1
|
Gupta D, Shukla PK, Chowdhury S, Kumari S, Kaur P, Kumar M. "Exploration of Novel Anticancerous Agents Targeting Human Aurora Kinase C". J Cell Biochem 2025; 126:e70025. [PMID: 40123311 DOI: 10.1002/jcb.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Aurora kinases (AKs), a family of serine/threonine kinases, play a vital role in chromosome segregation during the cell cycle (Mountzios et al., 2008). This family includes Aurora Kinase A (AKA), Aurora Kinase B (AKB), and Aurora Kinase C (AKC). AKA and AKB are active during mitosis, while AKC is involved mostly in germ cell as well as somatic cells. Elevated levels of AKC have been found in several cancer cell lines including breast, cervical, thyroid, colorectal, and liver cancers, making it a significant target for cancer therapy (Tang et al., 2017). In cancers such as glioblastoma and prostate cancer, for example, AKC up regulation has been associated with increased tumor aggressiveness, highlighting its potential role in tumor progression and poor prognosis. Our study employs computational methods, including molecular docking and structure-based virtual screening, to explore a data set of 2 65 241 compounds from the National Cancer Institute (NCI) database, focusing on AKC as a potential target for drug discovery. Through docking studies, several promising compounds that interact with the enzyme's ATP binding pocket, particularly with residues Phe54, Lys72, Ala123, Glu121 and Glu127 of AKC, were identified. The stability of these interactions was assessed through 200-ns molecular dynamics (MD) simulations, revealing that the majority of compounds exhibited stable interactions, while a few displayed fluctuations in their trajectories. Most compounds adhered to favorable pharmacokinetic properties. Comprehensive MD simulations and free energy calculations identified three top candidates (90 729, 37 623, and 134 546) with strong potential as potent inhibitors of AKC. Additional in vitro and in vivo studies are required to confirm the therapeutic potential of these candidates.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Biophysics, All India Institute of Medical Sciences, Delhi, India
| | - Prakash Kumar Shukla
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, India
| | | | - Supriya Kumari
- Department of Biophysics, All India Institute of Medical Sciences, Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, Delhi, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, Delhi, India
| |
Collapse
|
2
|
Mattsson J, Rogne P, Landström M, Wolf-Watz M. Robust approach for production of the human oncology target Aurora kinase B in complex with its binding partner INCENP. Biochimie 2025; 229:129-140. [PMID: 39424257 DOI: 10.1016/j.biochi.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Protein kinases are key players in many eukaryotic signal transduction cascades and are as a result often linked to human disease. In humans, the mitotic protein kinase family of Aurora kinases consist of three members: Aurora A, B and C. All three members are involved in cell division with proposed implications in various human cancers. The human Aurora kinase B has in particular proven challenging to study with structural biology approaches, and this is mainly due to difficulties in producing the large quantities of active enzyme required for such studies. Here, we present a novel and E. coli-based production system that allows for production of milligram quantities of well-folded and active human Aurora B in complex with its binding partner INCENP. The complex is produced as a continuous polypeptide chain and the resulting fusion protein is cleaved with TEV protease to generate a stable and native heterodimer of the Aurora B:INCENP complex. The activity, stability and degree of phosphorylation of the protein complex was quantified by using a coupled ATPase assay, 31P NMR spectroscopy and mass spectrometry. The developed production system enables isotope labeling and we here report the first 1H-15N-HSQC of the human Aurora B:INCENP complex. Our developed production strategy paves the way for future structural and functional studies of Aurora B and can as such assist the development of novel anticancer drugs targeting this important mitotic protein kinase.
Collapse
Affiliation(s)
- Jonna Mattsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Maréne Landström
- Department of Medical Biosciences 6M, Pathology, Umeå University, 901 85, Umeå, Sweden
| | | |
Collapse
|
3
|
Polverino F, Mastrangelo A, Guarguaglini G. Contribution of AurkA/TPX2 Overexpression to Chromosomal Imbalances and Cancer. Cells 2024; 13:1397. [PMID: 39195284 PMCID: PMC11353082 DOI: 10.3390/cells13161397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The AurkA serine/threonine kinase is a key regulator of cell division controlling mitotic entry, centrosome maturation, and chromosome segregation. The microtubule-associated protein TPX2 controls spindle assembly and is the main AurkA regulator, contributing to AurkA activation, localisation, and stabilisation. Since their identification, AurkA and TPX2 have been described as being overexpressed in cancer, with a significant correlation with highly proliferative and aneuploid tumours. Despite the frequent occurrence of AurkA/TPX2 co-overexpression in cancer, the investigation of their involvement in tumorigenesis and cancer therapy resistance mostly arises from studies focusing only on one at the time. Here, we review the existing literature and discuss the mitotic phenotypes described under conditions of AurkA, TPX2, or AurkA/TPX2 overexpression, to build a picture that may help clarify their oncogenic potential through the induction of chromosome instability. We highlight the relevance of the AurkA/TPX2 complex as an oncogenic unit, based on which we discuss recent strategies under development that aim at disrupting the complex as a promising therapeutic perspective.
Collapse
Affiliation(s)
| | | | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.P.); (A.M.)
| |
Collapse
|
4
|
Zheng H, Zhang Q, Liu X, Shi F, Yang F, Xiang S, Jiang H. Aurora-A condensation mediated by BuGZ aids its mitotic centrosome functions. iScience 2024; 27:109785. [PMID: 38746663 PMCID: PMC11090908 DOI: 10.1016/j.isci.2024.109785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/30/2023] [Accepted: 04/16/2024] [Indexed: 03/17/2025] Open
Abstract
Centrosomes composed of centrioles and the pericentriolar material (PCM), serve as the platform for microtubule polymerization during mitosis. Despite some centriole and PCM proteins have been reported to utilize liquid-liquid phase separation (LLPS) to perform their mitotic functions, whether and how centrosomal kinases exert the coacervation in mitosis is still unknown. Here we reveal that Aurora-A, one key centrosomal kinase in regulating centrosome formation and functions, undergoes phase separation in vitro or in centrosomes from prophase, mediated by the conserved positive-charged residues inside its intrinsic disordered region (IDR) and the intramolecular interaction between its N- and C-terminus. Aurora-A condensation affects centrosome maturation, separation, initial spindle formation from the spindle pole and its kinase activity. Moreover, BuGZ interacts with Aurora-A to enhance its LLPS and centrosome functions. Thus, we propose that Aurora-A collaborates with BuGZ to exhibit the property of LLPS in centrosomes to control its centrosome-dependent functions from prophase.
Collapse
Affiliation(s)
- Hui Zheng
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Qiaoqiao Zhang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Fan Shi
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Shengqi Xiang
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
5
|
Ballmer D, Akiyoshi B. Dynamic localization of the chromosomal passenger complex in trypanosomes is controlled by the orphan kinesins KIN-A and KIN-B. eLife 2024; 13:RP93522. [PMID: 38564240 PMCID: PMC10987093 DOI: 10.7554/elife.93522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The chromosomal passenger complex (CPC) is an important regulator of cell division, which shows dynamic subcellular localization throughout mitosis, including kinetochores and the spindle midzone. In traditional model eukaryotes such as yeasts and humans, the CPC consists of the catalytic subunit Aurora B kinase, its activator INCENP, and the localization module proteins Borealin and Survivin. Intriguingly, Aurora B and INCENP as well as their localization pattern are conserved in kinetoplastids, an evolutionarily divergent group of eukaryotes that possess unique kinetochore proteins and lack homologs of Borealin or Survivin. It is not understood how the kinetoplastid CPC assembles nor how it is targeted to its subcellular destinations during the cell cycle. Here, we identify two orphan kinesins, KIN-A and KIN-B, as bona fide CPC proteins in Trypanosoma brucei, the kinetoplastid parasite that causes African sleeping sickness. KIN-A and KIN-B form a scaffold for the assembly of the remaining CPC subunits. We show that the C-terminal unstructured tail of KIN-A interacts with the KKT8 complex at kinetochores, while its N-terminal motor domain promotes CPC translocation to spindle microtubules. Thus, the KIN-A:KIN-B complex constitutes a unique 'two-in-one' CPC localization module, which directs the CPC to kinetochores from S phase until metaphase and to the central spindle in anaphase. Our findings highlight the evolutionary diversity of CPC proteins and raise the possibility that kinesins may have served as the original transport vehicles for Aurora kinases in early eukaryotes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological SciencesEdinburghUnited Kingdom
| | - Bungo Akiyoshi
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological SciencesEdinburghUnited Kingdom
| |
Collapse
|
6
|
Gupta D, Kumar M, Saifi S, Rawat S, Ethayathulla AS, Kaur P. A comprehensive review on role of Aurora kinase inhibitors (AKIs) in cancer therapeutics. Int J Biol Macromol 2024; 265:130913. [PMID: 38508544 DOI: 10.1016/j.ijbiomac.2024.130913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Aurora kinases (AURKs) are a family of serine /threonine protein kinases that have a crucial role in cell cycle process mainly in the event of chromosomal segregation, centrosome maturation and cytokinesis. The family consists of three members including Aurora kinase A (AURK-A), Aurora kinase B (AURK-B) and Aurora kinase C (AURK-C). All AURKs contain a conserved kinase domain for their activity but differ in their cellular localization and functions. AURK-A and AURK-B are expressed mainly in somatic cells while the expression of AURK-C is limited to germ cells. AURK-A promotes G2 to M transition of cell cycle by controlling centrosome maturation and mitotic spindle assembly. AURK-B and AURK-C form the chromosome passenger complex (CPC) that ensures proper chromosomal alignments and segregation. Aberrant expression of AURK-A and AURK-B has been detected in several solid tumours and malignancies. Hence, they have become an attractive therapeutic target against cancer. The first part of this review focuses on AURKs structure, functions, subcellular localization, and their role in tumorigenesis. The review also highlights the functional and clinical impact of selective as well as pan kinase inhibitors. Currently, >60 compounds that target AURKs are in preclinical and clinical studies. The drawbacks of existing inhibitors like selectivity, drug resistance and toxicity have also been addressed. Since, majority of inhibitors are Aurora kinase inhibitor (AKI) type-1 that bind to the active (DFGin and Cin) conformation of the kinase, this information may be utilized to design highly selective kinase inhibitors that can be combined with other therapeutic agents for better clinical outcomes.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Sana Saifi
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Shivani Rawat
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - A S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India.
| |
Collapse
|
7
|
Naso FD, Polverino F, Cilluffo D, Latini L, Stagni V, Asteriti IA, Rosa A, Soddu S, Guarguaglini G. AurkA/TPX2 co-overexpression in nontransformed cells promotes genome instability through induction of chromosome mis-segregation and attenuation of the p53 signalling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167116. [PMID: 38447882 DOI: 10.1016/j.bbadis.2024.167116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.
