1
|
Gougeon R, Buatois LA, Mángano MG, Narbonne GM, Laing BA, Paz M, Minter NJ. Environmental and evolutionary controls in animal-sediment interactions at the onset of the Cambrian explosion. Curr Biol 2025; 35:249-264.e4. [PMID: 39719696 DOI: 10.1016/j.cub.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Accepted: 11/15/2024] [Indexed: 12/26/2024]
Abstract
The Cambrian explosion was a time of groundbreaking ecological shifts related to the establishment of the Phanerozoic biosphere. Trace fossils, which are the products of animals interacting with their substrates, provide a key record of the diversification of the benthos and the evolution of behavioral complexity through this interval. The Chapel Island Formation of Newfoundland in Canada hosts the most extensive trace-fossil record from the latest Ediacaran to Cambrian Age 2, spanning about 20 million years continuously. To elucidate the relative roles of environmental changes as opposed to evolutionary trajectories, we gathered the largest trace-fossil dataset to date and designed fourteen high-resolution time-environment matrices on bioturbation intensity, burrow width and depth, tiering (i.e., the vertical partitioning of trace fossils within the substrate), ichnodiversity, ichnodisparity (i.e., the development of novel architectural designs in ichnotaxa), ecospace utilization (i.e., the development of ecological niches by benthic animals), and other trends related to specific trace-fossil types. Ecosystem engineering by early animals resulted in three stages identified in the Chapel Island Formation that are probably global-an Ediacaran matground ecology, a Fortunian matground/firmground ecology, and a latest Fortunian/Cambrian Age 2 mixground ecology. Time-environment matrices further imply that the lower offshore was the cradle of diversification for animal behavior, which later expanded inshore and led to a novelty evolutionary event, refining our understanding of the early stages of the Cambrian explosion.
Collapse
Affiliation(s)
- Romain Gougeon
- Department of Geological Sciences, University of Saskatchewan, Science Place, Saskatoon, SK S7N 5E2, Canada; Geo-Ocean, University of Brest, CNRS, Ifremer, UMR 6538, Place Nicolas Copernic, Plouzané 29280, France.
| | - Luis A Buatois
- Department of Geological Sciences, University of Saskatchewan, Science Place, Saskatoon, SK S7N 5E2, Canada
| | - M Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Guy M Narbonne
- Department of Geological Sciences, University of Saskatchewan, Science Place, Saskatoon, SK S7N 5E2, Canada; Department of Geological Sciences and Geological Engineering, Queen's University, Union Street, Kingston, ON K7L 3N6, Canada
| | - Brittany A Laing
- Department of Geological Sciences, University of Saskatchewan, Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Maximiliano Paz
- Department of Geological Sciences, University of Saskatchewan, Science Place, Saskatoon, SK S7N 5E2, Canada; Oberlin College and Conservatory, W. Lorain Street, Oberlin, OH 44074, USA
| | - Nicholas J Minter
- School of the Environment and Life Sciences, University of Portsmouth, Burnaby Road, Portsmouth PO1 3QL, UK
| |
Collapse
|
2
|
Hughes IV, Evans SD, Droser ML. An Ediacaran bilaterian with an ecdysozoan affinity from South Australia. Curr Biol 2024; 34:5782-5788.e1. [PMID: 39561775 DOI: 10.1016/j.cub.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024]
Abstract
Molecular clocks and Cambrian-derived metazoans strongly suggest a Neoproterozoic origin of many animal clades.1,2,3,4 However, fossil bilaterians are rare in the Ediacaran, and no definitive ecdysozoan body fossils are known from the Precambrian. Notably, the base of the Cambrian is characterized by an abundance of trace fossils attributed to priapulid worms,5,6 suggesting that major divisions among ecdysozoan groups occurred prior to this time. This is supported by ichnofossils from the latest Ediacaran or early Cambrian left by a plausible nematoid,7,8,9 although definitively attributing this inferred behavior to crown-Nematoida remains contentious in the absence of body fossils.10 Given the high probability of the evolution of Ecdysozoa in the Proterozoic, the otherwise prolific fossil record of the Ecdysozoa, and the identification of more than 100 distinct Ediacaran genera, it is striking that no Ediacaran body fossils have been confidently assigned to this group. Here, we describe Uncus dzaugisi gen. et. sp. nov. from the Ediacara Member (South Australia), a smooth, vermiform organism with distinct curvature and anterior-posterior differentiation. The depth of relief of Uncus is unique among Ediacara fossils and consistent with a rigid outer cuticle. Ecological relationships and associated trace fossils demonstrate that Uncus was motile. Body morphology and the inferred style of movement are consistent with Nematoida, providing strong evidence for at least an ecdysozoan affinity. This validates the Precambrian origin of Ecdysozoa, reconciling a major gap between predicted patterns of animal evolution and the fossil record.4.
