2015.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 07/21/2015] [Accepted: 08/08/2015] [Indexed: 06/05/2023]
Abstract
To evaluate the feasibility of non-invasive vascular real-time elastography imaging (RTE) in visualizing the composition of rabbit carotid atherosclerotic plaque as determined by histopathology, a rabbit model of accelerated carotid atherosclerosis was used. Thirty rabbits were randomly divided into two groups of 15 rabbits each. The first group was fed a cholesterol-rich diet and received balloon-induced injury the left common carotid artery endothelium, whereas the second group only received a cholesterol-rich diet. The rabbits were all examined in vivo with HITACHI non-invasive vascular real-time elastography (Hi-RTE) at baseline and 12 wk, and results from the elastography were compared with American Heart Association histologic classifications. Hi-RTE and the American Heart Association histologic classifications had good agreement, with weighted Cohen's kappa (95% confidence internal) of 0.785 (0.649-0.920). Strains of segmented plaques that were stained in different colors were statistically different (p < 0.0001). The sensitivity and specificity of elastograms for detecting a lipid core were 95.5% and 61.5%, respectively, and the area under the receiver operating characteristic curve was 0.789, with a 95% confidence interval of 0.679 to 0.876. This study is the first to indicate the feasibility of utilizing Hi-RTE in visualizing normal and atherosclerotic rabbit carotid arteries non-invasively. This affordable and reliable method can be widely applied in research of both animal and human peripheral artery atherosclerosis.
Collapse
Affiliation(s)
- ZhenZhen Wang
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - NaNa Liu
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - LiFeng Zhang
- Department of Ultrasound, DaQing Fourth Hospital, DaQing, China
| | - XiaoYing Li
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - XueSong Han
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - YanQing Peng
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - MeiZheng Dang
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - LiTao Sun
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - JiaWei Tian
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
36
|
Zhang Q, Li C, Zhou M, Liao Y, Huang C, Shi J, Wang Y, Wang W. Quantification of carotid plaque elasticity and intraplaque neovascularization using contrast-enhanced ultrasound and image registration-based elastography. ULTRASONICS 2015; 62:253-262. [PMID: 26074459 DOI: 10.1016/j.ultras.2015.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/18/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
It is valuable for evaluation of carotid plaque vulnerability to investigate the relation between intraplaque neovascularization (IPN) and plaque elasticity. The contrast-enhanced ultrasound (CEUS) has been used in IPN measurement, but it cannot assess plaque elasticity. The aim of this study was to develop an ultrasound elastography technique based on registration of CEUS sequential images and to use this technique for direct comparison between IPN and plaque elasticity. We employed a nonrigid image registration method using the free-form deformation model to register a pair of clinical CEUS images at systole and diastole. The 2D displacement field of the plaque was estimated and then utilized to calculate the axial and lateral strain distributions within the plaque, from which quantitative strain parameters were obtained. The IPN was measured semiquantitatively with visual assessment and quantitatively with the time-intensity curve analysis and the analysis of contrast agent spatial distributions. Histopathology with CD34 staining for quantification of microvessel density (MVD) was performed on plaques excised by carotid endarterectomy. Simulation experiments showed that the mean absolute error and the root mean squared error of the displacement estimation were 0.325±0.180 pixel (7.2%±3.8%) and 0.556±0.284 pixel (12.3%±6.1%), respectively, demonstrating high accuracy of the elastography technique. Thirty-eight plaques in 29 patients met the inclusion criteria for the elastography and image analysis, where ten plaques underwent endarterectomy. The 95th percentile (A95) and standard deviation (Asd) of the axial strains exhibited significant differences between the low and high grades of IPN visually assessed (p<0.01). A95 (R=0.579; p<0.001) and Asd (R=0.609; p<0.001) were correlated with the enhanced intensity of plaque, and also correlated with the MVD (R=0.793 and 0.817, respectively; p<0.01), suggesting that plaque became softer and more elastically heterogeneous as IPN increased. These findings provide direct and quantitative evidence for the associations between plaque strains and IPN and might be helpful for evaluation of carotid plaque vulnerability and for plaque risk stratification.
