1
|
Álvarez-García LA, Liebermeister W, Leifer I, Makse HA. Complexity reduction by symmetry: uncovering the minimal regulatory network for logical computation in bacteria. ARXIV 2025:arXiv:2310.10895v3. [PMID: 37904746 PMCID: PMC10614959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Symmetry principles play an important role in geometry, and physics, allowing for the reduction of complicated systems to simpler, more comprehensible models that preserve the system's features of interest. Biological systems are often highly complex and may consist of a large number of interacting parts. Using symmetry fibrations, the relevant symmetries for biological "message-passing" networks, we introduce a scheme, called Complexity Reduction by Symmetry or ComSym, to reduce the gene regulatory networks of Escherichia coli and Bacillus subtilis bacteria to core networks in a way that preserves the dynamics and uncovers the computational capabilities of the network. Gene nodes in the original network that share isomorphic input trees are collapsed by the fibration into equivalence classes called fibers, whereby nodes that receive signals with the same "history" belong to one fiber and synchronize. Then we reduce the networks to its minimal computational core via k-core decomposition. This computational core consists of a few strongly connected components or "signal vortices", in which signals can cycle through. While between them, these "signal vortices" transmit signals in a feedforward manner. These connected components perform signal processing and decision making in the bacterial cell by employing a series of genetic toggle-switch circuits that store memory, plus oscillator circuits. These circuits act as the central computation device of the network, whose output signals then spread to the rest of the network. Our reduction method opens the door to narrow the vast complexity of biological systems to their minimal parts in a systematic way by using fundamental theoretical principles of symmetry.
Collapse
Affiliation(s)
- Luis A Álvarez-García
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
| | | | - Ian Leifer
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
| | - Hernán A Makse
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
| |
Collapse
|
2
|
Mougkogiannis P, Nikolaidou A, Adamatzky A. On Emergence of Spontaneous Oscillations in Kombucha and Proteinoids. BIONANOSCIENCE 2024; 15:65. [PMID: 39980746 PMCID: PMC11835939 DOI: 10.1007/s12668-024-01678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 02/22/2025]
Abstract
An important part of studying living systems is figuring out the complicated steps that lead to order from chaos. Spontaneous oscillations are a key part of self-organisation in many biological and chemical networks, including kombucha and proteinoids. This study examines the spontaneous oscillations in kombucha and proteinoids, specifically exploring their potential connection to the origin of life. As a community of bacteria and yeast work together, kombucha shows remarkable spontaneous oscillations in its biochemical parts. This system can keep a dynamic balance and organise itself thanks to metabolic processes and complex chemical reactions. Similarly, proteinoids, which may have been primitive forms of proteins, undergo spontaneous fluctuations in their structure and function periodically. Because these oscillations happen on their own, they may play a very important part in the development of early life forms. This paper highlights the fundamental principles governing the transition from chaos to order in living systems by examining the key factors that influence the frequency and characteristics of spontaneous oscillations in kombucha and proteinoids. Looking into these rhythms not only helps us understand where life came from but also shows us ways to make self-organising networks in synthetic biology and biotechnology. There is significant discussion over the emergence of biological order from chemical disorder. This article contributes to the ongoing discussion by examining at the theoretical basis, experimental proof, and implications of spontaneous oscillations. The results make it clear that random oscillations are an important part of the change from nonliving to living matter. They also give us important information about what life is all about.
Collapse
Affiliation(s)
| | - Anna Nikolaidou
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS16 1QY UK
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol, BS16 1QY UK
| |
Collapse
|
3
|
Cannarsa MC, Liguori F, Pellicciotta N, Frangipane G, Di Leonardo R. Light-driven synchronization of optogenetic clocks. eLife 2024; 13:RP97754. [PMID: 39405096 PMCID: PMC11479589 DOI: 10.7554/elife.97754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Synthetic genetic oscillators can serve as internal clocks within engineered cells to program periodic expression. However, cell-to-cell variability introduces a dispersion in the characteristics of these clocks that drives the population to complete desynchronization. Here, we introduce the optorepressilator, an optically controllable genetic clock that combines the repressilator, a three-node synthetic network in E. coli, with an optogenetic module enabling to reset, delay, or advance its phase using optical inputs. We demonstrate that a population of optorepressilators can be synchronized by transient green light exposure or entrained to oscillate indefinitely by a train of short pulses, through a mechanism reminiscent of natural circadian clocks. Furthermore, we investigate the system's response to detuned external stimuli observing multiple regimes of global synchronization. Integrating experiments and mathematical modeling, we show that the entrainment mechanism is robust and can be understood quantitatively from single cell to population level.
Collapse
Affiliation(s)
- Maria Cristina Cannarsa
- Department of Physics, Sapienza University of RomeRomaItaly
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of RomeRomeItaly
| | - Filippo Liguori
- Department of Physics, Sapienza University of RomeRomaItaly
- Center for Life Nano & Neuro Science, Fondazione Istituto Italiano di Tecnologia (IIT)RomaItaly
| | - Nicola Pellicciotta
- Department of Physics, Sapienza University of RomeRomaItaly
- NANOTEC-CNR, Soft and Living Matter Laboratory, Institute of NanotechnologyRomeItaly
| | - Giacomo Frangipane
- Department of Physics, Sapienza University of RomeRomaItaly
- NANOTEC-CNR, Soft and Living Matter Laboratory, Institute of NanotechnologyRomeItaly
| | - Roberto Di Leonardo
- Department of Physics, Sapienza University of RomeRomaItaly
- NANOTEC-CNR, Soft and Living Matter Laboratory, Institute of NanotechnologyRomeItaly
| |
Collapse
|
4
|
Park JH, Holló G, Schaerli Y. From resonance to chaos by modulating spatiotemporal patterns through a synthetic optogenetic oscillator. Nat Commun 2024; 15:7284. [PMID: 39179558 PMCID: PMC11343849 DOI: 10.1038/s41467-024-51626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Oscillations are a recurrent phenomenon in biological systems across scales, but deciphering their fundamental principles is very challenging. Here, we tackle this challenge by redesigning the wellcharacterised synthetic oscillator known as "repressilator" in Escherichia coli and controlling it using optogenetics, creating the "optoscillator". Bacterial colonies manifest oscillations as spatial ring patterns. When we apply periodic light pulses, the optoscillator behaves as a forced oscillator and we systematically investigate the properties of the rings under various light conditions. Combining experiments with mathematical modeling, we demonstrate that this simple oscillatory circuit can generate complex dynamics that are transformed into distinct spatial patterns. We report the observation of synchronisation, resonance, subharmonic resonance and period doubling. Furthermore, we present evidence of a chaotic regime. This work highlights the intricate spatiotemporal patterns accessible by synthetic oscillators and underscores the potential of our approach in revealing fundamental principles of biological oscillations.
Collapse
Affiliation(s)
- Jung Hun Park
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Gábor Holló
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Stewart I, Reis SDS, Makse HA. Dynamics and bifurcations in genetic circuits with fibration symmetries. J R Soc Interface 2024; 21:20240386. [PMID: 39139035 PMCID: PMC11322742 DOI: 10.1098/rsif.2024.0386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 08/15/2024] Open
Abstract
Circuit building blocks of gene regulatory networks (GRN) have been identified through the fibration symmetries of the underlying biological graph. Here, we analyse analytically six of these circuits that occur as functional and synchronous building blocks in these networks. Of these, the lock-on, toggle switch, Smolen oscillator, feed-forward fibre and Fibonacci fibre circuits occur in living organisms, notably Escherichia coli; the sixth, the repressilator, is a synthetic GRN. We consider synchronous steady states determined by a fibration symmetry (or balanced colouring) and determine analytic conditions for local bifurcation from such states, which can in principle be either steady-state or Hopf bifurcations. We identify conditions that characterize the first bifurcation, the only one that can be stable near the bifurcation point. We model the state of each gene in terms of two variables: mRNA and protein concentration. We consider all possible 'admissible' models-those compatible with the network structure-and then specialize these general results to simple models based on Hill functions and linear degradation. The results systematically classify using graph symmetries the complexity and dynamics of these circuits, which are relevant to understand the functionality of natural and synthetic cells.
Collapse
Affiliation(s)
- Ian Stewart
- Mathematics Institute, University of Warwick, CoventryCV4 7AL, UK
| | - Saulo D. S. Reis
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Hernán A. Makse
- Levich Institute and Physics Department, City College of New York, New York, NY10031, USA
| |
Collapse
|
6
|
Aguiar M, Dias A, Stewart I. Classification of 2-node excitatory-inhibitory networks. Math Biosci 2024; 373:109205. [PMID: 38710442 DOI: 10.1016/j.mbs.2024.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
We classify connected 2-node excitatory-inhibitory networks under various conditions. We assume that, as well as for connections, there are two distinct node-types, excitatory and inhibitory. In our classification we consider four different types of excitatory-inhibitory networks: restricted, partially restricted, unrestricted and completely unrestricted. For each type we give two different classifications. Using results on ODE-equivalence and minimality, we classify the ODE-classes and present a minimal representative for each ODE-class. We also classify all the networks with valence ≤2. These classifications are up to renumbering of nodes and the interchange of 'excitatory' and 'inhibitory' on nodes and arrows. These classifications constitute a first step towards analysing dynamics and bifurcations of excitatory-inhibitory networks. The results have potential applications to biological network models, especially neuronal networks, gene regulatory networks, and synthetic gene networks.