Collapse
Affiliation(s)
- Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Federica Polverino
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Danilo Cilluffo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Linda Latini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Venturina Stagni
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Signal Transduction Unit, Via del Fosso di Fiorano 64/65, 00143 Rome, Italy
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Viale Regina Elena, 291, 00161 Rome, Italy; Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy.
| |
Collapse
|
8
|
Feng H, Thompson EM. Functional specialization of Aurora kinase homologs during oogenic meiosis in the tunicate Oikopleura dioica. Front Cell Dev Biol 2023; 11:1323378. [PMID: 38130951 PMCID: PMC10733467 DOI: 10.3389/fcell.2023.1323378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
A single Aurora kinase found in non-vertebrate deuterostomes is assumed to represent the ancestor of vertebrate Auroras A/B/C. However, the tunicate Oikopleura dioica, a member of the sister group to vertebrates, possesses two Aurora kinases (Aurora1 and Aurora2) that are expressed in proliferative cells and reproductive organs. Previously, we have shown that Aurora kinases relocate from organizing centers to meiotic nuclei and were enriched on centromeric regions as meiosis proceeds to metaphase I. Here, we assessed their respective functions in oogenic meiosis using dsRNA interferences. We found that Aurora1 (Aur1) was involved in meiotic spindle organization and chromosome congression, probably through the regulation of microtubule dynamics, whereas Aurora2 (Aur2) was crucial for chromosome condensation and meiotic spindle assembly. In vitro kinase assays showed that Aur1 and Aur2 had comparable levels of kinase activities. Using yeast two-hybrid library screening, we identified a few novel interaction proteins for Aur1, including c-Jun-amino-terminal kinase-interacting protein 4, cohesin loader Scc2, and mitochondrial carrier homolog 2, suggesting that Aur1 may have an altered interaction network and participate in the regulation of microtubule motors and cohesin complexes in O. dioica.
Collapse
Affiliation(s)
- Haiyang Feng
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Zeeshan M, Rea E, Abel S, Vukušić K, Markus R, Brady D, Eze A, Rashpa R, Balestra AC, Bottrill AR, Brochet M, Guttery DS, Tolić IM, Holder AA, Le Roch KG, Tromer EC, Tewari R. Plasmodium ARK2 and EB1 drive unconventional spindle dynamics, during chromosome segregation in sexual transmission stages. Nat Commun 2023; 14:5652. [PMID: 37704606 PMCID: PMC10499817 DOI: 10.1038/s41467-023-41395-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
The Aurora family of kinases orchestrates chromosome segregation and cytokinesis during cell division, with precise spatiotemporal regulation of its catalytic activities by distinct protein scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes with three unique and highly divergent aurora-related kinases (ARK1-3) that are essential for asexual cellular proliferation but lack most canonical scaffolds/activators. Here we investigate the role of ARK2 during sexual proliferation of the rodent malaria Plasmodium berghei, using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging. We find that ARK2 is primarily located at spindle microtubules in the vicinity of kinetochores during both mitosis and meiosis. Interactomic and co-localisation studies reveal several putative ARK2-associated interactors including the microtubule-interacting protein EB1, together with MISFIT and Myosin-K, but no conserved eukaryotic scaffold proteins. Gene function studies indicate that ARK2 and EB1 are complementary in driving endomitotic division and thereby parasite transmission through the mosquito. This discovery underlines the flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Edward Rea
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA, USA
| | - Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Robert Markus
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Declan Brady
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Antonius Eze
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Ravish Rashpa
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Andrew R Bottrill
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK
| | - Mathieu Brochet
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - David S Guttery
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, UK
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, UK
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA, USA
| | - Eelco C Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
10
|
Asteriti IA, Polverino F, Stagni V, Sterbini V, Ascanelli C, Naso FD, Mastrangelo A, Rosa A, Paiardini A, Lindon C, Guarguaglini G. AurkA nuclear localization is promoted by TPX2 and counteracted by protein degradation. Life Sci Alliance 2023; 6:e202201726. [PMID: 36797043 PMCID: PMC9936162 DOI: 10.26508/lsa.202201726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The AurkA kinase is a well-known mitotic regulator, frequently overexpressed in tumors. The microtubule-binding protein TPX2 controls AurkA activity, localization, and stability in mitosis. Non-mitotic roles of AurkA are emerging, and increased nuclear localization in interphase has been correlated with AurkA oncogenic potential. Still, the mechanisms leading to AurkA nuclear accumulation are poorly explored. Here, we investigated these mechanisms under physiological or overexpression conditions. We observed that AurkA nuclear localization is influenced by the cell cycle phase and nuclear export, but not by its kinase activity. Importantly, AURKA overexpression is not sufficient to determine its accumulation in interphase nuclei, which is instead obtained when AURKA and TPX2 are co-overexpressed or, to a higher extent, when proteasome activity is impaired. Expression analyses show that AURKA, TPX2, and the import regulator CSE1L are co-overexpressed in tumors. Finally, using MCF10A mammospheres we show that TPX2 co-overexpression drives protumorigenic processes downstream of nuclear AurkA. We propose that AURKA/TPX2 co-overexpression in cancer represents a key determinant of AurkA nuclear oncogenic functions.
Collapse
Affiliation(s)
- Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Federica Polverino
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Venturina Stagni
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Signal Transduction Unit, Rome, Italy
| | - Valentina Sterbini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | | | - Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Anna Mastrangelo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- < Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies "C. Darwin," Sapienza University of Rome, Rome, Italy
| | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Lee IG, Lee BJ. Aurora Kinase A Regulation by Cysteine Oxidative Modification. Antioxidants (Basel) 2023; 12:antiox12020531. [PMID: 36830089 PMCID: PMC9952272 DOI: 10.3390/antiox12020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Aurora kinase A (AURKA), which is a member of serine/threonine kinase family, plays a critical role in regulating mitosis. AURKA has drawn much attention as its dysregulation is critically associated with various cancers, leading to the development of AURKA inhibitors, a new class of anticancer drugs. As the spatiotemporal activity of AURKA critically depends on diverse intra- and inter-molecular factors, including its interaction with various protein cofactors and post-translational modifications, each of these pathways should be exploited for the development of a novel class of AURKA inhibitors other than ATP-competitive inhibitors. Several lines of evidence have recently shown that redox-active molecules can modify the cysteine residues located on the kinase domain of AURKA, thereby regulating its activity. In this review, we present the current understanding of how oxidative modifications of cysteine residues of AURKA, induced by redox-active molecules, structurally and functionally regulate AURKA and discuss their implications in the discovery of novel AURKA inhibitors.
Collapse
Affiliation(s)
- In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence:
| |
Collapse
|
12
|
Zeeshan M, Rea E, Abel S, Vukušić K, Markus R, Brady D, Eze A, Rashpa R, Balestra AC, Bottrill AR, Brochet M, Guttery DS, Tolić IM, Holder AA, Le Roch KG, Tromer EC, Tewari R. Plasmodium ARK2-EB1 axis drives the unconventional spindle dynamics, scaffold formation and chromosome segregation of sexual transmission stages. RESEARCH SQUARE 2023:rs.3.rs-2539372. [PMID: 36798191 PMCID: PMC9934748 DOI: 10.21203/rs.3.rs-2539372/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, omics and live-cell fluorescence imaging, we set out to investigate the contribution of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei. We find that ARK2 primarily localises to the spindle apparatus associated with kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1 and lacking some other conserved molecules. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Edward Rea
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, USA
| | - Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Robert Markus
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Declan Brady
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Antonius Eze
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ravish Rashpa
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Andrew R. Bottrill
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK
| | - Mathieu Brochet
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - David S. Guttery
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, UK
| | - Iva M. Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Anthony A. Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, UK
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, USA
| | - Eelco C. Tromer
- Faculty of Science and Engineering, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Cell Biochemistry, Groningen, The Netherlands
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Zeeshan M, Rea E, Abel S, Vukušić K, Markus R, Brady D, Eze A, Raspa R, Balestra A, Bottrill AR, Brochet M, Guttery DS, Tolić IM, Holder AA, Roch KGL, Tromer EC, Tewari R. Plasmodium ARK2-EB1 axis drives the unconventional spindle dynamics, scaffold formation and chromosome segregation of sexual transmission stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526106. [PMID: 36778504 PMCID: PMC9915484 DOI: 10.1101/2023.01.29.526106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging, we set out to investigate the role of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei . We find that ARK2 primarily localises to the spindle apparatus in the vicinity of kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1, lacking conserved Aurora scaffold proteins. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora kinase spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium .
Collapse
|
14
|
Komatsu M, Nakamura K, Takeda T, Chiwaki F, Banno K, Aoki D, Takeshita F, Sasaki H. Aurora kinase blockade drives de novo addiction of cervical squamous cell carcinoma to druggable EGFR signalling. Oncogene 2022; 41:2326-2339. [DOI: 10.1038/s41388-022-02256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022]
|
15
|
Shahi A, Kahle J, Hopkins C, Diakonova M. The SH2 domain and kinase activity of JAK2 target JAK2 to centrosome and regulate cell growth and centrosome amplification. PLoS One 2022; 17:e0261098. [PMID: 35089929 PMCID: PMC8797172 DOI: 10.1371/journal.pone.0261098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
JAK2 is cytokine-activated non-receptor tyrosine kinase. Although JAK2 is mainly localized at the plasma membrane, it is also present on the centrosome. In this study, we demonstrated that JAK2 localization to the centrosome depends on the SH2 domain and intact kinase activity. We created JAK2 mutants deficient in centrosomal localization ΔSH2, K882E and (ΔSH2, K882E). We showed that JAK2 WT clone strongly enhances cell proliferation as compared to control cells while JAK2 clones ΔSH2, K882E and (ΔSH2, K882E) proliferate slower than JAK2 WT cells. These mutant clones also progress much slower through the cell cycle as compared to JAK2 WT clone and the enhanced proliferation of JAK2 WT cells is accompanied by increased S -> G2 progression. Both the SH2 domain and the kinase activity of JAK2 play a role in prolactin-dependent activation of JAK2 substrate STAT5. We showed that JAK2 is an important regulator of centrosome function as the SH2 domain of JAK2 regulates centrosome amplification. The cells overexpressing ΔSH2 and (ΔSH2, K-E) JAK2 have almost three-fold the amplified centrosomes of WT cells. In contrast, the kinase activity of JAK2 is dispensable for centrosome amplification. Our observations provide novel insight into the role of SH2 domain and kinase activity of JAK2 in centrosome localization of JAK2 and in the regulation of cell growth and centrosome biogenesis.
