1
|
Li H, Qiang Y, Li X, Brugnara C, Buffet PA, Dao M, Karniadakis GE, Suresh S. Biomechanics of phagocytosis of red blood cells by macrophages in the human spleen. Proc Natl Acad Sci U S A 2024; 121:e2414437121. [PMID: 39453740 PMCID: PMC11536160 DOI: 10.1073/pnas.2414437121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/17/2024] [Indexed: 10/27/2024] Open
Abstract
The clearance of senescent and altered red blood cells (RBCs) in the red pulp of the human spleen involves sequential processes of prefiltration, filtration, and postfiltration. While prior work has elucidated the mechanisms underlying the first two processes, biomechanical processes driving the postfiltration phagocytosis of RBCs retained at interendothelial slits (IES) are still poorly understood. We present here a unique computational model of macrophages to study the role of cell biomechanics in modulating the kinetics of phagocytosis of aged and diseased RBCs retained in the spleen. After validating the macrophage model using in vitro phagocytosis experiments, we employ it to probe the mechanisms underlying the kinetics of phagocytosis of mechanically altered RBCs, such as heated RBCs and abnormal RBCs in hereditary spherocytosis (HS) and sickle cell disease (SCD). Our simulations show pronounced deformation of the flexible and healthy RBCs in contrast to minimal shape changes in altered RBCs. Simulations also show that less deformable RBCs are engulfed faster and at lower adhesive strength than flexible RBCs, consistent with our experimental measurements. This efficient sensing and engulfment by macrophages of stiff RBCs retained at IES are expected to temper splenic congestion, a common pathogenic process in malaria, HS, and SCD. Altogether, our combined computational and in vitro experimental studies suggest that mechanical alterations of retained RBCs may suffice to enhance their phagocytosis, thereby adapting the kinetics of their elimination to the kinetics of their mechanical retention, an equilibrium essential for adequately cleaning the splenic filter to preserve its function.
Collapse
Affiliation(s)
- He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens30602, Georgia
| | - Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou310027, China
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Pierre A. Buffet
- Université Paris Cité, INSERM, Biologie Intégrée du Globule Rouge, Paris75015, France
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - George E. Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI02912
- School of Engineering, Brown University, Providence, RI02912
| | - Subra Suresh
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- School of Engineering, Brown University, Providence, RI02912
| |
Collapse
|
2
|
Igbineweka NE, van Loon JJWA. Gene-environmental influence of space and microgravity on red blood cells with sickle cell disease. NPJ Genom Med 2024; 9:44. [PMID: 39349487 PMCID: PMC11442622 DOI: 10.1038/s41525-024-00427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/09/2024] [Indexed: 10/02/2024] Open
Abstract
A fundamental question in human biology and for hematological disease is how do complex gene-environment interactions lead to individual disease outcome? This is no less the case for sickle cell disease (SCD), a monogenic disorder of Mendelian inheritance, both clinical course, severity, and treatment response, is variable amongst affected individuals. New insight and discovery often lie between the intersection of seemingly disparate disciplines. Recently, opportunities for space medicine have flourished and have offered a new paradigm for study. Two recent Nature papers have shown that hemolysis and oxidative stress play key mechanistic roles in erythrocyte pathogenesis during spaceflight. This paper reviews existing genetic and environmental modifiers of the sickle cell disease phenotype. It reviews evidence for erythrocyte pathology in microgravity environments and demonstrates why this may be relevant for the unique gene-environment interaction of the SCD phenotype. It also introduces the hematology and scientific community to methodological tools for evaluation in space and microgravity research. The increasing understanding of space biology may yield insight into gene-environment influences and new treatment paradigms in SCD and other hematological disease phenotypes.
Collapse
Affiliation(s)
- Norris E Igbineweka
- Imperial College London, Centre for Haematology, Department of Immunology & Inflammation, Commonwealth Building, Hammersmith Campus, Du Cane, London, W12 0NN, UK.
- Department of Haematology, King's College Hospital NHS Foundation Trust Denmark Hill, SE5 9RS, London, UK.
| | - Jack J W A van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam Bone Center (ABC), Amsterdam UMC Location VU University Medical Center (VUmc) & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081, LA Amsterdam, The Netherlands
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), TEC-MMG, Keplerlaan 1, 2201, AZ Noordwijk, The Netherlands
| |
Collapse
|
3
|
Petiwathayakorn T, Paradee N, Hantrakool S, Jarujareet U, Intharah T, Srichairatanakool S, Koonyosying P. A Compact Differential Dynamic Microscopy-based Device (cDDM): An Approach Tool for Early Detection of Hypercoagulable State in Transfusion-Dependent-β-Thalassemia Patients. ACS APPLIED BIO MATERIALS 2024; 7:4710-4724. [PMID: 38920024 PMCID: PMC11253095 DOI: 10.1021/acsabm.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
β-Thalassemia especially transfusion-dependent thalassemia (TDT) associates with a hypercoagulable state, which is the main cause of thromboembolic events (TEE). Plasma viscosity and rheological parameters could be essential markers for determining hypercoagulable state in β-thalassemia patients. The traditional methods for measuring viscosity are often limited by large sample volumes and are impractical for routine clinical monitoring. The compact differential dynamic microscopy-based device (cDDM), an optical microscopy for quantitative rheological assessment, was developed and applied for prognosis of the hypercoagulable state in β-TDT with and without splenectomy. The device was performed plasma viscosity measurement using low plasma volume (8 μL) and revealed a value as modulus of complex viscosity |η(ω)| in 7 min. We also parallelly demonstrated the correlation of the viscosity and related-coagulable parameters: complete blood count, prothrombin time (PT), activated partial thromboplastin time (APTT), protein C (PC), protein S (PS), CD62P and CD63 expression, and platelet aggregation test. The thalassemia plasma exhibited a higher value of |η(ω)| than healthy plasma, which can represent a different viscoelastic property among the groups. Even all related-coagulable parameters indicated hypercoagulable state in both nonsplenectomies and splenectomies β-TDT patients when compared to control, only high platelet numbers significantly correlated to high plasma viscosity in the splenectomy group. However, the other coagulable parameters have shown a trend of positive relationship with high plasma viscosity in all β-1thalassemia TDT patients. The relative results suggested that our device would be an approach tool for early detection of hypercoagulable state in transfusion-dependent-β-thalassemia patients, which can help to prevent TEE and the critical consequent-complications.
Collapse
Affiliation(s)
- Touchwin Petiwathayakorn
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Narisara Paradee
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Sasinee Hantrakool
- Division
of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ungkarn Jarujareet
- NECTEC, National
Science and Technology Development Agency
(NSTDA), 111 Thailand
Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Thanapong Intharah
- Visual
Intelligence Laboratory, Department of Statistics, Faculty of Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somdet Srichairatanakool
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Pimpisid Koonyosying
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Han K, Ma S, Sun J, Xu M, Qi X, Wang S, Li L, Li X. In silico modeling of patient-specific blood rheology in type 2 diabetes mellitus. Biophys J 2023; 122:1445-1458. [PMID: 36905122 PMCID: PMC10147843 DOI: 10.1016/j.bpj.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/16/2022] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Increased blood viscosity in type 2 diabetes mellitus (T2DM) is a risk factor for the development of insulin resistance and diabetes-related vascular complications; however, individuals with T2DM exhibit heterogeneous hemorheological properties, including cell deformation and aggregation. Using a multiscale red blood cell (RBC) model with key parameters derived from patient-specific data, we present a computational study of the rheological properties of blood from individual patients with T2DM. Specifically, one key model parameter, which determines the shear stiffness of the RBC membrane (μ) is informed by the high-shear-rate blood viscosity of patients with T2DM. At the same time, the other, which contributes to the strength of the RBC aggregation interaction (D0), is derived from the low-shear-rate blood viscosity of patients with T2DM. The T2DM RBC suspensions are simulated at different shear rates, and the predicted blood viscosity is compared with clinical laboratory-measured data. The results show that the blood viscosity obtained from clinical laboratories and computational simulations are in agreement at both low and high shear rates. These quantitative simulation results demonstrate that the patient-specific model has truly learned the rheological behavior of T2DM blood by unifying the mechanical and aggregation factors of the RBCs, which provides an effective way to extract quantitative predictions of the rheological properties of the blood of individual patients with T2DM.