Collapse
Affiliation(s)
- Ian V Hughes
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Scott D Evans
- Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, FL 32304, USA
| | - Mary L Droser
- Earth and Planetary Sciences, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Cribb AT, Darroch SAF. Geobiology: Machine learning puts bioturbation on the map. Curr Biol 2024; 34:R630-R632. [PMID: 38981429 DOI: 10.1016/j.cub.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Bioturbation, the mixing of sediment through the actions of organisms, is a crucial ecosystem engineering process that controls biogeochemical cycles and helps structure marine ecosystems. Machine learning is helping to develop global maps of the intensity and depth of bioturbation.
Collapse
Affiliation(s)
- Alison T Cribb
- School of Ocean and Earth Science, University of Southampton, Southampton SO17 1BJ, UK
| | - Simon A F Darroch
- Senckenberg Museum of Natural History, Frankfurt am Main 60325, Germany.
| |
Collapse
|
4
|
Rosslenbroich B. Evolutionary changes in the capacity for organismic autonomy. J Physiol 2024; 602:2455-2468. [PMID: 37851897 DOI: 10.1113/jp284414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Studies of macroevolution have revealed various trends in evolution - which have been documented and discussed. There is, however, no consensus on this topic. Since Darwin's time one presumption has persisted: that throughout evolution organisms increase their independence from and stability towards environmental influences. Although this principle has often been stated in the literature, it played no role in mainstream theory. In a closer examination, we studied this particular feature and described that many of the major transitions in animal evolution have been characterized by changes in the capacity for physiological regulation. Organisms gained in robustness, self-regulation, homeostasis and stabilized self-referential, intrinsic functions within their respective systems. This is associated with expanded environmental flexibility, such as new opportunities for movement and behaviour. Together, these aspects can be described as changes in the capacity for autonomy. There seems to be a large-scale trajectory in evolution during which some organisms gained in autonomy and flexibility. At the same time, adaptations to the environment emerged that were a prerequisite for survival. Apparently, evolution produced differential combinations of autonomy traits and adaptations. These processes are described as modifications in relative autonomy because numerous interconnections with the environment and dependencies upon it were retained. Also, it is not a linear trend, but rather an outcome of all the diverse processes which have been involved during evolutionary changes. Since the principle of regulation is a core element of physiology, the concept of autonomy is suitable to build a bridge from physiology to evolutionary research.
Collapse
Affiliation(s)
- Bernd Rosslenbroich
- Institute of Evolutionary Biology and Morphology, Centre for Biomedical Education and Research, Faculty of Health, School of Medicine Witten/Herdecke University, Witten, Germany
| |
Collapse
|
5
|
Meek DM, Buatois LA, Mángano MG, Eglington BM. Increased habitat segregation at the dawn of the Phanerozoic revealed by correspondence analysis of bioturbation. Sci Rep 2023; 13:22328. [PMID: 38102199 PMCID: PMC10724277 DOI: 10.1038/s41598-023-49716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
The Agronomic Revolution of the early Cambrian refers to the most significant re-structuration of the benthic marine ecosystem in life history. Using a global compilation of trace-fossil records across the Ediacaran-Cambrian transition, this paper investigates the relationship between the benthos and depositional environments prior to, during, and after the Agronomic Revolution to shed light on habitat segregation via correspondence analysis. The results of this analysis characterize Ediacaran mobile benthic bilaterians as facies-crossing and opportunistic, with low levels of habitat specialization. In contrast, the Terreneuvian and Cambrian Series 2 reveal progressive habitat segregation, parallel to matground environmental restriction. This event was conducive to the establishment of distinct endobenthic communities along the marine depositional profile, showing that the increase in styles of animal-substrate interactions was expressed by both alpha and beta ichnodiversity. Habitat segregation at the dawn of the Phanerozoic may illustrate an early extension of the trophic group amensalism at community scale.
