1
|
Shi Y, Chen B, Niu S, Wang X, Zhang Z. Clinical spectrum, treatment and outcomes of the m.10197G>A mutation in MT-ND3: a case report, systematic review and meta-analysis. Orphanet J Rare Dis 2025; 20:59. [PMID: 39923090 PMCID: PMC11806901 DOI: 10.1186/s13023-025-03588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND A correlation between various sites or types of mutations in mitochondrial DNA ND3 and the development of a specific mitochondrial disease or phenotype has yet to be fully established. METHODS This study reports a rare case of adult-onset Leigh syndrome (LS) and Leber hereditary optic neuropathy and dystonia (LDYT) overlap syndrome caused by the m.10197G>A mutation in ND3. A review of the literature was conducted to investigate the clinical spectrum, treatment and outcome resulting from the m.10197G>A mutation. Phenotypes associated with the m.10197G>A mutation were classified into three categories: LS/LS+ (LS-involved overlap syndrome), Leber hereditary optic neuropathy (LHON)/LHON+ (LHON-involved overlap syndrome) and other mitochondrial encephalopathies or presentations. RESULTS A total of 84 participants (78 patients and 6 asymptomatic carriers) with the m.10197G>A mutation retrieved from 33 articles and the patient whose case we reported were included in the review and meta-analysis. Among all the participants, 55.3% (47/85) and 28.2% (24/85) presented with LS/LS+ and LHON/LHON+, respectively. The median age at onset for LS/LS+ was significantly younger than that for LHON/LHON+ [median, (Q1-Q3), 3.0 (0.58-9.5) vs. 13.5 (5.75-41.75), P = 0.001]. A negative linear correlation was observed between mutation load and age of onset in patients who presented with LS/LS+ (R2 = 0.592, P < 0.001), with the age of onset ranging from infancy to adulthood. Patients with an older age at onset [OR (95% CI), 1.46 (1.12-1.91), P = 0.005] or higher mutation loads [OR (95% CI), 1.14 (1.03-1.26), P = 0.011] were more likely to present with LHON/LHON+ than with LS/LS+. A total of 17 patients were documented as having received a combination of mitochondrial cofactor treatments. Compared with patients with LHON/LHON+, patients with LS/LS+ exhibited an exceedingly high probability of a stable or worsen outcome (93.8% vs. 33.3%, P = 0.006). CONCLUSIONS LS/LS+ and LHON/LHON+ are the predominant presentations of the m.10197G>A mutation. An older age at onset and greater mutation load increases the probability of an LHON/LHON+ presentation. Patients presenting with LS/LS+ have an exceedingly high possibility of an unfavorable outcome. The identification of factors and outcomes associated with phenotypes in patients with the m.10197G>A mutation facilitates the provision of improved prognostic counseling for patients and their family members who are carriers of this mutation.
Collapse
Affiliation(s)
- YuZhi Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring Road West, Fengtai District, Beijing, 100070, China
| | - Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring Road West, Fengtai District, Beijing, 100070, China
| | - SongTao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring Road West, Fengtai District, Beijing, 100070, China
| | - XinGao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring Road West, Fengtai District, Beijing, 100070, China
| | - ZaiQiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4th Ring Road West, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
2
|
Grba DN, Wright JJ, Yin Z, Fisher W, Hirst J. Molecular mechanism of the ischemia-induced regulatory switch in mammalian complex I. Science 2024; 384:1247-1253. [PMID: 38870289 DOI: 10.1126/science.ado2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Respiratory complex I is an efficient driver for oxidative phosphorylation in mammalian mitochondria, but its uncontrolled catalysis under challenging conditions leads to oxidative stress and cellular damage. Ischemic conditions switch complex I from rapid, reversible catalysis into a dormant state that protects upon reoxygenation, but the molecular basis for the switch is unknown. We combined precise biochemical definition of complex I catalysis with high-resolution cryo-electron microscopy structures in the phospholipid bilayer of coupled vesicles to reveal the mechanism of the transition into the dormant state, modulated by membrane interactions. By implementing a versatile membrane system to unite structure and function, attributing catalytic and regulatory properties to specific structural states, we define how a conformational switch in complex I controls its physiological roles.