Collapse
Affiliation(s)
- Keqin Han
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Shuhao Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Jiehui Sun
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Xiaojing Qi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China.
| | - Xuejin Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Engineering Mechanics, and Center for X-Mechanics, Zhejiang University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Qiang Y, Sissoko A, Liu ZL, Dong T, Zheng F, Kong F, Higgins JM, Karniadakis GE, Buffet PA, Suresh S, Dao M. Microfluidic study of retention and elimination of abnormal red blood cells by human spleen with implications for sickle cell disease. Proc Natl Acad Sci U S A 2023; 120:e2217607120. [PMID: 36730189 PMCID: PMC9963977 DOI: 10.1073/pnas.2217607120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 02/03/2023] Open
Abstract
The spleen clears altered red blood cells (RBCs) from circulation, contributing to the balance between RBC formation (erythropoiesis) and removal. The splenic RBC retention and elimination occur predominantly in open circulation where RBCs flow through macrophages and inter-endothelial slits (IESs). The mechanisms underlying and interconnecting these processes significantly impact clinical outcomes. In sickle cell disease (SCD), blockage of intrasplenic sickled RBCs is observed in infants splenectomized due to acute splenic sequestration crisis (ASSC). This life-threatening RBC pooling and organ swelling event is plausibly triggered or enhanced by intra-tissular hypoxia. We present an oxygen-mediated spleen-on-a-chip platform for in vitro investigations of the homeostatic balance in the spleen. To demonstrate and validate the benefits of this general microfluidic platform, we focus on SCD and study the effects of hypoxia on splenic RBC retention and elimination. We observe that RBC retention by IESs and RBC-macrophage adhesion are faster in blood samples from SCD patients than those from healthy subjects. This difference is markedly exacerbated under hypoxia. Moreover, the sickled RBCs under hypoxia show distinctly different phagocytosis processes from those non-sickled RBCs under hypoxia or normoxia. We find that reoxygenation significantly alleviates RBC retention at IESs, and leads to rapid unsickling and fragmentation of the ingested sickled RBCs inside macrophages. These results provide unique mechanistic insights into how the spleen maintains its homeostatic balance between splenic RBC retention and elimination, and shed light on how disruptions in this balance could lead to anemia, splenomegaly, and ASSC in SCD and possible clinical manifestations in other hematologic diseases.
Collapse
Affiliation(s)
- Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Abdoulaye Sissoko
- Université Paris Cité, INSERM, Biologie Intégrée du Globule Rouge,75015Paris, France
- Université des Antilles, Biologie Intégrée du Globule Rouge,75015Paris, France
- Laboratoire d'Excellence du Globule Rouge,75015Paris, France
| | - Zixiang L. Liu
- Division of Applied Mathematics, Brown University, Providence, RI02912
| | - Ting Dong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Fuyin Zheng
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- School of Biological Sciences, Nanyang Technological University,639798Singapore, Singapore
| | - Fang Kong
- School of Biological Sciences, Nanyang Technological University,639798Singapore, Singapore
| | - John M. Higgins
- Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | | | - Pierre A. Buffet
- Université Paris Cité, INSERM, Biologie Intégrée du Globule Rouge,75015Paris, France
- Université des Antilles, Biologie Intégrée du Globule Rouge,75015Paris, France
- Laboratoire d'Excellence du Globule Rouge,75015Paris, France
| | - Subra Suresh
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Nanyang Technological University,639798Singapore, Singapore
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- School of Biological Sciences, Nanyang Technological University,639798Singapore, Singapore
| |
Collapse
|
6
|
Palomarez A, Jha M, Medina Romero X, Horton RE. Cardiovascular consequences of sickle cell disease. BIOPHYSICS REVIEWS 2022; 3:031302. [PMID: 38505276 PMCID: PMC10903381 DOI: 10.1063/5.0094650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 03/21/2024]
Abstract
Sickle cell disease (SCD) is an inherited blood disorder caused by a single point mutation within the beta globin gene. As a result of this mutation, hemoglobin polymerizes under low oxygen conditions causing red blood cells to deform, become more adhesive, and increase in rigidity, which affects blood flow dynamics. This process leads to enhanced red blood cell interactions with the endothelium and contributes to vaso-occlusion formation. Although traditionally defined as a red blood cell disorder, individuals with SCD are affected by numerous clinical consequences including stroke, painful crisis episodes, bone infarctions, and several organ-specific complications. Elevated cardiac output, endothelium activation along with the sickling process, and the vaso-occlusion events pose strains on the cardiovascular system. We will present a review of the cardiovascular consequences of sickle cell disease and show connections with the vasculopathy related to SCD. We will also highlight biophysical properties and engineering tools that have been used to characterize the disease. Finally, we will discuss therapies for SCD and potential implications on SCD cardiomyopathy.
Collapse
Affiliation(s)
- Alexis Palomarez
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| | - Manisha Jha
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| | - Ximena Medina Romero
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| | - Renita E. Horton
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
7
|
Microfluidic Microcirculation Mimetic as a Tool for the Study of Rheological Characteristics of Red Blood Cells in Patients with Sickle Cell Anemia. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sickle cell disorder (SCD) is a multisystem disease with heterogeneous phenotypes. Although all patients have the mutated hemoglobin (Hb) in the SS phenotype, the severity and frequency of complications are variable. When exposed to low oxygen tension, the Hb molecule becomes dense and forms tactoids, which lead to the peculiar sickled shapes of the affected red blood cells, giving the disorder its name. This sickle cell morphology is responsible for the profound and widespread pathologies associated with this disorder, such as vaso-occlusive crisis (VOC). How much of the clinical manifestation is due to sickled erythrocytes and what is due to the relative contributions of other elements in the blood, especially in the microcapillary circulation, is usually not visualized and quantified for each patient during clinical management. Here, we used a microfluidic microcirculation mimetic (MMM), which has 187 capillary-like constrictions, to impose deformations on erythrocytes of 25 SCD patients, visualizing and characterizing the morpho-rheological properties of the cells in normoxic, hypoxic (using sodium meta-bisulfite) and treatment conditions (using hydroxyurea). The MMM enabled a patient-specific quantification of shape descriptors (circularity and roundness) and transit time through the capillary constrictions, which are readouts for morpho-rheological properties implicated in VOC. Transit times varied significantly (p < 0.001) between patients. Our results demonstrate the feasibility of microfluidics-based monitoring of individual patients for personalized care in the context of SCD complications such as VOC, even in resource-constrained settings.
Collapse
|
8
|
Kanne CK, Nebor D, Pochron M, Oksenberg D, Sheehan VA. Rheological Impact of GBT1118 Cessation in a Sickle Mouse Model. Front Physiol 2021; 12:742784. [PMID: 34630162 PMCID: PMC8497897 DOI: 10.3389/fphys.2021.742784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
In sickle cell disease (SCD), higher whole blood viscosity is a risk factor for vaso-occlusive crisis, avascular necrosis, and proliferative retinopathy. Blood viscosity is strongly impacted by hemoglobin (Hb) levels and red blood cell (RBC) deformability. Voxelotor is a hemoglobin S (HbS) polymerization inhibitor with anti-sickling properties that increases the Hb affinity for oxygen, thereby reducing HbS polymerization. In clinical trials, voxelotor increased Hb by an average of 1g/dl, creating concern that this rise in Hb could increase viscosity, particularly when the drug was cleared. To investigate this potential rebound hyperviscosity effect, we treated SCD mice with GBT1118, a voxelotor analog, and stopped the treatment to determine the effect on blood viscosity and RBC deformability under a range of oxygen concentrations. GBT1118 treatment increased Hb, improved RBC deformability by increasing the elongation index under normoxic (EImax) and hypoxic conditions (EImin), and decreased the point of sickling (PoS) without increasing blood viscosity. The anti-sickling effects and improvement of RBC deformability balanced the effect of increased Hb such that there was no increase in blood viscosity. Forty-eight hours after ceasing GBT1118, Hb declined from the rise induced by treatment, viscosity did not increase, and EImin remained elevated compared to control animals. Hb and PoS were not different from control animals, suggesting a return to native oxygen affinity and clearance of the drug. RBC deformability did not return to baseline, suggesting some residual rheological improvement. These data suggest that concerns regarding viscosity rise above pre-treatment levels upon sudden cessation of voxelotor are not warranted.