Collapse
Affiliation(s)
- Dean M Meek
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Luis A Buatois
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - M Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Bruce M Eglington
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
6
|
Cribb AT, van de Velde SJ, Berelson WM, Bottjer DJ, Corsetti FA. Ediacaran-Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems. GEOBIOLOGY 2023; 21:435-453. [PMID: 36815223 DOI: 10.1111/gbi.12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 01/03/2023] [Accepted: 01/27/2023] [Indexed: 06/13/2023]
Abstract
The radiation of bioturbation during the Ediacaran-Cambrian transition has long been hypothesized to have oxygenated sediments, triggering an expansion of the habitable benthic zone and promoting increased infaunal tiering in early Paleozoic benthic communities. However, the effects of bioturbation on sediment oxygen are underexplored with respect to the importance of biomixing and bioirrigation, two bioturbation processes which can have opposite effects on sediment redox chemistry. We categorized trace fossils from the Ediacaran and Terreneuvian as biomixing or bioirrigation fossils and integrated sedimentological proxies for bioturbation intensity with biogeochemical modeling to simulate oxygen penetration depths through the Ediacaran-Cambrian transition. Ultimately, we find that despite dramatic increases in ichnodiversity in the Terreneuvian, biomixing remains the dominant bioturbation behavior, and in contrast to traditional assumptions, Ediacaran-Cambrian bioturbation was unlikely to have resulted in extensive oxygenation of shallow marine sediments globally.
Collapse
Affiliation(s)
- Alison T Cribb
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Sebastiaan J van de Velde
- Department of Geosciences, Environment and Society, Universté Libre de Bruxelles, Brussels, Belgium
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - William M Berelson
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - David J Bottjer
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Frank A Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Darroch SA, Smith EF, Nelson LL, Craffey M, Schiffbauer JD, Laflamme M. Causes and consequences of end-Ediacaran extinction: An update. CAMBRIDGE PRISMS. EXTINCTION 2023; 1:e15. [PMID: 40078676 PMCID: PMC11895755 DOI: 10.1017/ext.2023.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 03/14/2025]
Abstract
Since the 1980s, the existence of one or more extinction events in the late Ediacaran has been the subject of debate. Discussion surrounding these events has intensified in the last decade, in concert with efforts to understand drivers of global change over the Ediacaran-Cambrian transition and the appearance of the more modern-looking Phanerozoic biosphere. In this paper we review the history of thought and work surrounding late Ediacaran extinctions, with a particular focus on the last 5 years of paleontological, geochemical, and geochronological research. We consider the extent to which key questions have been answered, and pose new questions which will help to characterize drivers of environmental and biotic change. A key challenge for future work will be the calculation of extinction intensities that account for limited sampling, the duration of Ediacaran 'assemblage' zones, and the preponderance of taxa restricted to a single 'assemblage'; without these data, the extent to which Ediacaran bioevents represent genuine mass extinctions comparable to the 'Big 5' extinctions of the Phanerozoic remains to be rigorously tested. Lastly, we propose a revised model for drivers of late Ediacaran extinction pulses that builds off recent data and growing consensus within the field. This model is speculative, but does frame testable hypotheses that can be targeted in the next decade of work.
Collapse
Affiliation(s)
- Simon A.F. Darroch
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Institute, Vanderbilt University, Nashville, TN, USA
- Senckenberg Research Institute and Museum of Natural History, Frankfurt, Germany
| | - Emily F. Smith
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Lyle L. Nelson
- Department of Earth Sciences, Carleton University, Ottawa, ON, Canada
| | - Matthew Craffey
- Department of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - James D. Schiffbauer
- Department of Geological Sciences, University of Missouri, Columbia, MO, USA
- X-Ray Microanalysis Laboratory, University of Missouri, Columbia, MO, USA
| | - Marc Laflamme
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
8
|
Assessing the expansion of the Cambrian Agronomic Revolution into fan-delta environments. Sci Rep 2022; 12:14431. [PMID: 36002516 PMCID: PMC9402710 DOI: 10.1038/s41598-022-18199-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
The intensity, extent, and ecosystem-level impact of bioturbation (i.e. Agronomic Revolution) at the dawn of the Phanerozoic is a hotly debated issue. Middle Cambrian fan-delta deposits in southwestern Saskatchewan provide insights into the paleoenvironmental extent of the Agronomic Revolution into marginal-marine environments. The studied deposits reveal that several environmental stressors had direct impact on trace-fossil distribution and bioturbation intensities in Cambrian fan deltas. Basal and proximal subaerial deposits are characterized by very coarse grain size and absence of bioturbation. Mid-fan and fan-toe deposits were formed under subaqueous conditions and are characterized by rapid bioturbation events in between sedimentation episodes when environmental stressors were ameliorated, providing evidence of a significant landward expansion of the Agronomic Revolution. Transgressive marine deposits accumulated after the abandonment of the fan-delta system display high levels of bioturbation intensity, reflecting stable environmental conditions that favored endobenthic colonization. The presence of intense bioturbation in both subaqueous fan delta and transgressive deposits provides further support to the view that Cambrian levels of biogenic mixing were high, provided that stable environmental conditions were reached. Our study underscores the importance of evaluating sedimentary facies changes to assess the impact of environmental factors prior to making evolutionary inferences.