Collapse
Affiliation(s)
| | | | | | | | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
3
|
Jurga J, Samborowska E, Zielinski J, Olek RA. Effects of Acute Beetroot Juice and Sodium Nitrate on Selected Blood Metabolites and Response to Transient Ischemia: A Crossover Randomized Clinical Trial. J Nutr 2024; 154:491-497. [PMID: 38110180 DOI: 10.1016/j.tjnut.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Modification of the nitrate (NO3)-nitrite (NO2)-nitric oxide (NO) pathway can be induced by oral intake of inorganic NO3 (NIT) or NO3-rich products, such as beetroot juice (BRJ). OBJECTIVES The primary aim of this study was to evaluate the plasma changes in betaine, choline, trimethylamine (TMA), trimethylamine N-oxide (TMAO), and NO3/NO2 (NOx) concentrations over 4 h after single oral ingestion of NIT or BRJ. The flow-mediated skin fluorescence (FMSF) method was applied to measure the changes in nicotinamide adenine dinucleotide reduced form (NADH) in response to transient ischemia and reperfusion. We hypothesized that various sources of NO3 may differently affect endothelial and mitochondrial functions in healthy human subjects. METHODS In a randomized crossover trial, 8 healthy young adults ingested 800 mg NO3 from either NIT or BRJ on 2 separate days with ≥3 d apart. Venous blood samples were collected every hour, and FMSF determination was applied bihourly. RESULTS Plasma betaine and choline concentrations peaked at 1 h after BRJ ingestion, and remained significantly higher than baseline values at all time points (P < 0.001 and P < 0.001, compared to preingestion values). Over time, BRJ was more effective in increasing NOx compared with NIT (fixed-trial effect P < 0.001). Baseline fluorescence decreased after both NIT and BRJ consumption (fixed-time effect P = 0.005). Transient ischemia and reperfusion response increased because of NO3 consumption (fixed-time effect P = 0.003), with no differences between trials (P = 0.451; P = 0.912; P = 0.819 at 0, 2, and 4 h, respectively). CONCLUSIONS Acute ingestion of BRJ elevated plasma betaine and choline, but not TMA and TMAO. Moreover, plasma NOx levels were higher in the BRJ trial than in the NIT trial. Various sources of NO3 positively affected endothelial and mitochondrial functions. This trial was registered at clinicaltrials.gov as NCT05004935.
Collapse
Affiliation(s)
- Jakub Jurga
- Doctoral School, Poznan University of Physical Education, Poznan, Poland
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Zielinski
- Department of Athletics, Strength, and Conditioning, Poznan University of Physical Education, Poznan, Poland
| | - Robert A Olek
- Department of Athletics, Strength, and Conditioning, Poznan University of Physical Education, Poznan, Poland.
| |
Collapse
|
4
|
Okoye CN, Koren SA, Wojtovich AP. Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biol 2023; 67:102926. [PMID: 37871533 PMCID: PMC10598411 DOI: 10.1016/j.redox.2023.102926] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondria are a main source of cellular energy. Oxidative phosphorylation (OXPHOS) is the major process of aerobic respiration. Enzyme complexes of the electron transport chain (ETC) pump protons to generate a protonmotive force (Δp) that drives OXPHOS. Complex I is an electron entry point into the ETC. Complex I oxidizes nicotinamide adenine dinucleotide (NADH) and transfers electrons to ubiquinone in a reaction coupled with proton pumping. Complex I also produces reactive oxygen species (ROS) under various conditions. The enzymatic activities of complex I can be regulated by metabolic conditions and serves as a regulatory node of the ETC. Complex I ROS plays diverse roles in cell metabolism ranging from physiologic to pathologic conditions. Progress in our understanding indicates that ROS release from complex I serves important signaling functions. Increasing evidence suggests that complex I ROS is important in signaling a mismatch in energy production and demand. In this article, we review the role of ROS from complex I in sensing acute hypoxia.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shon A Koren
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
5
|
Bridges HR, Blaza JN, Yin Z, Chung I, Pollak MN, Hirst J. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science 2023; 379:351-357. [PMID: 36701435 PMCID: PMC7614227 DOI: 10.1126/science.ade3332] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/23/2022] [Indexed: 01/27/2023]
Abstract
The molecular mode of action of biguanides, including the drug metformin, which is widely used in the treatment of diabetes, is incompletely characterized. Here, we define the inhibitory drug-target interaction(s) of a model biguanide with mammalian respiratory complex I by combining cryo-electron microscopy and enzyme kinetics. We interpret these data to explain the selectivity of biguanide binding to different enzyme states. The primary inhibitory site is in an amphipathic region of the quinone-binding channel, and an additional binding site is in a pocket on the intermembrane-space side of the enzyme. An independent local chaotropic interaction, not previously described for any drug, displaces a portion of a key helix in the membrane domain. Our data provide a structural basis for biguanide action and enable the rational design of medicinal biguanides.