Collapse
Affiliation(s)
- Manuela Aguiar
- Centro de Matemática da Universidade do Porto (CMUP), Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; Faculdade de Economia, Universidade do Porto, Rua Dr Roberto Frias, 4200-464 Porto, Portugal.
| | - Ana Dias
- Centro de Matemática da Universidade do Porto (CMUP), Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Ian Stewart
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
7
|
Goity A, Dovzhenok A, Lim S, Hong C, Loros J, Dunlap JC, Larrondo LF. Transcriptional rewiring of an evolutionarily conserved circadian clock. EMBO J 2024; 43:2015-2034. [PMID: 38627599 PMCID: PMC11099105 DOI: 10.1038/s44318-024-00088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/18/2024] Open
Abstract
Circadian clocks temporally coordinate daily organismal biology over the 24-h cycle. Their molecular design, preserved between fungi and animals, is based on a core-oscillator composed of a one-step transcriptional-translational-negative-feedback-loop (TTFL). To test whether this evolutionarily conserved TTFL architecture is the only plausible way for achieving a functional circadian clock, we adopted a transcriptional rewiring approach, artificially co-opting regulators of the circadian output pathways into the core-oscillator. Herein we describe one of these semi-synthetic clocks which maintains all basic circadian features but, notably, it also exhibits new attributes such as a "lights-on timer" logic, where clock phase is fixed at the end of the night. Our findings indicate that fundamental circadian properties such as period, phase and temperature compensation are differentially regulated by transcriptional and posttranslational aspects of the clockworks.
Collapse
Affiliation(s)
- Alejandra Goity
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrey Dovzhenok
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Sookkyung Lim
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Christian Hong
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Jennifer Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Luis F Larrondo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Chae SJ, Kim DW, Igoshin OA, Lee S, Kim JK. Beyond microtubules: The cellular environment at the endoplasmic reticulum attracts proteins to the nucleus, enabling nuclear transport. iScience 2024; 27:109235. [PMID: 38439967 PMCID: PMC10909898 DOI: 10.1016/j.isci.2024.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/03/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
All proteins are translated in the cytoplasm, yet many, including transcription factors, play vital roles in the nucleus. While previous research has concentrated on molecular motors for the transport of these proteins to the nucleus, recent observations reveal perinuclear accumulation even in the absence of an energy source, hinting at alternative mechanisms. Here, we propose that structural properties of the cellular environment, specifically the endoplasmic reticulum (ER), can promote molecular transport to the perinucleus without requiring additional energy expenditure. Specifically, physical interaction between proteins and the ER impedes their diffusion and leads to their accumulation near the nucleus. This result explains why larger proteins, more frequently interacting with the ER membrane, tend to accumulate at the perinucleus. Interestingly, such diffusion in a heterogeneous environment follows Chapman's law rather than the popular Fick's law. Our findings suggest a novel protein transport mechanism arising solely from characteristics of the intracellular environment.
Collapse
Affiliation(s)
- Seok Joo Chae
- Department of Mathematical Sciences, KAIST, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Dae Wook Kim
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Oleg A. Igoshin
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Seunggyu Lee
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
- Division of Applied Mathematical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, KAIST, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon 34126, Republic of Korea
| |
Collapse
|
9
|
Kaji H, Mori F, Ito H. Enhanced precision of circadian rhythm by output system. J Theor Biol 2023; 574:111621. [PMID: 37717817 DOI: 10.1016/j.jtbi.2023.111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
Circadian rhythms are biological rhythms with a period of approximately 24 h that persist even under constant conditions without daily environmental cues. The molecular circadian clock machinery generates physiological rhythms, which can be transmitted into the downstream output system. Owing to the stochastic nature of the biochemical reactions and the extracellular environment, the oscillation period of circadian rhythms exhibited by individual organisms or cells is not constant on a daily basis with variations as high as 10%, as reflected by the coefficient of variation. Although the fluctuations in the circadian rhythm are measured through a reporter system such as bioluminescence or fluorescence, which is an example of output systems, experimentally confirming whether the fluctuations found in the reporter system are the same as those in the circadian clock is challenging. This study investigated a coupled system of a circadian clock and its output system numerically and analytically, and then compared the fluctuations in the oscillation period of the two systems. We found that the amount of fluctuations in the output system is smaller than that in the circadian clock, assuming the degradation rate of the molecules responsible for the output system is a typical value for protein degradation. The results indicate that the output system can improve the accuracy of the circadian rhythm without the need for any denoising processes.
Collapse
Affiliation(s)
- Hotaka Kaji
- Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Fukuoka, 815-8540, Japan
| | - Fumito Mori
- Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Fukuoka, 815-8540, Japan; Education and Research Center for Mathematical and Data Science, Kyushu University, 744, Motoka, Fukuoka, 819-0395, Japan
| | - Hiroshi Ito
- Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Fukuoka, 815-8540, Japan.
| |
Collapse
|
10
|
Pérez-Cervera A, Gutkin B, Thomas PJ, Lindner B. A universal description of stochastic oscillators. Proc Natl Acad Sci U S A 2023; 120:e2303222120. [PMID: 37432992 PMCID: PMC10629544 DOI: 10.1073/pnas.2303222120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/18/2023] [Indexed: 07/13/2023] Open
Abstract
Many systems in physics, chemistry, and biology exhibit oscillations with a pronounced random component. Such stochastic oscillations can emerge via different mechanisms, for example, linear dynamics of a stable focus with fluctuations, limit-cycle systems perturbed by noise, or excitable systems in which random inputs lead to a train of pulses. Despite their diverse origins, the phenomenology of random oscillations can be strikingly similar. Here, we introduce a nonlinear transformation of stochastic oscillators to a complex-valued function [Formula: see text](x) that greatly simplifies and unifies the mathematical description of the oscillator's spontaneous activity, its response to an external time-dependent perturbation, and the correlation statistics of different oscillators that are weakly coupled. The function [Formula: see text] (x) is the eigenfunction of the Kolmogorov backward operator with the least negative (but nonvanishing) eigenvalue λ1 = μ1 + iω1. The resulting power spectrum of the complex-valued function is exactly given by a Lorentz spectrum with peak frequency ω1 and half-width μ1; its susceptibility with respect to a weak external forcing is given by a simple one-pole filter, centered around ω1; and the cross-spectrum between two coupled oscillators can be easily expressed by a combination of the spontaneous power spectra of the uncoupled systems and their susceptibilities. Our approach makes qualitatively different stochastic oscillators comparable, provides simple characteristics for the coherence of the random oscillation, and gives a framework for the description of weakly coupled oscillators.
Collapse
Affiliation(s)
- Alberto Pérez-Cervera
- Department of Applied Mathematics, Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Boris Gutkin
- Group for Neural Theory, LNC2 INSERM U960, Département d’Etudes Cognitives, Ecole Normale Supérieure - Paris Science Letters University, Paris75005, France
| | - Peter J. Thomas
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH44106
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Berlin10115, Germany
- Department of Physics, Humboldt Universität zu Berlin, BerlinD-12489, Germany
| |
Collapse
|
11
|
Li J, Qiu JX, Zeng QH, Zhang N, Xu SX, Jin J, Dong ZC, Chen L, Huang W. OsTOC1 plays dual roles in the regulation of plant circadian clock by functioning as a direct transcription activator or repressor. Cell Rep 2023; 42:112765. [PMID: 37421622 DOI: 10.1016/j.celrep.2023.112765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Plant clock function relies on precise timing of gene expression through complex regulatory networks consisting of activators and repressors at the core of oscillators. Although TIMING OF CAB EXPRESSION 1 (TOC1) has been recognized as a repressor involved in shaping oscillations and regulating clock-driven processes, its potential to directly activate gene expression remains unclear. In this study, we find that OsTOC1 primarily acts as a transcriptional repressor for core clock components, including OsLHY and OsGI. Here, we show that OsTOC1 possesses the ability to directly activate the expression of circadian target genes. Through binding to the promoters of OsTGAL3a/b, transient activation of OsTOC1 induces the expression of OsTGAL3a/b, indicating its role as an activator contributing to pathogen resistance. Moreover, TOC1 participates in regulating multiple yield-related traits in rice. These findings suggest that TOC1's function as a transcriptional repressor is not inherent, providing flexibility to circadian regulations, particularly in outputs.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jia-Xin Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qing-Hua Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ning Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shu-Xuan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jian Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Zhi-Cheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Liang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Ingram D, Stan GB. Modelling genetic stability in engineered cell populations. Nat Commun 2023; 14:3471. [PMID: 37308512 DOI: 10.1038/s41467-023-38850-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Predicting the evolution of engineered cell populations is a highly sought-after goal in biotechnology. While models of evolutionary dynamics are far from new, their application to synthetic systems is scarce where the vast combination of genetic parts and regulatory elements creates a unique challenge. To address this gap, we here-in present a framework that allows one to connect the DNA design of varied genetic devices with mutation spread in a growing cell population. Users can specify the functional parts of their system and the degree of mutation heterogeneity to explore, after which our model generates host-aware transition dynamics between different mutation phenotypes over time. We show how our framework can be used to generate insightful hypotheses across broad applications, from how a device's components can be tweaked to optimise long-term protein yield and genetic shelf life, to generating new design paradigms for gene regulatory networks that improve their functionality.