Collapse
Affiliation(s)
- Celeste K. Kanne
- Aflac Cancer & Blood Disorders Center Children’s Healthcare of Atlanta, School of Medicine, Emory University, Atlanta, GA, United States
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, United States
| | - Danitza Nebor
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, United States
| | - Mira Pochron
- Global Blood Therapeutics, South, San Francisco, CA, United States
| | - Donna Oksenberg
- Global Blood Therapeutics, South, San Francisco, CA, United States
| | - Vivien A. Sheehan
- Aflac Cancer & Blood Disorders Center Children’s Healthcare of Atlanta, School of Medicine, Emory University, Atlanta, GA, United States
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
9
|
Dieujuste D, Qiang Y, Du E. A portable impedance microflow cytometer for measuring cellular response to hypoxia. Biotechnol Bioeng 2021; 118:4041-4051. [PMID: 34232511 DOI: 10.1002/bit.27879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 01/02/2023]
Abstract
This article presents the development and testing of a low-cost (<$60), portable, electrical impedance-based microflow cytometer for single-cell analysis under a controlled oxygen microenvironment. The system is based on an AD5933 impedance analyzer chip, a microfluidic chip, and an Arduino microcontroller operated by a custom Android application. A representative case study on human red blood cells (RBCs) affected by sickle cell disease is conducted to demonstrate the capability of the cytometry system. Impedance values of sickle blood samples exhibit remarkable deviations from the common reference line obtained from two normal blood samples. Such deviation is quantified by a conformity score, which allows for the measurement of intrapatient and interpatient variations of sickle cell disease. A low conformity score under oxygenated conditions or drastically different conformity scores between oxygenated and deoxygenated conditions can be used to differentiate a sickle blood sample from normal. Furthermore, an equivalent circuit model of a suspended biological cell is used to interpret the electrical impedance of single flowing RBCs. In response to hypoxia treatment, all samples, regardless of disease state, exhibit significant changes in at least one single-cell electrical property, that is, cytoplasmic resistance and membrane capacitance. The overall response to hypoxia is less in normal cells than those affected by sickle cell disease, where the change in membrane capacitance varies from -23% to seven times as compared with -17% in normal cells. The results reported in this article suggest that the developed method of testing demonstrates the potential application for a low-cost screening technique for sickle cell disease and other diseases in the field and low-resource settings. The developed system and methodology can be extended to analyze cellular response to hypoxia in other cell types.
Collapse
Affiliation(s)
- Darryl Dieujuste
- Department of Ocean and Mechanical Engineering, and the Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Yuhao Qiang
- Department of Ocean and Mechanical Engineering, and the Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - E Du
- Department of Ocean and Mechanical Engineering, and the Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
10
|
Yasara N, Premawardhena A, Mettananda S. A comprehensive review of hydroxyurea for β-haemoglobinopathies: the role revisited during COVID-19 pandemic. Orphanet J Rare Dis 2021; 16:114. [PMID: 33648529 PMCID: PMC7919989 DOI: 10.1186/s13023-021-01757-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Hydroxyurea is one of the earliest drugs that showed promise in the management of haemoglobinopathies that include β-thalassaemia and sickle cell disease. Despite this, many aspects of hydroxyurea are either unknown or understudied; specifically, its usefulness in β-thalassaemia major and haemoglobin E β-thalassaemia is unclear. However, during COVID-19 pandemic, it has become a valuable adjunct to transfusion therapy in patients with β-haemoglobinopathies. In this review, we aim to explore the available in vitro and in vivo mechanistic data and the clinical utility of hydroxyurea in β-haemoglobinopathies with a special emphasis on its usefulness during the COVID-19 pandemic. Main body Hydroxyurea is an S-phase-specific drug that reversibly inhibits ribonucleoside diphosphate reductase enzyme which catalyses an essential step in the DNA biosynthesis. In human erythroid cells, it induces the expression of γ-globin, a fetal globin gene that is suppressed after birth. Through several molecular pathways described in this review, hydroxyurea exerts many favourable effects on the haemoglobin content, red blood cell indices, ineffective erythropoiesis, and blood rheology in patients with β-haemoglobinopathies. Currently, it is recommended for sickle cell disease and non-transfusion dependent β-thalassaemia. A number of clinical trials are ongoing to evaluate its usefulness in transfusion dependent β-thalassaemia. During the COVID-19 pandemic, it was widely used as an adjunct to transfusion therapy due to limitations in the availability of blood and logistical disturbances. Thus, it has become clear that hydroxyurea could play a remarkable role in reducing transfusion requirements of patients with haemoglobinopathies, especially when donor blood is a limited resource. Conclusion Hydroxyurea is a well-tolerated oral drug which has been in use for many decades. Through its actions of reversible inhibition of ribonucleoside diphosphate reductase enzyme and fetal haemoglobin induction, it exerts many favourable effects on patients with β-haemoglobinopathies. It is currently approved for the treatment of sickle cell disease and non-transfusion dependent β-thalassaemia. Also, there are various observations to suggest that hydroxyurea is an important adjunct in the treatment of transfusion dependent β-thalassaemia which should be confirmed by randomised clinical trials.
Collapse
Affiliation(s)
- Nirmani Yasara
- Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Thalagolla Road, Ragama, 11010, Sri Lanka
| | - Anuja Premawardhena
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka.,Colombo North Teaching Hospital, Ragama, Sri Lanka
| | - Sachith Mettananda
- Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Thalagolla Road, Ragama, 11010, Sri Lanka. .,Colombo North Teaching Hospital, Ragama, Sri Lanka.
| |
Collapse
|
11
|
Man Y, Kucukal E, An R, Bode A, Little JA, Gurkan UA. Standardized microfluidic assessment of red blood cell-mediated microcapillary occlusion: Association with clinical phenotype and hydroxyurea responsiveness in sickle cell disease. Microcirculation 2021; 28:e12662. [PMID: 33025653 DOI: 10.1111/micc.12662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVES We present a standardized in vitro microfluidic assay and Occlusion Index (OI) for the assessment of red blood cell (RBC)-mediated microcapillary occlusion and its clinical associations in sickle cell disease (SCD). METHODS Red blood cell mediated microcapillary occlusion represented by OI and its clinical associations were assessed for seven subjects with hemoglobin-SC disease (HbSC), 18 subjects with homozygous SCD (HbSS), and five control individuals (HbAA). RESULTS We identified two sub-populations with HbSS based on the OI distribution. HbSS subjects with relatively higher OIs had significantly lower hemoglobin levels, lower fetal hemoglobin (HbF) levels, and lower mean corpuscular volume (MCV), but significantly higher serum lactate dehydrogenase levels and absolute reticulocyte counts, compared to subjects with HbSS and lower OIs. HbSS subjects who had relatively higher OIs were more likely to have had a concomitant diagnosis of intrapulmonary shunting (IPS). Further, lower OI associated with hydroxyurea (HU) responsiveness in subjects with HbSS, as evidenced by significantly elevated HbF levels and MCV. CONCLUSIONS We demonstrated that RBC-mediated microcapillary occlusion and OI associated with subject clinical phenotype and HU responsiveness in SCD. The presented standardized microfluidic assay may be useful for evaluating clinical phenotype and assessing therapeutic outcomes in SCD, including emerging targeted and curative treatments that aim to improve RBC deformability and microcirculatory health.
Collapse
Affiliation(s)
- Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Allison Bode
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.,Division of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jane A Little
- Division of Hematology and Oncology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
Blakely IP, Horton RE. A microfluidic computational fluid dynamics model for cellular interaction studies of sickle cell disease vaso-occlusions. Microvasc Res 2020; 132:104052. [PMID: 32768462 DOI: 10.1016/j.mvr.2020.104052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 11/27/2022]
Abstract
Individuals with sickle cell disease are plagued with vaso-occlusions, chronic blockages within the vasculature. Several factors including stiffer sickle red blood cells and increased cell aggregation contribute to vaso-occlusion formation; however much remains to be understood. We present a computational fluid dynamics blood flow simulation within a microfluidic platform using the Carreau model and Murray's law. Vaso-occlusions form preferentially near bifurcations within 60 s in the sickle cell disease simulation. Velocity profiles and shear rates align with clinical and experimental reports. We assert that results from this study can be utilized to inform experimental investigations and microfluidic system design decisions.