Collapse
Affiliation(s)
- Hannah R. Bridges
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - James N. Blaza
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
- Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, YO10 5DD, UK
| | - Zhan Yin
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Injae Chung
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Michael N. Pollak
- Lady Davis Institute of the Jewish General Hospital and Department of Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
6
|
Agip ANA, Chung I, Sanchez-Martinez A, Whitworth AJ, Hirst J. Cryo-EM structures of mitochondrial respiratory complex I from Drosophila melanogaster. eLife 2023; 12:e84424. [PMID: 36622099 PMCID: PMC9977279 DOI: 10.7554/elife.84424] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Respiratory complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from NADH oxidation by ubiquinone to drive protons across an energy-transducing membrane. Drosophila melanogaster is a candidate model organism for complex I due to its high evolutionary conservation with the mammalian enzyme, well-developed genetic toolkit, and complex physiology for studies in specific cell types and tissues. Here, we isolate complex I from Drosophila and determine its structure, revealing a 43-subunit assembly with high structural homology to its 45-subunit mammalian counterpart, including a hitherto unknown homologue to subunit NDUFA3. The major conformational state of the Drosophila enzyme is the mammalian-type 'ready-to-go' active resting state, with a fully ordered and enclosed ubiquinone-binding site, but a subtly altered global conformation related to changes in subunit ND6. The mammalian-type 'deactive' pronounced resting state is not observed: in two minor states, the ubiquinone-binding site is unchanged, but a deactive-type π-bulge is present in ND6-TMH3. Our detailed structural knowledge of Drosophila complex I provides a foundation for new approaches to disentangle mechanisms of complex I catalysis and regulation in bioenergetics and physiology.
Collapse
Affiliation(s)
- Ahmed-Noor A Agip
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Injae Chung
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Alvaro Sanchez-Martinez
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Alexander J Whitworth
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical CampusCambridgeUnited Kingdom
| |
Collapse
|
7
|
Chung I, Grba DN, Wright JJ, Hirst J. Making the leap from structure to mechanism: are the open states of mammalian complex I identified by cryoEM resting states or catalytic intermediates? Curr Opin Struct Biol 2022; 77:102447. [PMID: 36087446 PMCID: PMC7614202 DOI: 10.1016/j.sbi.2022.102447] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase) is a multi-subunit, energy-transducing mitochondrial enzyme that is essential for oxidative phosphorylation and regulating NAD+/NADH pools. Despite recent advances in structural knowledge and a long history of biochemical analyses, the mechanism of redox-coupled proton translocation by complex I remains unknown. Due to its ability to separate molecules in a mixed population into distinct classes, single-particle electron cryomicroscopy has enabled identification and characterisation of different complex I conformations. However, deciding on their catalytic and/or regulatory properties to underpin mechanistic hypotheses, especially without detailed biochemical characterisation of the structural samples, has proven challenging. In this review we explore different mechanistic interpretations of the closed and open states identified in cryoEM analyses of mammalian complex I.
Collapse
Affiliation(s)
- Injae Chung
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Daniel N Grba
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - John J Wright
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
8
|
Dias C, Lourenço CF, Laranjinha J, Ledo A. Modulation of oxidative neurometabolism in ischemia/reperfusion by nitrite. Free Radic Biol Med 2022; 193:779-786. [PMID: 36403737 DOI: 10.1016/j.freeradbiomed.2022.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Nitrite has been viewed essentially as an inert metabolic endpoint of nitric oxide (•NO). However, under certain conditions, nitrite can be a source of •NO. In the brain, this alternative source of •NO production independent of nitric oxide synthase activity may be particularly relevant in ischemia/reperfusion (I/R), where low oxygen availability limits enzymatic production of •NO. Notably, in vivo concentration of nitrite can be easily increased with diet, through the ingestion of nitrate-rich foods, opening the window for a therapeutic intervention based on diet. Considering the modulation of mitochondrial respiration by •NO, we have hypothesized that the protective action of nitrite in I/R may also result from modulation of mitochondrial function. We used high-resolution respirometry to evaluate the effects of nitrite in two in vitro models of I/R. In both cases, an increase in oxygen flux was observed following reoxygenation, a phenomenon that has been coined "oxidative burst". The amplitude of this "oxidative burst" was decreased by nitrite in a concentration-dependent manner. Additionally, a pilot in vivo study in which animals received a nitrate-rich diet as a strategy to increase circulating and tissue levels of nitrite also revealed that the "oxidative burst" was decreased in the nitrate-treated animals. These results may provide mechanistic support to the observation of a protective effect of nitrite in situations of brain ischemia.
Collapse
Affiliation(s)
- C Dias
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - C F Lourenço
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - J Laranjinha
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - A Ledo
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Coimbra, Portugal.
| |
Collapse
|
9
|
Assessing the neurotoxicity of airborne nano-scale particulate matter in human iPSC-derived neurons using a transcriptomics benchmark dose model. Toxicol Appl Pharmacol 2022; 449:116109. [DOI: 10.1016/j.taap.2022.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
|
10
|
Cryo-EM structures define ubiquinone-10 binding to mitochondrial complex I and conformational transitions accompanying Q-site occupancy. Nat Commun 2022; 13:2758. [PMID: 35589726 PMCID: PMC9120487 DOI: 10.1038/s41467-022-30506-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial complex I is a central metabolic enzyme that uses the reducing potential of NADH to reduce ubiquinone-10 (Q10) and drive four protons across the inner mitochondrial membrane, powering oxidative phosphorylation. Although many complex I structures are now available, the mechanisms of Q10 reduction and energy transduction remain controversial. Here, we reconstitute mammalian complex I into phospholipid nanodiscs with exogenous Q10. Using cryo-EM, we reveal a Q10 molecule occupying the full length of the Q-binding site in the 'active' (ready-to-go) resting state together with a matching substrate-free structure, and apply molecular dynamics simulations to propose how the charge states of key residues influence the Q10 binding pose. By comparing ligand-bound and ligand-free forms of the 'deactive' resting state (that require reactivating to catalyse), we begin to define how substrate binding restructures the deactive Q-binding site, providing insights into its physiological and mechanistic relevance.