Collapse
Affiliation(s)
- Aashirwad Shahi
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Jacob Kahle
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Chandler Hopkins
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Maria Diakonova
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
16
|
Gräf R, Grafe M, Meyer I, Mitic K, Pitzen V. The Dictyostelium Centrosome. Cells 2021; 10:cells10102657. [PMID: 34685637 PMCID: PMC8534566 DOI: 10.3390/cells10102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
The centrosome of Dictyostelium amoebae contains no centrioles and consists of a cylindrical layered core structure surrounded by a corona harboring microtubule-nucleating γ-tubulin complexes. It is the major centrosomal model beyond animals and yeasts. Proteomics, protein interaction studies by BioID and superresolution microscopy methods led to considerable progress in our understanding of the composition, structure and function of this centrosome type. We discuss all currently known components of the Dictyostelium centrosome in comparison to other centrosomes of animals and yeasts.
Collapse
|
17
|
Iemura K, Yoshizaki Y, Kuniyasu K, Tanaka K. Attenuated Chromosome Oscillation as a Cause of Chromosomal Instability in Cancer Cells. Cancers (Basel) 2021; 13:cancers13184531. [PMID: 34572757 PMCID: PMC8470601 DOI: 10.3390/cancers13184531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chromosomal instability (CIN), a condition in which chromosome missegregation occurs at high rates, is widely seen in cancer cells. Causes of CIN in cancer cells are not fully understood. A recent report suggests that chromosome oscillation, an iterative chromosome motion typically seen in metaphase around the spindle equator, is attenuated in cancer cells, and is associated with CIN. Chromosome oscillation promotes the correction of erroneous kinetochore-microtubule attachments through phosphorylation of Hec1, a kinetochore protein that binds to microtubules, by Aurora A kinase residing on the spindle. In this review, we focused on this unappreciated link between chromosome oscillation and CIN. Abstract Chromosomal instability (CIN) is commonly seen in cancer cells, and related to tumor progression and poor prognosis. Among the causes of CIN, insufficient correction of erroneous kinetochore (KT)-microtubule (MT) attachments plays pivotal roles in various situations. In this review, we focused on the previously unappreciated role of chromosome oscillation in the correction of erroneous KT-MT attachments, and its relevance to the etiology of CIN. First, we provided an overview of the error correction mechanisms for KT-MT attachments, especially the role of Aurora kinases in error correction by phosphorylating Hec1, which connects MT to KT. Next, we explained chromosome oscillation and its underlying mechanisms. Then we introduced how chromosome oscillation is involved in the error correction of KT-MT attachments, based on recent findings. Chromosome oscillation has been shown to promote Hec1 phosphorylation by Aurora A which localizes to the spindle. Finally, we discussed the link between attenuated chromosome oscillation and CIN in cancer cells. This link underscores the role of chromosome dynamics in mitotic fidelity, and the mutual relationship between defective chromosome dynamics and CIN in cancer cells that can be a target for cancer therapy.
Collapse
|
18
|
Gao C, Han Y, Bai L, Wang Y, Xue F. IK: A novel cell mitosis regulator that contributes to carcinogenesis. Cell Biochem Funct 2021; 39:854-859. [PMID: 34250629 DOI: 10.1002/cbf.3660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022]
Abstract
Carcinogenesis is characterized by abnormal regulation of cell growth and cell death. IK is a novel cell mitosis regulator that may contribute to carcinogenesis. Previous studies showed that the loss of IK expression resulted in cell mitotic arrest and even cell death. Besides, IK can also inhibit the interferon gamma (IFN-γ)-induced expression of human leukocyte antigen (HLA) class II antigen, which is associated with tumour immune microenvironment. To gain insight into the current research progress regarding IK, we conducted a review and searched the limited literature on IK using PubMed or Web of Science. In this review, we discussed the possible biological functions and mechanisms of IK in cancer and its immune microenvironment. Future perspectives of IK were also mentioned to explore its clinical significance.
Collapse
Affiliation(s)
- Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Yanyan Han
- Department of Pathology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Nankai University Affiliated Hospital (Tianjin Fourth Hospital), Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| |
Collapse
|
19
|
Ah-Cann C, Wimmer VC, Weeden CE, Marceaux C, Law CW, Galvis L, Filby CE, Liu J, Breslin K, Willson T, Ritchie ME, Blewitt ME, Asselin-Labat ML. A functional genetic screen identifies aurora kinase b as an essential regulator of Sox9-positive mouse embryonic lung progenitor cells. Development 2021; 148:269134. [PMID: 34121118 DOI: 10.1242/dev.199543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Development of a branching tree in the embryonic lung is crucial for the formation of a fully mature functional lung at birth. Sox9+ cells present at the tip of the primary embryonic lung endoderm are multipotent cells responsible for branch formation and elongation. We performed a genetic screen in murine primary cells and identified aurora kinase b (Aurkb) as an essential regulator of Sox9+ cells ex vivo. In vivo conditional knockout studies confirmed that Aurkb was required for lung development but was not necessary for postnatal growth and the repair of the adult lung after injury. Deletion of Aurkb in embryonic Sox9+ cells led to the formation of a stunted lung that retained the expression of Sox2 in the proximal airways, as well as Sox9 in the distal tips. Although we found no change in cell polarity, we showed that loss of Aurkb or chemical inhibition of Aurkb caused Sox9+ cells to arrest at G2/M, likely responsible for the lack of branch bifurcation. This work demonstrates the power of genetic screens in identifying novel regulators of Sox9+ progenitor cells and lung branching morphogenesis.
Collapse
Affiliation(s)
- Casey Ah-Cann
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Verena C Wimmer
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.,Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Clare E Weeden
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Claire Marceaux
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Charity W Law
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville 3010, Australia
| | - Laura Galvis
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Caitlin E Filby
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Joy Liu
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Kelsey Breslin
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Tracy Willson
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville 3010, Australia
| | - Marnie E Blewitt
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Marie-Liesse Asselin-Labat
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
20
|
Abstract
During anaphase, a microtubule-containing structure called the midzone forms between the segregating chromosomes. The midzone is composed of an antiparallel array of microtubules and numerous microtubule-associated proteins that contribute to midzone formation and function. In many cells, the midzone is an important source of signals that specify the location of contractile ring assembly and constriction. The midzone also contributes to the events of anaphase by generating forces that impact chromosome segregation and spindle elongation; some midzone components contribute to both processes. The results of recent experiments have increased our understanding of the importance of the midzone, a microtubule array that has often been overlooked. This Journal of Cell Science at a Glance article will review, and illustrate on the accompanying poster, the organization, formation and dynamics of the midzone, and discuss open questions for future research.
Collapse
Affiliation(s)
- Patricia Wadsworth
- Department of Biology, Morrill Science Center, University of Massachusetts, 611 N. Pleasant Street, Amherst 01003, USA
| |
Collapse
|
21
|
Iemura K, Natsume T, Maehara K, Kanemaki MT, Tanaka K. Chromosome oscillation promotes Aurora A-dependent Hec1 phosphorylation and mitotic fidelity. J Cell Biol 2021; 220:212099. [PMID: 33988677 PMCID: PMC8129796 DOI: 10.1083/jcb.202006116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/10/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022] Open
Abstract
Most cancer cells show chromosomal instability, a condition where chromosome missegregation occurs frequently. We found that chromosome oscillation, an iterative chromosome motion during metaphase, is attenuated in cancer cell lines. We also found that metaphase phosphorylation of Hec1 at serine 55, which is mainly dependent on Aurora A on the spindle, is reduced in cancer cell lines. The Aurora A-dependent Hec1-S55 phosphorylation level was regulated by the chromosome oscillation amplitude and vice versa: Hec1-S55 and -S69 phosphorylation by Aurora A is required for efficient chromosome oscillation. Furthermore, enhancement of chromosome oscillation reduced the number of erroneous kinetochore-microtubule attachments and chromosome missegregation, whereas inhibition of Aurora A during metaphase increased such errors. We propose that Aurora A-mediated metaphase Hec1-S55 phosphorylation through chromosome oscillation, together with Hec1-S69 phosphorylation, ensures mitotic fidelity by eliminating erroneous kinetochore-microtubule attachments. Attenuated chromosome oscillation and the resulting reduced Hec1-S55 phosphorylation may be a cause of CIN in cancer cell lines.
Collapse
Affiliation(s)
- Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, Japan
| | - Kayoko Maehara
- Department of Nutrition, Graduate School of Health Sciences, Kio University, Kitakatsuragi, Nara, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
22
|
Marima R, Hull R, Penny C, Dlamini Z. Mitotic syndicates Aurora Kinase B (AURKB) and mitotic arrest deficient 2 like 2 (MAD2L2) in cohorts of DNA damage response (DDR) and tumorigenesis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108376. [PMID: 34083040 DOI: 10.1016/j.mrrev.2021.108376] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022]
Abstract
Aurora Kinase B (AURKB) and Mitotic Arrest Deficient 2 Like 2 (MAD2L2) are emerging anticancer therapeutic targets. AURKB and MAD2L2 are the least well studied members of their protein families, compared to AURKA and MAD2L1. Both AURKB and MAD2L2 play a critical role in mitosis, cell cycle checkpoint, DNA damage response (DDR) and normal physiological processes. However, the oncogenic roles of AURKB and MAD2L2 in tumorigenesis and genomic instability have also been reported. DDR acts as an arbitrator for cell fate by either repairing the damage or directing the cell to self-destruction. While there is strong evidence of interphase DDR, evidence of mitotic DDR is just emerging and remains largely unelucidated. To date, inhibitors of the DDR components show effective anti-cancer roles. Contrarily, long-term resistance towards drugs that target only one DDR target is becoming a challenge. Targeting interactions between protein-protein or protein-DNA holds prominent therapeutic potential. Both AURKB and MAD2L2 play critical roles in the success of mitosis and their emerging roles in mitotic DDR cannot be ignored. Small molecule inhibitors for AURKB are in clinical trials. A few lead compounds towards MAD2L2 inhibition have been discovered. Targeting mitotic DDR components and their interaction is emerging as a potent next generation anti-cancer therapeutic target. This can be done by developing small molecule inhibitors for AURKB and MAD2L2, thereby targeting DDR components as anti-cancer therapeutic targets and/or targeting mitotic DDR. This review focuses on AURKB and MAD2L2 prospective synergy to deregulate the p53 DDR pathway and promote favourable conditions for uncontrolled cell proliferation.
