1
|
Ho CY, Wu MY, Thammaphet J, Ahmad S, Ho C.S. J, Draganova L, Anderson G, Jonnalagadda US, Hayward R, Shroff R, Wen WTL, Verhulst A, Foo RSY, Shanahan CM. Mineral Stress Drives Loss of Heterochromatin: An Early Harbinger of Vascular Inflammaging and Calcification. Circ Res 2025; 136:379-399. [PMID: 39840455 PMCID: PMC11825498 DOI: 10.1161/circresaha.124.325374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Vascular calcification is a detrimental aging pathology markedly accelerated in patients with chronic kidney disease. PLA (prelamin A) is a biomarker of vascular smooth muscle cell aging that accelerates calcification however the mechanisms remain undefined. METHODS Vascular smooth muscle cells were transduced with PLA using an adenoviral vector and epigenetic modifications were monitored using immunofluorescence and targeted polymerase chain reaction array. Epigenetic findings were verified in vivo using immunohistochemistry in human vessels, in a mouse model of inducible prelamin A expression, and in a rat model of chronic kidney disease-induced calcification. Transcriptomic and chromatin immunoprecipitation followed by sequencing analyses were used to identify gene targets impacted by changes in the epigenetic landscape. Molecular tools and antibody arrays were used to monitor the effects of mineral dysregulation on heterochromatin, inflammation, aging, and calcification. RESULTS Here, we report that depletion of the repressive heterochromatin marks, H3K9me3 (histone H3, lysine 9, trimethylation) and H3K27me3 (histone H3, lysine 27,trimethylation), is an early hallmark of vascular aging induced by both nuclear lamina dysfunction and dysregulated mineral metabolism, which act to modulate the expression of key epigenetic writers and erasers. Global analysis of H3K9me3 and H3K27me3 marks and pathway analysis revealed deregulation of insulin signaling and autophagy pathways as well as cross-talking DNA damage and NF-κB (nuclear factor κB) inflammatory pathways consistent with early activation of the senescence-associated secretory phenotype. Expression of PLA in vivo induced loss of heterochromatin and promoted inflammation and osteogenic differentiation which preceded aging indices, such as DNA damage and senescence. Vessels from children on dialysis and rats with chronic kidney disease showed prelamin A accumulation and accelerated loss of heterochromatin before the onset of calcification. CONCLUSIONS Dysregulated mineral metabolism drives changes in the epigenetic landscape and nuclear lamina dysfunction that together promote early induction of inflammaging pathways priming the vasculature for downstream pathological change.
Collapse
MESH Headings
- Animals
- Heterochromatin/metabolism
- Heterochromatin/pathology
- Heterochromatin/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/genetics
- Humans
- Epigenesis, Genetic
- Rats
- Mice
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Cellular Senescence
- Inflammation/metabolism
- Inflammation/pathology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/genetics
- Histones/metabolism
- Mice, Inbred C57BL
- Cells, Cultured
- Disease Models, Animal
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Lamin Type A
Collapse
Affiliation(s)
- Chin Yee Ho
- British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King’s College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.)
| | - Meng-Ying Wu
- British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King’s College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.)
| | - Jirapath Thammaphet
- British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King’s College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.)
| | - Sadia Ahmad
- British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King’s College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.)
| | - James Ho C.S.
- Nanyang Technological University, Singapore (J.H.C.S., U.S.J.)
| | - Lilia Draganova
- British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King’s College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.)
| | - Grace Anderson
- British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King’s College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.)
| | | | - Robert Hayward
- British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King’s College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.)
| | - Rukshana Shroff
- Nephrology Unit, Great Ormond Street Hospital and University College London Institute of Child Health, United Kingdom (R.S.)
| | - Wilson Tan Lek Wen
- Cardiovascular Disease Translational Research Programme, National University of Singapore Yong Loo Lin School of Medicine (W.T.L.W., R.F.)