Collapse
|
11
|
Burger N, James AM, Mulvey JF, Hoogewijs K, Ding S, Fearnley IM, Loureiro-López M, Norman AAI, Arndt S, Mottahedin A, Sauchanka O, Hartley RC, Krieg T, Murphy MP. ND3 Cys39 in complex I is exposed during mitochondrial respiration. Cell Chem Biol 2022; 29:636-649.e14. [PMID: 34739852 PMCID: PMC9076552 DOI: 10.1016/j.chembiol.2021.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/21/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Mammalian complex I can adopt catalytically active (A-) or deactive (D-) states. A defining feature of the reversible transition between these two defined states is thought to be exposure of the ND3 subunit Cys39 residue in the D-state and its occlusion in the A-state. As the catalytic A/D transition is important in health and disease, we set out to quantify it by measuring Cys39 exposure using isotopic labeling and mass spectrometry, in parallel with complex I NADH/CoQ oxidoreductase activity. To our surprise, we found significant Cys39 exposure during NADH/CoQ oxidoreductase activity. Furthermore, this activity was unaffected if Cys39 alkylation occurred during complex I-linked respiration. In contrast, alkylation of catalytically inactive complex I irreversibly blocked the reactivation of NADH/CoQ oxidoreductase activity by NADH. Thus, Cys39 of ND3 is exposed in complex I during mitochondrial respiration, with significant implications for our understanding of the A/D transition and the mechanism of complex I.
Collapse
Affiliation(s)
- Nils Burger
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Andrew M James
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - John F Mulvey
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Kurt Hoogewijs
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; The Wellcome Trust Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK; Medical Research Council-Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Shujing Ding
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ian M Fearnley
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Marta Loureiro-López
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | | | - Sabine Arndt
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Amin Mottahedin
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Olga Sauchanka
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Thomas Krieg
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Michael P Murphy
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
12
|
Okoye CN, Chinnappareddy N, Stevens D, Kamunde C. Anoxia-reoxygenation modulates cadmium-induced liver mitochondrial reactive oxygen species emission during oxidation of glycerol 3-phosphate. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109227. [PMID: 34728389 DOI: 10.1016/j.cbpc.2021.109227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/03/2022]
Abstract
Aquatic organisms are frequently exposed to multiple stressors including low dissolved oxygen (O2) and metals such as cadmium (Cd). Reduced O2 concentration and Cd exposure alter cellular function in part by impairing energy metabolism and dysregulating reactive oxygen species (ROS) homeostasis. However, little is known about the role of mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH) in ROS homeostasis in fish and its response to environmental stress. In this study, mGPDH activity and the effects of anoxia-reoxygenation (A-RO) and Cd on ROS (as hydrogen peroxide, H2O2) emission in rainbow trout liver mitochondria during oxidation of glycerol 3-phosphate (G3P) were probed. Trout liver mitochondria exhibited low mGPDH activity that supported a low respiratory rate but substantial H2O2 emission rate. Cd evoked a low concentration stimulatory-high concentration inhibitory H2O2 emission pattern that was blunted by A-RO. At specific redox centers, Cd suppressed H2O2 emission from site IQ, but stimulated emission from sites IIIQo and GQ. In contrast, A-RO stimulated H2O2 emission from site IQ following 15 min exposure and augmented Cd-stimulated emission from site IIF after 30 min exposure but did not alter the rate of H2O2 emission from sites IIIQo and GQ. Additionally, Cd neither altered the activities of catalase, glutathione peroxidase, or thioredoxin reductase nor the concentrations of total glutathione, reduced glutathione, or oxidized glutathione. Overall, this study indicates that oxidation of G3P drives ROS production from mGPDH and complexes I, II and III, whereas Cd directly modulates redox sites but not antioxidant defense systems to alter mitochondrial H2O2 emission.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Nirmala Chinnappareddy
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
13
|
Juhász L, Tallósy SP, Nászai A, Varga G, Érces D, Boros M. Bioactivity of Inhaled Methane and Interactions With Other Biological Gases. Front Cell Dev Biol 2022; 9:824749. [PMID: 35071248 PMCID: PMC8777024 DOI: 10.3389/fcell.2021.824749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023] Open
Abstract
A number of studies have demonstrated explicit bioactivity for exogenous methane (CH4), even though it is conventionally considered as physiologically inert. Other reports cited in this review have demonstrated that inhaled, normoxic air-CH4 mixtures can modulate the in vivo pathways involved in oxidative and nitrosative stress responses and key events of mitochondrial respiration and apoptosis. The overview is divided into two parts, the first being devoted to a brief review of the effects of biologically important gases in the context of hypoxia, while the second part deals with CH4 bioactivity. Finally, the consequence of exogenous, normoxic CH4 administration is discussed under experimental hypoxia- or ischaemia-linked conditions and in interactions between CH4 and other biological gases, with a special emphasis on its versatile effects demonstrated in pulmonary pathologies.