Collapse
Affiliation(s)
- Rahaba Marima
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield, 0028, South Africa.
| | - Rodney Hull
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield, 0028, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Zodwa Dlamini
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield, 0028, South Africa
| |
Collapse
|
23
|
Daisy Precilla S, Kuduvalli SS, Thirugnanasambandhar Sivasubramanian A. Disentangling the therapeutic tactics in GBM: From bench to bedside and beyond. Cell Biol Int 2020; 45:18-53. [PMID: 33049091 DOI: 10.1002/cbin.11484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant form of adult brain tumor with a high mortality rate and dismal prognosis. The present standard treatment comprising surgical resection followed by radiation and chemotherapy using temozolomide can broaden patient's survival to some extent. However, the advantages are not palliative due to the development of resistance to the drug and tumor recurrence following the multimodal treatment approaches due to both intra- and intertumoral heterogeneity of GBM. One of the major contributors to temozolomide resistance is O6 -methylguanine-DNA methyltransferase. Furthermore, deficiency of mismatch repair, base excision repair, and cytoprotective autophagy adds to temozolomide obstruction. Rising proof additionally showed that a small population of cells displaying certain stem cell markers, known as glioma stem cells, adds on to the resistance and tumor progression. Collectively, these findings necessitate the discovery of novel therapeutic avenues for treating glioblastoma. As of late, after understanding the pathophysiology and biology of GBM, some novel therapeutic discoveries, such as drug repurposing, targeted molecules, immunotherapies, antimitotic therapies, and microRNAs, have been developed as new potential treatments for glioblastoma. To help illustrate, "what are the mechanisms of resistance to temozolomide" and "what kind of alternative therapeutics can be suggested" with this fatal disease, a detailed history of these has been discussed in this review article, all with a hope to develop an effective treatment strategy for GBM.
Collapse
Affiliation(s)
- S Daisy Precilla
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | |
Collapse
|
24
|
Marima R, Hull R, Dlamini Z, Penny C. The dual protease inhibitor lopinavir/ritonavir (LPV/r) exerts genotoxic stress on lung cells. Biomed Pharmacother 2020; 132:110829. [PMID: 33059259 DOI: 10.1016/j.biopha.2020.110829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 01/13/2023] Open
Abstract
The Sub-Saharan countries, particularly South Africa has the largest number of people living with HIV, accompanied by the largest antiretroviral treatment (ART) programme in the world. The Highly Active Antiretroviral Treatment (HAART) is the most effective regimen against HIV/AIDS and has improved the lifespan and quality of life of HIV positive patients. HAART has also led to a decrease in the incidence of AIDS defining cancers (ADCs) while there is an increased incidence of the non-AIDS Defining Cancers (NADCs), such as lung cancer in the HAART era. The association between lung tumourigenesis and the use of HAART components such as the dual protease inhibitor (PI) lopinavir/ritonavir (LPV/r) is poorly understood. Using cell and molecular biological approaches, this study aimed at elucidating the effects of LPV/r on the regulation of the cell cycle related genes in normal (MRC-5) and adenocarcinoma (A549) lung cells. Initially, the nuclear integrity of these cells in response to LPV/r was determined using DAPI staining. The effect of LPV/r on cell cycle genes was evaluated through the use of a RT2 PCR gene array of 84 genes related to the cell cycle signaling pathway. The PCR array data was validated by Real-Time Quantification PCR (RT-qPCR). Ingenuity Pathway Analysis (IPA) bio-informatics tool was employed to disclose the molecular mechanism/s observed at cellular and gene expression levels. Loss of nuclear integrity and the upregulation of the p53 DNA damage response (DDR) pathway was revealed by DAPI staining, differential gene expression and IPA core analysis. Furthermore, MAD2L2 and AURKB which also play a role in the DDR pathway were shown to be differentially expressed. The activation of the CASP3 gene in response to LPV/r in A549 cells was also observed. The findings of this study suggest genotoxic properties of LPV/r in healthy normal lung fibroblasts cells and anti-tumour properties in the A549 cells.
Collapse
Affiliation(s)
- Rahaba Marima
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield, 0028, South Africa; Department of Internal Medicine, School of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa.
| | - Rodney Hull
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield, 0028, South Africa
| | - Zodwa Dlamini
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, Faculty of Health Sciences, University of Pretoria, Hatfield, 0028, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| |
Collapse
|
25
|
Adhikari B, Bozilovic J, Diebold M, Schwarz JD, Hofstetter J, Schröder M, Wanior M, Narain A, Vogt M, Dudvarski Stankovic N, Baluapuri A, Schönemann L, Eing L, Bhandare P, Kuster B, Schlosser A, Heinzlmeir S, Sotriffer C, Knapp S, Wolf E. PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase. Nat Chem Biol 2020; 16:1179-1188. [PMID: 32989298 PMCID: PMC7610535 DOI: 10.1038/s41589-020-00652-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
The mitotic kinase AURORA-A is essential for cell cycle progression and is considered a priority cancer target. While the catalytic activity of AURORA-A is essential for its mitotic function, recent reports indicate an additional non-catalytic function, which is difficult to target by conventional small molecules. We therefore developed a series of chemical degraders (PROTACs) by connecting a clinical kinase inhibitor of AURORA-A to E3 ligase-binding molecules (e.g. thalidomide). One degrader induced rapid, durable and highly specific degradation of AURORA-A. In addition ,we found that the degrader complex was stabilized by cooperative binding between AURORA-A and CEREBLON. Degrader-mediated AURORA-A depletion caused an S-phase defect, which is not the cell cycle effect observed upon kinase inhibition, supporting an important non-catalytic function of AURORA-A during DNA replication. AURORA-A degradation induced rampant apoptosis in cancer cell lines, and thus represents a versatile starting point for developing new therapeutics to counter AURORA-A function in cancer.
Collapse
Affiliation(s)
- Bikash Adhikari
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Jelena Bozilovic
- Institut für Pharmazeutische Chemie und Structural Genomics Consortium, Goethe-Universität Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mathias Diebold
- Institut für Pharmazie und Lebensmittelchemie, University of Würzburg, Würzburg, Germany
| | - Jessica Denise Schwarz
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Martin Schröder
- Institut für Pharmazeutische Chemie und Structural Genomics Consortium, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Marek Wanior
- Institut für Pharmazeutische Chemie und Structural Genomics Consortium, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Ashwin Narain
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Markus Vogt
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | | | - Apoorva Baluapuri
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Lars Schönemann
- Rudolf Virchow Center - Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Lorenz Eing
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Pranjali Bhandare
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Bernhard Kuster
- German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), Heidelberg, Germany.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.,Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center - Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Christoph Sotriffer
- Institut für Pharmazie und Lebensmittelchemie, University of Würzburg, Würzburg, Germany
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie und Structural Genomics Consortium, Goethe-Universität Frankfurt, Frankfurt am Main, Germany. .,German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
26
|
Liu M, Ju X, Zou J, Shi J, Jia G. Recent researches for dual Aurora target inhibitors in antitumor field. Eur J Med Chem 2020; 203:112498. [PMID: 32693295 DOI: 10.1016/j.ejmech.2020.112498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
Non-infectious and chronic diseases such as malignant tumors are now one of the main causes of human death. Its occurrence is a multi-factor, multi-step complex process with biological characteristics such as cell differentiation, abnormal proliferation, uncontrolled growth, and metastasis. It has been found that a variety of human malignant tumors are accompanied by over-expression and proliferation of Aurora kinase, which causes abnormalities in the mitotic process and is related to the instability of the genome that causes tumors. Therefore, the use of Aurora kinase inhibitors to target tumors is becoming a research hotspot. However, in cancer, because of the complexity of signal transduction system and the participation of different proteins and enzymes, the anticancer effect of selective single-target drugs is limited. After inhibiting one pathway, signal molecules can be conducted through other pathways, resulting in poor therapeutic effect of single-target drug treatment. Multi-target drugs can solve this problem very well. It can regulate the various links that cause disease at the same time without completely eliminating the relationship between the signal transmission systems, and it is not easy to cause drug resistance. Currently, studies have shown that Aurora dual-target inhibitors generated with the co-inhibition of Aurora and another target (such as CDK, PLK, JAK2, etc.) have better therapeutic effects on tumors. In this paper, we reviewed the studies of dual Aurora inhibitors that have been discovered in recent years.
Collapse
Affiliation(s)
- Maoyu Liu
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xueming Ju
- Department of Ultrasound, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jing Zou
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Guiqing Jia
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
27
|
Cui P, Abbasi B, Lin D, Rui R, Ju S. Aurora A inhibition disrupts chromosome condensation and spindle assembly during the first embryonic division in pigs. Reprod Domest Anim 2020; 55:584-593. [PMID: 32053743 DOI: 10.1111/rda.13655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/10/2020] [Indexed: 11/29/2022]
Abstract
As common overexpression of Aurora A in various tumours, much attention has focused on its function in inducing cancer, and its value in cancer therapeutics, considerably less is known regarding its role in the first cleavage division of mammalian embryos. Here, we highlight an indispensable role of Aurora A during the first mitotic division progression of pig embryos just after meiosis. The expression and spatiotemporal localization of Aurora A were initially assessed in pig embryos during the first mitotic division by Western blot analysis and indirect immunofluorescent staining. Then, the potential role of Aurora A was further evaluated using a highly selective Aurora A inhibitor, MLN8054, during this mitotic progression in pig embryos. Aurora A was found to express and exhibit a specific dynamic intracellular localization pattern during the first mitotic division in pig embryos. Aurora A was diffused in the cytoplasm at the prophase stage, and then exhibited a dynamic intracellular localization which was tightly associated with the chromosome and spindle dynamics throughout subsequent mitotic phases. Inhibition of Aurora A by MLN8054 treatment led to the failure of the first cleavage, with the majority of embryos being arrested in prophase of the mitotic division. Further subcellular structure examination showed that Aurora A inhibition not only led to the failure of spindle microtubule assembly, but also resulted in severe defects in chromosome condensation, accompanied by an obvious decrease in p-TACC3(S558) expression during the prophase of the first mitosis. Together, these results illustrated that Aurora A is crucial for both spindle assembly and chromosome condensation during the first mitotic division in pig embryos, and that the regulation of Aurora A may be associated with its effects on p-TACC3(S558) expression.