Collapse
Affiliation(s)
- Ian P Blakely
- Agricultural and Biological Engineering, College of Arts and Life Sciences, James Worth Bagley College of Engineering, Mississippi State University, United States of America
| | - Renita E Horton
- Biomedical Engineering Department, Cullen College of Engineering, University of Houston, United States of America.
| |
Collapse
|
13
|
Ames J, Puleri DF, Balogh P, Gounley J, Draeger EW, Randles A. Multi-GPU Immersed Boundary Method Hemodynamics Simulations. JOURNAL OF COMPUTATIONAL SCIENCE 2020; 44:101153. [PMID: 32754287 PMCID: PMC7402620 DOI: 10.1016/j.jocs.2020.101153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Large-scale simulations of blood flow that resolve the 3D deformation of each comprising cell are increasingly popular owing to algorithmic developments in conjunction with advances in compute capability. Among different approaches for modeling cell-resolved hemodynamics, fluid structure interaction (FSI) algorithms based on the immersed boundary method are frequently employed for coupling separate solvers for the background fluid and the cells within one framework. GPUs can accelerate these simulations; however, both current pre-exascale and future exascale CPU-GPU heterogeneous systems face communication challenges critical to performance and scalability. We describe, to our knowledge, the largest distributed GPU-accelerated FSI simulations of high hematocrit cell-resolved flows with over 17 million red blood cells. We compare scaling on a fat node system with six GPUs per node and on a system with a single GPU per node. Through comparison between the CPU- and GPU-based implementations, we identify the costs of data movement in multiscale multi-grid FSI simulations on heterogeneous systems and show it to be the greatest performance bottleneck on the GPU.
Collapse
Affiliation(s)
- Jeff Ames
- Department of Computer Science, Duke University, Durham, NC USA
| | - Daniel F Puleri
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Peter Balogh
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - John Gounley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Erik W Draeger
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| |
Collapse
|
14
|
Issom DZ, Henriksen A, Woldaregay AZ, Rochat J, Lovis C, Hartvigsen G. Factors Influencing Motivation and Engagement in Mobile Health Among Patients With Sickle Cell Disease in Low-Prevalence, High-Income Countries: Qualitative Exploration of Patient Requirements. JMIR Hum Factors 2020; 7:e14599. [PMID: 32207692 PMCID: PMC7139429 DOI: 10.2196/14599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 12/29/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Background Sickle cell disease (SCD) is a hematological genetic disease affecting over 25 million people worldwide. The main clinical manifestations of SCD, hemolytic anemia and vaso-occlusion, lead to chronic pain and organ damages. With recent advances in childhood care, high-income countries have seen SCD drift from a disease of early childhood mortality to a neglected chronic disease of adulthood. In particular, coordinated, preventive, and comprehensive care for adults with SCD is largely underresourced. Consequently, patients are left to self-manage. Mobile health (mHealth) apps for chronic disease self-management are now flooding app stores. However, evidence remains unclear about their effectiveness, and the literature indicates low user engagement and poor adoption rates. Finally, few apps have been developed for people with SCD and none encompasses their numerous and complex self-care management needs. Objective This study aimed to identify factors that may influence the long-term engagement and user adoption of mHealth among the particularly isolated community of adult patients with SCD living in low-prevalence, high-income countries. Methods Semistructured interviews were conducted. Interviews were audiotaped, transcribed verbatim, and analyzed using thematic analysis. Analysis was informed by the Braun and Clarke framework and mapped to the COM-B model (capability, opportunity, motivation, and behavior). Results were classified into high-level functional requirements (FRs) and nonfunctional requirements (NFRs) to guide the development of future mHealth interventions. Results Overall, 6 males and 4 females were interviewed (aged between 21 and 55 years). Thirty FRs and 31 NFRs were extracted from the analysis. Most participants (8/10) were concerned about increasing their physical capabilities being able to stop pain symptoms quickly. Regarding the psychological capability aspects, all interviewees desired to receive trustworthy feedback on their self-care management practices. About their physical opportunities, most (7/10) expressed a strong desire to receive alerts when they would reach their own physiological limitations (ie, during physical activity). Concerning social opportunity, most (9/10) reported wanting to learn about the self-care practices of other patients. Relating to motivational aspects, many interviewees (6/10) stressed their need to learn how to avoid the symptoms and live as normal a life as possible. Finally, NFRs included inconspicuousness and customizability of user experience, automatic data collection, data shareability, and data privacy. Conclusions Our findings suggest that motivation and engagement with mHealth technologies among the studied population could be increased by providing features that clearly benefit them. Self-management support and self-care decision aid are patients’ major demands. As the complexity of SCD self-management requires a high cognitive load, pervasive health technologies such as wearable sensors, implantable devices, or inconspicuous conversational user interfaces should be explored to ease it. Some of the required technologies already exist but must be integrated, bundled, adapted, or improved to meet the specific needs of people with SCD.
Collapse
Affiliation(s)
- David-Zacharie Issom
- Division of Medical Information Sciences, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - André Henriksen
- Department of Community Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | - Jessica Rochat
- Division of Medical Information Sciences, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Lovis
- Division of Medical Information Sciences, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gunnar Hartvigsen
- Department of Computer Science, UiT - The Arctic University of Norway, Norway, Tromsø, Norway
| |
Collapse
|
15
|
Lu M, Rab MA, Shevkoplyas SS, Sheehan VA. Blood rheology biomarkers in sickle cell disease. Exp Biol Med (Maywood) 2020; 245:155-165. [PMID: 31948290 DOI: 10.1177/1535370219900494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sickle cell disease (SCD) is the most common inherited blood disorder, affecting approximately 100,000 patients in the U.S. and millions more worldwide. Patients with SCD experience a wide range of clinical complications, including frequent pain crises, stroke, and early mortality, all originating from a single-point mutation in the β-globin subunit. The RBC changes resulting from the sickle mutation lead to a host of rheological abnormalities that diminish microvascular blood flow, and produce severe anemia due to RBC hemolysis, and ischemia from vaso-occlusion initiated by sticky, rigid sickle RBCs. While the pathophysiology and mechanisms of SCD have been investigated for many years, therapies to treat the disease are limited. In addition to RBC transfusion, there are only two US Food and Drug Administration (FDA)-approved drugs to ameliorate SCD complications: hydroxyurea (HU) and L-glutamine (Endari™). The only curative therapy currently available is allogeneic hematopoietic stem cell transplantation (HSCT), which is generally reserved for individuals with a matched related donor, comprising only 10–15% of the total SCD population. Potentially curative advanced gene therapy approaches for SCD are under investigation in ongoing clinical trials. The ultimate goal of any curative treatment should be to repair the hemorheological abnormalities caused by SCD, and thus normalize blood flow and prevent clinical complications. Our mini-review highlights a set of key hemorheological biomarkers (and the current and emerging technologies used to measure them) that may be used to guide the development of novel curative and palliative therapies for SCD, and functionally assess outcomes. Impact statement Severe impairment of blood rheology is the hallmark of SCD pathophysiology, and one of the key factors predisposing SCD patients to pain crises, organ damage, and early mortality. As novel therapies emerge to treat or cure SCD, it is crucial that these treatments are functionally evaluated for their effect on blood rheology. This review describes a comprehensive panel of rheological biomarkers, their clinical uses, and the technologies used to obtain them. The described technologies can produce highly sensitive measurements of the ability of current treatments to improve blood rheology of SCD patients. The goal of curative therapies should be to achieve blood rheology biomarkers measurements in the range of sickle cell trait individuals (HbAS). The use of the panel of rheological biomarkers proposed in this review could significantly accelerate the development, optimization, and clinical translation of novel therapies for SCD.