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium (A.V.)
| | - Roger SY. Foo
- Cardiovascular Disease Translational Research Programme, National University of Singapore Yong Loo Lin School of Medicine (W.T.L.W., R.F.)
| | - Catherine M. Shanahan
- British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King’s College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.)
| |
Collapse
|
2
|
She L, Zhang X, Shen R, He S, Miao X. Expression and role of FKBPL in lung adenocarcinoma. J Cancer 2024; 15:166-175. [PMID: 38164287 PMCID: PMC10751668 DOI: 10.7150/jca.87758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/29/2023] [Indexed: 01/03/2024] Open
Abstract
Dysregulated expression of FK506-binding protein like (FKBPL) has been demonstrated to play crucial roles in tumour development. However, the role of FKBPL in lung adenocarcinoma (ADC) remains unclear. Using immunohistochemical staining, we showed that FKBPL expression was significantly lower in lung ADC than the normal tissues (P < 0.0001). Patients with well or moderately differentiated tumours have higher FKBPL expression compared with patients with poor differentiated tumours (P = 0.037). However, no significant associations were found between FKBPL expression and other clinicopathological variables (P > 0.05 for all). Cox univariate analysis showed that high FKBPL expression was correlated with prolonged overall survival (OS) (P = 0.010). Kaplan-Meier analysis further confirmed that the FKBPL-low group showed a significantly shorter OS than the FKBPL-high group (P = 0.0081). FKBPL expression was not shown as an independent prognostic factor for OS in the multivariate analysis (P = 0.063). Moreover, our study demonstrated that FKBPL could suppress the proliferation of lung ADC cells by delaying cell cycle G1/S phase transition. In addition, FKBPL resulted in increased apoptosis in lung ADC cells. Using the Human Apoptosis Array Kit, we observed that overexpression of FKBPL in lung ADC A549 cells significantly decreased the anti-apoptotic proteins, including heat shock protein 32 (HSP32), heat shock protein 27 (HSP27), and paraoxonase-2 (PON2). FKBPL depletion significantly attenuated the pro-apoptotic protein, phospho-p53 (S46), in lung ADC H1975 cells. These new findings provide an experimental basis for further theoretical investigation of lung ADC.
Collapse
Affiliation(s)
- Lili She
- Department of Pathology, Affiliated Tumour Hospital of Nantong University, Nantong, China
- Department of Pathology, Nantong Sixth People's Hospital, Nantong, China
| | - Xingsong Zhang
- Department of Pathology, Affiliated Tumour Hospital of Nantong University, Nantong, China
| | - Rong Shen
- Department of Pathology, Affiliated Tumour Hospital of Nantong University, Nantong, China
| | - Song He
- Department of Pathology, Affiliated Tumour Hospital of Nantong University, Nantong, China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Tumour Hospital of Nantong University, Nantong, China
| |
Collapse
|
3
|
Peng Y, Chen X, Liu S, Wu W, Shu H, Tian S, Xiao Y, Li K, Wang B, Lin H, Qing X, Shao Z. Extracellular Vesicle-Conjugated Functional Matrix Hydrogels Prevent Senescence by Exosomal miR-3594-5p-Targeted HIPK2/p53 Pathway for Disc Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206888. [PMID: 37165721 DOI: 10.1002/smll.202206888] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/24/2023] [Indexed: 05/12/2023]
Abstract
Nucleus pulposus stem cells (NPSCs) senescence plays a critical role in the progression of intervertebral disc degeneration (IDD). Stem cell-derived extracellular vesicles (EV) alleviate cellular senescence. Whereas, the underlying mechanism remains unclear. Low stability largely limited the administration of EV in vivo. RGD, an arginine-glycine-aspartic acid tripeptide, strongly binds integrins expressed on the EV membranes, allowing RGD to anchor EV and prolong their bioavailability. An RGD-complexed nucleus pulposus matrix hydrogel (RGD-DNP) is developed to enhance the therapeutic effects of small EV (sEV). RGD-DNP prolonged sEV retention in vitro and ex vivo. sEV-RGD-DNP promoted NPSCs migration, decreased the number of SA-β-gal-positive cells, alleviated cell cycle arrest, and reduced p16, p21, and p53 activation. Small RNA-seq showed that miR-3594-5p is enriched in sEV, and targets the homeodomain-interacting protein kinase 2 (HIPK2)/p53 pathway. The HIPK2 knockdown rescues the impaired therapeutic effects of sEV with downregulated miR-3594-5p. RGD-DNP conjugate with lower amounts of sEV achieved similar disc regeneration with free sEV of higher concentrations in DNP. In conclusion, sEV-RGD-DNP increases sEV bioavailability and relieves NPSCs senescence by targeting the HIPK2/p53 pathway, thereby alleviating IDD. This work achieves better regenerative effects with fewer sEV and consolidates the theoretical basis for sEV application for IDD treatment.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuanzuo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Departments of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Yan Xiao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - BaiChuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
4
|
Wang P, Wang HY, Gao XJ, Zhu HX, Zhang XP, Liu F, Wang W. Encoding and Decoding of p53 Dynamics in Cellular Response to Stresses. Cells 2023; 12:cells12030490. [PMID: 36766831 PMCID: PMC9914463 DOI: 10.3390/cells12030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
In the cellular response to stresses, the tumor suppressor p53 is activated to maintain genomic integrity and fidelity. As a transcription factor, p53 exhibits rich dynamics to allow for discrimination of the type and intensity of stresses and to direct the selective activation of target genes involved in different processes including cell cycle arrest and apoptosis. In this review, we focused on how stresses are encoded into p53 dynamics and how the dynamics are decoded into cellular outcomes. Theoretical modeling may provide a global view of signaling in the p53 network by coupling the encoding and decoding processes. We discussed the significance of modeling in revealing the mechanisms of the transition between p53 dynamic modes. Moreover, we shed light on the crosstalk between the p53 network and other signaling networks. This review may advance the understanding of operating principles of the p53 signaling network comprehensively and provide insights into p53 dynamics-based cancer therapy.
