1
|
Kong X, Zhong Z, Fang C. F-actin dynamics regulates collective cell migration by modulating cell shape and stress correlation. Biophys J 2025:S0006-3495(25)00276-0. [PMID: 40319351 DOI: 10.1016/j.bpj.2025.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/28/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025] Open
Abstract
As an essential component in generating cell contractility, F-actin plays a pivotal role in collective cell migration. However, the mechanisms by which subcellular F-actin dynamics influence the collective behaviors of cell clusters across scales remain poorly understood. In this study, we developed a mechanical model to investigate how the dynamics of stress fibers and cryptic lamellipodia, prominent F-actin structures generating traction forces, regulate collective cell migration. Our results show that strengthening stress fibers significantly amplifies cell rearrangements and counteracts the high-density-induced inhibition of cell movements in the monolayer. It is attributed to the tension-caused cell elongation, which facilitates the growth of normalized mean-squared displacements in high-density cell monolayers. Moreover, the model shows that stronger stress fibers could effectively guide collaborative cell movements through enhancing the spatial correlation of maximum principal stress. Additionally, we found cryptic lamellipodia exhibit similar influence on collective cell migration. Our results bridge intracellular F-actin dynamics with collective cell migration, offering insights into the underlying mechanisms and their biological significance.
Collapse
Affiliation(s)
- Xiangdong Kong
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Zheng Zhong
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Chao Fang
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Polloni L, Costa TR, Morais LP, Borges BC, Teixeira SC, de Melo Fernandes TA, Correia LIV, Bastos LM, Soares AM, Silva MJB, Amália Vieira Ferro E, Lopes DS, Ávila VDMR. Pollonein-LAAO unveiling anti-angiogenic effects through oxidative stress: Insights from mimetic tumor angiogenesis environment in a 3D co-culture model. Chem Biol Interact 2025; 406:111361. [PMID: 39716533 DOI: 10.1016/j.cbi.2024.111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Affiliation(s)
- Lorena Polloni
- Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil.
| | - Tássia Rafaella Costa
- Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Lorena Pinheiro Morais
- Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Samuel Cota Teixeira
- Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | | | | | - Luciana Machado Bastos
- Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Andreimar Martins Soares
- Oswaldo Cruz Foundation (FIOCRUZ) Rondônia, Federal University of Rondônia (UNIR), National Institute of Science and Technology of Epidemiology of the Western Amazon (INCT-EPIAMO), Porto Velho-RO, Brazil; Network of Research and Knowledge of Excellence in the Western/Eastern Amazon (RED-CONEXAO), Brazil
| | | | | | - Daiana Silva Lopes
- Multidisciplinary Institute for Health, Federal University of Bahia - UFBA, Vitoria da Conquista, BA, Brazil
| | - Veridiana de Melo Rodrigues Ávila
- Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil; Network of Research and Knowledge of Excellence in the Western/Eastern Amazon (RED-CONEXAO), Brazil.
| |
Collapse
|
3
|
Cohen D, Fernandez D, Lázaro-Diéguez F, Überheide B, Müsch A. Borg5 restricts contractility and motility in epithelial MDCK cells. J Cell Sci 2024; 137:jcs261705. [PMID: 39503295 PMCID: PMC11698036 DOI: 10.1242/jcs.261705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
The Borg (or Cdc42EP) family consists of septin-binding proteins that are known to promote septin-dependent stress fibers and acto-myosin contractility. We show here that epithelial Borg5 (also known as Cdc42EP1) instead limits contractility, cell-cell adhesion tension and motility, as is required for the acquisition of columnar, isotropic cell morphology in mature MDCK monolayers. Borg5 depletion inhibited the development of the lateral F-actin cortex and stimulated microtubule-dependent leading-edge lamellae as well as radial stress fibers and, independently of the basal F-actin phenotype, caused anisotropy of apical surfaces within compacted monolayers. We determined that Borg5 limits colocalization of septin proteins with microtubules, and that like septin 2, Borg5 interacts with the rod-domain of myosin IIA (herein referring to the MYH9 heavy chain). The interaction of myosin IIA with Borg5 was reduced in the presence of septins. Because septins also mediate myosin activation, we propose that Borg5 limits contractility in MDCK cells in part by counteracting septin-associated myosin activity.