Collapse
Affiliation(s)
- László Juhász
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Szabolcs Péter Tallósy
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Anna Nászai
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Varga
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dániel Érces
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Mihály Boros
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
14
|
Isei MO, Chinnappareddy N, Stevens D, Kamunde C. Anoxia-reoxygenation alters H 2O 2 efflux and sensitivity of redox centers to copper in heart mitochondria. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109111. [PMID: 34146700 DOI: 10.1016/j.cbpc.2021.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) have been implicated in organ damage caused by environmental stressors, prompting studies on the effect of oxygen deprivation and metal exposure on ROS metabolism. However, how anoxia and copper (Cu) jointly influence heart mitochondrial ROS metabolism is not understood. We used rainbow trout heart mitochondria to probe the effects of anoxia-reoxygenation and Cu on hydrogen peroxide (H2O2) emission during oxidation of palmitoylcarnitine (PC), succinate, or glutamate-malate. In addition, we examined the influence of anoxia-reoxygenation and Cu on site-specific H2O2 emission capacities and key antioxidant enzymes, glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). Results showed that anoxia-reoxygenation suppressed H2O2 emission regardless of substrate type or duration of anoxia. Anoxia-reoxygenation reduced mitochondrial sensitivity to Cu during oxidation of succinate or glutamate-malate whereas high Cu concentration additively stimulated H2O2 emission in mitochondria oxidizing PC. Prolonged anoxia-reoxygenation stimulated H2O2 emission from sites OF and IF, inhibited emission from sites IQ, IIF and IIIQo, and disparately altered the sensitivity of the sites to Cu. Interestingly, anoxia-reoxygenation increased GPx and TrxR activities, more prominently when reoxygenation followed a short duration of anoxia. Cu did not alter GPx but reduced TrxR activity in normoxic and anoxic-reoxygenated mitochondria. Overall, our study revealed potential mechanisms that may reduce oxidative damage associated with anoxia-reoxygenation and Cu exposure in heart mitochondria. The increased and decreased H2O2 emission from NADH/NAD+ and QH2/Q isopotential sites, respectively, may represent a balance between H2O2 required for oxygen deprivation-induced signaling and prevention of ROS burst associated with anoxia-reoxygenation.
Collapse
Affiliation(s)
- Michael O Isei
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown C1A 4P3, PE, Canada
| | - Nirmala Chinnappareddy
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown C1A 4P3, PE, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown C1A 4P3, PE, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown C1A 4P3, PE, Canada.
| |
Collapse
|
15
|
Okoye CN, Stevens D, Kamunde C. Modulation of mitochondrial site-specific hydrogen peroxide efflux by exogenous stressors. Free Radic Biol Med 2021; 164:439-456. [PMID: 33383085 DOI: 10.1016/j.freeradbiomed.2020.12.234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Oxygen (O2) deprivation and metals are common environmental stressors and their exposure to aquatic organisms can induce oxidative stress by disrupting cellular reactive oxygen species (ROS) homeostasis. Mitochondria are a major source of ROS in the cell wherein a dozen sites located on enzymes of the electron transport system (ETS) and substrate oxidation produce superoxide anion radicals (O2˙‾) or hydrogen peroxide (H2O2). Sites located on ETS enzymes can generate ROS by forward electron transfer (FET) and reverse electron transfer (RET) reactions; however, knowledge of how exogenous stressors modulate site-specific ROS production is limited. We investigated the effects of anoxia-reoxygenation and cadmium (Cd) on H2O2 emission in fish liver mitochondria oxidizing glutamate-malate, succinate or palmitoylcarnitine-malate. We find that anoxia-reoxygenation attenuates H2O2 emission while the effect of Cd depends on the substrate, with monotonic responses for glutamate-malate and palmitoylcarnitine-malate, and a biphasic response for succinate. Anoxia-reoxygenation exerts a substrate-dependent inhibition of mitochondrial respiration which is more severe with palmitoylcarnitine-malate compared with succinate or glutamate-malate. Additionally, specific mitochondrial ROS-emitting sites were sequestered using blockers of electron transfer and the effects of anoxia-reoxygenation and Cd on H2O2 emission were evaluated. Here, we find that site-specific H2O2 emission capacities depend on the substrate and the direction of electron flow. Moreover, anoxia-reoxygenation alters site-specific H2O2 emission rates during succinate and glutamate-malate oxidation whereas Cd imposes monotonic or biphasic H2O2 emission responses depending on the substrate and site. Contrary to our expectation, anoxia-reoxygenation blunts the effect of Cd. These results suggest that the effect of exogenous stressors on mitochondrial oxidant production is governed by their impact on energy conversion reactions and mitochondrial redox poise. Moreover, direct increased ROS production seemingly does not explain the increased adverse effects associated with combined exposure of aquatic organisms to Cd and low dissolved oxygen levels.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada; Department of Veterinary Obstetrics and Reproductive Diseases. Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