Collapse
Affiliation(s)
- Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Minke Ae Rab
- Laboratory of Clinical Chemistry & Hematology, University Medical Center Utrecht, Utrecht University, Utrecht 3584, The Netherlands
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Vivien A Sheehan
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
Goktas P, Sukharevsky IO, Larkin S, Kuypers FA, Yalcin O, Altintas A. Image‐Based Flow Cytometry and Angle‐Resolved Light Scattering to Define the Sickling Process. Cytometry A 2019; 95:488-498. [DOI: 10.1002/cyto.a.23756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Polat Goktas
- Department of Electrical and Electronics EngineeringBilkent University Ankara 06800 Turkey
- Department of Physiology, School of MedicineKoc University Istanbul 34450 Turkey
| | - Ilya O. Sukharevsky
- Department of Electrical and Computer Engineering, Chair of High‐Frequency EngineeringTechnical University of Munich Munich 80333 Germany
| | - Sandra Larkin
- Children's Hospital Oakland Research Institute Oakland California, 94609
| | - Frans A. Kuypers
- Children's Hospital Oakland Research Institute Oakland California, 94609
| | - Ozlem Yalcin
- Department of Physiology, School of MedicineKoc University Istanbul 34450 Turkey
| | - Ayhan Altintas
- Department of Electrical and Electronics EngineeringBilkent University Ankara 06800 Turkey
| |
Collapse
|
17
|
Takeishi N, Ito H, Kaneko M, Wada S. Deformation of a Red Blood Cell in a Narrow Rectangular Microchannel. MICROMACHINES 2019; 10:E199. [PMID: 30901883 PMCID: PMC6470855 DOI: 10.3390/mi10030199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 01/14/2023]
Abstract
The deformability of a red blood cell (RBC) is one of the most important biological parameters affecting blood flow, both in large arteries and in the microcirculation, and hence it can be used to quantify the cell state. Despite numerous studies on the mechanical properties of RBCs, including cell rigidity, much is still unknown about the relationship between deformability and the configuration of flowing cells, especially in a confined rectangular channel. Recent computer simulation techniques have successfully been used to investigate the detailed behavior of RBCs in a channel, but the dynamics of a translating RBC in a narrow rectangular microchannel have not yet been fully understood. In this study, we numerically investigated the behavior of RBCs flowing at different velocities in a narrow rectangular microchannel that mimicked a microfluidic device. The problem is characterized by the capillary number C a , which is the ratio between the fluid viscous force and the membrane elastic force. We found that confined RBCs in a narrow rectangular microchannel maintained a nearly unchanged biconcave shape at low C a , then assumed an asymmetrical slipper shape at moderate C a , and finally attained a symmetrical parachute shape at high C a . Once a RBC deformed into one of these shapes, it was maintained as the final stable configurations. Since the slipper shape was only found at moderate C a , measuring configurations of flowing cells will be helpful to quantify the cell state.
Collapse
Affiliation(s)
- Naoki Takeishi
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Hiroaki Ito
- Department of Mechanical Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
| | - Makoto Kaneko
- Department of Mechanical Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Shigeo Wada
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
18
|
Du E, Dao M. Faster Sickling Kinetics and Sickle Cell Shape Evolution during Repeated Deoxygenation and Oxygenation Cycles. EXPERIMENTAL MECHANICS 2019; 59:319-325. [PMID: 31178599 PMCID: PMC6550470 DOI: 10.1007/s11340-018-00444-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/22/2018] [Indexed: 05/24/2023]
Abstract
Kinetics of cell sickling and morphological change have been recognized as important parameters that are correlated closely with altered blood rheology and vasoocclusion in microcirculation. A microfluidic transient hypoxia assay was developed to create repeated hypoxia-normoxia cycles for real time observation of repetitive sickling and unsickling of freely suspended red blood cells (RBCs) from sickle cell disease patients. Cell sickling behavior and kinetics were found to be influenced by its previous sickling-unsickling processes accumulatively, where those sickled RBCs that had a history of sickling in a previous hypoxia cycle would sickle again in subsequent hypoxia/sickling cycles and the collective sickling kinetics became progressively faster (with reduced delay time and higher sickled fraction versus deoxygenation time). Individual sickled RBCs would sickle into drastically different shapes randomly in subsequent hypoxia/sickling cycles, however, the collective shape distribution retained similar characteristics. These observations indicate a gradual worsening trend in sickling kinetics over repeated hypoxia cycles, as well as a relatively stable collective shape characteristics within a limited number of hypoxia-normoxia cycles.
Collapse
Affiliation(s)
- E Du
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431
| | - M Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
19
|
Immersed Boundary Method Halo Exchange in a Hemodynamics Application. LECTURE NOTES IN COMPUTER SCIENCE 2019. [DOI: 10.1007/978-3-030-22734-0_32] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Deng Y, Papageorgiou DP, Chang HY, Abidi SZ, Li X, Dao M, Karniadakis GE. Quantifying Shear-Induced Deformation and Detachment of Individual Adherent Sickle Red Blood Cells. Biophys J 2018; 116:360-371. [PMID: 30612714 DOI: 10.1016/j.bpj.2018.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 02/02/2023] Open
Abstract
Vaso-occlusive crisis, a common painful complication of sickle cell disease, is a complex process triggered by intercellular adhesive interactions among blood cells and the endothelium in all human organs (e.g., the oxygen-rich lung as well as hypoxic systems such as liver and kidneys). We present a combined experimental-computational study to quantify the adhesive characteristics of sickle mature erythrocytes (SMEs) and irreversibly sickled cells (ISCs) under flow conditions mimicking those in postcapillary venules. We employed an in vitro microfluidic cell adherence assay, which is coated uniformly with fibronectin. We investigated the adhesion dynamics of SMEs and ISCs in pulsatile flow under well-controlled hypoxic conditions, inferring the cell adhesion strength by increasing the flow rate (or wall shear stress (WSS)) until the onset of cell detachment. In parallel, we performed simulations of individual SMEs and ISCs under shear. We introduced two metrics to quantify the adhesion process, the cell aspect ratio (AR) as a function of WSS and its rate of change (the dynamic deformability index). We found that the AR of SMEs decreases significantly with the increase of WSS, consistent between the experiments and simulations. In contrast, the AR of ISCs remains constant in time and independent of the flow rate. The critical WSS value for detaching a single SME in oxygenated state is in the range of 3.9-5.5 Pa depending on the number of adhesion sites; the critical WSS value for ISCs is lower than that of SMEs. Our simulations show that the critical WSS value for SMEs in deoxygenated state is above 6.2 Pa (multiple adhesion sites), which is greater than their oxygenated counterparts. We investigated the effect of cell shear modulus on the detachment process; we found that for the same cell adhesion spring constant, the higher shear modulus leads to an earlier cell detachment from the functionalized surface. These findings may aid in the understanding of individual roles of sickle cell types in sickle cell disease vaso-occlusion.
Collapse
Affiliation(s)
- Yixiang Deng
- Division of Applied Mathematics, Brown University, Providence, Rhode Island; School of Engineering, Brown University, Providence, Rhode Island
| | - Dimitrios P Papageorgiou
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - Sabia Z Abidi
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Bioengineering, Rice University, Houston, Texas
| | - Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island; Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China.
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | |
Collapse
|
21
|
Hosseinzadeh VA, Brugnara C, Holt RG. Shape oscillations of single blood drops: applications to human blood and sickle cell disease. Sci Rep 2018; 8:16794. [PMID: 30429489 PMCID: PMC6235873 DOI: 10.1038/s41598-018-34600-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/09/2018] [Indexed: 11/09/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited blood disorder associated with severe anemia, vessel occlusion, poor oxygen transport and organ failure. The presence of stiff and often sickle-shaped red blood cells is the hallmark of SCD and is believed to contribute to impaired blood rheology and organ damage. Most existing measurement techniques of blood and red blood cell physical properties require sample contact and/or large sample volume, which is problematic for pediatric patients. Acoustic levitation allows rheological measurements in a single drop of blood, simultaneously eliminating the need for both contact containment and manipulation of samples. The technique shows that the shape oscillation of blood drops is able to assess blood viscosity in normal and SCD blood and demonstrates an abnormally increased viscosity in SCD when compared with normal controls. Furthermore, the technique is sensitive enough to detect viscosity changes induced by hydroxyurea treatment, and their dependence on the total fetal hemoglobin content of the sample. Thus this technique may hold promise as a monitoring tool for assessing changes in blood rheology in sickle cell and other hematological diseases.
Collapse
Affiliation(s)
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - R Glynn Holt
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
22
|
Dufu K, Patel M, Oksenberg D, Cabrales P. GBT440 improves red blood cell deformability and reduces viscosity of sickle cell blood under deoxygenated conditions. Clin Hemorheol Microcirc 2018; 70:95-105. [PMID: 29660913 DOI: 10.3233/ch-170340] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND In sickle cell disease (SCD), polymerization of hemoglobin S (HbS) leads to the formation of rigid, non-deformable sickled RBCs. Loss of RBC deformability, sickling and irreversible membrane damage causes abnormal blood rheology, and increases viscosity which contributes to vasoocclusion and other SCD pathophysiology. GBT440 (generic name voxelotor) is a novel anti-polymerization and anti-sickling agent currently undergoing clinical evaluation for the treatment of SCD. OBJECTIVE The purpose of this study was to determine the effects of GBT440 on deformability of sickle RBCs (SS RBCs) and the hyperviscosity of sickle cell blood (SS blood). METHODS The mechanical and rheological properties of GBT440-treated SS RBCs were measured using micropipette and filtration techniques. The viscosity of sickle blood was measured using a Wells-Brookfield cone/plate viscometer. RESULTS GBT440 restored movement of deoxygenated SS RBCs through a gel filtration column and reduced the pressure required to pass SS RBCs through a polycarbonate filter. Moreover, GBT440 decreased the membrane shear elastic modulus of SS RBCs assessed via micropipette aspiration and reduced the hyperviscosity of SS blood under deoxygenated conditions. CONCLUSIONS GBT440 maintains SS RBC deformability and improves SS blood viscosity by inhibiting HbS polymerization under deoxygenated conditions. These results further support development of GBT440 as a disease-modifying agent in SCD patients.