Collapse
Affiliation(s)
- Panpan Cui
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Benazir Abbasi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Defeng Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rong Rui
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Liu N, Wang YA, Sun Y, Ecsedy J, Sun J, Li X, Wang P. Inhibition of Aurora A enhances radiosensitivity in selected lung cancer cell lines. Respir Res 2019; 20:230. [PMID: 31647033 PMCID: PMC6813099 DOI: 10.1186/s12931-019-1194-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 09/22/2019] [Indexed: 12/15/2022] Open
Abstract
Background In mammalian cells, Aurora serine/threonine kinases (Aurora A, B, and C) are expressed in a cell cycle-dependent fashion as key mitotic regulators required for the maintenance of chromosomal stability. Aurora-A (AURKA) has been proven to be an oncogene in a variety of cancers; however, whether its expression relates to patient survival and the association with radiotherapy remains unclear in non-small cell lung cancer (NSCLC). Methods Here, we first analyzed AURKA expression in 63 NSCLC tumor samples by immunohistochemistry (IHC) and used an MTS assay to compare cell survival by targeting AURKA with MLN8237 (Alisertib) in H460 and HCC2429 (P53-competent), and H1299 (P53-deficient) cell lines. The radiosensitivity of MLN8237 was further evaluated by clonogenic assay. Finally, we examined the effect of combining radiation and AURKA inhibition in vivo with a xenograft model and explored the potential mechanism. Results We found that increased AURKA expression correlated with decreased time to progression and overall survival (p = 0.0447 and 0.0096, respectively). AURKA inhibition using 100 nM MLN8237 for 48 h decreases cell growth in a partially P53-dependent manner, and the survival rates of H460, HCC2429, and H1299 cells were 56, 50, and 77%, respectively. In addition, the survival of H1299 cells decreased 27% after ectopic restoration of P53 expression, and the radiotherapy enhancement was also influenced by P53 expression (DER H460 = 1.33; HCC2429 = 1.35; H1299 = 1.02). Furthermore, tumor growth of H460 was delayed significantly in a subcutaneous mouse model exposed to both MLN8237 and radiation. Conclusions Taken together, our results confirmed that the expression of AURKA correlated with decreased NSCLC patient survival, and it might be a promising inhibition target when combined with radiotherapy, especially for P53-competent lung cancer cells. Modulation of P53 function could provide a new option for reversing cell resistance to the AURKA inhibitor MLN8237, which deserves further investigation.
Collapse
Affiliation(s)
- Ningbo Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin, 300060, China.
| | - Yong Antican Wang
- Biomed Innovation Center of Yehoo Group Co. Ltd., Shenzhen, 518000, China.,Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yunguang Sun
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey Ecsedy
- Takeda Pharmaceuticals International Co, Cambridge, MA, UK
| | - Jifeng Sun
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xue Li
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin, 300060, China.
| |
Collapse
|
29
|
Verma V, Mogilner A, Maresca TJ. Classical and Emerging Regulatory Mechanisms of Cytokinesis in Animal Cells. BIOLOGY 2019; 8:biology8030055. [PMID: 31357447 PMCID: PMC6784142 DOI: 10.3390/biology8030055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
The primary goal of cytokinesis is to produce two daughter cells, each having a full set of chromosomes. To achieve this, cells assemble a dynamic structure between segregated sister chromatids called the contractile ring, which is made up of filamentous actin, myosin-II, and other regulatory proteins. Constriction of the actomyosin ring generates a cleavage furrow that divides the cytoplasm to produce two daughter cells. Decades of research have identified key regulators and underlying molecular mechanisms; however, many fundamental questions remain unanswered and are still being actively investigated. This review summarizes the key findings, computational modeling, and recent advances in understanding of the molecular mechanisms that control the formation of the cleavage furrow and cytokinesis.
Collapse
Affiliation(s)
- Vikash Verma
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- Department of Biology, New York University, New York, NY 10012, USA
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
30
|
Wang S, Hwang EE, Guha R, O'Neill AF, Melong N, Veinotte CJ, Conway Saur A, Wuerthele K, Shen M, McKnight C, Alexe G, Lemieux ME, Wang A, Hughes E, Xu X, Boxer MB, Hall MD, Kung A, Berman JN, Davis MI, Stegmaier K, Crompton BD. High-throughput Chemical Screening Identifies Focal Adhesion Kinase and Aurora Kinase B Inhibition as a Synergistic Treatment Combination in Ewing Sarcoma. Clin Cancer Res 2019; 25:4552-4566. [PMID: 30979745 DOI: 10.1158/1078-0432.ccr-17-0375] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 12/18/2018] [Accepted: 04/09/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE Ewing sarcoma is an aggressive solid tumor malignancy of childhood. Although current treatment regimens cure approximately 70% of patients with localized disease, they are ineffective for most patients with metastases or relapse. New treatment combinations are necessary for these patients. EXPERIMENTAL DESIGN Ewing sarcoma cells are dependent on focal adhesion kinase (FAK) for growth. To identify candidate treatment combinations for Ewing sarcoma, we performed a small-molecule library screen to identify compounds synergistic with FAK inhibitors in impairing Ewing cell growth. The activity of a top-scoring class of compounds was then validated across multiple Ewing cell lines in vitro and in multiple xenograft models of Ewing sarcoma. RESULTS Numerous Aurora kinase inhibitors scored as synergistic with FAK inhibition in this screen. We found that Aurora kinase B inhibitors were synergistic across a larger range of concentrations than Aurora kinase A inhibitors when combined with FAK inhibitors in multiple Ewing cell lines. The combination of AZD-1152, an Aurora kinase B-selective inhibitor, and PF-562271 or VS-4718, FAK-selective inhibitors, induced apoptosis in Ewing sarcoma cells at concentrations that had minimal effects on survival when cells were treated with either drug alone. We also found that the combination significantly impaired tumor progression in multiple xenograft models of Ewing sarcoma. CONCLUSIONS FAK and Aurora kinase B inhibitors synergistically impair Ewing sarcoma cell viability and significantly inhibit tumor progression. This study provides preclinical support for the consideration of a clinical trial testing the safety and efficacy of this combination for patients with Ewing sarcoma.
Collapse
Affiliation(s)
- Sarah Wang
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Elizabeth E Hwang
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Rajarshi Guha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Allison F O'Neill
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | | | - Chansey J Veinotte
- IWK Health Centre, Halifax, Nova Scotia, Canada
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Amy Conway Saur
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Kellsey Wuerthele
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Crystal McKnight
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Gabriela Alexe
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
- Boston University Bioinformatics Graduate Program, Boston, Massachusetts
| | | | - Amy Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Emma Hughes
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Matthew B Boxer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Andrew Kung
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason N Berman
- IWK Health Centre, Halifax, Nova Scotia, Canada
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mindy I Davis
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Kimberly Stegmaier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts.
| | - Brian D Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts.
| |
Collapse
|
31
|
Jiao AL, Perales R, Umbreit NT, Haswell JR, Piper ME, Adams BD, Pellman D, Kennedy S, Slack FJ. Human nuclear RNAi-defective 2 (NRDE2) is an essential RNA splicing factor. RNA (NEW YORK, N.Y.) 2019; 25:352-363. [PMID: 30538148 PMCID: PMC6380277 DOI: 10.1261/rna.069773.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 05/05/2023]
Abstract
The accurate inheritance of genetic material is a basic necessity in all domains of life and an unexpectedly large number of RNA processing factors are required for mitotic progression and genome stability. NRDE2 (nuclear RNAi defective-2) is an evolutionarily conserved protein originally discovered for its role in nuclear RNA interference (RNAi) and heritable gene silencing in Caenorhabditis elegans (C. elegans). The function of the human NRDE2 gene remains poorly understood. Here we show that human NRDE2 is an essential protein required for suppressing intron retention in a subset of pre-mRNAs containing short, GC-rich introns with relatively weak 5' and 3' splice sites. NRDE2 preferentially interacts with components of the U5 small nuclear ribonucleoprotein (snRNP), the exon junction complex, and the RNA exosome. Interestingly, NRDE2-depleted cells exhibit greatly increased levels of genomic instability and DNA damage, as well as defects in centrosome maturation and mitotic progression. We identify the essential centriolar satellite protein, CEP131, as a direct NRDE2-regulated target. NRDE2 specifically binds to and promotes the efficient splicing of CEP131 pre-mRNA, and depleting NRDE2 dramatically reduces CEP131 protein expression, contributing to impaired recruitment of critical centrosomal proteins (e.g., γ-tubulin and Aurora Kinase A) to the spindle poles during mitosis. Our work establishes a conserved role for human NRDE2 in RNA splicing, characterizes the severe genomic instability phenotypes observed upon loss of NRDE2, and highlights the direct regulation of CEP131 splicing as one of multiple mechanisms through which such phenotypes might be explained.
Collapse
Affiliation(s)
- Alan L Jiao
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Roberto Perales
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Neil T Umbreit
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jeffrey R Haswell
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Biological and Biomedical Sciences, Harvard University, Boston, Massachusetts 02115, USA
| | - Mary E Piper
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Brian D Adams
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - David Pellman
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02215, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Scott Kennedy
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Frank J Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
32
|
Potential involvement of RITA in the activation of Aurora A at spindle poles during mitosis. Oncogene 2019; 38:4199-4214. [PMID: 30705408 DOI: 10.1038/s41388-019-0716-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022]
Abstract
The mitotic kinase Aurora A is crucial for various mitotic events. Its activation has been intensively investigated and is not yet completely understood. RITA, the RBP-J interacting and tubulin-associated protein, has been shown to modulate microtubule dynamics in mitosis. We asked if RITA could be related to the activation of Aurora A. We show here that RITA is colocalized with Aurora A and its activator TPX2 at spindle poles during mitosis. FLAG-RITA is precipitated with the complex of Aurora A, TPX2 and tubulin. Depletion of RITA increases exclusively active Aurora A and TPX2 at spindle poles in diverse cancer cell lines and in RITA knockout mouse embryonic fibroblasts. The enhanced active Aurora A, its substrate p-TACC3 and TPX2 are restored by adding back of RITA but not its Δtub mutant with an impaired tubulin-binding capability, indicating that RITA's role as Aurora A's modulator is mediated through its interaction with tubulin. Also, the mitotic failures in cells depleted of RITA are rescued by the inhibition of Aurora A. RITA itself does not directly interfere with the catalytic activity of Aurora A, instead, affects the microtubule binding of its activator TPX2. Moreover, Aurora A's activation correlates with microtubule stabilization induced by the microtubule stabilizer paclitaxel, implicating that stabilized microtubules caused by RITA depletion could also account for increased active Aurora A. Our data suggest a potential role for RITA in the activation of Aurora A at spindle poles by modulating the microtubule binding of TPX2 and the microtubule stability during mitosis.