Collapse
Affiliation(s)
- Qi Zhang
- School of Communication and Information Engineering, Shanghai University, 200444 Shanghai, China.
| | - Chaolun Li
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 200032 Shanghai, China.
| | - Moli Zhou
- School of Communication and Information Engineering, Shanghai University, 200444 Shanghai, China
| | - Yu Liao
- School of Communication and Information Engineering, Shanghai University, 200444 Shanghai, China
| | - Chunchun Huang
- School of Communication and Information Engineering, Shanghai University, 200444 Shanghai, China
| | - Jun Shi
- School of Communication and Information Engineering, Shanghai University, 200444 Shanghai, China.
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, 200433 Shanghai, China.
| | - Wenping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 200032 Shanghai, China.
| |
Collapse
|
37
|
Dixon AJ, Kilroy JP, Dhanaliwala AH, Chen JL, Phillips LC, Ragosta M, Klibanov AL, Wamhoff BR, Hossack JA. Microbubble-mediated intravascular ultrasound imaging and drug delivery. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1674-1685. [PMID: 26415129 DOI: 10.1109/tuffc.2015.007143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Intravascular ultrasound (IVUS) provides radiation-free, real-time imaging and assessment of atherosclerotic disease in terms of anatomical, functional, and molecular composition. The primary clinical applications of IVUS imaging include assessment of luminal plaque volume and real-time image guidance for stent placement. When paired with microbubble contrast agents, IVUS technology may be extended to provide nonlinear imaging, molecular imaging, and therapeutic delivery modes. In this review, we discuss the development of emerging imaging and therapeutic applications that are enabled by the combination of IVUS imaging technology and microbubble contrast agents.
Collapse
|
38
|
Costanzo L, Sole A, Tamburino C, Di Pino L. Carotid thin fluttering bands: A new element of arterial wall remodelling? An ultrasound study. Int J Cardiovasc Imaging 2015; 31:1393-400. [PMID: 26179862 DOI: 10.1007/s10554-015-0710-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/11/2015] [Indexed: 11/29/2022]
Abstract
Carotid artery ultrasound is a non-invasive and reproducible technique used for early atherosclerotic assessment. Intimal flap has been described in the presence of dissection or mobile plaque rupture, however presence of carotid thin fluttering bands (TFBs) have not been described yet. To investigate frequency, characteristics and impact of TFBs in carotid lumen of patients who underwent carotid ultrasound scan (CUS). 3341 patients were admitted from January 2009 to January 2014. Patients with history of cerebral ischemia (CI) were excluded. In the cases in which TFBs were observed, a 3-months clinical and CUS follow-up (FU) was performed. TFBs were found in 71 patients (2.1%). The mean age was 63.41 ± 11.20 years (range 42-89). All patients showed a mean increase in intima-media thickness. We identified two subgroups: in 22 patients the TFB was related to a carotid plaque while in 49 no carotid plaque was found. TFB mostly originated in the carotid bulb (88.7%) and was similarly located in carotid arteries (49.3% left-side and 50.7% right-side). CUS and clinical FU were available for all patients (mean duration 25.34 months, median 19). CI occurred in none of the patients. TFB disappeared in 13 patients (18.3%) with no sign or symptoms of CI. In 3 of 49 patients without carotid plaque (6.1%), progressive thickening beneath TFB was observed. TFB is a rare finding. Longer FU is needed to evaluate its prognosis. To date, the pathophysiology is unknown, however it could be related to vascular remodeling.