Collapse
Affiliation(s)
- Ping Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- Key Laboratory of High Performance Scientific Computation, School of Science, Xihua University, Chengdu 610039, China
| | - Hang-Yu Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Xing-Jie Gao
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Hua-Xia Zhu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- Institute of Brain Sciences, Nanjing University, Nanjing 210093, China
- Correspondence: (X.-P.Z.); (W.W.)
| | - Feng Liu
- Institute of Brain Sciences, Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Institute of Brain Sciences, Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Department of Physics, Nanjing University, Nanjing 210093, China
- Correspondence: (X.-P.Z.); (W.W.)
| |
Collapse
|
5
|
Fedak EA, Adler FR, Abegglen LM, Schiffman JD. ATM and ATR Activation Through Crosstalk Between DNA Damage Response Pathways. Bull Math Biol 2021; 83:38. [PMID: 33704589 DOI: 10.1007/s11538-021-00868-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
Cells losing the ability to self-regulate in response to damage are a hallmark of cancer. When a cell encounters damage, regulatory pathways estimate the severity of damage and promote repair, cell cycle arrest, or apoptosis. This decision-making process would be remarkable if it were based on the total amount of damage in the cell, but because damage detection pathways vary in the rate and intensity with which they promote pro-apoptotic factors, the cell's real challenge is to reconcile dissimilar signals. Crosstalk between repair pathways, crosstalk between pro-apoptotic signaling kinases, and signals induced by damage by-products complicate the process further. The cell's response to [Formula: see text] and UV radiation neatly illustrates this concept. While these forms of radiation produce lesions associated with two different pro-apoptotic signaling kinases, ATM and ATR, recent experiments show that ATM and ATR react to both forms of radiation. To simulate the pro-apoptotic signal induced by [Formula: see text] and UV radiation, we construct a mathematical model that includes three modes of crosstalk between ATM and ATR signaling pathways: positive feedback between ATM/ATR and repair proteins, ATM and ATR mutual upregulation, and changes in lesion topology induced by replication stress or repair. We calibrate the model to agree with 21 experimental claims about ATM and ATR crosstalk. We alter the model by adding or removing specific processes and then examine the effects of each process on ATM/ATR crosstalk by recording which claims the altered model violates. Not only is this the first mathematical model of ATM/ATR crosstalk, it provides a strong argument for treating pro-apoptotic signaling as a holistic effort rather than attributing it to a single dominant kinase.
Collapse
Affiliation(s)
- Elizabeth A Fedak
- Department of Mathematics, The University of Utah, 155 Presidents Circle, Salt Lake City, UT, 84112, USA. .,Department of Oncological Sciences, Huntsman Cancer Institute, The University of Utah, 2000 Cir of Hope Dr, Salt Lake City, UT, 84112, USA.