16
|
Yin Z, Burger N, Kula-Alwar D, Aksentijević D, Bridges HR, Prag HA, Grba DN, Viscomi C, James AM, Mottahedin A, Krieg T, Murphy MP, Hirst J. Structural basis for a complex I mutation that blocks pathological ROS production. Nat Commun 2021; 12:707. [PMID: 33514727 PMCID: PMC7846746 DOI: 10.1038/s41467-021-20942-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/23/2020] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial complex I is central to the pathological reactive oxygen species (ROS) production that underlies cardiac ischemia-reperfusion (IR) injury. ND6-P25L mice are homoplasmic for a disease-causing mtDNA point mutation encoding the P25L substitution in the ND6 subunit of complex I. The cryo-EM structure of ND6-P25L complex I revealed subtle structural changes that facilitate rapid conversion to the "deactive" state, usually formed only after prolonged inactivity. Despite its tendency to adopt the "deactive" state, the mutant complex is fully active for NADH oxidation, but cannot generate ROS by reverse electron transfer (RET). ND6-P25L mitochondria function normally, except for their lack of RET ROS production, and ND6-P25L mice are protected against cardiac IR injury in vivo. Thus, this single point mutation in complex I, which does not affect oxidative phosphorylation but renders the complex unable to catalyse RET, demonstrates the pathological role of ROS production by RET during IR injury.
Collapse
Affiliation(s)
- Zhan Yin
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Nils Burger
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Dunja Aksentijević
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Hannah R Bridges
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Daniel N Grba
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biomedical Sciences, University of Padova via Ugo Bassi 58/B, Padova, 35131, Italy
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Amin Mottahedin
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
17
|
Jiang L, Yin X, Chen YH, Chen Y, Jiang W, Zheng H, Huang FQ, Liu B, Zhou W, Qi LW, Li J. Proteomic analysis reveals ginsenoside Rb1 attenuates myocardial ischemia/reperfusion injury through inhibiting ROS production from mitochondrial complex I. Am J Cancer Res 2021; 11:1703-1720. [PMID: 33408776 PMCID: PMC7778584 DOI: 10.7150/thno.43895] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
Rationale: Reactive oxygen species (ROS) burst from mitochondrial complex I is considered the critical cause of ischemia/reperfusion (I/R) injury. Ginsenoside Rb1 has been reported to protect the heart against I/R injury; however, the underlying mechanism remains unclear. This work aimed to investigate if ginsenoside Rb1 attenuates cardiac I/R injury by inhibiting ROS production from mitochondrial complex I. Methods: In in vivo experiments, mice were given ginsenoside Rb1 and then subjected to I/R injury. Mitochondrial ROS levels in the heart were determined using the mitochondrial-targeted probe MitoB. Mitochondrial proteins were used for TMT-based quantitative proteomic analysis. In in vitro experiments, adult mouse cardiomyocytes were pretreated with ginsenoside Rb1 and then subjected to hypoxia and reoxygenation insult. Mitochondrial ROS, NADH dehydrogenase activity, and conformational changes of mitochondrial complex I were analyzed. Results: Ginsenoside Rb1 decreased mitochondrial ROS production, reduced myocardial infarct size, preserved cardiac function, and limited cardiac fibrosis. Proteomic analysis showed that subunits of NADH dehydrogenase in mitochondrial complex I might be the effector proteins regulated by ginsenoside Rb1. Ginsenoside Rb1 inhibited complex I- but not complex II- or IV-dependent O2 consumption and enzyme activity. The inhibitory effects of ginsenoside Rb1 on mitochondrial I-dependent respiration and reperfusion-induced ROS production were rescued by bypassing complex I using yeast NADH dehydrogenase. Molecular docking and surface plasmon resonance experiments indicated that ginsenoside Rb1 reduced NADH dehydrogenase activity, probably via binding to the ND3 subunit to trap mitochondrial complex I in a deactive form upon reperfusion. Conclusion: Inhibition of mitochondrial complex I-mediated ROS burst elucidated the probable underlying mechanism of ginsenoside Rb1 in alleviating cardiac I/R injury.