Collapse
|
9
|
Martynov AV, Korshunova TA. Renewed perspectives on the sedentary-pelagic last common bilaterian ancestor. CONTRIBUTIONS TO ZOOLOGY 2022. [DOI: 10.1163/18759866-bja10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Various evaluations of the last common bilaterian ancestor (lcba) currently suggest that it resembled either a microscopic, non-segmented motile adult; or, on the contrary, a complex segmented adult motile urbilaterian. These fundamental inconsistencies remain largely unexplained. A majority of multidisciplinary data regarding sedentary adult ancestral bilaterian organization is overlooked. The sedentary-pelagic model is supported now by a number of novel developmental, paleontological and molecular phylogenetic data: (1) data in support of sedentary sponges, in the adult stage, as sister to all other Metazoa; (2) a similarity of molecular developmental pathways in both adults and larvae across sedentary sponges, cnidarians, and bilaterians; (3) a cnidarian-bilaterian relationship, including a unique sharing of a bona fide Hox-gene cluster, of which the evolutionary appearance does not connect directly to a bilaterian motile organization; (4) the presence of sedentary and tube-dwelling representatives of the main bilaterian clades in the early Cambrian; (5) an absence of definite taxonomic attribution of Ediacaran taxa reconstructed as motile to any true bilaterian phyla; (6) a similarity of tube morphology (and the clear presence of a protoconch-like apical structure of the Ediacaran sedentary Cloudinidae) among shells of the early Cambrian, and later true bilaterians, such as semi-sedentary hyoliths and motile molluscs; (7) recent data that provide growing evidence for a complex urbilaterian, despite a continuous molecular phylogenetic controversy. The present review compares the main existing models and reconciles the sedentary model of an urbilaterian and the model of a larva-like lcba with a unified sedentary(adult)-pelagic(larva) model of the lcba.
Collapse
Affiliation(s)
- Alexander V. Martynov
- Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009 Moscow, Russia,
| | - Tatiana A. Korshunova
- Koltzov Institute of Developmental Biology RAS, 26 Vavilova Str., 119334 Moscow, Russia
| |
Collapse
|
10
|
Buatois LA, Davies NS, Gibling MR, Krapovickas V, Labandeira CC, MacNaughton RB, Mángano MG, Minter NJ, Shillito AP. The Invasion of the Land in Deep Time: Integrating Paleozoic Records of Paleobiology, Ichnology, Sedimentology, and Geomorphology. Integr Comp Biol 2022; 62:297-331. [PMID: 35640908 DOI: 10.1093/icb/icac059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The invasion of the land was a complex, protracted process, punctuated by mass extinctions, that involved multiple routes from marine environments. We integrate paleobiology, ichnology, sedimentology, and geomorphology to reconstruct Paleozoic terrestrialization. Cambrian landscapes were dominated by laterally mobile rivers with unstable banks in the absence of significant vegetation. Temporary incursions by arthropods and worm-like organisms into coastal environments apparently did not result in establishment of continental communities. Contemporaneous lacustrine faunas may have been inhibited by limited nutrient delivery and high sediment loads. The Ordovician appearance of early land plants triggered a shift in the primary locus of the global clay mineral factory, increasing the amount of mudrock on the continents. The Silurian-Devonian rise of vascular land plants, including the first forests and extensive root systems, was instrumental in further retaining fine sediment on alluvial plains. These innovations led to increased architectural complexity of braided and meandering rivers. Landscape changes were synchronous with establishment of freshwater and terrestrial arthropod faunas in overbank areas, abandoned fluvial channels, lake margins, ephemeral lakes, and inland deserts. Silurian-Devonian lakes experienced improved nutrient availability, due to increased phosphate weathering and terrestrial humic matter. All these changes favoured frequent invasions to permament establishment of jawless and jawed fishes in freshwater habitats and the subsequent tetrapod colonization of the land. The Carboniferous saw rapid diversification of tetrapods, mostly linked to aquatic reproduction, and land plants, including gymnosperms. Deeper root systems promoted