Collapse
Affiliation(s)
- Duncan Ingram
- Centre of Excellence in Synthetic Biology and Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Guy-Bart Stan
- Centre of Excellence in Synthetic Biology and Department of Bioengineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
13
|
Jayanthi BE, Jayanthi S, Segatori L. Design of Oscillatory Networks through Post-Translational Control of Network Components. SYNTHETIC BIOLOGY AND ENGINEERING 2023; 1:10004. [PMID: 38590452 PMCID: PMC11000592 DOI: 10.35534/sbe.2023.10004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Many essential functions in biological systems, including cell cycle progression and circadian rhythm regulation, are governed by the periodic behaviors of specific molecules. These periodic behaviors arise from the precise arrangement of components in biomolecular networks that generate oscillatory output signals. The dynamic properties of individual components of these networks, such as maturation delays and degradation rates, often play a key role in determining the network's oscillatory behavior. In this study, we explored the post-translational modulation of network components as a means to generate genetic circuits with oscillatory behaviors and perturb the oscillation features. Specifically, we used the NanoDeg platform-A bifunctional molecule consisting of a target-specific nanobody and a degron tag-to control the degradation rates of the circuit's components and predicted the effect of NanoDeg-mediated post-translational depletion of a key circuit component on the behavior of a series of proto-oscillating network topologies. We modeled the behavior of two main classes of oscillators, namely relaxation oscillator topologies (the activator-repressor and the Goodwin oscillator) and ring oscillator topologies (repressilators). We identified two main mechanisms by which non-oscillating networks could be induced to oscillate through post-translational modulation of network components: an increase in the separation of timescales of network components and mitigation of the leaky expression of network components. These results are in agreement with previous findings describing the effect of timescale separation and mitigation of leaky expression on oscillatory behaviors. This work thus validates the use of tools to control protein degradation rates as a strategy to modulate existing oscillatory signals and construct oscillatory networks. In addition, this study provides the design rules to implement such an approach based on the control of protein degradation rates using the NanoDeg platform, which does not require genetic manipulation of the network components and can be adapted to virtually any cellular protein. This work also establishes a framework to explore the use of tools for post-translational perturbations of biomolecular networks and generates desired behaviors of the network output.
Collapse
Affiliation(s)
- Brianna E.K. Jayanthi
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX 77005, USA
| | - Shridhar Jayanthi
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Laura Segatori
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX 77005, USA
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
14
|
Rombouts J, Verplaetse S, Gelens L. The ups and downs of biological oscillators: a comparison of time-delayed negative feedback mechanisms. J R Soc Interface 2023; 20:20230123. [PMID: 37376871 PMCID: PMC10300510 DOI: 10.1098/rsif.2023.0123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Many biochemical oscillators are driven by the periodic rise and fall of protein concentrations or activities. A negative feedback loop underlies such oscillations. The feedback can act on different parts of the biochemical network. Here, we mathematically compare time-delay models where the feedback affects production and degradation. We show a mathematical connection between the linear stability of the two models, and derive how both mechanisms impose different constraints on the production and degradation rates that allow oscillations. We show how oscillations are affected by the inclusion of a distributed delay, of double regulation (acting on production and degradation) and of enzymatic degradation.
Collapse
Affiliation(s)
- Jan Rombouts
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Sarah Verplaetse
- Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Lendert Gelens
- Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| |
Collapse
|
15
|
Gu F, Jiang W, Kang F, Su T, Yang X, Qi Q, Liang Q. A synthetic population-level oscillator in non-microfluidic environments. Commun Biol 2023; 6:515. [PMID: 37179427 PMCID: PMC10183009 DOI: 10.1038/s42003-023-04904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Synthetic oscillators have become a research hotspot because of their complexity and importance. The construction and stable operation of oscillators in large-scale environments are important and challenging. Here, we introduce a synthetic population-level oscillator in Escherichia coli that operates stably during continuous culture in non-microfluidic environments without the addition of inducers or frequent dilution. Specifically, quorum-sensing components and protease regulating elements are employed, which form delayed negative feedback to trigger oscillation and accomplish the reset of signals through transcriptional and post-translational regulation. We test the circuit in devices with 1 mL, 50 mL, 400 mL of medium, and demonstrate that the circuit could maintain stable population-level oscillations. Finally, we explore potential applications of the circuit in regulating cellular morphology and metabolism. Our work contributes to the design and testing of synthetic biological clocks that function in large populations.
Collapse
Affiliation(s)
- Fei Gu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Wei Jiang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fangbing Kang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Xiaoya Yang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China.
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China.
| |
Collapse
|
16
|
Landau J, Cuba Samaniego C, Giordano G, Franco E. Computational characterization of recombinase circuits for periodic behaviors. iScience 2022; 26:105624. [PMID: 36619981 PMCID: PMC9812718 DOI: 10.1016/j.isci.2022.105624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/17/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Recombinases are site-specific proteins found in nature that are capable of rearranging DNA. This function has made them promising gene editing tools in synthetic biology, as well as key elements in complex artificial gene circuits implementing Boolean logic. However, since DNA rearrangement is irreversible, it is still unclear how to use recombinases to build dynamic circuits like oscillators. In addition, this goal is challenging because a few molecules of recombinase are enough for promoter inversion, generating inherent stochasticity at low copy number. Here, we propose six different circuit designs for recombinase-based oscillators operating at a single copy number. We model them in a stochastic setting, leveraging the Gillespie algorithm for extensive simulations, and show that they can yield coherent periodic behaviors. Our results support the experimental realization of recombinase-based oscillators and, more generally, the use of recombinases to generate dynamic behaviors in synthetic biology.
Collapse
Affiliation(s)
- Judith Landau
- California State University, Los Angeles, Los Angeles, CA, USA
| | | | - Giulia Giordano
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Elisa Franco
- University of California, Los Angeles, Los Angeles, CA, USA
- Corresponding author
| |
Collapse
|
17
|
Mahrou B, Pirhanov A, Alijanvand MH, Cho YK, Shin YJ. Degradation-driven protein level oscillation in the yeast Saccharomyces cerevisiae. Biosystems 2022; 219:104717. [PMID: 35690291 DOI: 10.1016/j.biosystems.2022.104717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
Generating robust, predictable perturbations in cellular protein levels will advance our understanding of protein function and enable the control of physiological outcomes in biotechnology applications. Timed periodic changes in protein levels play a critical role in the cell division cycle, cellular stress response, and development. Here we report the generation of robust protein level oscillations by controlling the protein degradation rate in the yeast Saccharomyces cerevisiae. Using a photo-sensitive degron and red fluorescent proteins as reporters, we show that under constitutive transcriptional induction, repeated triangular protein level oscillations as fast as 5-10 min-scale can be generated by modulating the protein degradation rate. Consistent with oscillations generated though transcriptional control, we observed a continuous decrease in the magnitude of oscillations as the input modulation frequency increased, indicating low-pass filtering of input perturbation. By using two red fluorescent proteins with distinct maturation times, we show that the oscillations in protein level is largely unaffected by delays originating from functional protein formation. Our study demonstrates the potential for repeated control of protein levels by controlling the protein degradation rate without altering the transcription rate.