Collapse
|
33
|
Berry L, Chen CT, Francia ME, Guerin A, Graindorge A, Saliou JM, Grandmougin M, Wein S, Bechara C, Morlon-Guyot J, Bordat Y, Gubbels MJ, Lebrun M, Dubremetz JF, Daher W. Toxoplasma gondii chromosomal passenger complex is essential for the organization of a functional mitotic spindle: a prerequisite for productive endodyogeny. Cell Mol Life Sci 2018; 75:4417-4443. [PMID: 30051161 PMCID: PMC6260807 DOI: 10.1007/s00018-018-2889-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
The phylum Apicomplexa encompasses deadly pathogens such as malaria and Cryptosporidium. Apicomplexa cell division is mechanistically divergent from that of their mammalian host, potentially representing an attractive source of drug targets. Depending on the species, apicomplexan parasites can modulate the output of cell division, producing two to thousands of daughter cells at once. The inherent flexibility of their cell division mechanisms allows these parasites to adapt to different niches, facilitating their dissemination. Toxoplasma gondii tachyzoites divide using a unique form of cell division called endodyogeny. This process involves a single round of DNA replication, closed nuclear mitosis, and assembly of two daughter cells within a mother. In higher Eukaryotes, the four-subunit chromosomal passenger complex (CPC) (Aurora kinase B (ARKB)/INCENP/Borealin/Survivin) promotes chromosome bi-orientation by detaching incorrect kinetochore-microtubule attachments, playing an essential role in controlling cell division fidelity. Herein, we report the characterization of the Toxoplasma CPC (Aurora kinase 1 (Ark1)/INCENP1/INCENP2). We show that the CPC exhibits dynamic localization in a cell cycle-dependent manner. TgArk1 interacts with both TgINCENPs, with TgINCENP2 being essential for its translocation to the nucleus. While TgINCENP1 appears to be dispensable, interfering with TgArk1 or TgINCENP2 results in pronounced division and growth defects. Significant anti-cancer drug development efforts have focused on targeting human ARKB. Parasite treatment with low doses of hesperadin, a known inhibitor of human ARKB at higher concentrations, phenocopies the TgArk1 and TgINCENP2 mutants. Overall, our study provides new insights into the mechanisms underpinning cell cycle control in Apicomplexa, and highlights TgArk1 as potential drug target.
Collapse
Affiliation(s)
- Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Maria E Francia
- Molecular Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Amandine Guerin
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800, Spruce Street, Philadelphia, PA, 19104, USA
| | - Arnault Graindorge
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Jean-Michel Saliou
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL-Centre d'Infection et d'Immunité de Lille, University of Lille, 59000, Lille, France
| | - Maurane Grandmougin
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL-Centre d'Infection et d'Immunité de Lille, University of Lille, 59000, Lille, France
| | - Sharon Wein
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Chérine Bechara
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
- Institut de Génomique Fonctionnelle, CNRS, UMR5230 INSERM U1191, University of Montpellier, 34094, Montpellier, France
| | - Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Yann Bordat
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Maryse Lebrun
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Jean-François Dubremetz
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
34
|
Willems E, Dedobbeleer M, Digregorio M, Lombard A, Lumapat PN, Rogister B. The functional diversity of Aurora kinases: a comprehensive review. Cell Div 2018; 13:7. [PMID: 30250494 PMCID: PMC6146527 DOI: 10.1186/s13008-018-0040-6] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
Abstract
Aurora kinases are serine/threonine kinases essential for the onset and progression of mitosis. Aurora members share a similar protein structure and kinase activity, but exhibit distinct cellular and subcellular localization. AurA favors the G2/M transition by promoting centrosome maturation and mitotic spindle assembly. AurB and AurC are chromosome-passenger complex proteins, crucial for chromosome binding to kinetochores and segregation of chromosomes. Cellular distribution of AurB is ubiquitous, while AurC expression is mainly restricted to meiotically-active germ cells. In human tumors, all Aurora kinase members play oncogenic roles related to their mitotic activity and promote cancer cell survival and proliferation. Furthermore, AurA plays tumor-promoting roles unrelated to mitosis, including tumor stemness, epithelial-to-mesenchymal transition and invasion. In this review, we aim to understand the functional interplay of Aurora kinases in various types of human cells, including tumor cells. The understanding of the functional diversity of Aurora kinases could help to evaluate their relevance as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Estelle Willems
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Matthias Dedobbeleer
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Marina Digregorio
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium
| | - Arnaud Lombard
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,2Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Paul Noel Lumapat
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| | - Bernard Rogister
- 1Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Avenue Hippocrate, 15, 4000 Liège, Belgium.,3Department of Neurology, CHU of Liège, Liège, Belgium
| |
Collapse
|
35
|
Liu S, Kwon M, Mannino M, Yang N, Renda F, Khodjakov A, Pellman D. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 2018; 561:551-555. [PMID: 30232450 PMCID: PMC6599625 DOI: 10.1038/s41586-018-0534-z] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/04/2018] [Indexed: 01/09/2023]
Abstract
Defects in the architecture or integrity of the nuclear envelope (NE) are associated with a variety of human diseases1. Micronuclei, one common nuclear aberration, are an origin for chromothripsis2, a catastrophic mutational process commonly observed in cancer3–5. Chromothripsis occurs after micronuclei spontaneously lose NE integrity, which generates chromosome fragmentation6. NE disruption exposes DNA to the cytoplasm and initiates innate immune proinflammatory signaling7. Despite its importance, the basis for the NE fragility of micronuclei has not been determined. Here, we demonstrate that micronuclei undergo defective NE assembly: Only “core” NE proteins8,9 assemble efficiently on lagging chromosomes whereas “non-core” NE proteins8,9, including nuclear pore complexes (NPCs), do not. Consequently, micronuclei fail to properly import key proteins necessary for NE and genome integrity. We show that spindle microtubules block NPC/non-core NE assembly on lagging chromosomes, causing an irreversible NE assembly defect. Accordingly, experimental manipulations that position missegregated chromosomes away from the spindle correct defective NE assembly, prevent spontaneous NE disruption, and suppress DNA damage in micronuclei. Thus, during mitotic exit in metazoan cells, chromosome segregation and NE assembly are only loosely coordinated by the timing of mitotic spindle disassembly. The absence of precise checkpoint controls may explain why errors during mitotic exit are frequent and often trigger catastrophic genome rearrangements4,5.
Collapse
Affiliation(s)
- Shiwei Liu
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Mijung Kwon
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Mark Mannino
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nachen Yang
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Ryu J, Pyo J, Lee CW, Kim JE. An Aurora kinase inhibitor, AMG900, inhibits glioblastoma cell proliferation by disrupting mitotic progression. Cancer Med 2018; 7:5589-5603. [PMID: 30221846 PMCID: PMC6246935 DOI: 10.1002/cam4.1771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/09/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022] Open
Abstract
The Aurora kinase family of serine/threonine protein kinases comprises Aurora A, B, and C and plays an important role in mitotic progression. Several inhibitors of Aurora kinase have been developed as anti‐cancer therapeutics. Here, we examined the effects of a pan‐Aurora kinase inhibitor, AMG900, against glioblastoma cells. AMG900 inhibited proliferation of A172, U‐87MG, and U‐118MG glioblastoma cells by upregulating p53 and p21 and subsequently inducing cell cycle arrest and senescence. Abnormal cell cycle progression was triggered by dysregulated mitosis. Mitosis was prolonged due to a defect in mitotic spindle assembly. Despite the presence of an unattached kinetochore, BubR1, a component of the spindle assembly checkpoint, was not recruited. In addition, Aurora B was not recruited to central spindle at anaphase. Abnormal mitotic progression resulted in accumulation of multinuclei and micronuclei, a type of chromosome missegregation, and ultimately inhibited cell survival. Therefore, the data suggest that AMG900‐mediated inhibition of Aurora kinase is a potential anti‐cancer therapy for glioblastoma.
Collapse
Affiliation(s)
- Jaewook Ryu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jaehyuk Pyo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea.,Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
37
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
38
|
Willems E, Dedobbeleer M, Digregorio M, Lombard A, Goffart N, Lumapat PN, Lambert J, Van den Ackerveken P, Szpakowska M, Chevigné A, Scholtes F, Rogister B. Aurora A plays a dual role in migration and survival of human glioblastoma cells according to the CXCL12 concentration. Oncogene 2018; 38:73-87. [PMID: 30082913 PMCID: PMC6755987 DOI: 10.1038/s41388-018-0437-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022]
Abstract
Primary glioblastoma is the most frequent human brain tumor in adults and is generally fatal due to tumor recurrence. We previously demonstrated that glioblastoma-initiating cells invade the subventricular zones and promote their radio-resistance in response to the local release of the CXCL12 chemokine. In this work, we show that the mitotic Aurora A kinase (AurA) is activated through the CXCL12–CXCR4 pathway in an ERK1/2-dependent manner. Moreover, the CXCL12–ERK1/2 signaling induces the expression of Ajuba, the main cofactor of AurA, which allows the auto-phosphorylation of AurA. We show that AurA contributes to glioblastoma cell survival, radio-resistance, self-renewal, and proliferation regardless of the exogenous stimulation with CXCL12. On the other hand, AurA triggers the CXCL12-mediated migration of glioblastoma cells in vitro as well as the invasion of the subventricular zone in xenograft experiments. Moreover, AurA regulates cytoskeletal proteins (i.e., Actin and Vimentin) and favors the pro-migratory activity of the Rho-GTPase CDC42 in response to CXCL12. Altogether, these results show that AurA, a well-known kinase of the mitotic machinery, may play alternative roles in human glioblastoma according to the CXCL12 concentration.