further riverbank stabilization, contributing to the rise of anabranching rivers and braided systems with vegetated islands. New lineages of aquatic insects developed and expanded novel feeding modes, including herbivory. Late Paleozoic soils commonly contain pervasive root and millipede traces. Lacustrine animal communities diversified, accompanied by increased food-web complexity and improved food delivery which may have favored permanent colonization of offshore and deep-water lake environments. These trends continued in the Permian, but progressive aridification favored formation of hypersaline lakes, which were stressful for colonization. The Capitanian and end-Permian extinctions affected lacustrine and fluvial biotas, particularly the invertebrate infauna, although burrowing may have allowed some tetrapods to survive associated global warming and increased aridification.
Collapse
Affiliation(s)
- Luis A Buatois
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Neil S Davies
- Department of Earth Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EQ, UK
| | - Martin R Gibling
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Verónica Krapovickas
- Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Argentina
| | - Conrad C Labandeira
- Department of Paleobiology, Smithsonian Institution, Washington DC 20013-7012, USA.,Department of Entomology and BEES Program, University of Maryland, College Park, Maryland 21740, USA.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Robert B MacNaughton
- Geological Survey of Canada (Calgary), Natural Resources Canada, Calgary, Alberta T2L 2A7, Canada
| | - M Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Nicholas J Minter
- School of the Environment, Geography, and Geosciences, University of Portsmouth, Portsmouth, Hampshire PO1 3QL, UK
| | - Anthony P Shillito
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
11
|
Bayet-Goll A, Buatois LA, Mángano MG, Daraei M. The interplay of environmental constraints and bioturbation on matground development along the marine depositional profile during the Ordovician Radiation. GEOBIOLOGY 2022; 20:233-270. [PMID: 34672404 DOI: 10.1111/gbi.12473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/26/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
This study documents the distribution of matgrounds in a wide variety of environments recorded in the Ordovician Lashkerak and Ghelli Formations in the Alborz Mountains of northern Iran in order to evaluate controls on their distribution along the marine depositional profile. Detailed facies analysis allowed differentiating three groups of facies associations in the Lower to Upper Ordovician deposits of the Lashkerak formation: (i) estuarine system; (ii) wave-dominated shoreface-offshore complex; and (iii) mixed river- and wave-influenced deltaic system. The Middle to Upper Ordovician deposits of the Ghelli formation are divided into two groups of facies associations: (i) tide-influenced deltaic succession and (ii) deep-water fan system. Microbially induced sedimentary structures (MISS) are present in deposits formed in the central estuarine basin (Lashkerak formation) and in proximal lobes and lobe fringes of deep-water turbidite fans (Ghelli formation). On the contrary, MISS are absent in deposits from the wave-dominated shoreface-offshore complex, river- and tide-dominated deltas, and various subenvironments of the incised wave-dominated estuary (i.e., bayhead delta and estuary mouth) and the deep-marine turbidite fan system (i.e., turbidite channel, slope, and outer lobe). The lack of evidence of mat-building microorganisms in the deltaic systems may have resulted from two factors: (1) high physico-chemical stressors caused by river-induced processes, and (2) increase in degree of sediment disturbance, biodiffusion, and bioirrigation by burrowing organisms. Formation of microbial mats in the wave-dominated shoreface-offshore complex was inhibited by the activity of an abundant and diverse infauna capable of reworking the sediment. Our analysis shows that the spatial distribution of microbial mats was controlled by an interplay of environmental factors and innovations in animal-substrate interactions, mostly expressed by secular changes in bioturbation. This study supports the notion that the agronomic revolution was diachronic, with marginal-marine and deep-sea ecosystems lagging behind shallow-marine settings.