Collapse
Affiliation(s)
- Bahareh Mahrou
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA; Electrical Engineering Department, University of Connecticut, Storrs, CT, 06069, USA.
| | - Azady Pirhanov
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA
| | - Moluk Hadi Alijanvand
- Department of Epidemiology and Biostatistics, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yong Ku Cho
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA; Chemical and Biomolecular Engineering Department, University of Connecticut, Storrs, CT, 06269, USA.
| | - Yong-Jun Shin
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
18
|
Jeong EM, Song YM, Kim JK. Combined multiple transcriptional repression mechanisms generate ultrasensitivity and oscillations. Interface Focus 2022; 12:20210084. [PMID: 35450279 PMCID: PMC9010851 DOI: 10.1098/rsfs.2021.0084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Transcriptional repression can occur via various mechanisms, such as blocking, sequestration and displacement. For instance, the repressors can hold the activators to prevent binding with DNA or can bind to the DNA-bound activators to block their transcriptional activity. Although the transcription can be completely suppressed with a single mechanism, multiple repression mechanisms are used together to inhibit transcriptional activators in many systems, such as circadian clocks and NF-κB oscillators. This raises the question of what advantages arise if seemingly redundant repression mechanisms are combined. Here, by deriving equations describing the multiple repression mechanisms, we find that their combination can synergistically generate a sharply ultrasensitive transcription response and thus strong oscillations. This rationalizes why the multiple repression mechanisms are used together in various biological oscillators. The critical role of such combined transcriptional repression for strong oscillations is further supported by our analysis of formerly identified mutations disrupting the transcriptional repression of the mammalian circadian clock. The hitherto unrecognized source of the ultrasensitivity, the combined transcriptional repressions, can lead to robust synthetic oscillators with a previously unachievable simple design.
Collapse
Affiliation(s)
- Eui Min Jeong
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Yun Min Song
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon 34126, Republic of Korea
| |
Collapse
|
19
|
Nazerian A, Panahi S, Leifer I, Phillips D, Makse HA, Sorrentino F. Matryoshka and disjoint cluster synchronization of networks. CHAOS (WOODBURY, N.Y.) 2022; 32:041101. [PMID: 35489844 PMCID: PMC8983070 DOI: 10.1063/5.0076412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The main motivation for this paper is to characterize network synchronizability for the case of cluster synchronization (CS), in an analogous fashion to Barahona and Pecora [Phys. Rev. Lett. 89, 054101 (2002)] for the case of complete synchronization. We find this problem to be substantially more complex than the original one. We distinguish between the two cases of networks with intertwined clusters and no intertwined clusters and between the two cases that the master stability function is negative either in a bounded range or in an unbounded range of its argument. Our proposed definition of cluster synchronizability is based on the synchronizability of each individual cluster within a network. We then attempt to generalize this definition to the entire network. For CS, the synchronous solution for each cluster may be stable, independent of the stability of the other clusters, which results in possibly different ranges in which each cluster synchronizes (isolated CS). For each pair of clusters, we distinguish between three different cases: Matryoshka cluster synchronization (when the range of the stability of the synchronous solution for one cluster is included in that of the other cluster), partially disjoint cluster synchronization (when the ranges of stability of the synchronous solutions partially overlap), and complete disjoint cluster synchronization (when the ranges of stability of the synchronous solutions do not overlap).
Collapse
Affiliation(s)
- Amirhossein Nazerian
- Department of Mechanical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Shirin Panahi
- Department of Mechanical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Ian Leifer
- Levich Institute and Physics Department, City College of New York, New York, New York 10031, USA
| | - David Phillips
- Department of Mathematics, United States Naval Academy, Annapolis, Maryland 21401, USA
| | - Hernán A. Makse
- Levich Institute and Physics Department, City College of New York, New York, New York 10031, USA
| | - Francesco Sorrentino
- Department of Mechanical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
20
|
Srivastava R, Sarkar K, Bonnerjee D, Bagh S. Synthetic Genetic Reversible Feynman Gate in a Single E. coli Cell and Its Application in Bacterial to Mammalian Cell Information Transfer. ACS Synth Biol 2022; 11:1040-1048. [PMID: 35179369 DOI: 10.1021/acssynbio.1c00392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reversible computing is a nonconventional form of computing where the inputs and outputs are mapped in a unique one-to-one fashion. Reversible logic gates in single living cells have not been demonstrated. Here, we constructed a synthetic genetic reversible Feynman gate in single E. coli cells, and the input-output relations were measured in a clonal population. The inputs were extracellular chemicals, isopropyl β-d-1-thiogalactopyranoside (IPTG), and anhydrotetracycline (aTc), and the outputs were two fluorescence proteins. We developed a simple mathematical model and simulation to capture the essential features of the circuit and experimentally demonstrated that the behavior of the circuit was ultrasensitive and predictive. We showed an application by creating an intercellular Feynman gate, where input information from bacteria was computed and transferred to HeLa cells through shRNAs delivery and the output signals were observed as silencing of native AKT1 and CTNNB1 genes. The introduction of reversible logics in synthetic biology is new, and given that one-to-one input-output mapping, such reversible genetic systems might have applications in sensing, diagnostics, cellular computing, and synthetic biology.
Collapse
Affiliation(s)
- Rajkamal Srivastava
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI), Block A/F, Sector-I, Bidhannagar, Kolkata 700064, India
| | - Kathakali Sarkar
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI), Block A/F, Sector-I, Bidhannagar, Kolkata 700064, India
| | - Deepro Bonnerjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI), Block A/F, Sector-I, Bidhannagar, Kolkata 700064, India
| | - Sangram Bagh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI), Block A/F, Sector-I, Bidhannagar, Kolkata 700064, India
| |
Collapse
|
21
|
Borg Y, Alsford S, Pavlika V, Zaikin A, Nesbeth DN. Synthetic biology tools for engineering Goodwin oscillation in Trypanosoma brucei brucei. Heliyon 2022; 8:e08891. [PMID: 35198764 PMCID: PMC8844716 DOI: 10.1016/j.heliyon.2022.e08891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/10/2021] [Accepted: 01/30/2022] [Indexed: 11/30/2022] Open
Abstract
Kinetoplastid protozoa possess properties that are highly divergent from the mammalian, yeast and bacterial cells more commonly used in synthetic biology and represent a tantalisingly untapped source of bioengineering potential. Trypanosoma brucei brucei (T. b. brucei), an established model organism for studying the Kinetoplastida, is non-pathogenic to humans and provides an interesting test case for establishing synthetic biology in this phylogenetic class. To demonstrate further the tractability of Kinetoplastida to synthetic biology, we sought to construct and demonstrate a Goodwin oscillator, the simplest oscillatory gene network, in T. b. brucei for the first time. We report one completed iteration of the archetypal synthetic biology Design-Build-Test-Learn (DBTL) cycle; firstly, using Ab initio mathematical modelling of the behaviour a theoretical, oscillatory, trypanosomal synthetic gene network (SGN) to inform the design of a plasmid encoding that network. Once assembled, the plasmid was then used to generate a stable transfectant T. b. brucei cell line. To test the performance of the oscillatory SGN, a novel experimental setup was established to capture images of the fluorescent signal from motion-restricted live cells. Data captured were consistent with oscillatory behaviour of the SGN, with cellular fluorescence observed to oscillate with a period of 50 min, with varying amplitude and linear growth trend. This first DBTL cycle establishes a foundation for future cycles in which the SGN design and experimental monitoring setup can be further refined.
Collapse
Affiliation(s)
- Yanika Borg
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, Bernard Katz Building, Gordon Street, University College London, London, WC1E 6BT, UK.,Department of Mathematics and Institute for Women's Health, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sam Alsford
- Faculty of Infectious and Tropical Diseases & Department of Infection Biology, The London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Vasos Pavlika
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, Bernard Katz Building, Gordon Street, University College London, London, WC1E 6BT, UK
| | - Alexei Zaikin
- Department of Mathematics and Institute for Women's Health, University College London, Gower Street, London, WC1E 6BT, UK.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia.,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Darren N Nesbeth
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, Bernard Katz Building, Gordon Street, University College London, London, WC1E 6BT, UK
| |
Collapse
|
22
|
Qin BW, Zhao L, Lin W. A frequency-amplitude coordinator and its optimal energy consumption for biological oscillators. Nat Commun 2021; 12:5894. [PMID: 34625549 PMCID: PMC8501100 DOI: 10.1038/s41467-021-26182-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/22/2021] [Indexed: 02/08/2023] Open
Abstract
Biorhythm including neuron firing and protein-mRNA interaction are fundamental activities with diffusive effect. Their well-balanced spatiotemporal dynamics are beneficial for healthy sustainability. Therefore, calibrating both anomalous frequency and amplitude of biorhythm prevents physiological dysfunctions or diseases. However, many works were devoted to modulate frequency exclusively whereas amplitude is usually ignored, although both quantities are equally significant for coordinating biological functions and outputs. Especially, a feasible method coordinating the two quantities concurrently and precisely is still lacking. Here, for the first time, we propose a universal approach to design a frequency-amplitude coordinator rigorously via dynamical systems tools. We consider both spatial and temporal information. With a single well-designed coordinator, they can be calibrated to desired levels simultaneously and precisely. The practical usefulness and efficacy of our method are demonstrated in representative neuronal and gene regulatory models. We further reveal its fundamental mechanism and optimal energy consumption providing inspiration for biorhythm regulation in future.