Collapse
|
18
|
Pendleton AL, Antolic AT, Kelly AC, Davis MA, Camacho LE, Doubleday K, Anderson MJ, Langlais PR, Lynch RM, Limesand SW. Lower oxygen consumption and Complex I activity in mitochondria isolated from skeletal muscle of fetal sheep with intrauterine growth restriction. Am J Physiol Endocrinol Metab 2020; 319:E67-E80. [PMID: 32396498 PMCID: PMC7468780 DOI: 10.1152/ajpendo.00057.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/25/2023]
Abstract
Fetal sheep with placental insufficiency-induced intrauterine growth restriction (IUGR) have lower hindlimb oxygen consumption rates (OCRs), indicating depressed mitochondrial oxidative phosphorylation capacity in their skeletal muscle. We hypothesized that OCRs are lower in skeletal muscle mitochondria from IUGR fetuses, due to reduced electron transport chain (ETC) activity and lower abundances of tricarboxylic acid (TCA) cycle enzymes. IUGR sheep fetuses (n = 12) were created with mid-gestation maternal hyperthermia and compared with control fetuses (n = 12). At 132 ± 1 days of gestation, biceps femoris muscles were collected, and the mitochondria were isolated. Mitochondria from IUGR muscle have 47% lower State 3 (Complex I-dependent) OCRs than controls, whereas State 4 (proton leak) OCRs were not different between groups. Furthermore, Complex I, but not Complex II or IV, enzymatic activity was lower in IUGR fetuses compared with controls. Proteomic analysis (n = 6/group) identified 160 differentially expressed proteins between groups, with 107 upregulated and 53 downregulated mitochondria proteins in IUGR fetuses compared with controls. Although no differences were identified in ETC subunit protein abundances, abundances of key TCA cycle enzymes [isocitrate dehydrogenase (NAD+) 3 noncatalytic subunit β (IDH3B), succinate-CoA ligase ADP-forming subunit-β (SUCLA2), and oxoglutarate dehydrogenase (OGDH)] were lower in IUGR mitochondria. IUGR mitochondria had a greater abundance of a hypoxia-inducible protein, NADH dehydrogenase 1α subcomplex 4-like 2, which is known to incorporate into Complex I and lower Complex I-mediated NADH oxidation. Our findings show that mitochondria from IUGR skeletal muscle adapt to hypoxemia and hypoglycemia by lowering Complex I activity and TCA cycle enzyme concentrations, which together, act to lower OCR and NADH production/oxidation in IUGR skeletal muscle.
Collapse
Affiliation(s)
- Alexander L Pendleton
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona
| | - Andrew T Antolic
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Amy C Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Leticia E Camacho
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Kevin Doubleday
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, Arizona
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Paul R Langlais
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - Ronald M Lynch
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Sean W Limesand
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
19
|
Cellular mechanisms of complex I-associated pathology. Biochem Soc Trans 2020; 47:1963-1969. [PMID: 31769488 DOI: 10.1042/bst20191042] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 11/17/2022]
Abstract
Mitochondria control vitally important functions in cells, including energy production, cell signalling and regulation of cell death. Considering this, any alteration in mitochondrial metabolism would lead to cellular dysfunction and the development of a disease. A large proportion of disorders associated with mitochondria are induced by mutations or chemical inhibition of the mitochondrial complex I - the entry point to the electron transport chain. Subunits of the enzyme NADH: ubiquinone oxidoreductase, are encoded by both nuclear and mitochondrial DNA and mutations in these genes lead to cardio and muscular pathologies and diseases of the central nervous system. Despite such a clear involvement of complex I deficiency in numerous disorders, the molecular and cellular mechanisms leading to the development of pathology are not very clear. In this review, we summarise how lack of activity of complex I could differentially change mitochondrial and cellular functions and how these changes could lead to a pathology, following discrete routes.
Collapse
|
20
|
Abstract
Single-particle electron cryomicroscopy (cryo-EM) has led to a revolution in structural work on mammalian respiratory complex I. Complex I (mitochondrial NADH:ubiquinone oxidoreductase), a membrane-bound redox-driven proton pump, is one of the largest and most complicated enzymes in the mammalian cell. Rapid progress, following the first 5-Å resolution data on bovine complex I in 2014, has led to a model for mouse complex I at 3.3-Å resolution that contains 96% of the 8,518 residues and to the identification of different particle classes, some of which are assigned to biochemically defined states. Factors that helped improve resolution, including improvements to biochemistry, cryo-EM grid preparation, data collection strategy, and image processing, are discussed. Together with recent structural data from an ancient relative, membrane-bound hydrogenase, cryo-EM on mammalian complex I has provided new insights into the proton-pumping machinery and a foundation for understanding the enzyme's catalytic mechanism.