Collapse
Affiliation(s)
- Aram Bayet-Goll
- Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Luis A Buatois
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Mehdi Daraei
- Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|
12
|
Pates S, Lerosey-Aubril R, Daley AC, Kier C, Bonino E, Ortega-Hernández J. The diverse radiodont fauna from the Marjum Formation of Utah, USA (Cambrian: Drumian). PeerJ 2021; 9:e10509. [PMID: 33552709 PMCID: PMC7821760 DOI: 10.7717/peerj.10509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022] Open
Abstract
Radiodonts have long been known from Cambrian deposits preserving non-biomineralizing organisms. In Utah, the presence of these panarthropods in the Spence and Wheeler (House Range and Drum Mountains) biotas is now well-documented. Conversely, radiodont occurrences in the Marjum Formation have remained scarce. Despite the large amount of work undertaken on its diverse fauna, only one radiodont (Peytoia) has been reported from the Marjum Biota. In this contribution we quadruple the known radiodont diversity of the Marjum fauna, with the description of the youngest members of two genera, Caryosyntrips and Pahvantia, and that of a new taxon Buccaspinea cooperi gen. et sp. nov. This new taxon can be identified from its large oral cone bearing robust hooked teeth with one, two, or three cusps, and by the unique endite morphology and organisation of its frontal appendages. Appendages of at least 12 podomeres bear six recurved plate-like endites proximal to up to four spiniform distal endites. Pahvantia hastata specimens from the Marjum Formation are particularly large, but otherwise morphologically indistinguishable from the carapace elements of this species found in the Wheeler Formation. One of the two new Caryosyntrips specimens can be confidently assigned to C. camurus. The other bears the largest spines relative to appendage length recorded for this genus, and possesses endites of variable size and unequal spacing, making its taxonomic assignment uncertain. Caryosyntrips, Pahvantia, and Peytoia are all known from the underlying Wheeler Formation, whereas isolated appendages from the Spence Shale and the Wheeler Formation, previously assigned to Hurdia, are tentatively reidentified as Buccaspinea. Notably, none of these four genera occurs in the overlying Weeks Formation, providing supporting evidence of a faunal restructuring around the Drumian-Guzhangian boundary. The description of three additional nektonic taxa from the Marjum Formation further documents the higher relative proportion of free-swimming species in this biota compared to those of the Wheeler and Weeks Lagerstätten. This could be related to a moderate deepening of the basin and/or changing regional ocean circulation at this time.
Collapse
Affiliation(s)
- Stephen Pates
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Allison C. Daley
- Institut des sciences de la Terre (ISTE), Université de Lausanne, Lausanne, Vaud, Switzerland
| | - Carlo Kier
- Back to the Past Museum, Carretera Cancún, Quintana Roo, Mexico
| | - Enrico Bonino
- Back to the Past Museum, Carretera Cancún, Quintana Roo, Mexico
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
13
|
Becker-Kerber B, de Barros GEB, Paim PSG, Prado GMEM, da Rosa ALZ, El Albani A, Laflamme M. In situ filamentous communities from the Ediacaran (approx. 563 Ma) of Brazil. Proc Biol Sci 2021; 288:20202618. [PMID: 33402067 DOI: 10.1098/rspb.2020.2618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Precambrian filamentous microfossils are common and diverse. Nevertheless, their taxonomic assignment can be difficult owing to their overall simple shapes typically lacking in diagnostic features. Here, we report in situ communities of well-preserved, large filamentous impressions from the Ediacaran Itajaí Basin (ca 563 Ma) of Brazil. The filaments are uniserial (unbranched) and can reach up to 200 µm in width and up to 44 mm in length. They occur as both densely packed or sparsely populated surfaces, and typically show a consistent orientation. Although simple in shape, their preferred orientation suggests they were tethered to the seafloor, and their overall flexibility (e.g. bent, folded and twisted) supports a biological (rather than sedimentary) affinity. Biometric comparisons with modern filamentous groups further support their biological affinity, suggesting links with either large sulfide-oxidizing bacteria (SOB) or eukaryotes. Other morphological and palaeoecological characteristics further corroborates their similarities with modern large filamentous SOB. Their widespread occurrence and association with complex Ediacaran macrobiota (e.g. frondose organisms, Palaeopascichnus) suggest that they probably played an important role in the ecological dynamics of these early benthic communities by providing firm substrates for metazoans to inhabit. It is further hypothesized that the dynamic redox condition in the latest Ediacaran, with the non-continuous rise in oxygen concentration and periods of hypoxia, may have created ideal conditions for SOB to thrive.