Collapse
Affiliation(s)
- Bo-Wei Qin
- School of Mathematical Sciences, Fudan University, 200433, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China.
| | - Lei Zhao
- School of Mathematical Sciences, Fudan University, 200433, Shanghai, China
- The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Wei Lin
- School of Mathematical Sciences, Fudan University, 200433, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 200032, Shanghai, China.
- Shanghai Center for Mathematical Sciences, 200438, Shanghai, China.
- Center for Computational Systems Biology of ISTBI, LCNBI, and Research Institute of Intelligent Complex Systems, Fudan University, 200433, Shanghai, China.
| |
Collapse
|
23
|
Moškon M, Komac R, Zimic N, Mraz M. Distributed biological computation: from oscillators, logic gates and switches to a multicellular processor and neural computing applications. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05711-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Izert MA, Klimecka MM, Górna MW. Applications of Bacterial Degrons and Degraders - Toward Targeted Protein Degradation in Bacteria. Front Mol Biosci 2021; 8:669762. [PMID: 34026843 PMCID: PMC8138137 DOI: 10.3389/fmolb.2021.669762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
A repertoire of proteolysis-targeting signals known as degrons is a necessary component of protein homeostasis in every living cell. In bacteria, degrons can be used in place of chemical genetics approaches to interrogate and control protein function. Here, we provide a comprehensive review of synthetic applications of degrons in targeted proteolysis in bacteria. We describe recent advances ranging from large screens employing tunable degradation systems and orthogonal degrons, to sophisticated tools and sensors for imaging. Based on the success of proteolysis-targeting chimeras as an emerging paradigm in cancer drug discovery, we discuss perspectives on using bacterial degraders for studying protein function and as novel antimicrobials.
Collapse
Affiliation(s)
| | | | - Maria Wiktoria Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Ouyang X, Zhou X, Lai SN, Liu Q, Zheng B. Immobilization of Proteins of Cell Extract to Hydrogel Networks Enhances the Longevity of Cell-Free Protein Synthesis and Supports Gene Networks. ACS Synth Biol 2021; 10:749-755. [PMID: 33784075 DOI: 10.1021/acssynbio.0c00541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we constructed a new type of hydrogel based artificial cells supporting long-lived protein synthesis, post-translational modification, and gene networks. We constructed the artificial cells by immobilizing the transcription and translation system from E. coli cytoplasmic extract onto the polyacrylamide hydrogel. With the continuous supply of energy and nutrition, the artificial cells were capable of stable protein expression for at least 30 days. Functional proteins which were difficult to produce in vivo, including colicin E1 and urokinase, were synthesized in the artificial cells with high bioactivity. Furthermore, we constructed a sigma factor based genetic oscillator in the artificial cells. The artificial cells not only provide a powerful platform for continuous protein synthesis and convenient design and testing of genetic networks, but also hold great promise for the development of metabolic engineering, drug delivery, and biosensors.
Collapse
Affiliation(s)
- Xiaofei Ouyang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaoyu Zhou
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sze Nga Lai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Qi Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Bo Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
26
|
Qualitative Modeling, Analysis and Control of Synthetic Regulatory Circuits. Methods Mol Biol 2021; 2229:1-40. [PMID: 33405215 DOI: 10.1007/978-1-0716-1032-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Qualitative modeling approaches are promising and still underexploited tools for the analysis and design of synthetic circuits. They can make predictions of circuit behavior in the absence of precise, quantitative information. Moreover, they provide direct insight into the relation between the feedback structure and the dynamical properties of a network. We review qualitative modeling approaches by focusing on two specific formalisms, Boolean networks and piecewise-linear differential equations, and illustrate their application by means of three well-known synthetic circuits. We describe various methods for the analysis of state transition graphs, discrete representations of the network dynamics that are generated in both modeling frameworks. We also briefly present the problem of controlling synthetic circuits, an emerging topic that could profit from the capacity of qualitative modeling approaches to rapidly scan a space of design alternatives.
Collapse
|
27
|
Kimchi O, Goodrich CP, Courbet A, Curatolo AI, Woodall NB, Baker D, Brenner MP. Self-assembly-based posttranslational protein oscillators. SCIENCE ADVANCES 2020; 6:6/51/eabc1939. [PMID: 33328225 PMCID: PMC7744077 DOI: 10.1126/sciadv.abc1939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Recent advances in synthetic posttranslational protein circuits are substantially impacting the landscape of cellular engineering and offer several advantages compared to traditional gene circuits. However, engineering dynamic phenomena such as oscillations in protein-level circuits remains an outstanding challenge. Few examples of biological posttranslational oscillators are known, necessitating theoretical progress to determine realizable oscillators. We construct mathematical models for two posttranslational oscillators, using few components that interact only through reversible binding and phosphorylation/dephosphorylation reactions. Our designed oscillators rely on the self-assembly of two protein species into multimeric functional enzymes that respectively inhibit and enhance this self-assembly. We limit our analysis to within experimental constraints, finding (i) significant portions of the restricted parameter space yielding oscillations and (ii) that oscillation periods can be tuned by several orders of magnitude using recent advances in computational protein design. Our work paves the way for the rational design and realization of protein-based dynamic systems.
Collapse
Affiliation(s)
- Ofer Kimchi
- Harvard University School of Engineering and Applied Sciences, Cambridge, MA 02138, USA.
| | - Carl P Goodrich
- Harvard University School of Engineering and Applied Sciences, Cambridge, MA 02138, USA
| | - Alexis Courbet
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| | - Agnese I Curatolo
- Harvard University School of Engineering and Applied Sciences, Cambridge, MA 02138, USA
| | - Nicholas B Woodall
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| | - Michael P Brenner
- Harvard University School of Engineering and Applied Sciences, Cambridge, MA 02138, USA
- Kavli Institute for Bionano Science and Technology Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
28
|
Firippi E, Chaves M. Topology-induced dynamics in a network of synthetic oscillators with piecewise affine approximation. CHAOS (WOODBURY, N.Y.) 2020; 30:113128. [PMID: 33261335 DOI: 10.1063/5.0020670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
In synthetic biology approaches, minimal systems are used to reproduce complex molecular mechanisms that appear in the core functioning of multi-cellular organisms. In this paper, we study a piecewise affine model of a synthetic two-gene oscillator and prove existence and stability of a periodic solution for all parameters in a given region. Motivated by the synchronization of circadian clocks in a cluster of cells, we next consider a network of N identical oscillators under diffusive coupling to investigate the effect of the topology of interactions in the network's dynamics. Our results show that both all-to-all and one-to-all coupling topologies may introduce new stable steady states in addition to the expected periodic orbit. Both topologies admit an upper bound on the coupling parameter that prevents the generation of new steady states. However, this upper bound is independent of the number of oscillators in the network and less conservative for the one-to-all topology.
Collapse
Affiliation(s)
- E Firippi
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne Université, Biocore Team, Sophia Antipolis 06902 Valbonne, France
| | - M Chaves
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne Université, Biocore Team, Sophia Antipolis 06902 Valbonne, France
| |
Collapse
|
29
|
Marucci L, Barberis M, Karr J, Ray O, Race PR, de Souza Andrade M, Grierson C, Hoffmann SA, Landon S, Rech E, Rees-Garbutt J, Seabrook R, Shaw W, Woods C. Computer-Aided Whole-Cell Design: Taking a Holistic Approach by Integrating Synthetic With Systems Biology. Front Bioeng Biotechnol 2020; 8:942. [PMID: 32850764 PMCID: PMC7426639 DOI: 10.3389/fbioe.2020.00942] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 01/03/2023] Open
Abstract
Computer-aided design (CAD) for synthetic biology promises to accelerate the rational and robust engineering of biological systems. It requires both detailed and quantitative mathematical and experimental models of the processes to (re)design biology, and software and tools for genetic engineering and DNA assembly. Ultimately, the increased precision in the design phase will have a dramatic impact on the production of designer cells and organisms with bespoke functions and increased modularity. CAD strategies require quantitative models of cells that can capture multiscale processes and link genotypes to phenotypes. Here, we present a perspective on how whole-cell, multiscale models could transform design-build-test-learn cycles in synthetic biology. We show how these models could significantly aid in the design and learn phases while reducing experimental testing by presenting case studies spanning from genome minimization to cell-free systems. We also discuss several challenges for the realization of our vision. The possibility to describe and build whole-cells in silico offers an opportunity to develop increasingly automatized, precise and accessible CAD tools and strategies.