Collapse
Affiliation(s)
- Ahmed-Noor A Agip
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom; , , ,
| | - James N Blaza
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom; , , , .,Current affiliation: York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Justin G Fedor
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom; , , ,
| | - Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom; , , ,
| |
Collapse
|
21
|
Measuring the functionality of the mitochondrial pumping complexes with multi-wavelength spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:89-101. [DOI: 10.1016/j.bbabio.2018.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/04/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
|
22
|
Agip ANA, Blaza JN, Bridges HR, Viscomi C, Rawson S, Muench SP, Hirst J. Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states. Nat Struct Mol Biol 2018; 25:548-556. [PMID: 29915388 PMCID: PMC6054875 DOI: 10.1038/s41594-018-0073-1] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/26/2018] [Indexed: 02/02/2023]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) uses the reducing potential of NADH to drive protons across the energy-transducing inner membrane and power oxidative phosphorylation in mammalian mitochondria. Recent cryo-EM analyses have produced near-complete models of all 45 subunits in the bovine, ovine and porcine complexes and have identified two states relevant to complex I in ischemia-reperfusion injury. Here, we describe the 3.3-Å structure of complex I from mouse heart mitochondria, a biomedically relevant model system, in the 'active' state. We reveal a nucleotide bound in subunit NDUFA10, a nucleoside kinase homolog, and define mechanistically critical elements in the mammalian enzyme. By comparisons with a 3.9-Å structure of the 'deactive' state and with known bacterial structures, we identify differences in helical geometry in the membrane domain that occur upon activation or that alter the positions of catalytically important charged residues. Our results demonstrate the capability of cryo-EM analyses to challenge and develop mechanistic models for mammalian complex I.
Collapse
Affiliation(s)
- Ahmed-Noor A Agip
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - James N Blaza
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Hannah R Bridges
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Carlo Viscomi
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Shaun Rawson
- School of Biomedical Sciences, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
23
|
Blaza JN, Vinothkumar KR, Hirst J. Structure of the Deactive State of Mammalian Respiratory Complex I. Structure 2018; 26:312-319.e3. [PMID: 29395787 PMCID: PMC5807054 DOI: 10.1016/j.str.2017.12.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/03/2017] [Accepted: 12/27/2017] [Indexed: 12/20/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is central to energy metabolism in mammalian mitochondria. It couples NADH oxidation by ubiquinone to proton transport across the energy-conserving inner membrane, catalyzing respiration and driving ATP synthesis. In the absence of substrates, active complex I gradually enters a pronounced resting or deactive state. The active-deactive transition occurs during ischemia and is crucial for controlling how respiration recovers upon reperfusion. Here, we set a highly active preparation of Bos taurus complex I into the biochemically defined deactive state, and used single-particle electron cryomicroscopy to determine its structure to 4.1 Å resolution. We show that the deactive state arises when critical structural elements that form the ubiquinone-binding site become disordered, and we propose reactivation is induced when substrate binding to the NADH-reduced enzyme templates their reordering. Our structure both rationalizes biochemical data on the deactive state and offers new insights into its physiological and cellular roles. Preparation of mammalian complex I in the deactive state that forms during ischemia The structure of the deactive state determined using electron cryomicroscopy Improved particle densities and orientations obtained using PEGylated gold grids Localized unfolding around the quinone-binding site in the deactive state
Collapse
Affiliation(s)
- James N Blaza
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Kutti R Vinothkumar
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
24
|
Nakamura T, Lipton SA. 'SNO'-Storms Compromise Protein Activity and Mitochondrial Metabolism in Neurodegenerative Disorders. Trends Endocrinol Metab 2017; 28:879-892. [PMID: 29097102 PMCID: PMC5701818 DOI: 10.1016/j.tem.2017.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/07/2023]
Abstract
The prevalence of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), is currently a major public health concern due to the lack of efficient disease-modifying therapeutic options. Recent evidence suggests that mitochondrial dysfunction and nitrosative/oxidative stress are key common mediators of pathogenesis. In this review, we highlight molecular mechanisms linking NO-dependent post-translational modifications, such as cysteine S-nitrosylation and tyrosine nitration, to abnormal mitochondrial metabolism. We further discuss the hypothesis that pathological levels of NO compromise brain energy metabolism via aberrant S-nitrosylation of key enzymes in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, contributing to neurodegenerative conditions. A better understanding of these pathophysiological events may provide a potential pathway for designing novel therapeutics to ameliorate neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Neuroscience Translational Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA.
| | - Stuart A Lipton
- Neuroscience Translational Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA; Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Murphy MP. Chemical biology of mitochondria. Interface Focus 2017. [DOI: 10.1098/rsfs.2017.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
On 26–28 September 2016, the Theo Murphy (no relation) international scientific meeting on ‘Chemical biology approaches to assessing and modulating mitochondria’ was held at the Kavli Royal Society Centre, Chicheley Hall, Buckinghamshire, UK. Mike Murphy organized the meeting and it was enabled through the Royal Society scientific programme. The purpose of the conference was to bring together biologists, chemists and clinicians to discuss how to apply chemical biology to mitochondria to capitalize on the many new opportunities arising from the recent developments in mitochondrial biology.
Collapse
|