Collapse
Affiliation(s)
- David Cohen
- Albert-Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dawn Fernandez
- Albert-Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Beatrix Überheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anne Müsch
- Albert-Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Sester S, Wilms G, Ahlburg J, Babendreyer A, Becker W. Elevated expression levels of the protein kinase DYRK1B induce mesenchymal features in A549 lung cancer cells. BMC Cancer 2024; 24:1341. [PMID: 39482615 PMCID: PMC11529244 DOI: 10.1186/s12885-024-13057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The protein kinase DYRK1B is a negative regulator of cell proliferation but has been found to be overexpressed in diverse human solid cancers. While DYRK1B is recognized to promote cell survival and adaption to stressful conditions, the consequences of elevated DYRK1B levels in cancer cells are largely uncharted. METHODS To elucidate the role of DYRK1B in cancer cells, we established a A549 lung adenocarcinoma cell model featuring conditional overexpression of DYRK1B. This system was used to characterize the impact of heightened DYRK1B levels on gene expression and to monitor phenotypic and functional changes. RESULTS A549 cells with induced overexpression of wild type DYRK1B acquired a mesenchymal cell morphology with diminished cell-cell contacts and a reorganization of the pericellular actin cytoskeleton into stress fibers. This transition was not observed in cells overexpressing a catalytically impaired DYRK1B variant. The phenotypic changes were associated with increased expression of the transcription factors SNAIL and SLUG, which are core regulators of epithelial mesenchymal transition (EMT). Further profiling of DYRK1B-overexpressing cells revealed transcriptional changes that are characteristic for the mesenchymal conversion of epithelial cells, including the upregulation of genes that are related to cancer cell invasion and metastasis. Functionally, DYRK1B overexpression enhanced the migratory capacity of A549 cells in a wound healing assay. CONCLUSIONS The present data identify DYRK1B as a regulator of phenotypic plasticity in A549 cells. Increased expression of DYRK1B induces mesenchymal traits in A549 lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Soraya Sester
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Joana Ahlburg
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
5
|
Bedja-Iacona L, Scorretti R, Ducrot M, Vollaire C, Franqueville L. Pulsed electromagnetic fields used in regenerative medicine: An in vitro study of the skin wound healing proliferative phase. Bioelectromagnetics 2024; 45:293-309. [PMID: 38807301 DOI: 10.1002/bem.22508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
Numerous studies have demonstrated the efficacy of extremely low frequency-pulsed electromagnetic fields (ELF-PEMF) in accelerating the wound healing process in vitro and in vivo. Our study focuses specifically on ELF-PEMF applied with the Magnomega® device and aims to assess their effect during the main stages of the proliferative phase of dermal wound closure, in vitro. Thus, after the characterization of the EMFs delivered by the Magnomega® unit, primary culture of human dermal fibroblasts (HDFs) were exposed, or not for the control culture, to 10-12 and 100 Hz ELF-PEMF. These parameters are used in clinical practice by physiotherapists in order to enhance healing of dermal lesions in patients. HDFs proliferation was first assessed and revealed an increase in the expression of one of the two genetic markers of cell proliferation tested (PCNA and MKI67), after initial exposure of the cells to 10-12 Hz PEMF. Next, migration of HDFs was investigated by performing scratch assays on HDF layers. The observed wound closure kinetics corroborate the early organization of actin stress fibers that was revealed in the cytoplasm of HDFs exposed to 100 Hz ELF-PEMF. Also, maturation of HDFs into myofibroblasts was significantly increased in cells exposed to 10-12 or to 100 Hz PEMF. The present study is the first to demonstrate, in vitro, an early stimulation of HDFs, after their exposure to ELF-PEMF delivered by the Magnomega® device, which could contribute to an acceleration of the wound healing process.