| | - Frederick R Adler
- Department of Mathematics, The University of Utah, 155 Presidents Circle, Salt Lake City, UT, 84112, USA.,Department of Biology, The University of Utah, 257 Presidents Circle, Salt Lake City, UT, 84112, USA
| | - Lisa M Abegglen
- Department of Oncological Sciences, Huntsman Cancer Institute, The University of Utah, 2000 Cir of Hope Dr, Salt Lake City, UT, 84112, USA.,Department of Pediatrics, The University of Utah, 295 Chipeta Way, Salt Lake City, UT, 84108, USA.,PEEL Therapeutics, Inc., Salt Lake City, UT, 84108, USA
| | - Joshua D Schiffman
- Department of Oncological Sciences, Huntsman Cancer Institute, The University of Utah, 2000 Cir of Hope Dr, Salt Lake City, UT, 84112, USA.,Department of Pediatrics, The University of Utah, 295 Chipeta Way, Salt Lake City, UT, 84108, USA.,PEEL Therapeutics, Inc., Salt Lake City, UT, 84108, USA
| |
Collapse
|
6
|
Feng Y, Zhou L, Sun X, Li Q. Homeodomain-interacting protein kinase 2 (HIPK2): a promising target for anti-cancer therapies. Oncotarget 2017; 8:20452-20461. [PMID: 28107201 PMCID: PMC5386776 DOI: 10.18632/oncotarget.14723] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023] Open
Abstract
The HIPK2 (serine/threonine homeodomain-interacting protein kinase 2) is a "caretaker" gene, its inactivation increases tumorigenicity while its activation inhibits tumor growth. This report reviews the anti-tumorigenic mechanisms of HIPK2, which include promotion of apoptosis, inhibition of angiogenesis in hypoxia, prevention of tumor invasion/metastasis and attenuation of multidrug resistance in cancer. Additionally, we summarize conditions or factors that may increase HIPK2 activity.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Gunaseelan S, Balupillai A, Govindasamy K, Muthusamy G, Ramasamy K, Shanmugam M, Prasad NR. The preventive effect of linalool on acute and chronic UVB-mediated skin carcinogenesis in Swiss albino mice. Photochem Photobiol Sci 2016; 15:851-60. [DOI: 10.1039/c6pp00075d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute UVB-exposure induces erythema and edema. Repeated UVB-exposure causes chronic inflammation and mutated p53 expression which leads to carcinogenesis. Linalool through its (i) sunscreen effect, (ii) modulation of NF-κB signaling and (iii) apoptotic signaling prevents photocarcinogenesis.
Collapse
Affiliation(s)
- Srithar Gunaseelan
- Department of Biochemistry and Biotechnology
- Annamalai University
- Annamalainagar-608 002
- India
| | - Agilan Balupillai
- Department of Biochemistry and Biotechnology
- Annamalai University
- Annamalainagar-608 002
- India
| | - Kanimozhi Govindasamy
- Department of Biochemistry and Biotechnology
- Annamalai University
- Annamalainagar-608 002
- India
| | - Ganesan Muthusamy
- Department of Biochemistry and Biotechnology
- Annamalai University
- Annamalainagar-608 002
- India
| | - Karthikeyan Ramasamy
- Department of Biochemistry and Biotechnology
- Annamalai University
- Annamalainagar-608 002
- India
| | - Mohana Shanmugam
- Department of Biochemistry and Biotechnology
- Annamalai University
- Annamalainagar-608 002
- India
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology
- Annamalai University
- Annamalainagar-608 002
- India
| |
Collapse
|
8
|
Dynamics of P53 in response to DNA damage: Mathematical modeling and perspective. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:175-82. [DOI: 10.1016/j.pbiomolbio.2015.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022]
|
9
|
Ambothi K, Prasad NR, Balupillai A. Ferulic acid inhibits UVB-radiation induced photocarcinogenesis through modulating inflammatory and apoptotic signaling in Swiss albino mice. Food Chem Toxicol 2015; 82:72-8. [PMID: 25983265 DOI: 10.1016/j.fct.2015.04.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 01/04/2023]
Abstract
The aim of this study was to evaluate the photochemopreventive effects of ferulic acid (FA) against chronic ultraviolet-B (290-320 nm) induced oxidative stress, inflammation and angiogenesis in the skin of Swiss albino mice. Chronic UVB exposure (180 mJ/cm(2) for 30 weeks; thrice in a week) induced tumor formation in the mice skin that showed increased expression of carcinogenic and inflammatory markers when compared with the control animals. The intraperitoneal (FAIP) and topical (FAT) administration of FA significantly reduced the incidence of UVB-induced tumor volume and tumor weight in the mice skin. Histopathological studies revealed that both FAIP and FAT administration prevented the UVB-induced hyperplasia, squamous cell carcinoma (SCC) and dysplastic feature in the mice skin. Further, it has been observed that FA treatment reverted chronic UVB-induced oxidative damage (thiobarbituric acid reactive substances, superoxide dismutase, catalase, glutathione peroxidase) accompanied with modulation of vascular endothelial growth factor (VEGF), inducible nitric oxide synthase (iNOS), TNF-α and IL-6 in the mice skin tumor. FA treatment also modulates mutated p53, Bcl-2 and Bax expressions in the UVB-induced mice skin tumor. Thus, the results of the present study indicate ferulic acid has potential against UVB-induced carcinogenesis in the Swiss albino mice.