Collapse
Affiliation(s)
- Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.,Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom
| | - Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Jonathan Karr
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Oliver Ray
- Department of Computer Science, University of Bristol, Bristol, United Kingdom
| | - Paul R Race
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Miguel de Souza Andrade
- Brazilian Agricultural Research Corporation/National Institute of Science and Technology - Synthetic Biology, Brasília, Brazil.,Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Claire Grierson
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Stefan Andreas Hoffmann
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Sophie Landon
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom.,Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom
| | - Elibio Rech
- Brazilian Agricultural Research Corporation/National Institute of Science and Technology - Synthetic Biology, Brasília, Brazil
| | - Joshua Rees-Garbutt
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Richard Seabrook
- Elizabeth Blackwell Institute for Health Research (EBI), University of Bristol, Bristol, United Kingdom
| | - William Shaw
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Christopher Woods
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Chemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
30
|
Meeuse MWM, Hauser YP, Morales Moya LJ, Hendriks G, Eglinger J, Bogaarts G, Tsiairis C, Großhans H. Developmental function and state transitions of a gene expression oscillator in Caenorhabditis elegans. Mol Syst Biol 2020; 16:e9498. [PMID: 32687264 PMCID: PMC7370751 DOI: 10.15252/msb.20209498] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 11/26/2022] Open
Abstract
Gene expression oscillators can structure biological events temporally and spatially. Different biological functions benefit from distinct oscillator properties. Thus, finite developmental processes rely on oscillators that start and stop at specific times, a poorly understood behavior. Here, we have characterized a massive gene expression oscillator comprising > 3,700 genes in Caenorhabditis elegans larvae. We report that oscillations initiate in embryos, arrest transiently after hatching and in response to perturbation, and cease in adults. Experimental observation of the transitions between oscillatory and non-oscillatory states at high temporal resolution reveals an oscillator operating near a Saddle Node on Invariant Cycle (SNIC) bifurcation. These findings constrain the architecture and mathematical models that can represent this oscillator. They also reveal that oscillator arrests occur reproducibly in a specific phase. Since we find oscillations to be coupled to developmental processes, including molting, this characteristic of SNIC bifurcations endows the oscillator with the potential to halt larval development at defined intervals, and thereby execute a developmental checkpoint function.
Collapse
Affiliation(s)
- Milou WM Meeuse
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| | - Yannick P Hauser
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| | | | - Gert‐Jan Hendriks
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| | - Jan Eglinger
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
| | | | - Charisios Tsiairis
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
31
|
Wu S, Liu J, Liu C, Yang A, Qiao J. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell Mol Life Sci 2020; 77:1319-1343. [PMID: 31612240 PMCID: PMC11104945 DOI: 10.1007/s00018-019-03326-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Quorum sensing (QS), a microbial cell-to-cell communication process, dynamically regulates a variety of metabolism and physiological activities. In this review, we provide an update on QS applications based on autoinducer molecules including acyl-homoserine lactones (AHLs), auto-inducing peptides (AIPs), autoinducer 2 (AI-2) and indole in population-level control of bacteria, and highlight the potential in developing novel clinical therapies. We summarize the development in the combination of various genetic circuits such as genetic oscillators, toggle switches and logic gates with AHL-based QS devices in Gram-negative bacteria. An overview is then offered to the state-of-the-art of much less researched applications of AIP-based QS devices with Gram-positive bacteria, followed by a review of the applications of AI-2 and indole based QS for interspecies communication among microbial communities. Building on these general-purpose QS applications, we highlight the disruptions and manipulations of QS devices as potential clinical therapies for diseases caused by biofilm formation, antibiotic resistance and the phage invasion. The last part of reviewed literature is dedicated to mathematical modelling for QS applications. Finally, the key challenges and future perspectives of QS applications in monoclonal synthetic biology and synthetic ecology are discussed.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jiaheng Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| |
Collapse
|
32
|
Joshi YJ, Jawale YK, Athale CA. Modeling the tunability of the dual-feedback genetic oscillator. Phys Rev E 2020; 101:012417. [PMID: 32069648 DOI: 10.1103/physreve.101.012417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 11/07/2022]
Abstract
Oscillatory gene circuits are ubiquitous to biology and are involved in fundamental processes of cell cycle, circadian rhythms, and developmental systems. The synthesis of small, non-natural oscillatory genetic circuits has been increasingly used to test the fundamental principles of genetic network dynamics. While the "repressilator" was used to first demonstrate the proof of principle, a more recently developed dual-feedback, fast, tunable genetic oscillator has demonstrated a greater degree of robustness and control over oscillatory behavior by combining positive- and negative-feedback loops. This oscillator, combining lacI (negative-) and araC (positive-) feedback loops, was, however, modeled using multiple layers of differential equations to capture the molecular complexity of regulation, in order to explain the experimentally measured oscillations. In the search for design principles of such minimal oscillatory circuits, we have developed a reduced model of this dual-feedback loop oscillator consisting of just six differential equations, two of which are delay differential equations. The delay term is optimized, as the only free parameter, to fit the experimental dynamics of the oscillator period and amplitude tunability by the two inducers isopropyl β-D-1-thiogalactopyranoside (IPTG) and arabinose. We proceed to use our reduced and experimentally validated model to redesign the network by comparing the effect of asymmetry in gene expression at the level of (a) DNA copy numbers and the rates of (b) mRNA translation and (c) degradation, since experimental and theoretical work had predicted a need for an asymmetry in the copy numbers of activator (araC) and repressor (lacI) genes encoded on plasmids. We confirm that the minimal period of the oscillator is sensitive to DNA copy number asymmetry, and can demonstrate that while the asymmetry in the translation rate has an identical effect as the plasmid copy numbers, modulating the asymmetry in mRNA degradation can improve the tunability of the period and amplitude of the oscillator. Thus, our model predicts control at the level of translation can be used to redesign such networks, for improved tunability, while at the same time making the network robust to replication "noise" and the effects of the host cell cycle. Thus, our model predicts experimentally testable principles to redesign a potentially more robust oscillatory genetic network.
Collapse
Affiliation(s)
- Yash J Joshi
- Division of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Yash K Jawale
- Division of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Chaitanya A Athale
- Division of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
33
|
Design and Analysis of a Proportional-Integral-Derivative Controller with Biological Molecules. Cell Syst 2019; 9:338-353.e10. [DOI: 10.1016/j.cels.2019.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 03/14/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022]
|
34
|
Stoof R, Wood A, Goñi-Moreno Á. A Model for the Spatiotemporal Design of Gene Regulatory Circuits †. ACS Synth Biol 2019; 8:2007-2016. [PMID: 31429541 DOI: 10.1021/acssynbio.9b00022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mathematical modeling assists the design of synthetic regulatory networks by providing a detailed mechanistic understanding of biological systems. Models that can predict the performance of a design are fundamental for synthetic biology since they minimize iterations along the design-build-test lifecycle. Such predictability depends crucially on what assumptions (i.e., biological simplifications) the model considers. Here, we challenge a common assumption when it comes to the modeling of bacterial-based gene regulation: considering negligible the effects of intracellular physical space. It is commonly assumed that molecules, such as transcription factors (TF), are homogeneously distributed inside a cell, so there is no need to model their diffusion. We describe a mathematical model that accounts for molecular diffusion and show how simulations of network performance are decisively affected by the distance between its components. Specifically, the model focuses on the search by a TF for its target promoter. The combination of local searches, via one-dimensional sliding along the chromosome, and global searches, via three-dimensional diffusion through the cytoplasm, determine TF-promoter interplay. Previous experimental results with engineered bacteria in which the distance between TF source and target was minimized or enlarged were successfully reproduced by the spatially resolved model we introduce here. This suggests that the spatial specification of the circuit alone can be exploited as a design parameter in synthetic biology to select programmable output levels.
Collapse
Affiliation(s)
- Ruud Stoof
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, U.K
| | - Alexander Wood
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, U.K
| | - Ángel Goñi-Moreno
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, U.K
| |
Collapse
|
35
|
Pušnik Ž, Mraz M, Zimic N, Moškon M. Computational analysis of viable parameter regions in models of synthetic biological systems. J Biol Eng 2019; 13:75. [PMID: 31548864 PMCID: PMC6751877 DOI: 10.1186/s13036-019-0205-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/05/2019] [Indexed: 01/22/2023] Open
Abstract
Background Gene regulatory networks with different topological and/or dynamical properties might exhibit similar behavior. System that is less perceptive for the perturbations of its internal and external factors should be preferred. Methods for sensitivity and robustness assessment have already been developed and can be roughly divided into local and global approaches. Local methods focus only on the local area around nominal parameter values. This can be problematic when parameters exhibits the desired behavior over a large range of parameter perturbations or when parameter values are unknown. Global methods, on the other hand, investigate the whole space of parameter values and mostly rely on different sampling techniques. This can be computationally inefficient. To address these shortcomings ’glocal’ approaches were developed that apply global and local approaches in an effective and rigorous manner. Results Herein, we present a computational approach for ’glocal’ analysis of viable parameter regions in biological models. The methodology is based on the exploration of high-dimensional viable parameter spaces with global and local sampling, clustering and dimensionality reduction techniques. The proposed methodology allows us to efficiently investigate the viable parameter space regions, evaluate the regions which exhibit the largest robustness, and to gather new insights regarding the size and connectivity of the viable parameter regions. We evaluate the proposed methodology on three different synthetic gene regulatory network models, i.e. the repressilator model, the model of the AC-DC circuit and the model of the edge-triggered master-slave D flip-flop. Conclusions The proposed methodology provides a rigorous assessment of the shape and size of viable parameter regions based on (1) the mathematical description of the biological system of interest, (2) constraints that define feasible parameter regions and (3) cost function that defines the desired or observed behavior of the system. These insights can be used to assess the robustness of biological systems, even in the case when parameter values are unknown and more importantly, even when there are multiple poorly connected viable parameter regions in the solution space. Moreover, the methodology can be efficiently applied to the analysis of biological systems that exhibit multiple modes of the targeted behavior.