Collapse
Affiliation(s)
- Léa Bedja-Iacona
- Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, Ecully, France
| | - Riccardo Scorretti
- Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, Ecully, France
- Department of Engineering, University of Perugia, Perugia, Italy
| | - Marie Ducrot
- Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, Ecully, France
| | - Christian Vollaire
- Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, Ecully, France
| | - Laure Franqueville
- Ecole Centrale de Lyon, INSA Lyon, Universite Claude Bernard Lyon 1, CNRS, Ampère, UMR5005, Ecully, France
| |
Collapse
|
6
|
Wang X, Yang Y, Wang Y, Lu C, Hu X, Kawazoe N, Yang Y, Chen G. Focal adhesion and actin orientation regulated by cellular geometry determine stem cell differentiation via mechanotransduction. Acta Biomater 2024; 182:81-92. [PMID: 38734287 DOI: 10.1016/j.actbio.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Tuning cell adhesion geometry can affect cytoskeleton organization and the distribution of cytoskeleton forces, which play critical roles in controlling cell functions. To elucidate the geometrical relationship with cytoskeleton force distribution, it is necessary to control cell morphology. In this study, a series of dextral vortex micropatterns were prepared to precisely control cell morphology for investigating the influence of the curvature degree of adhesion curves on intracellular force distribution and stem cell differentiation at a sub-cellular level. Peripherial actin filaments of micropatterned cells were assembled along the adhesion curves and showed different orientations, filament thicknesses and densities. Focal adhesion and cytoskeleton force distribution were dependent on the curvature degree. Intracellular force distribution was also regulated by adhesion curves. The cytoskeleton and force distribution affected the osteogenic differentiation of mesenchymal stem cells through a YAP/TAZ-mediated mechanotransduction process. Thus, regulation of cell adhesion curvature, especially at cytoskeletal filament level, is critical for cell function manipulation. STATEMENT OF SIGNIFICANCE: In this study, a series of dextral micro-vortexes were prepared and used for the culture of human mesenchymal stem cells (hMSCs) to precisely control adhesive curvatures (0°, 30°, 60°, and 90°). The single MSCs on the micropatterns had the same size and shape but showed distinct focal adhesion (FA) and cytoskeleton orientations. Cellular nanomechanics were observed to be correlated with the curvature degrees, subsequently influencing nuclear morphological features. As a consequence, the localization of the mechanotransduction sensor and activator-YAP/TAZ was affected, influencing osteogenic differentiation. The results revealed the pivotal role of adhesive curvatures in the manipulation of stem cell differentiation via the machanotransduction process, which has rarely been investigated.
Collapse
Affiliation(s)
- Xinlong Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yingjun Yang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yongtao Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Chengyu Lu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Xiaohong Hu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
7
|
Li S, Liu ZY, Li H, Zhou S, Liu J, Sun N, Yang KF, Dougados V, Mangeat T, Belguise K, Feng XQ, Liu Y, Wang X. Basal actomyosin pulses expand epithelium coordinating cell flattening and tissue elongation. Nat Commun 2024; 15:3000. [PMID: 38589403 PMCID: PMC11001887 DOI: 10.1038/s41467-024-47236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Actomyosin networks constrict cell area and junctions to alter cell and tissue shape. However, during cell expansion under mechanical stress, actomyosin networks are strengthened and polarized to relax stress. Thus, cells face a conflicting situation between the enhanced actomyosin contractile properties and the expansion behaviour of the cell or tissue. To address this paradoxical situation, we study late Drosophila oogenesis and reveal an unusual epithelial expansion wave behaviour. Mechanistically, Rac1 and Rho1 integrate basal pulsatile actomyosin networks with ruffles and focal adhesions to increase and then stabilize basal area of epithelial cells allowing their flattening and elongation. This epithelial expansion behaviour bridges cell changes to oocyte growth and extension, while oocyte growth in turn deforms the epithelium to drive cell spreading. Basal pulsatile actomyosin networks exhibit non-contractile mechanics, non-linear structures and F-actin/Myosin-II spatiotemporal signal separation, implicating unreported expanding properties. Biophysical modelling incorporating these expanding properties well simulates epithelial cell expansion waves. Our work thus highlights actomyosin expanding properties as a key mechanism driving tissue morphogenesis.