Collapse
Affiliation(s)
- Luca Costanzo
- Cardiotoracovascular Department, Division of Angiology, Ferrarotto-Policlinic Hospital, University of Catania, Via Santa Sofia 78, 95100, Catania, Italy.
| | - Andrea Sole
- Cardiotoracovascular Department, Division of Angiology, Ferrarotto-Policlinic Hospital, University of Catania, Via Santa Sofia 78, 95100, Catania, Italy
| | - Corrado Tamburino
- Cardiotoracovascular Department, Division of Angiology, Ferrarotto-Policlinic Hospital, University of Catania, Via Santa Sofia 78, 95100, Catania, Italy
| | - Luigi Di Pino
- Cardiotoracovascular Department, Division of Angiology, Ferrarotto-Policlinic Hospital, University of Catania, Via Santa Sofia 78, 95100, Catania, Italy
| |
Collapse
|
39
|
Wang J, Wang L, Yang H, You Y, Xu H, Gong L, Yin X, Wang W, Gao S, Cheng L, Liang R, Liao F. Prevention of atherosclerosis by Yindan Xinnaotong capsule combined with swimming in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:109. [PMID: 25886942 PMCID: PMC4406019 DOI: 10.1186/s12906-015-0622-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 03/10/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Yindan Xinnaotong capsule has been used for treating cardio-cerebrovascular diseases for several decades in China. Exercise training can protect against the development of atherosclerosis. The aim of the present study is to evaluate the joint effect of YXC and exercise on atherosclerosis in rats. METHODS A combined method involving low shear stress and a high-fat diet was used to establish the atherosclerosis model in rats. Partial ligation of the left common carotid artery was performed, and then the rats were divided into 9 treatment groups according to a 3 × 3 factorial design with two factors and three levels for each factor, swimming of 0, 0.5, 1 h daily and YXC administration of 0, 1, 2 g/kg p.o. daily. Next the interventions of swimming and YXC were executed for 8 weeks. After that, blood samples were collected to determine blood viscosity, plasma viscosity, haematocrit (HCT), fibrinogen (FIB), blood lipid profile (including total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), triglyceride (TG) and high-density lipoprotein-cholesterol (HDL-C)), nitric oxide (NO), 6-keto- prostaglandin (PG) F1α, endothelin (ET) and thromboxane (TX) B2. The common carotid arteries of the rats were harvested to examine pathological changes, wall thickness and circumference, and the expression of SM22αwas assayed via immune-histochemistry. RESULTS The early pathological changes were observed. The joint effects of YXC and swimming showed significant changes in the examined parameters: (1) decreases in plasma viscosity, blood viscosity and FIB; (2) increases in NO and 6-keto-PGF1α; (3) decreases in ET and TXB2; and (4) decreases in LDL-C and TG. The combination of 2 g/kg YXC and 1 h of swimming led to synergistic decreases in LDL-C and TG. The interactive effect between YXC and swimming was obvious in decreasing wall thickness. Swimming alone was able to up-regulate the expression of SM22α. CONCLUSIONS In conclusion, this study indicates that the combination of YXC and swimming may prevent atherosclerosis through a synergistic effect between YXC and swimming in improving blood circulation, hemorheological parameters, blood lipids levels and the vascular endothelium in rats. The vascular remodeling may be contributed to the prevention effects on AS by up-regulating SM22α.
Collapse
Affiliation(s)
- Jianlu Wang
- China Academy of Chinese Medical Sciences, Institute of Chinese Material Medical, Beijing, China.
| | - Lan Wang
- China Academy of Chinese Medical Sciences, Institute of Chinese Material Medical, Beijing, China.
| | - Hongjun Yang
- China Academy of Chinese Medical Sciences, Institute of Chinese Material Medical, Beijing, China.
| | - Yun You
- China Academy of Chinese Medical Sciences, Institute of Chinese Material Medical, Beijing, China.
| | - Haiyu Xu
- China Academy of Chinese Medical Sciences, Institute of Chinese Material Medical, Beijing, China.
| | - Leilei Gong
- China Academy of Chinese Medical Sciences, Institute of Chinese Material Medical, Beijing, China.
| | - Xiaojie Yin
- China Academy of Chinese Medical Sciences, Institute of Chinese Material Medical, Beijing, China.
| | - Wandan Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Shuangrong Gao
- China Academy of Chinese Medical Sciences, Institute of Chinese Material Medical, Beijing, China.
| | - Long Cheng
- Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Beijing, China.