Collapse
Affiliation(s)
- Kanagalakshmi Ambothi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar 608 002, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar 608 002, India.
| | - Agilan Balupillai
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar 608 002, India
| |
Collapse
|
10
|
Liang S, Peng X, Li X, Yang P, Xie L, Li Y, Du C, Zhang G. Silencing of CXCR4 sensitizes triple-negative breast cancer cells to cisplatin. Oncotarget 2015; 6:1020-30. [PMID: 25544759 PMCID: PMC4359214 DOI: 10.18632/oncotarget.2741] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/08/2014] [Indexed: 02/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer for which there is no effective treatment. Previously, we and others demonstrated that CXCR4 surface expression is an independent prognostic factor for disease relapse and survival in breast cancer. In this study, we investigated the effects of CXCR4 gene silencing on cisplatin chemosensitivity in human triple-negative breast cancer cell lines. We found that CXCR4 silencing significantly inhibited cell growth, decreased colony formation, and enhanced cisplatin sensitivity while overexpression of CXCR4 rendered cells more resistant to cisplatin. Moreover, the percentage of apoptosis and cell cycle arrest at the G2/M phase of cisplatin-treated CXCR4 knockdown cells was significantly higher than control cells. Furthermore, we demonstrated CXCR4 knockdown cells showed lower levels of mutant p53 and Bcl-2 protein than the control group, while also having higher levels of caspase-3 and Bax. However overexpression of CXCR4 had the reverse effect. In vivo experiments confirmed that downregulation of CXCR4 enhanced cisplatin anticancer activity in tumor-bearing mice, and that this enhanced anticancer activity is attributable to tumor cell apoptosis. Thus, this study indicates that CXCR4 can modulate cisplatin sensitivity in TNBC cells and suggests that CXCR4 may be a therapeutic target for TNBC.
Collapse
Affiliation(s)
- Sixian Liang
- Department of Breast Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, PR China
| | - Xun Peng
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou 515031, PR China
| | - Xiaoli Li
- Department of Breast Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, PR China
| | - Ping Yang
- Department of Breast Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, PR China
| | - Linhao Xie
- Department of Breast Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, PR China
| | - Yaochen Li
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515031, PR China
| | - Caiwen Du
- Department of Breast Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, PR China
| | - Guojun Zhang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515031, PR China
| |
Collapse
|
11
|
Wook Choi D, Yong Choi C. HIPK2 modification code for cell death and survival. Mol Cell Oncol 2014; 1:e955999. [PMID: 27308327 PMCID: PMC4905192 DOI: 10.1080/23723548.2014.955999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 11/03/2022]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine/threonine protein kinase that participates in the regulation of diverse cellular activities as a transcriptional cofactor and signal transducer. HIPK2 senses various signaling cues that in turn phosphorylate downstream substrates to coordinate developmental processes, cell cycle regulation, cell proliferation, differentiation, and the DNA damage response. HIPK2 functions are affected by its catalytic activity, stability, and subcellular localization, which in turn are dynamically regulated by diverse post-translational modifications such as polyubiquitination, SUMOylation, phosphorylation, and acetylation. HIPK2 is not modified with small molecules and/or peptides individually or independently, but in a combinatorial manner that is referred to as the “HIPK2 modification code.” HIPK2 integrates various signaling cues and senses different doses of DNA damage and ROS stimuli, which are reflected by unique patterns of HIPK2 modification. Hence, the HIPK2 modification code differentially contributes to cellular homeostasis and determination of cell fate depending on cellular context.
Collapse
Affiliation(s)
- Dong Wook Choi
- Department of Biological Sciences; Sungkyunkwan University ; Suwon, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences; Sungkyunkwan University ; Suwon, Republic of Korea
| |
Collapse
|