Collapse
Affiliation(s)
- Kobina Dufu
- Global Blood Therapeutics Inc., South San Francisco, CA, USA
| | - Mira Patel
- Global Blood Therapeutics Inc., South San Francisco, CA, USA
| | - Donna Oksenberg
- Global Blood Therapeutics Inc., South San Francisco, CA, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
23
|
Li H, Papageorgiou DP, Chang HY, Lu L, Yang J, Deng Y. Synergistic Integration of Laboratory and Numerical Approaches in Studies of the Biomechanics of Diseased Red Blood Cells. BIOSENSORS 2018; 8:E76. [PMID: 30103419 PMCID: PMC6164935 DOI: 10.3390/bios8030076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022]
Abstract
In red blood cell (RBC) disorders, such as sickle cell disease, hereditary spherocytosis, and diabetes, alterations to the size and shape of RBCs due to either mutations of RBC proteins or changes to the extracellular environment, lead to compromised cell deformability, impaired cell stability, and increased propensity to aggregate. Numerous laboratory approaches have been implemented to elucidate the pathogenesis of RBC disorders. Concurrently, computational RBC models have been developed to simulate the dynamics of RBCs under physiological and pathological conditions. In this work, we review recent laboratory and computational studies of disordered RBCs. Distinguished from previous reviews, we emphasize how experimental techniques and computational modeling can be synergically integrated to improve the understanding of the pathophysiology of hematological disorders.
Collapse
Affiliation(s)
- He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Dimitrios P Papageorgiou
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Lu Lu
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Jun Yang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Yixiang Deng
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
- School of Engineering, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
24
|
Modeling erythrocyte electrodeformation in response to amplitude modulated electric waveforms. Sci Rep 2018; 8:10224. [PMID: 29976935 PMCID: PMC6033869 DOI: 10.1038/s41598-018-28503-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/18/2018] [Indexed: 01/18/2023] Open
Abstract
We present a comprehensive theoretical-experimental framework for quantitative, high-throughput study of cell biomechanics. An improved electrodeformation method has been developed by combing dielectrophoresis and amplitude shift keying, a form of amplitude modulation. This method offers a potential to fully control the magnitude and rate of deformation in cell membranes. In healthy human red blood cells, nonlinear viscoelasticity of cell membranes is obtained through variable amplitude load testing. A mathematical model to predict cellular deformations is validated using the experimental results of healthy human red blood cells subjected to various types of loading. These results demonstrate new capabilities of the electrodeformation technique and the validated mathematical model to explore the effects of different loading configurations on the cellular mechanical behavior. This gives it more advantages over existing methods and can be further developed to study the effects of strain rate and loading waveform on the mechanical properties of biological cells in health and disease.
Collapse
|
25
|
Abstract
Non-adherence and deformability are the key intrinsic biomechanical features of the red blood cell (RBC), which allow it to tightly squeeze and pass through even the narrowest of microcirculatory networks. Blockage of microcirculatory flow, also known as vaso-occlusion, is a consequence of abnormal cellular adhesion to the vascular endothelium. In sickle cell disease (SCD), an inherited anaemia, even though RBCs have been shown to be heterogeneous in adhesiveness and deformability, this has not been studied in the context of physiologically relevant dynamic shear gradients at the microscale. We developed a microfluidic system that simulates physiologically relevant shear gradients of microcirculatory blood flow at a constant single volumetric flow rate. Using this system, shear dependent adhesion of RBCs from 28 subjects with SCD and from 11 healthy subjects was investigated using vascular endothelial protein functionalized microchannels. We defined a new term, RBC Shear Gradient Microfluidic Adhesion (SiGMA) index to assess shear dependent RBC adhesion in a subject-specific manner. We have shown for the first time that shear dependent adhesion of RBCs is heterogeneous in a microfluidic flow model, which correlates clinically with inflammatory markers and iron overload in subjects with SCD. This study reveals the complex dynamic interactions between RBC-mediated microcirculatory occlusion and clinical outcomes in SCD. These interactions may also be relevant to other microcirculatory disorders and microvascular diseases.
Collapse
Affiliation(s)
- Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Glennan 616B, 10900 Euclid Ave., Cleveland, OH, USA.
| | - Jane A Little
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA and Seidman Cancer Center at University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Glennan 616B, 10900 Euclid Ave., Cleveland, OH, USA. and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA and Department of Orthopaedics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
26
|
Liu J, Qiang Y, Alvarez O, Du E. Electrical impedance microflow cytometry with oxygen control for detection of sickle cells. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 255:2392-2398. [PMID: 29731543 PMCID: PMC5929988 DOI: 10.1016/j.snb.2017.08.163] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Polymerization of intracellular sickle hemoglobin induced by low oxygen tension has been recognized as a primary determinant of the pathophysiologic manifestations in sickle cell disease. Existing flow cytometry techniques for detection of sickle cells are typically based on fluorescence markers or cellular morphological analysis. Using microfluidics and electrical impedance spectroscopy, we develop a new, label-free flow cytometry for non-invasive measurement of single cells under controlled oxygen level. We demonstrate the capability of this new technique by determining the electrical impedance differential of normal red blood cells obtained from a healthy donor and sickle cells obtained from three sickle cell patients, under normoxic and hypoxic conditions and at three different electrical frequencies, 156 kHz, 500 kHz and 3 MHz. Under normoxia, normal cells and sickle cells can be separated completely using electrical impedance at 156 kHz and 500 kHz but not at 3 MHz. Sickle cells, intra-patient and inter-patient show significantly different electrical impedance between normoxia and hypoxia at all three frequencies. This study shows a proof of concept that electrical impedance signal can be used as an indicator of the disease state of a red blood cell as well as the cell sickling events in sickle cell disease. Electrical impedance-based microflow cytometry with oxygen control is a new method that can be potentially used for sickle cell disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Jia Liu
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuhao Qiang
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Ofelia Alvarez
- Division of Pediatric Hematology and Oncology, University of Miami, Miami, FL 33136, USA
| | - E Du
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
- Corresponding author at: Department of Ocean and Mechanical Engineering, 777 Glades Road, Bldg. 36-175, Boca Raton, FL 33431-0991, USA. (E. Du)
| |
Collapse
|
27
|
Qiang Y, Liu J, Du E. Dielectrophoresis Testing of Nonlinear Viscoelastic Behaviors of Human Red Blood Cells. MICROMACHINES 2018; 9:21. [PMID: 29682335 PMCID: PMC5909413 DOI: 10.3390/mi9010021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022]
Abstract
Dielectrophoresis in microfluidics provides a useful tool to test biomechanics of living cells, regardless of surface charges on cell membranes. We have designed an experimental method to characterize the nonlinear viscoelastic behaviors of single cells using dielectrophoresis in a microfluidic channel. This method uses radio frequency, low voltage excitations through interdigitated microelectrodes, allowing probing multiple cells simultaneously with controllable load levels. Dielectrophoretic force was calibrated using a triaxial ellipsoid model. Using a Kelvin-Voigt model, the nonlinear shear moduli of cell membranes were determined from the steady-state deformations of red blood cells in response to a series of electric field strengths. The nonlinear elastic moduli of cell membranes ranged from 6.05 μN/m to up to 20.85 μN/m, which were identified as a function of extension ratio, rather than the lumped-parameter models as reported in the literature. Value of the characteristic time of the extensional recovery of cell membranes initially deformed to varied extent was found to be about 0.14 s. Shear viscosity of cell membrane was estimated to be 0.8-2.9 (μN/m)·s. This method is particularly valuable for rapid, non-invasive probing of mechanical properties of living cells.