- Guizhou Bailing Group Pharmaceutical Co., Ltd, Guizhou, China.
| | - Rixin Liang
- China Academy of Chinese Medical Sciences, Institute of Chinese Material Medical, Beijing, China.
| | - Fulong Liao
- China Academy of Chinese Medical Sciences, Institute of Chinese Material Medical, Beijing, China.
| |
Collapse
|
40
|
Rafati M, Arabfard M, Rafati Rahimzadeh M, Voshtani H, Moladoust H. A comparative study of three speckle reducing methods for intima-media thickness ultrasound images. IRANIAN RED CRESCENT MEDICAL JOURNAL 2015; 17:e25013. [PMID: 25838938 PMCID: PMC4376986 DOI: 10.5812/ircmj.25013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ultrasonic evaluation of intima-media thickness (IMT) is an early marker of assessing the development of atherosclerosis and determining cardiovascular risk. To attain the best possible diagnosis, it is essential that medical images be clear, sharp and without noise and artifacts. OBJECTIVES Comparison of speckle reducing anisotropic diffusion (SRAD), discrete (DTD) and continuum topological derivative (CTD) on B-mode ultrasound images of common carotid and brachial arteries throughout the cardiac cycle. PATIENTS AND METHODS In a cross-sectional design, an examination was performed on forty-two human subjects with a mean age of 44 ± 6 years from April 2013 to June 2013. This study was approved by the ethics committees of Kashan University of Medical Sciences and Beheshti Hospital. An ultrasonic examination of common carotid and brachial arteries of forty-two human subjects was performed. The program was designed in MATLAB software to extract consecutive B-mode images and apply region of interest (ROI) on the IMT of the common carotid and brachial arteries. Then, three different noise reduction filters with the Canny edge detection were used in ROI separately. Finally, the program measured the image quality metrics. RESULTS According to values of eleven different image quality metrics (mentioned in the main text), there was a significant difference between CTD, DTD and SRAD filters with the Canny edge detection status in the common carotid and brachial arteries throughout the cardiac cycle (all P values < 0.001). For example, peak signal to noise ratios (PSNR) using CTD, DTD and SRAD filters were 95.43 ± 0.64, 88.86 ± 0.82 and 73.02 ± 0.20 in common carotid and 96.39 ± 1.25, 92.58 ± 0.11 and 88.27 ± 0.63 in brachial arteries, respectively (both P values < 0.001). CONCLUSIONS By measuring image quality metrics, this study showed that DTD and CTD filters with the Canny edge detection respectively, are better than SRAD filter with the Canny detection for speckle suppression and details preservation in both arteries in the ultrasound images.