Collapse
Affiliation(s)
- Estelle Willems
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Matthias Dedobbeleer
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Marina Digregorio
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Arnaud Lombard
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Nicolas Goffart
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Paul Noel Lumapat
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Jeremy Lambert
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | | | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Felix Scholtes
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium. .,Department of Neurology, CHU of Liège, Liège, Belgium.
| |
Collapse
|
39
|
Asteriti IA, Daidone F, Colotti G, Rinaldo S, Lavia P, Guarguaglini G, Paiardini A. Identification of small molecule inhibitors of the Aurora-A/TPX2 complex. Oncotarget 2018; 8:32117-32133. [PMID: 28389630 PMCID: PMC5458272 DOI: 10.18632/oncotarget.16738] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/22/2017] [Indexed: 11/30/2022] Open
Abstract
Aurora kinases are a family of cell division regulators that govern the correct assembly of a bipolar mitotic spindle and the fidelity of chromosome segregation. Their overexpression is associated with genomic instability and aneuploidy, and is frequently observed in cancer. Accordingly, competitive inhibitors targeting Aurora kinase activity at the ATP-binding site are being investigated for therapeutic purposes. Despite promising pre-clinical data, these molecules display moderate effects in clinical trials and incomplete selectivity, either against distinct family members, or other kinases. As an alternative approach, protein-protein interaction inhibitors targeting mitotic kinases and their activators can be exploited to achieve increased specificity of action. In this study, a virtual screening of small molecules led to the identification of 25 potential inhibitors of the interaction between Aurora-A and its activator TPX2. In vitro experiments confirmed that 4 hits bind Aurora-A in the low micromolar range and compete for TPX2 binding. Immunofluorescence assays showed that 2 compounds also yield lowered Aurora-A activity and spindle pole defects in cultured osteosarcoma cells. The identified protein-protein interaction inhibitors of the Aurora-A/TPX2 complex might represent lead compounds for further development towards pioneering anti-cancer drugs and provide the proof-of-concept for a new exploitable strategy to target mitotic kinases.
Collapse
Affiliation(s)
- Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Sapienza University of Rome, 00185, Rome, Italy
| | - Frederick Daidone
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Sapienza University of Rome, 00185, Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Sapienza University of Rome, 00185, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Sapienza University of Rome, 00185, Rome, Italy
| | - Alessandro Paiardini
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185, Rome, Italy
| |
Collapse
|
40
|
The Aurora kinase A inhibitor TC-A2317 disrupts mitotic progression and inhibits cancer cell proliferation. Oncotarget 2018; 7:84718-84735. [PMID: 27713168 PMCID: PMC5356694 DOI: 10.18632/oncotarget.12448] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/16/2016] [Indexed: 01/22/2023] Open
Abstract
Mitotic progression is crucial for the maintenance of chromosomal stability. A proper progression is ensured by the activities of multiple kinases. One of these enzymes, the serine/threonine kinase Aurora A, is required for proper mitosis through the regulation of centrosome and spindle assembly. In this study, we functionally characterized a newly developed Aurora kinase A inhibitor, TC-A2317. In human lung cancer cells, TC-A2317 slowed proliferation by causing aberrant formation of centrosome and microtubule spindles and prolonging the duration of mitosis. Abnormal mitotic progression led to accumulation of cells containing micronuclei or multinuclei. Furthermore, TC-A2317–treated cells underwent apoptosis, autophagy or senescence depending on cell type. In addition, TC-A2317 inactivated the spindle assembly checkpoint triggered by paclitaxel, thereby exacerbating mitotic catastrophe. Consistent with this, the expression level of Aurora A in tumors was inversely correlated with survival in lung cancer patients. Collectively, these data suggest that inhibition of Aurora kinase A using TC-A2317 is a promising target for anti-cancer therapeutics.
Collapse
|
41
|
Baumann A, Buchberger AMS, Piontek G, Schüttler D, Rudelius M, Reiter R, Gebel L, Piendl G, Brockhoff G, Pickhard A. The Aurora-Kinase A Phe31-Ile polymorphism as possible predictor of response to treatment in head and neck squamous cell carcinoma. Oncotarget 2018; 9:12769-12780. [PMID: 29560108 PMCID: PMC5849172 DOI: 10.18632/oncotarget.24355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 12/10/2017] [Indexed: 11/30/2022] Open
Abstract
Recently the Aurora-Kinases (Aurk) moved into the focus as novel disease related biomarkers and therapeutic targets. Elevated Aurora-Kinase expression has been found in a number of malignancies, amongst them HNSCC. For esophageal cancer, the AurkA Phe31-Ile polymorphism has previously been associated with tumor progression. Here we evaluated the treatment efficiency of HNSCC cell radiation as a function of Aurora-Kinases in HNSCC cell lines. Moreover, we investigated a potential sensitization to radiation by a cell treatment with the inhibitors Alisertib, Barasertib, Docetaxel and VX-680. In parallel the radiation dependent expression and regulation of AurkA/B, p-Akt Ser 473 and Survivin and the AurkA polymorphism were investigated in primary tumor samples. We identified a high-risk collective with elevated AurkA and Survivin or AurkA and p-Akt Ser 473 expression. High AurkA, AurkB, and p-Akt Ser 473 expression was exclusively found in the heterozygous cell line. We found a polymorphism dependent sensitivity to treatments with different Aurk inhibitors: The homozygous cell line UD-SCC-5 could be sensitized to radiation with Docetaxel in combination with any of the Aurora-Kinase inhibitors. In contrast, treatment with Docetaxel or radiation did not enhance the inhibitory effect of Barasertib or VX-680 in the heterozygous SAS cell line. These findings indicate that the Aurora-Kinase A Phe31-Ile-polymorphism is a possibly predictive factor for response to radiation in combination with Docetaxel and Aurora-Kinase inhibitor treatments.
Collapse
Affiliation(s)
- Alexander Baumann
- Department of Otolaryngology Head and Neck Surgery, Helios Amper-Klinikum Dachau, Dachau, Germany
| | - Anna Maria S Buchberger
- Department of Otolaryngology Head and Neck Surgery, Technical University of Munich, Munich, Germany
| | - Guido Piontek
- Department of Otolaryngology Head and Neck Surgery, Technical University of Munich, Munich, Germany
| | - Dominik Schüttler
- Medizinische Klinik und Poliklinik I, University of Munich, Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, University of Düsseldorf, Düsseldorf, Germany
| | - Rudolf Reiter
- Department of Otolaryngology Head and Neck Surgery, Section of Phoniatrics and Pedaudiology, University of Ulm, Ulm, Germany
| | - Lena Gebel
- University Medical Center Regensburg, Department of Gynecology and Obstetrics, Regensburg, Germany
| | - Gerhard Piendl
- University Medical Center Regensburg, Department of Gynecology and Obstetrics, Regensburg, Germany
| | - Gero Brockhoff
- University Medical Center Regensburg, Department of Gynecology and Obstetrics, Regensburg, Germany
| | - Anja Pickhard
- Department of Otolaryngology Head and Neck Surgery, Technical University of Munich, Munich, Germany
| |
Collapse
|
42
|
Seeling JM, Farmer AA, Mansfield A, Cho H, Choudhary M. Differential Selective Pressures Experienced by the Aurora Kinase Gene Family. Int J Mol Sci 2017; 19:ijms19010072. [PMID: 29283376 PMCID: PMC5796022 DOI: 10.3390/ijms19010072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 12/31/2022] Open
Abstract
Aurora kinases (AKs) are serine/threonine kinases that are essential for cell division. Humans have three AK genes: AKA, AKB, and AKC. AKA is required for centrosome assembly, centrosome separation, and bipolar spindle assembly, and its mutation leads to abnormal spindle morphology. AKB is required for the spindle checkpoint and proper cytokinesis, and mutations cause chromosome misalignment and cytokinesis failure. AKC is expressed in germ cells, and has a role in meiosis analogous to that of AKB in mitosis. Mutation of any of the three isoforms can lead to cancer. AK proteins possess divergent N- and C-termini and a conserved central catalytic domain. We examined the evolution of the AK gene family using an identity matrix and by building a phylogenetic tree. The data suggest that AKA is the vertebrate ancestral gene, and that AKB and AKC resulted from gene duplication in placental mammals. In a nonsynonymous/synonymous rate substitution analysis, we found that AKB experienced the strongest, and AKC the weakest, purifying selection. Both the N- and C-termini and regions within the kinase domain experienced differential selection among the AK isoforms. These differentially selected sequences may be important for species specificity and isoform specificity, and are therefore potential therapeutic targets.
Collapse
Affiliation(s)
- Joni M Seeling
- Department of Biology, Lone Star College, Woodlands, TX 77375, USA.
| | - Alexis A Farmer
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA.
| | - Adam Mansfield
- Department of Computer Science, Sam Houston State University, Huntsville, TX 77341, USA.
| | - Hyuk Cho
- Department of Computer Science, Sam Houston State University, Huntsville, TX 77341, USA.
| | - Madhusudan Choudhary
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA.
| |
Collapse
|
43
|
DeLuca KF, Meppelink A, Broad AJ, Mick JE, Peersen OB, Pektas S, Lens SMA, DeLuca JG. Aurora A kinase phosphorylates Hec1 to regulate metaphase kinetochore-microtubule dynamics. J Cell Biol 2017; 217:163-177. [PMID: 29187526 PMCID: PMC5748988 DOI: 10.1083/jcb.201707160] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 01/04/2023] Open
Abstract
Precise regulation of kinetochore-microtubule attachments is essential for successful chromosome segregation. Central to this regulation is Aurora B kinase, which phosphorylates kinetochore substrates to promote microtubule turnover. A critical target of Aurora B is the N-terminal "tail" domain of Hec1, which is a component of the NDC80 complex, a force-transducing link between kinetochores and microtubules. Although Aurora B is regarded as the "master regulator" of kinetochore-microtubule attachment, other mitotic kinases likely contribute to Hec1 phosphorylation. In this study, we demonstrate that Aurora A kinase regulates kinetochore-microtubule dynamics of metaphase chromosomes, and we identify Hec1 S69, a previously uncharacterized phosphorylation target site in the Hec1 tail, as a critical Aurora A substrate for this regulation. Additionally, we demonstrate that Aurora A kinase associates with inner centromere protein (INCENP) during mitosis and that INCENP is competent to drive accumulation of the kinase to the centromere region of mitotic chromosomes. These findings reveal that both Aurora A and B contribute to kinetochore-microtubule attachment dynamics, and they uncover an unexpected role for Aurora A in late mitosis.