Collapse
Affiliation(s)
| | | | - E Du
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; (Y.Q.); (J.L.)
| |
Collapse
|
28
|
Li X, Li H, Chang HY, Lykotrafitis G, Em Karniadakis G. Computational Biomechanics of Human Red Blood Cells in Hematological Disorders. J Biomech Eng 2017; 139:2580906. [PMID: 27814430 DOI: 10.1115/1.4035120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 02/02/2023]
Abstract
We review recent advances in multiscale modeling of the biomechanical characteristics of red blood cells (RBCs) in hematological diseases, and their relevance to the structure and dynamics of defective RBCs. We highlight examples of successful simulations of blood disorders including malaria and other hereditary disorders, such as sickle-cell anemia, spherocytosis, and elliptocytosis.
Collapse
Affiliation(s)
- Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912 e-mail:
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269;Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - George Em Karniadakis
- Fellow ASME Division of Applied Mathematics, Brown University, Providence, RI 02912 e-mail:
| |
Collapse
|
29
|
Lu L, Li H, Bian X, Li X, Karniadakis GE. Mesoscopic Adaptive Resolution Scheme toward Understanding of Interactions between Sickle Cell Fibers. Biophys J 2017; 113:48-59. [PMID: 28700924 DOI: 10.1016/j.bpj.2017.05.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 12/17/2022] Open
Abstract
Understanding of intracellular polymerization of sickle hemoglobin (HbS) and subsequent interaction with the membrane of a red blood cell (RBC) is important to predict the altered morphologies and mechanical properties of sickle RBCs in sickle cell anemia. However, modeling the integrated processes of HbS nucleation, polymerization, HbS fiber interaction, and subsequent distortion of RBCs is challenging as they occur at multispatial scales, ranging from nanometers to micrometers. To make progress toward simulating the integrated processes, we propose a hybrid HbS fiber model, which couples fine-grained and coarse-grained HbS fiber models through a mesoscopic adaptive resolution scheme (MARS). To this end, we apply a microscopic model to capture the dynamic process of polymerization of HbS fibers, while maintaining the mechanical properties of polymerized HbS fibers by the mesoscopic model, thus providing a means of bridging the subcellular and cellular phenomena in sickle cell disease. At the subcellular level, this model can simulate HbS polymerization with preexisting HbS nuclei. At the cellular level, if combined with RBC models, the generated HbS fibers could be applied to study the morphologies and membrane stiffening of sickle RBCs. One important feature of the MARS is that it can be easily employed in other particle-based multiscale simulations where a dynamic coarse-graining and force-blending method is required. As demonstrations, we first apply the hybrid HbS fiber model to simulate the interactions of two growing fibers and find that their final configurations depend on the orientation and interaction distance between two fibers, in good agreement with experimental observations. We also model the formation of fiber bundles and domains so that we explore the mechanism that causes fiber branching.
Collapse
Affiliation(s)
- Lu Lu
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - Xin Bian
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | | |
Collapse
|
30
|
Chang HY, Li X, Karniadakis GE. Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus. Biophys J 2017; 113:481-490. [PMID: 28746858 DOI: 10.1016/j.bpj.2017.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022] Open
Abstract
Erythrocytes in patients with type-2 diabetes mellitus (T2DM) are associated with reduced cell deformability and elevated blood viscosity, which contribute to impaired blood flow and other pathophysiological aspects of diabetes-related vascular complications. In this study, by using a two-component red blood cell (RBC) model and systematic parameter variation, we perform detailed computational simulations to probe the alteration of the biomechanical, rheological, and dynamic behavior of T2DM RBCs in response to morphological change and membrane stiffening. First, we examine the elastic response of T2DM RBCs subject to static tensile forcing and their viscoelastic relaxation response upon release of the stretching force. Second, we investigate the membrane fluctuations of T2DM RBCs and explore the effect of cell shape on the fluctuation amplitudes. Third, we subject the T2DM RBCs to shear flow and probe the effects of cell shape and effective membrane viscosity on their tank-treading movement. In addition, we model the cell dynamic behavior in a microfluidic channel with constriction and quantify the biorheological properties of individual T2DM RBCs. Finally, we simulate T2DM RBC suspensions under shear and compare the predicted viscosity with experimental measurements. Taken together, these simulation results and their comparison with currently available experimental data are helpful in identifying a specific parametric model-the first of its kind, to our knowledge-that best describes the main hallmarks of T2DM RBCs, which can be used in future simulation studies of hematologic complications of T2DM patients.
Collapse
Affiliation(s)
- Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island.
| | | |
Collapse
|
31
|
Tang YH, Lu L, Li H, Evangelinos C, Grinberg L, Sachdeva V, Karniadakis GE. OpenRBC: A Fast Simulator of Red Blood Cells at Protein Resolution. Biophys J 2017; 112:2030-2037. [PMID: 28538143 DOI: 10.1016/j.bpj.2017.04.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/16/2017] [Accepted: 04/10/2017] [Indexed: 11/18/2022] Open
Abstract
We present OpenRBC, a coarse-grained molecular dynamics code, which is capable of performing an unprecedented in silico experiment-simulating an entire mammal red blood cell lipid bilayer and cytoskeleton as modeled by multiple millions of mesoscopic particles-using a single shared memory commodity workstation. To achieve this, we invented an adaptive spatial-searching algorithm to accelerate the computation of short-range pairwise interactions in an extremely sparse three-dimensional space. The algorithm is based on a Voronoi partitioning of the point cloud of coarse-grained particles, and is continuously updated over the course of the simulation. The algorithm enables the construction of the key spatial searching data structure in our code, i.e., a lattice-free cell list, with a time and space cost linearly proportional to the number of particles in the system. The position and the shape of the cells also adapt automatically to the local density and curvature. The code implements OpenMP parallelization and scales to hundreds of hardware threads. It outperforms a legacy simulator by almost an order of magnitude in time-to-solution and >40 times in problem size, thus providing, to our knowledge, a new platform for probing the biomechanics of red blood cells.
Collapse
Affiliation(s)
- Yu-Hang Tang
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - Lu Lu
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | | | | | - Vipin Sachdeva
- IBM T.J. Watson Research Center, Cambridge, Massachusetts
| | | |
Collapse
|
32
|
Probing the Twisted Structure of Sickle Hemoglobin Fibers via Particle Simulations. Biophys J 2017; 110:2085-93. [PMID: 27166816 DOI: 10.1016/j.bpj.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/18/2016] [Accepted: 04/01/2016] [Indexed: 02/02/2023] Open
Abstract
Polymerization of sickle hemoglobin (HbS) is the primary pathogenic event of sickle cell disease. For insight into the nature of the HbS polymer fiber formation, we develop a particle model-resembling a coarse-grained molecular model-constructed to match the intermolecular contacts between HbS molecules. We demonstrate that the particle model predicts the formation of HbS polymer fibers by attachment of monomers to rough fiber ends and the growth rate increases linearly with HbS concentration. We show that the characteristic 14-molecule fiber cross section is preserved during growth. We also correlate the asymmetry of the contact sites on the HbS molecular surface with the structure of the polymer fiber composed of seven helically twisted double strands. Finally, we show that the same asymmetry mediates the mechanical and structural properties of the HbS polymer fiber.
Collapse
|
33
|
Abstract
Haemorheology has been long identified as an early biomarker of a wide range of diseases, especially cardiovascular diseases. This study investigates for the first time the suitability of Photoplethysmography (PPG) as a non-invasive diagnostic method for haemorheological changes. The sensitivity of both PPG components (AC and DC) to changes in haemorheology were rigorously investigated in an in vitro experimental setup that mimics the human circulation. A custom-made reflectance PPG sensor, a pressure transducer and an ultrasonic Doppler flowmeter were used to map changes in flow dynamics and optical responses in an arterial model. The study investigated the effect of shear rates by varying fluid pumping frequencies using 4 set-points and the effect of clot formation using a chemical trigger. Both PPGAC amplitudes and PPGDC levels showed significant (p < 0.001) changes during the increase in shear rates and an immediate change after thromboplastin activation. The findings highlight that PPG has the potential to be used as a simple non-invasive method for the detection of blood characteristics, including disaggregation, radial migration and cross-linking fibrin formations. Such capability will enable the assessment of the effects of clotting-activators and anticoagulants (including non-pharmacological methods) and might aid in the early non-invasive assessment of cardiovascular pathologies.