Collapse
Affiliation(s)
- Mehravar Rafati
- Department of Medical Physic and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, IR Iran
| | - Masoud Arabfard
- Department of Basic Sciences, Kish International Campus, University of Tehran, Kish Island, IR Iran
| | | | - Hasan Voshtani
- Department of Cardiology, Heshmat Cardiovascular Research Center, Guilan University of Medical Sciences, Rasht, IR Iran
- Corresponding Author: Hasan Voshtani, Department of Cardiology, Heshmat Cardiovascular Research Center, Guilan University of Medical Sciences, Rasht, IR Iran. Tel: +98-1333663070, Fax: +98-1316668718, E-mail:
| | - Hassan Moladoust
- Department of Cardiology, Heshmat Cardiovascular Research Center, Guilan University of Medical Sciences, Rasht, IR Iran
| |
Collapse
|
41
|
Liu F, Yong Q, Zhang Q, Liu P, Yang Y. Real-time tissue elastography for the detection of vulnerable carotid plaques in patients undergoing endarterectomy: a pilot study. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:705-712. [PMID: 25619789 DOI: 10.1016/j.ultrasmedbio.2014.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/19/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023]
Abstract
We examined the utility of ultrasonic real-time tissue elastography (RTE) and conventional B-mode ultrasound (US) in the detection of vulnerable carotid atherosclerotic plaques. This prospective study comprised 19 patients scheduled for carotid endarterectomy. Results obtained from pre-operative RTE and B-mode US and post-operative pathology were compared. RTE encoded low, average and high deformability as blue, green and red, respectively. Tissue hardness was scored on a 5-point scale, and relative strains were calculated. The relative strain was 1.12 ± 0.14 for fibrous plaques (n = 4), 0.28 ± 0.07 for atherosclerotic plaques (n = 5), 0.47 ± 0.31 for intraplaque hemorrhage/thrombosis (n = 5) and 0.98 ± 1.04 for complex plaques (n = 5). The sensitivity, specificity and accuracy of detection of vulnerable plaques were 25%, 100% and 84.2% for B-mode US, 50%, 100% and 89.4% for RTE and 62.5%, 100% and 94.7% for the combination. Ultrasonic RTE is a potential candidate for a non-invasive and effective approach to identify vulnerable atherosclerotic plaques in the carotid artery.
Collapse
Affiliation(s)
- Fengju Liu
- Department of Ultrasound, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Qiang Yong
- Department of Ultrasound, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.
| | - Qinyi Zhang
- Stroke Center, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yuguang Yang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
42
|
Larsson M, Heyde B, Kremer F, Brodin LÅ, D'hooge J. Ultrasound speckle tracking for radial, longitudinal and circumferential strain estimation of the carotid artery--an in vitro validation via sonomicrometry using clinical and high-frequency ultrasound. ULTRASONICS 2015; 56:399-408. [PMID: 25262347 DOI: 10.1016/j.ultras.2014.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/14/2014] [Accepted: 09/09/2014] [Indexed: 06/03/2023]
Abstract
Ultrasound speckle tracking for carotid strain assessment has in the past decade gained interest in studies of arterial stiffness and cardiovascular diseases. The aim of this study was to validate and directly contrast carotid strain assessment by speckle tracking applied on clinical and high-frequency ultrasound images in vitro. Four polyvinyl alcohol phantoms mimicking the carotid artery were constructed with different mechanical properties and connected to a pump generating carotid flow profiles. Gray-scale ultrasound long- and short-axis images of the phantoms were obtained using a standard clinical ultrasound system, Vivid 7 (GE Healthcare, Horten, Norway) and a high-frequency ultrasound system, Vevo 2100 (FUJIFILM, VisualSonics, Toronto, Canada) with linear-array transducers (12L/MS250). Radial, longitudinal and circumferential strains were estimated using an in-house speckle tracking algorithm and compared with reference strain acquired by sonomicrometry. Overall, the estimated strain corresponded well with the reference strain. The correlation between estimated peak strain in clinical ultrasound images and reference strain was 0.91 (p<0.001) for radial strain, 0.73 (p<0.001) for longitudinal strain and 0.90 (p<0.001) for circumferential strain and for high-frequency ultrasound images 0.95 (p<0.001) for radial strain, 0.93 (p<0.001) for longitudinal strain and 0.90 (p<0.001) for circumferential strain. A significant larger bias and root mean square error was found for circumferential strain estimation on clinical ultrasound images compared to high frequency ultrasound images, but no significant difference in bias and root mean square error was found for radial and longitudinal strain when comparing estimation on clinical and high-frequency ultrasound images. The agreement between sonomicrometry and speckle tracking demonstrates that carotid strain assessment by ultrasound speckle tracking is feasible.