Collapse
Affiliation(s)
- Keith F DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Amanda Meppelink
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Amanda J Broad
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Jeanne E Mick
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Olve B Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Sibel Pektas
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Susanne M A Lens
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| |
Collapse
|
44
|
Nair JS, Schwartz GK. MLN-8237: A dual inhibitor of aurora A and B in soft tissue sarcomas. Oncotarget 2017; 7:12893-903. [PMID: 26887042 PMCID: PMC4914329 DOI: 10.18632/oncotarget.7335] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/19/2016] [Indexed: 11/25/2022] Open
Abstract
Aurora kinases have become an attractive target in cancer therapy due to their deregulated expression in human tumors. Liposarcoma, a type of soft tissue sarcoma in adults, account for approximately 20% of all adult soft tissue sarcomas. There are no effective chemotherapies for majority of these tumors. Efforts made to define the molecular basis of liposarcomas lead to the finding that besides the amplifications of CDK4 and MDM2, Aurora Kinase A, also was shown to be overexpressed. Based on these as well as mathematic modeling, we have carried out a successful preclinical study using CDK4 and IGF1R inhibitors in liposarcoma. MLN8237 has been shown to be a potent and selective inhibitor of Aurora A. MLN-8237, as per our results, induces a differential inhibition of Aurora A and B in a dose dependent manner. At a low nanomolar dose, cellular effects such as induction of phospho-Histone H3 (Ser10) mimicked as that of the inhibition of Aurora kinase A followed by apoptosis. However, micromolar dose of MLN-8237 induced polyploidy, a hallmark effect of Aurora B inhibition. The dose dependent selectivity of inhibition was further confirmed by using siRNA specific inhibition of Aurora A and B. This was further tested by time lapse microscopy of GFP-H2B labelled cells treated with MLN-8237. LS141 xenograft model at a dose of 30 mg/kg also showed efficient growth suppression by selective inhibition of Aurora Kinase A. Based on our data, a dose that can target only Aurora A will be more beneficial in tumor suppression.
Collapse
Affiliation(s)
- Jayasree S Nair
- Jennifer Goodman Linn Laboratory of New Drug Development, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Gary K Schwartz
- Jennifer Goodman Linn Laboratory of New Drug Development, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
45
|
The unconventional kinetoplastid kinetochore: from discovery toward functional understanding. Biochem Soc Trans 2017; 44:1201-1217. [PMID: 27911702 PMCID: PMC5095916 DOI: 10.1042/bst20160112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022]
Abstract
The kinetochore is the macromolecular protein complex that drives chromosome segregation in eukaryotes. Its most fundamental function is to connect centromeric DNA to dynamic spindle microtubules. Studies in popular model eukaryotes have shown that centromere protein (CENP)-A is critical for DNA-binding, whereas the Ndc80 complex is essential for microtubule-binding. Given their conservation in diverse eukaryotes, it was widely believed that all eukaryotes would utilize these components to make up a core of the kinetochore. However, a recent study identified an unconventional type of kinetochore in evolutionarily distant kinetoplastid species, showing that chromosome segregation can be achieved using a distinct set of proteins. Here, I review the discovery of the two kinetochore systems and discuss how their studies contribute to a better understanding of the eukaryotic chromosome segregation machinery.
Collapse
|
46
|
Nguyen AL, Schindler K. Specialize and Divide (Twice): Functions of Three Aurora Kinase Homologs in Mammalian Oocyte Meiotic Maturation. Trends Genet 2017; 33:349-363. [PMID: 28359584 DOI: 10.1016/j.tig.2017.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/18/2022]
Abstract
The aurora kinases (AURKs) comprise an evolutionarily conserved family of serine/threonine kinases involved in mitosis and meiosis. While most mitotic cells express two AURK isoforms (AURKA and AURKB), mammalian germ cells also express a third, AURKC. Although much is known about the functions of the kinases in mitosis, less is known about how the three isoforms function to coordinate meiosis. This review is aimed at describing what is known about the three isoforms in female meiosis, the similarities and differences between kinase functions, and speculates as to why mammalian germ cells require expression of three AURKs instead of two.
Collapse
Affiliation(s)
- Alexandra L Nguyen
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
47
|
Kamran M, Long ZJ, Xu D, Lv SS, Liu B, Wang CL, Xu J, Lam EWF, Liu Q. Aurora kinase A regulates Survivin stability through targeting FBXL7 in gastric cancer drug resistance and prognosis. Oncogenesis 2017; 6:e298. [PMID: 28218735 PMCID: PMC5337621 DOI: 10.1038/oncsis.2016.80] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/10/2016] [Accepted: 11/04/2016] [Indexed: 12/19/2022] Open
Abstract
Aurora kinase A (AURKA) has been implicated in the regulation of cell cycle progression, mitosis and a key number of oncogenic signaling pathways in various malignancies. However, little is known about its role in gastric cancer prognosis and genotoxic resistance. Here we found that AURKA was highly overexpressed in gastric cancer and inversely correlated with disease prognosis. Overexpression of AURKA exacerbated gastric cancer drug resistance through upregulating the expression of the anti-apoptotic protein Survivin. Conversely, we demonstrated that AURKA depletion caused a decrease in Survivin protein levels by increasing its ubiquitylation and degradation. Mass spectrometric analysis revealed that upon AURKA depletion, Survivin bound to the FBXL7 E3 ubiquitin ligase, which induced ubiquitin-proteasome degradation of Survivin. In addition, we showed that AURKA regulated FBXL7 both at the levels of transcription and translation. Moreover, proteomic analysis of nuclear AURKA-interacting proteins identified Forkhead box protein P1 (FOXP1). We next showed that AURKA was required for FBXL7 transcription and that AURKA negatively regulated FOXP1-mediated FBXL7 expression. The physiological relevance of the regulation of Survivin by AURKA through the FOXP1–FBXL7 axis was further underscored by the significant positive correlations between AURKA and Survivin expression in gastric cancer patient samples. Moreover, the AURKA depletion or kinase inhibition-induced apoptotic cell death could be reversed by Survivin ectopic overexpression, further supporting that AURKA regulated Survivin to enhance drug resistance. In agreement, inhibition of AURKA synergistically enhanced the cytotoxic effect of DNA-damaging agents in cancer cells by suppressing Survivin expression. Taken together, our data suggest that AURKA restricts Survivin ubiquitylation and degradation in gastric cancer to promote drug resistance and hence the AURKA–Survivin axis can be targeted to promote the efficacy of DNA-damaging agents in gastric cancer.
Collapse
Affiliation(s)
- M Kamran
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian/State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Z-J Long
- Department of Hematology, The Third Affiliated Hospital; Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - D Xu
- State key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine/Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - S-S Lv
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian/State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - B Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian/State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - C-L Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian/State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - J Xu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian/State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - E W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Q Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian/State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.,Department of Hematology, The Third Affiliated Hospital; Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
48
|
Evolutionary Lessons from Species with Unique Kinetochores. CENTROMERES AND KINETOCHORES 2017; 56:111-138. [DOI: 10.1007/978-3-319-58592-5_5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Boruc J, Weimer AK, Stoppin-Mellet V, Mylle E, Kosetsu K, Cedeño C, Jaquinod M, Njo M, De Milde L, Tompa P, Gonzalez N, Inzé D, Beeckman T, Vantard M, Van Damme D. Phosphorylation of MAP65-1 by Arabidopsis Aurora Kinases Is Required for Efficient Cell Cycle Progression. PLANT PHYSIOLOGY 2017; 173:582-599. [PMID: 27879390 PMCID: PMC5210758 DOI: 10.1104/pp.16.01602] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/18/2016] [Indexed: 05/04/2023]
Abstract
Aurora kinases are key effectors of mitosis. Plant Auroras are functionally divided into two clades. The alpha Auroras (Aurora1 and Aurora2) associate with the spindle and the cell plate and are implicated in controlling formative divisions throughout plant development. The beta Aurora (Aurora3) localizes to centromeres and likely functions in chromosome separation. In contrast to the wealth of data available on the role of Aurora in other kingdoms, knowledge on their function in plants is merely emerging. This is exemplified by the fact that only histone H3 and the plant homolog of TPX2 have been identified as Aurora substrates in plants. Here we provide biochemical, genetic, and cell biological evidence that the microtubule-bundling protein MAP65-1-a member of the MAP65/Ase1/PRC1 protein family, implicated in central spindle formation and cytokinesis in animals, yeasts, and plants-is a genuine substrate of alpha Aurora kinases. MAP65-1 interacts with Aurora1 in vivo and is phosphorylated on two residues at its unfolded tail domain. Its overexpression and down-regulation antagonistically affect the alpha Aurora double mutant phenotypes. Phospho-mutant analysis shows that Aurora contributes to the microtubule bundling capacity of MAP65-1 in concert with other mitotic kinases.
Collapse
Affiliation(s)
- Joanna Boruc
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.);
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.);
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.);
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.);
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.);
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Annika K Weimer
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Virginie Stoppin-Mellet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Evelien Mylle
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Ken Kosetsu
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Cesyen Cedeño
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Michel Jaquinod
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Maria Njo
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Liesbeth De Milde
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Peter Tompa
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Marylin Vantard
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.)
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.)
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.)
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.)
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| | - Daniël Van Damme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.I., T.B., D.V.D.);
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.B., A.K.W., E.M., K.K., M.N., L.D.M., N.G., D.V.D., D.I., T.B.);
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Institut National de la Recherche Agronomique/Université Joseph-Fourier, Grenoble, France (V.S.-M.; M.V.);
- Institut National de la Santé et de la Recherche Médicale, U836, F-38000 Grenoble, France (V.S.-M., M.V.);
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium (C.C., P.T.);
- Structural Biology Brussels, Vrije Universiteit Brussels, 1050 Brussels, Belgium (C.C., P.T.); and
- Exploring the Dynamics of Proteomes Laboratoire Biologie à Grande Echelle, U1038 Institut National de la Santé et de la Recherche Médicale/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Joseph-Fourier Institut de Recherches en Technologies et Sciences pour le Vivant/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Grenoble, F-38054 Grenoble Cedex 9, France (M.J.)
| |
Collapse
|
50
|
Theoretical Studies on Azaindoles as Human Aurora B Kinase Inhibitors: Docking, Pharmacophore and ADMET Studies. Interdiscip Sci 2016; 10:486-499. [DOI: 10.1007/s12539-016-0205-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/15/2016] [Accepted: 12/01/2016] [Indexed: 01/04/2023]
|