Collapse
Affiliation(s)
- Žiga Pušnik
- University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, 1000 Slovenia
| | - Miha Mraz
- University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, 1000 Slovenia
| | - Nikolaj Zimic
- University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, 1000 Slovenia
| | - Miha Moškon
- University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, 1000 Slovenia
| |
Collapse
|
36
|
Page KM, Perez-Carrasco R. Degradation rate uniformity determines success of oscillations in repressive feedback regulatory networks. J R Soc Interface 2019; 15:rsif.2018.0157. [PMID: 29743273 PMCID: PMC6000169 DOI: 10.1098/rsif.2018.0157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/13/2018] [Indexed: 12/03/2022] Open
Abstract
Ring oscillators are biochemical circuits consisting of a ring of interactions capable of sustained oscillations. The nonlinear interactions between genes hinder the analytical insight into their function, usually requiring computational exploration. Here, we show that, despite the apparent complexity, the stability of the unique steady state in an incoherent feedback ring depends only on the degradation rates and a single parameter summarizing the feedback of the circuit. Concretely, we show that the range of regulatory parameters that yield oscillatory behaviour is maximized when the degradation rates are equal. Strikingly, this result holds independently of the regulatory functions used or number of genes. We also derive properties of the oscillations as a function of the degradation rates and number of nodes forming the ring. Finally, we explore the role of mRNA dynamics by applying the generic results to the specific case with two naturally different degradation timescales.
Collapse
Affiliation(s)
- Karen M Page
- Department of Mathematics, University College London, Gower Street, WC1E 6BT London, UK
| | - Ruben Perez-Carrasco
- Department of Mathematics, University College London, Gower Street, WC1E 6BT London, UK
| |
Collapse
|
37
|
Macnamara CK, Mitchell EI, Chaplain MA. Spatial-Stochastic modelling of synthetic gene regulatory networks. J Theor Biol 2019; 468:27-44. [DOI: 10.1016/j.jtbi.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/18/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023]
|
38
|
Eilenberger C, Spitz S, Bachmann BEM, Ehmoser EK, Ertl P, Rothbauer M. The Usual Suspects 2019: of Chips, Droplets, Synthesis, and Artificial Cells. MICROMACHINES 2019; 10:E285. [PMID: 31035574 PMCID: PMC6562886 DOI: 10.3390/mi10050285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/03/2022]
Abstract
Synthetic biology aims to understand fundamental biological processes in more detail than possible for actual living cells. Synthetic biology can combat decomposition and build-up of artificial experimental models under precisely controlled and defined environmental and biochemical conditions. Microfluidic systems can provide the tools to improve and refine existing synthetic systems because they allow control and manipulation of liquids on a micro- and nanoscale. In addition, chip-based approaches are predisposed for synthetic biology applications since they present an opportune technological toolkit capable of fully automated high throughput and content screening under low reagent consumption. This review critically highlights the latest updates in microfluidic cell-free and cell-based protein synthesis as well as the progress on chip-based artificial cells. Even though progress is slow for microfluidic synthetic biology, microfluidic systems are valuable tools for synthetic biology and may one day help to give answers to long asked questions of fundamental cell biology and life itself.
Collapse
Affiliation(s)
- Christoph Eilenberger
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, A-1060 Vienna, Austria.
| | - Sarah Spitz
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, A-1060 Vienna, Austria.
| | - Barbara Eva Maria Bachmann
- Austrian Cluster for Tissue Regeneration, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, A-1200 Vienna, Austria.
| | - Eva Kathrin Ehmoser
- Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria.
| | - Peter Ertl
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, A-1060 Vienna, Austria.
| | - Mario Rothbauer
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Vienna University of Technology, A-1060 Vienna, Austria.
| |
Collapse
|
39
|
Zhdanov VP. Slow relaxation during and after perturbation of bistable kinetics of gene expression. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:297-302. [PMID: 30903265 DOI: 10.1007/s00249-019-01358-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/27/2018] [Accepted: 03/09/2019] [Indexed: 01/09/2023]
Abstract
After a short perturbation of a bistable genetic network, it returns to its initial steady state or transits to another steady state. The time scale characterizing such transient regimes can be appreciably longer compared to those of the degradation of the perturbed mRNAs and proteins. The author shows in detail the specifics of this slowdown of the transient kinetics using mean-field kinetic equations and Monte Carlo simulations. Attention is focused on nanocarrier-mediated delivery and release of short non-coding RNA (e.g., miRNA or siRNA) into cells with subsequent suppression of the populations of the targeted mRNA and corresponding protein.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
40
|
Andres J, Blomeier T, Zurbriggen MD. Synthetic Switches and Regulatory Circuits in Plants. PLANT PHYSIOLOGY 2019; 179:862-884. [PMID: 30692218 PMCID: PMC6393786 DOI: 10.1104/pp.18.01362] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/18/2019] [Indexed: 05/20/2023]
Abstract
Synthetic biology is an established but ever-growing interdisciplinary field of research currently revolutionizing biomedicine studies and the biotech industry. The engineering of synthetic circuitry in bacterial, yeast, and animal systems prompted considerable advances for the understanding and manipulation of genetic and metabolic networks; however, their implementation in the plant field lags behind. Here, we review theoretical-experimental approaches to the engineering of synthetic chemical- and light-regulated (optogenetic) switches for the targeted interrogation and control of cellular processes, including existing applications in the plant field. We highlight the strategies for the modular assembly of genetic parts into synthetic circuits of different complexity, ranging from Boolean logic gates and oscillatory devices up to semi- and fully synthetic open- and closed-loop molecular and cellular circuits. Finally, we explore potential applications of these approaches for the engineering of novel functionalities in plants, including understanding complex signaling networks, improving crop productivity, and the production of biopharmaceuticals.
Collapse
Affiliation(s)
- Jennifer Andres
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, 40225 Duesseldorf, Germany
| | - Tim Blomeier
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, 40225 Duesseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
41
|
Pitt JA, Banga JR. Parameter estimation in models of biological oscillators: an automated regularised estimation approach. BMC Bioinformatics 2019; 20:82. [PMID: 30770736 PMCID: PMC6377730 DOI: 10.1186/s12859-019-2630-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/14/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dynamic modelling is a core element in the systems biology approach to understanding complex biosystems. Here, we consider the problem of parameter estimation in models of biological oscillators described by deterministic nonlinear differential equations. These problems can be extremely challenging due to several common pitfalls: (i) a lack of prior knowledge about parameters (i.e. massive search spaces), (ii) convergence to local optima (due to multimodality of the cost function), (iii) overfitting (fitting the noise instead of the signal) and (iv) a lack of identifiability. As a consequence, the use of standard estimation methods (such as gradient-based local ones) will often result in wrong solutions. Overfitting can be particularly problematic, since it produces very good calibrations, giving the impression of an excellent result. However, overfitted models exhibit poor predictive power. Here, we present a novel automated approach to overcome these pitfalls. Its workflow makes use of two sequential optimisation steps incorporating three key algorithms: (1) sampling strategies to systematically tighten the parameter bounds reducing the search space, (2) efficient global optimisation to avoid convergence to local solutions, (3) an advanced regularisation technique to fight overfitting. In addition, this workflow incorporates tests for structural and practical identifiability. RESULTS We successfully evaluate this novel approach considering four difficult case studies regarding the calibration of well-known biological oscillators (Goodwin, FitzHugh-Nagumo, Repressilator and a metabolic oscillator). In contrast, we show how local gradient-based approaches, even if used in multi-start fashion, are unable to avoid the above-mentioned pitfalls. CONCLUSIONS Our approach results in more efficient estimations (thanks to the bounding strategy) which are able to escape convergence to local optima (thanks to the global optimisation approach). Further, the use of regularisation allows us to avoid overfitting, resulting in more generalisable calibrated models (i.e. models with greater predictive power).