Collapse
Affiliation(s)
- Matilda Larsson
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Alfred Nobels Allé 10, 141 52 Huddinge, Sweden; Lab on Cardiovascular Imaging & Dynamics, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49 box 911, 3000 Leuven, Belgium.
| | - Brecht Heyde
- Lab on Cardiovascular Imaging & Dynamics, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49 box 911, 3000 Leuven, Belgium
| | - Florence Kremer
- Lab on Cardiovascular Imaging & Dynamics, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49 box 911, 3000 Leuven, Belgium
| | - Lars-Åke Brodin
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Alfred Nobels Allé 10, 141 52 Huddinge, Sweden
| | - Jan D'hooge
- Lab on Cardiovascular Imaging & Dynamics, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49 box 911, 3000 Leuven, Belgium
| |
Collapse
|
43
|
Lei L, Tang J, Zhang T, Guo H, Li Y, Xie C, Shang C, Bi Y, Zhang W, Xue C, Liu J. Strain gauge using Si-based optical microring resonator. APPLIED OPTICS 2014; 53:8389-8394. [PMID: 25608186 DOI: 10.1364/ao.53.008389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper presents a strain gauge using the mechanical-optical coupling method. The Si-based optical microring resonator was employed as the sensing element, which was embedded on the microcantilevers. The experimental results show that applying external strain triggers a clear redshift of the output resonant spectrum of the structure. The sensitivity of 93.72 pm/MPa was achieved, which also was verified using theoretical simulations. This paper provides what we believe is a new method to develop micro-opto-electromechanical system (MOEMS) sensors.
Collapse
|
44
|
Toregeani JF, Nassar CA, Toregeani KAM, Nassar PO. Periodontal disease and atherosclerosis. J Vasc Bras 2014. [DOI: 10.1590/jvb.2014.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Atherosclerotic disease (AD) is one of the most important causes of morbidity and mortality in the world. It expresses inflammatory markers such as C-reactive protein (CRP) and can provoke arterial wall thickening, which can be evaluated using Doppler ultrasound. Risk factors associated with AD include diabetes mellitus, systemic arterial hypertension, dyslipidemia and smoking. More recently, periodontal disease (PD) has been identified as a factor related to AD. Periodontal disease has a high prevalence in the global population and the inflammatory process and bacterial activity at the periodontium appear to increase the risk of AD. Encouraging good oral hygiene can reduce expression of inflammatory markers of AD. A review of literature on PD, AD and inflammatory markers and the interrelationships between the two diseases was conducted using data published in articles indexed on the PUBMED, SCIELO and BIREME databases.
Collapse
|
45
|
de Korte CL, Nillesen MM, Saris AECM, Lopata RGP, Thijssen JM, Kapusta L. New developments in paediatric cardiac functional ultrasound imaging. J Med Ultrason (2001) 2014; 41:279-90. [PMID: 27277901 DOI: 10.1007/s10396-013-0513-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/15/2013] [Indexed: 11/26/2022]
Abstract
Ultrasound imaging can be used to estimate the morphology as well as the motion and deformation of tissues. If the interrogated tissue is actively deforming, this deformation is directly related to its function and quantification of this deformation is normally referred as 'strain imaging'. Tissue can also be deformed by applying an internal or external force and the resulting, induced deformation is a function of the mechanical tissue characteristics. In combination with the load applied, these strain maps can be used to estimate or reconstruct the mechanical properties of tissue. This technique was named 'elastography' by Ophir et al. in 1991. Elastography can be used for atherosclerotic plaque characterisation, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. Rather than using the conventional video format (DICOM) image information, radio frequency (RF)-based ultrasound methods enable estimation of the deformation at higher resolution and with higher precision than commercial methods using Doppler (tissue Doppler imaging) or video image data (2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so it has to be considered a 1D technique. Recently, this method has been extended to multiple directions and precision further improved by using spatial compounding of data acquired at multiple beam steered angles. Using similar techniques, the blood velocity and flow can be determined. RF-based techniques are also beneficial for automated segmentation of the ventricular cavities. In this paper, new developments in different techniques of quantifying cardiac function by strain imaging, automated segmentation, and methods of performing blood flow imaging are reviewed and their application in paediatric cardiology is discussed.