Collapse
Affiliation(s)
- Shun Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Zong-Yuan Liu
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Hao Li
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sijia Zhou
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Jiaying Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Ningwei Sun
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Kai-Fu Yang
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| | - Vanessa Dougados
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Thomas Mangeat
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Karine Belguise
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Xi-Qiao Feng
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, P.R. China.
| | - Yiyao Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, 610072, Chengdu, Sichuan, P.R. China.
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
8
|
Cho Y, Kim J, Park J, Doh J. Surface nanotopography and cell shape modulate tumor cell susceptibility to NK cell cytotoxicity. MATERIALS HORIZONS 2023; 10:4532-4540. [PMID: 37559559 DOI: 10.1039/d3mh00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes exerting cytotoxicity against virally infected cells and tumor cells. NK cell cytotoxicity is primarily determined by biochemical signals received from ligands expressed on target cell surfaces, but it is also possible that biophysical environments of tumor cells, such as nanoscale surface topography typically existing on extracellular matrixes (ECMs) or cell morphology determined by ECM spaces or cell density, regulate NK cell cytotoxicity. In this study, micro/nanofabrication technology was applied to examine this possibility. Tumor cells were plated on flat or nanogrooved surfaces, or micropatterned into circular or elliptical geometries, and the effects of surface topography and tumor cell morphology on NK cell cytotoxicity were investigated. NK cells exhibited significantly higher cytotoxicity against tumor cells on nanogrooved surfaces or tumor cells in elliptical patterns than tumor cells on flat surfaces or tumor cells in circular patterns, respectively. The amounts of stress fiber formation in tumor cells positively correlated with NK cell cytotoxicity, indicating that increased cellular tension of tumor cells, either mediated by nanogrooved surfaces or elongated morphologies, was a key factor regulating NK cell cytotoxicity. These results may provide insight into the design of NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yongbum Cho
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, 77, Cheongam-ro, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - JangHyuk Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea.
| | - Jeehun Park
- SOFT Foundry Institute, Seoul National University, Seoul, South Korea.
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea.
- SOFT Foundry Institute, Seoul National University, Seoul, South Korea.
- Institute of Engineering Research, BioMAX, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Lampiasi N. The Migration and the Fate of Dental Pulp Stem Cells. BIOLOGY 2023; 12:biology12050742. [PMID: 37237554 DOI: 10.3390/biology12050742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Human dental pulp stem cells (hDPSCs) are adult mesenchymal stem cells (MSCs) obtained from dental pulp and derived from the neural crest. They can differentiate into odontoblasts, osteoblasts, chondrocytes, adipocytes and nerve cells, and they play a role in tissue repair and regeneration. In fact, DPSCs, depending on the microenvironmental signals, can differentiate into odontoblasts and regenerate dentin or, when transplanted, replace/repair damaged neurons. Cell homing depends on recruitment and migration, and it is more effective and safer than cell transplantation. However, the main limitations of cell homing are the poor cell migration of MSCs and the limited information we have on the regulatory mechanism of the direct differentiation of MSCs. Different isolation methods used to recover DPSCs can yield different cell types. To date, most studies on DPSCs use the enzymatic isolation method, which prevents direct observation of cell migration. Instead, the explant method allows for the observation of single cells that can migrate at two different times and, therefore, could have different fates, for example, differentiation and self-renewal. DPSCs use mesenchymal and amoeboid migration modes with the formation of lamellipodia, filopodia and blebs, depending on the biochemical and biophysical signals of the microenvironment. Here, we present current knowledge on the possible intriguing role of cell migration, with particular attention to microenvironmental cues and mechanosensing properties, in the fate of DPSCs.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