Collapse
Affiliation(s)
- Jake Alan Pitt
- (Bio)Process Engineering Group, IIM-CSIC, Eduardo Cabello 6, Vigo, 36208 Spain
- RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany
| | - Julio R. Banga
- (Bio)Process Engineering Group, IIM-CSIC, Eduardo Cabello 6, Vigo, 36208 Spain
| |
Collapse
|
42
|
Goñi-Moreno A, de la Cruz F, Rodríguez-Patón A, Amos M. Dynamical Task Switching in Cellular Computers. Life (Basel) 2019; 9:E14. [PMID: 30691149 PMCID: PMC6463194 DOI: 10.3390/life9010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/23/2018] [Accepted: 01/23/2019] [Indexed: 01/24/2023] Open
Abstract
We present a scheme for implementing a version of task switching in engineered bacteria, based on the manipulation of plasmid copy numbers. Our method allows for the embedding of multiple computations in a cellular population, whilst minimising resource usage inefficiency. We describe the results of computational simulations of our model, and discuss the potential for future work in this area.
Collapse
Affiliation(s)
- Angel Goñi-Moreno
- School of Computing, Newcastle University, Newcastle Upon Tyne NE4 5TG, UK.
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, 39011 Santander, Spain.
| | - Alfonso Rodríguez-Patón
- Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, 28660 Madrid, Spain.
| | - Martyn Amos
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
43
|
Santos‐Moreno J, Schaerli Y. Using Synthetic Biology to Engineer Spatial Patterns. ACTA ACUST UNITED AC 2018; 3:e1800280. [DOI: 10.1002/adbi.201800280] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/14/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Javier Santos‐Moreno
- Department of Fundamental MicrobiologyUniversity of LausanneBiophore Building 1015 Lausanne Switzerland
| | - Yolanda Schaerli
- Department of Fundamental MicrobiologyUniversity of LausanneBiophore Building 1015 Lausanne Switzerland
| |
Collapse
|
44
|
Valderrama-Gómez MA, Parales RE, Savageau MA. Phenotype-centric modeling for elucidation of biological design principles. J Theor Biol 2018; 455:281-292. [DOI: 10.1016/j.jtbi.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
|
45
|
Intracellular miRNA or siRNA delivery and function. Biosystems 2018; 171:20-25. [DOI: 10.1016/j.biosystems.2018.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/20/2018] [Accepted: 05/25/2018] [Indexed: 11/18/2022]
|
46
|
Bokka V, Dey A, Sen S. Period-amplitude co-variation in biomolecular oscillators. IET Syst Biol 2018; 12:190-198. [PMID: 33451181 PMCID: PMC8687215 DOI: 10.1049/iet-syb.2018.0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/02/2018] [Accepted: 04/08/2018] [Indexed: 11/19/2022] Open
Abstract
The period and amplitude of biomolecular oscillators are functionally important properties in multiple contexts. For a biomolecular oscillator, the overall constraints in how tuning of amplitude affects period, and vice versa, are generally unclear. Here, the authors investigate this co-variation of the period and amplitude in mathematical models of biomolecular oscillators using both simulations and analytical approximations. The authors computed the amplitude-period co-variation of 11 benchmark biomolecular oscillators as their parameters were individually varied around a nominal value, classifying the various co-variation patterns such as a simultaneous increase/decrease in period and amplitude. Next, the authors repeated the classification using a power norm-based amplitude metric, to account for the amplitudes of the many biomolecular species that may be part of the oscillations, finding largely similar trends. Finally, the authors calculate 'scaling laws' of period-amplitude co-variation for a subset of these benchmark oscillators finding that as the approximated period increases, the upper bound of the amplitude increases, or reaches a constant value. Based on these results, the authors discuss the effect of different parameters on the type of period-amplitude co-variation as well as the difficulty in achieving an oscillation with large amplitude and small period.
Collapse
Affiliation(s)
- Venkat Bokka
- Department of Electrical EngineeringIIT DelhiHauz KhasNew DelhiIndia
| | - Abhishek Dey
- Department of Electrical EngineeringIIT DelhiHauz KhasNew DelhiIndia
| | - Shaunak Sen
- Department of Electrical EngineeringIIT DelhiHauz KhasNew DelhiIndia
| |
Collapse
|
47
|
Santorelli M, Perna D, Isomura A, Garzilli I, Annunziata F, Postiglione L, Tumaini B, Kageyama R, di Bernardo D. Reconstitution of an Ultradian Oscillator in Mammalian Cells by a Synthetic Biology Approach. ACS Synth Biol 2018; 7:1447-1455. [PMID: 29727574 DOI: 10.1021/acssynbio.8b00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Notch effector gene Hes1 is an ultradian clock exhibiting cyclic gene expression in several progenitor cells, with a period of a few hours. Because of the complexity of studying Hes1 in the endogenous setting, and the difficulty of imaging these fast oscillations in vivo, the mechanism driving oscillations has never been proven. Here, we applied a "build it to understand it" synthetic biology approach to construct simplified "hybrid" versions of the Hes1 ultradian oscillator combining synthetic and natural parts. We successfully constructed a simplified synthetic version of the Hes1 promoter matching the endogenous regulation logic. By mathematical modeling and single-cell real-time imaging, we were able to demonstrate that Hes1 is indeed able to generate stable oscillations by a delayed negative feedback loop. Moreover, we proved that introns in Hes1 contribute to the transcriptional delay but may not be strictly necessary for oscillations to occur. We also developed a novel reporter of endogenous Hes1 oscillations able to amplify the bioluminescence signal 5-fold. Our results have implications also for other ultradian oscillators.
Collapse
Affiliation(s)
- Marco Santorelli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Daniela Perna
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Akihiro Isomura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | | | - Lorena Postiglione
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Barbara Tumaini
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| |
Collapse
|
48
|
Shitiri E, Vasilakos AV, Cho HS. Biological Oscillators in Nanonetworks-Opportunities and Challenges. SENSORS 2018; 18:s18051544. [PMID: 29757252 PMCID: PMC5982695 DOI: 10.3390/s18051544] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/26/2018] [Accepted: 05/09/2018] [Indexed: 01/07/2023]
Abstract
One of the major issues in molecular communication-based nanonetworks is the provision and maintenance of a common time knowledge. To stay true to the definition of molecular communication, biological oscillators are the potential solutions to achieve that goal as they generate oscillations through periodic fluctuations in the concentrations of molecules. Through the lens of a communication systems engineer, the scope of this survey is to explicitly classify, for the first time, existing biological oscillators based on whether they are found in nature or not, to discuss, in a tutorial fashion, the main principles that govern the oscillations in each oscillator, and to analyze oscillator parameters that are most relevant to communication engineer researchers. In addition, the survey highlights and addresses the key open research issues pertaining to several physical aspects of the oscillators and the adoption and implementation of the oscillators to nanonetworks. Moreover, key research directions are discussed.
Collapse
Affiliation(s)
- Ethungshan Shitiri
- School of Electronics, Kyungpook National University, Daegu 41566, Korea.
| | - Athanasios V Vasilakos
- Department of Computer Science, Electrical and Space Engineering, Lulea University of Technology, 93187 Lulea, Sweden.
| | - Ho-Shin Cho
- School of Electronics, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
49
|
Inferring a nonlinear biochemical network model from a heterogeneous single-cell time course data. Sci Rep 2018; 8:6790. [PMID: 29717206 PMCID: PMC5931614 DOI: 10.1038/s41598-018-25064-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/09/2018] [Indexed: 12/30/2022] Open
Abstract
Mathematical modeling and analysis of biochemical reaction networks are key routines in computational systems biology and biophysics; however, it remains difficult to choose the most valid model. Here, we propose a computational framework for data-driven and systematic inference of a nonlinear biochemical network model. The framework is based on the expectation-maximization algorithm combined with particle smoother and sparse regularization techniques. In this method, a “redundant” model consisting of an excessive number of nodes and regulatory paths is iteratively updated by eliminating unnecessary paths, resulting in an inference of the most likely model. Using artificial single-cell time-course data showing heterogeneous oscillatory behaviors, we demonstrated that this algorithm successfully inferred the true network without any prior knowledge of network topology or parameter values. Furthermore, we showed that both the regulatory paths among nodes and the optimal number of nodes in the network could be systematically determined. The method presented in this study provides a general framework for inferring a nonlinear biochemical network model from heterogeneous single-cell time-course data.
Collapse
|
50
|
Tomazou M, Barahona M, Polizzi KM, Stan GB. Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation. Cell Syst 2018; 6:508-520.e5. [PMID: 29680377 DOI: 10.1016/j.cels.2018.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/14/2017] [Accepted: 03/19/2018] [Indexed: 01/27/2023]
Abstract
To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable.
Collapse
Affiliation(s)
- Marios Tomazou
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Karen M Polizzi
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Guy-Bart Stan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|