Collapse
Affiliation(s)
- Chris L de Korte
- Medical UltraSound Imaging Centre (766 MUSIC), Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Maartje M Nillesen
- Medical UltraSound Imaging Centre (766 MUSIC), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Anne E C M Saris
- Medical UltraSound Imaging Centre (766 MUSIC), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Richard G P Lopata
- Medical UltraSound Imaging Centre (766 MUSIC), Radboud University Medical Centre, Nijmegen, The Netherlands
- Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Johan M Thijssen
- Medical UltraSound Imaging Centre (766 MUSIC), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Livia Kapusta
- Medical UltraSound Imaging Centre (766 MUSIC), Radboud University Medical Centre, Nijmegen, The Netherlands
- Tel Aviv Sorasky Medical Center (TASMC), Tel Aviv, Israel
| |
Collapse
|
46
|
Wan J, He F, Zhao Y, Zhang H, Zhou X, Wan M. Non-invasive vascular radial/circumferential strain imaging and wall shear rate estimation using video images of diagnostic ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:622-636. [PMID: 24361217 DOI: 10.1016/j.ultrasmedbio.2013.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 09/28/2013] [Accepted: 10/13/2013] [Indexed: 06/03/2023]
Abstract
The aim of this work was to develop a convenient method for radial/circumferential strain imaging and shear rate estimation that could be used as a supplement to the current routine screening for carotid atherosclerosis using video images of diagnostic ultrasound. A reflection model-based correction for gray-scale non-uniform distribution was applied to B-mode video images before strain estimation to improve the accuracy of radial/circumferential strain imaging when applied to vessel transverse cross sections. The incremental and cumulative radial/circumferential strain images can then be calculated based on the displacement field between consecutive B-mode images. Finally, the transverse Doppler spectra acquired at different depths along the vessel diameter were used to construct the spatially matched instantaneous wall shear values in a cardiac cycle. Vessel phantom simulation results revealed that the signal-to-noise ratio and contrast-to-noise ratio of the radial and circumferential strain images were increased by 2.8 and 5.9 dB and by 2.3 and 4.4 dB, respectively, after non-uniform correction. Preliminary results for 17 patients indicated that the accuracy of radial/circumferential strain images was improved in the lateral direction after non-uniform correction. The peak-to-peak value of incremental strain and the maximum cumulative strain for calcified plaques are evidently lower than those for other plaque types, and the echolucent plaques had higher values, on average, than the mixed plaques. Moreover, low oscillating wall shear rate values, found near the plaque and stenosis regions, are closely related to plaque formation. In conclusion, the method described can provide additional valuable results as a supplement to the current routine ultrasound examination for carotid atherosclerosis and, therefore, has significant potential as a feasible screening method for atherosclerosis diagnosis in the future.
Collapse
Affiliation(s)
- Jinjin Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fangli He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yongfeng Zhao
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongmei Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaodong Zhou
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
47
|
Hansen H, Saris A, Vaka N, Nillesen M, de Korte C. Ultrafast vascular strain compounding using plane wave transmission. J Biomech 2014; 47:815-23. [PMID: 24484646 DOI: 10.1016/j.jbiomech.2014.01.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 01/08/2023]
|
48
|
Bertoglio C, Barber D, Gaddum N, Valverde I, Rutten M, Beerbaum P, Moireau P, Hose R, Gerbeau JF. Identification of artery wall stiffness: in vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid-structure interaction model. J Biomech 2014; 47:1027-34. [PMID: 24529756 DOI: 10.1016/j.jbiomech.2013.12.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 11/28/2022]
Abstract
We consider the problem of estimating the stiffness of an artery wall using a data assimilation method applied to a 3D fluid-structure interaction (FSI) model. Recalling previous works, we briefly present the FSI model, the data assimilation procedure and the segmentation algorithm. We present then two examples of the procedure using real data. First, we estimate the stiffness distribution of a silicon rubber tube from image data. Second, we present the estimation of aortic wall stiffness from real clinical data.