Collapse
Affiliation(s)
- Bruno Becker-Kerber
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Washington Luiz, 325 km, São Carlos (SP) 13565-905, Brazil.,Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS), IC2MP 7285, University of Poitiers, 86073 Poitiers, France
| | - Gabriel Eduardo Baréa de Barros
- Programa de Pós-Graduação em Biologia Comparada, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Avenue Bandeirantes, 3900-Vila Monte Alegre, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Paulo Sergio Gomes Paim
- Programa de Pós-Graduação em Geologia, Universidade do Vale do Rio dos Sinos, 93.022-750, São Leopoldo (RS), Brazil
| | - Gustavo M E M Prado
- Programa de Pós Graduação em Geoquímica e Geotectônica, Instituto de Geociências, Universidade de São Paulo (USP), Avenue Bandeirantes, 3900-Vila Monte Alegre, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | | | - Abderrazak El Albani
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS), IC2MP 7285, University of Poitiers, 86073 Poitiers, France
| | - Marc Laflamme
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada L5 L 1C6
| |
Collapse
|
14
|
Wood R, Donoghue PCJ, Lenton TM, Liu AG, Poulton SW. The origin and rise of complex life: progress requires interdisciplinary integration and hypothesis testing. Interface Focus 2020; 10:20200024. [PMCID: PMC7333910 DOI: 10.1098/rsfs.2020.0024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 01/11/2025] Open
Abstract
Understanding of the triggers and timing of the rise of complex life ca 2100 to 720 million years ago has expanded dramatically in recent years. This theme issue brings together diverse and novel geochemical and palaeontological data presented as part of the Royal Society ‘The origin and rise of complex life: integrating models , geochemical and palaeontological data ’ discussion meeting held in September 2019. The individual papers offer prescient insights from multiple disciplines. Here we summarize their contribution towards the goal of the meeting; to create testable hypotheses for the differing roles of changing climate, oceanic redox, nutrient availability, and ecosystem feedbacks across this profound, but enigmatic, transitional period.
Collapse
Affiliation(s)
- Rachel Wood
- School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, UK
| | | | | | - Alexander G. Liu
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Simon W. Poulton
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
15
|
Buatois LA, Mángano MG, Minter NJ, Zhou K, Wisshak M, Wilson MA, Olea RA. Quantifying ecospace utilization and ecosystem engineering during the early Phanerozoic-The role of bioturbation and bioerosion. SCIENCE ADVANCES 2020; 6:eabb0618. [PMID: 32851171 PMCID: PMC7428343 DOI: 10.1126/sciadv.abb0618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
The Cambrian explosion (CE) and the great Ordovician biodiversification event (GOBE) are the two most important radiations in Paleozoic oceans. We quantify the role of bioturbation and bioerosion in ecospace utilization and ecosystem engineering using information from 1367 stratigraphic units. An increase in all diversity metrics is demonstrated for the Ediacaran-Cambrian transition, followed by a decrease in most values during the middle to late Cambrian, and by a more modest increase during the Ordovician. A marked increase in ichnodiversity and ichnodisparity of bioturbation is shown during the CE and of bioerosion during the GOBE. Innovations took place first in offshore settings and later expanded into marginal-marine, nearshore, deep-water, and carbonate environments. This study highlights the importance of the CE, despite its Ediacaran roots. Differences in infaunalization in offshore and shelf paleoenvironments favor the hypothesis of early Cambrian wedge-shaped oxygen minimum zones instead of a horizontally stratified ocean.
Collapse
Affiliation(s)
- Luis A. Buatois
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada
- Corresponding author.
| | - M. Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Nicholas J. Minter
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, Hampshire PO1 3QL, UK
| | - Kai Zhou
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Max Wisshak
- Marine Research Department, Senckenberg am Meer, Südstrand 40, 26382 Wilhelmshaven, Germany
| | - Mark A. Wilson
- Department of Earth Sciences, The College of Wooster, Wooster, OH 44691, USA
| | - Ricardo A. Olea
- Eastern Energy Resources, United States Geological Survey, 12201 Sunrise Valley Dr., Reston, VA 20192, USA
| |
Collapse
|