Collapse
|
34
|
Patient-specific modeling of individual sickle cell behavior under transient hypoxia. PLoS Comput Biol 2017; 13:e1005426. [PMID: 28288152 PMCID: PMC5367819 DOI: 10.1371/journal.pcbi.1005426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/27/2017] [Accepted: 02/21/2017] [Indexed: 01/25/2023] Open
Abstract
Sickle cell disease (SCD) is a highly complex genetic blood disorder in which red blood cells (RBC) exhibit heterogeneous morphology changes and decreased deformability. We employ a kinetic model for cell morphological sickling that invokes parameters derived from patient-specific data. This model is used to investigate the dynamics of individual sickle cells in a capillary-like microenvironment in order to address various mechanisms associated with SCD. We show that all RBCs, both hypoxia-unaffected and hypoxia-affected ones, regularly pass through microgates under oxygenated state. However, the hypoxia-affected cells undergo sickling which significantly alters cell dynamics. In particular, the dense and rigid sickle RBCs are obstructed thereby clogging blood flow while the less dense and deformable ones are capable of circumnavigating dead (trapped) cells ahead of them by choosing a serpentine path. Informed by recent experiments involving microfluidics that provide in vitro quantitative information on cell dynamics under transient hypoxia conditions, we have performed detailed computational simulations of alterations to cell behavior in response to morphological changes and membrane stiffening. Our model reveals that SCD exhibits substantial heterogeneity even within a particular density-fractionated subpopulation. These findings provide unique insights into how individual sickle cells move through capillaries under transient hypoxic conditions, and offer novel possibilities for designing effective therapeutic interventions for SCD. Sickle cell disease is a genetic blood disease that causes vaso-occlusive pain crises. Here, we investigate the individual sickle cell behavior under controlled hypoxic conditions through patient-specific predictive computational simulations that are informed by companion microfluidic experiments. We identify the different dynamic behavior between individual sickle RBCs and normal ones in microfluidic flow, and analyze the hypoxia-induced alteration in individual cell behavior and single-cell capillary obstruction under physiological conditions.
Collapse
|
35
|
Microfluidic experimental setup for adhesion and recovery measurements of red blood cells in sickle cell disease. J Mech Behav Biomed Mater 2017; 71:80-84. [PMID: 28267661 DOI: 10.1016/j.jmbbm.2017.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 11/21/2022]
Abstract
Current microfluidic assays, which aim at quantifying mechanical properties of sickle cell red blood cells (SS-RBCs), suffer from a number of drawbacks in functionalization and flow control. Specifically, physical adsorption functionalization techniques produce inconsistent functional surfaces, and common volumetric flow pumps cannot be used to adjust the flow inside microchannels with minimal delay. We have designed an experimental setup that alleviates these complications by implementing aspiration for microchannel assembly that enables the use of most functionalization techniques and a pressure controller that allows instant and precise changes in the microchannel flow. Utilizing this setup, we have quantified SS-RBC adhesion to the integrin αvβ3, a specific adhesion protein expressed on the endothelium, as well as measured the shear modulus and viscosity of the SS-RBC plasma membrane.
Collapse
|
36
|
Li X, Dao M, Lykotrafitis G, Karniadakis GE. Biomechanics and biorheology of red blood cells in sickle cell anemia. J Biomech 2016; 50:34-41. [PMID: 27876368 DOI: 10.1016/j.jbiomech.2016.11.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 01/12/2023]
Abstract
Sickle cell anemia (SCA) is an inherited blood disorder that causes painful crises due to vaso-occlusion of small blood vessels. The primary cause of the clinical phenotype of SCA is the intracellular polymerization of sickle hemoglobin resulting in sickling of red blood cells (RBCs) in deoxygenated conditions. In this review, we discuss the biomechanical and biorheological characteristics of sickle RBCs and sickle blood as well as their implications toward a better understanding of the pathophysiology and pathogenesis of SCA. Additionally, we highlight the adhesive heterogeneity of RBCs in SCA and their specific contribution to vaso-occlusive crisis.
Collapse
Affiliation(s)
- Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - George Lykotrafitis
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
37
|
MD/DPD Multiscale Framework for Predicting Morphology and Stresses of Red Blood Cells in Health and Disease. PLoS Comput Biol 2016; 12:e1005173. [PMID: 27792725 PMCID: PMC5085038 DOI: 10.1371/journal.pcbi.1005173] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/30/2016] [Indexed: 01/20/2023] Open
Abstract
Healthy red blood cells (RBCs) have remarkable deformability, squeezing through narrow capillaries as small as 3 microns in diameter without any damage. However, in many hematological disorders the spectrin network and lipid bilayer of diseased RBCs may be significantly altered, leading to impaired functionality including loss of deformability. We employ a two-component whole-cell multiscale model to quantify the biomechanical characteristics of the healthy and diseased RBCs, including Plasmodium falciparum-infected RBCs (Pf-RBCs) and defective RBCs in hereditary disorders, such as spherocytosis and elliptocytosis. In particular, we develop a two-step multiscale framework based on coarse-grained molecular dynamics (CGMD) and dissipative particle dynamics (DPD) to predict the static and dynamic responses of RBCs subject to tensile forcing, using experimental information only on the structural defects in the lipid bilayer, cytoskeleton, and their interaction. We first employ CGMD on a small RBC patch to compute the shear modulus, bending stiffness, and network parameters, which are subsequently used as input to a whole-cell DPD model to predict the RBC shape and corresponding stress field. For Pf-RBCs at trophozoite and schizont stages, the presence of cytoadherent knobs elevates the shear response in the lipid bilayer and stiffens the RBC membrane. For RBCs in spherocytosis and elliptocytosis, the bilayer-cytoskeleton interaction is weakened, resulting in substantial increase of the tensile stress in the lipid bilayer. Furthermore, we investigate the transient behavior of stretching deformation and shape relaxation of the normal and defective RBCs. Different from the normal RBCs possessing high elasticity, our simulations reveal that the defective RBCs respond irreversibly, i.e., they lose their ability to recover the normal biconcave shape in successive loading cycles of stretching and relaxation. Our findings provide fundamental insights into the microstructure and biomechanics of RBCs, and demonstrate that the two-step multiscale framework presented here can be used effectively for in silico studies of hematological disorders based on first principles and patient-specific experimental input at the protein level.
Collapse
|
38
|
Yazdani A, Karniadakis GE. Sub-cellular modeling of platelet transport in blood flow through microchannels with constriction. SOFT MATTER 2016; 12:4339-51. [PMID: 27087267 PMCID: PMC5488286 DOI: 10.1039/c6sm00154h] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Platelet transport through arterial constrictions is one of the controlling processes influencing their adhesive functions and the formation of thrombi. We perform high-fidelity mesoscopic simulations of blood flow in microchannels with constriction, resembling arterial stenoses. The wall shear rates inside the constrictions reach levels as high as ≈8000 s(-1), similar to those encountered in moderate atherosclerotic plaques. Both red blood cells and platelets are resolved at sub-cellular resolution using the Dissipative Particle Dynamics (DPD) method. We perform a systematic study on the red blood cell and platelet transport by considering different levels of constriction, blood hematocrit and flow rates. We find that higher levels of constriction and wall shear rates lead to significantly enhanced margination of platelets, which may explain the experimental observations of enhanced post-stenosis platelet aggregation. We also observe similar margination effects for stiff particles of spherical shapes such as leukocytes. To our knowledge, such numerical simulations of dense blood through complex geometries have not been performed before, and our quantitative findings could shed new light on the associated physiological processes such as ATP release, plasma skimming, and thrombus formation.
Collapse
Affiliation(s)
- Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | | |
Collapse
|
39
|
Buehler MJ, Genin GM. Integrated multiscale biomaterials experiment and modelling: a perspective. Interface Focus 2016; 6:20150098. [PMID: 28981126 DOI: 10.1098/rsfs.2015.0098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Advances in multiscale models and computational power have enabled a broad toolset to predict how molecules, cells, tissues and organs behave and develop. A key theme in biological systems is the emergence of macroscale behaviour from collective behaviours across a range of length and timescales, and a key element of these models is therefore hierarchical simulation. However, this predictive capacity has far outstripped our ability to validate predictions experimentally, particularly when multiple hierarchical levels are involved. The state of the art represents careful integration of multiscale experiment and modelling, and yields not only validation, but also insights into deformation and relaxation mechanisms across scales. We present here a sampling of key results that highlight both challenges and opportunities for integrated multiscale experiment and modelling in biological systems.
Collapse
Affiliation(s)
- Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science, and Department of Neurological Surgery, Washington University, St Louis, MO 63130, USA
| |
Collapse
|