Collapse
Affiliation(s)
- Cristóbal Bertoglio
- Project-Team REO, INRIA Paris-Rocquencourt, 78153 Le Chesnay, Laboratoire Jacques Louis Lions, Université Pierre et Marie Curie - Paris 6, France.
| | - David Barber
- Department of Cardiovascular Sciences, University of Sheffield, Sheffield S10 2RX, UK.
| | - Nicholas Gaddum
- Division of Imaging Sciences and Biomedical Engineering, King׳s College London, London SE1 7EH, UK.
| | - Israel Valverde
- Division of Imaging Sciences and Biomedical Engineering, King׳s College London, London SE1 7EH, UK.
| | - Marcel Rutten
- Materials Technology Institute, Technical University of Eindhoven, 5600 MB Eindhoven, The Netherlands.
| | - Philipp Beerbaum
- Clinic for Paediatric Cardiology and Internal Medicine, Hannover Medical School, 30625 Hannover, Germany.
| | - Philippe Moireau
- Project-Team M3DISIM, INRIA Saclay Ile-de-France, 91120 Palaiseau, France.
| | - Rodney Hose
- Department of Cardiovascular Sciences, University of Sheffield, Sheffield S10 2RX, UK.
| | - Jean-Frédéric Gerbeau
- Project-Team REO, INRIA Paris-Rocquencourt, 78153 Le Chesnay, Laboratoire Jacques Louis Lions, Université Pierre et Marie Curie - Paris 6, France.
| |
Collapse
|
49
|
Holzapfel GA, Mulvihill JJ, Cunnane EM, Walsh MT. Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J Biomech 2014; 47:859-69. [PMID: 24491496 DOI: 10.1016/j.jbiomech.2014.01.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 11/18/2022]
Abstract
Vulnerable and stable atherosclerotic plaques are heterogeneous living materials with peculiar mechanical behaviors depending on geometry, composition, loading and boundary conditions. Computational approaches have the potential to characterize the three-dimensional stress/strain distributions in patient-specific diseased arteries of different types and sclerotic morphologies and to estimate the risk of plaque rupture which is the main trigger of acute cardiovascular events. This review article attempts to summarize a few finite element (FE) studies for different vessel types, and how these studies were performed focusing on the used stress measure, inclusion of residual stress, used imaging modality and material model. In addition to histology the most used imaging modalities are described, the most common nonlinear material models and the limited number of models for plaque rupture used for such studies are provided in more detail. A critical discussion on stress measures and threshold stress values for plaque rupture used within the FE studies emphasizes the need to develop a more location and tissue-specific threshold value, and a more appropriate failure criterion. With this addition future FE studies should also consider more advanced strain-energy functions which then fit better to location and tissue-specific experimental data.
Collapse
Affiliation(s)
- Gerhard A Holzapfel
- Graz University of Technology, Institute of Biomechanics, Kronesgasse 5-I, 8010 Graz, Austria.
| | - John J Mulvihill
- Centre for Applied Biomedical Engineering Research, Department of Mechanical, Aeronautical and Biomedical Engineering and the Materials and Surface Science Institute, University of Limerick, Ireland
| | - Eoghan M Cunnane
- Centre for Applied Biomedical Engineering Research, Department of Mechanical, Aeronautical and Biomedical Engineering and the Materials and Surface Science Institute, University of Limerick, Ireland
| | - Michael T Walsh
- Centre for Applied Biomedical Engineering Research, Department of Mechanical, Aeronautical and Biomedical Engineering and the Materials and Surface Science Institute, University of Limerick, Ireland
| |
Collapse
|
50
|
Nakatani S, Proniewska K, Pociask E, Paoletti G, de Winter S, Muramatsu T, Bruining N. How clinically effective is intravascular ultrasound in interventional cardiology? Present and future perspectives. Expert Rev Med Devices 2014; 10:735-49. [DOI: 10.1586/17434440.2013.841353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|