10
|
Hur SK, Somerville TD, Wu XS, Maia-Silva D, Demerdash OE, Tuveson DA, Notta F, Vakoc CR. p73 activates transcriptional signatures of basal lineage identity and ciliogenesis in pancreatic ductal adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537667. [PMID: 37131797 PMCID: PMC10153254 DOI: 10.1101/2023.04.20.537667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During the progression of pancreatic ductal adenocarcinoma (PDAC), tumor cells are known to acquire transcriptional and morphological properties of the basal (also known as squamous) epithelial lineage, which leads to more aggressive disease characteristics. Here, we show that a subset of basal-like PDAC tumors aberrantly express p73 (TA isoform), which is a known transcriptional activator of basal lineage identity, ciliogenesis, and tumor suppression in normal tissue development. Using gain- and loss- of function experiments, we show that p73 is necessary and sufficient to activate genes related to basal identity (e.g. KRT5), ciliogenesis (e.g. FOXJ1), and p53-like tumor suppression (e.g. CDKN1A) in human PDAC models. Owing to the paradoxical combination of oncogenic and tumor suppressive outputs of this transcription factor, we propose that PDAC cells express a low level of p73 that is optimal for promoting lineage plasticity without severe impairment of cell proliferation. Collectively, our study reinforces how PDAC cells exploit master regulators of the basal epithelial lineage during disease progression.
Collapse
Affiliation(s)
- Stella K. Hur
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | | | - Xiaoli S. Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | - Diogo Maia-Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | | | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A
| | - Faiyaz Notta
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
11
|
Liu J, Smith S, Wang C. Photothermal Attenuation of Cancer Cell Stemness, Chemoresistance, and Migration Using CD44-Targeted MoS 2 Nanosheets. NANO LETTERS 2023; 23:1989-1999. [PMID: 36827209 PMCID: PMC10497231 DOI: 10.1021/acs.nanolett.3c00089] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cancer stem-like cells (CSCs) play key roles in chemoresistance, tumor metastasis, and clinical relapse. However, current CSC inhibitors lack specificity, efficacy, and applicability to different cancers. Herein, we introduce a nanomaterial-based approach to photothermally induce the differentiation of CSCs, termed "photothermal differentiation", leading to the attenuation of cancer cell stemness, chemoresistance, and metastasis. MoS2 nanosheets and a moderate photothermal treatment were applied to target a CSC surface receptor (i.e., CD44) and modulate its downstream signaling pathway. This treatment forces the more stem-like cancer cells to lose the mesenchymal phenotype and adopt an epithelial, less stem-like state, which shows attenuated self-renewal capacity, more response to anticancer drugs, and less invasiveness. This approach could be applicable to various cancers due to the broad availability of the CD44 biomarker. The concept of using photothermal nanomaterials to regulate specific cellular activities driving the differentiation of CSCs offers a new avenue for treating refractory cancers.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
| | - Steve Smith
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
| | - Congzhou Wang
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota, 57701, United States
| |
Collapse
|
12
|
Zhu F, Chen J, Luo M, Yao D, Hu X, Guo Y. EphrinB2 promotes the human aortic smooth muscle cell growth and migration via mediating F-actin remodeling. Vascular 2023; 31:142-151. [PMID: 34854323 DOI: 10.1177/17085381211052196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To evaluate the potential effect of EphrinB2 in human thoracic aortic dissection (TAD) and to illustrate the mechanisms governing the role of EphrinB2 in the growth of human aortic smooth muscle cells (HASMC). METHODS In the study, EphrinB2 expression was investigated by qRT-PCR and immunohistochemistry in 12 pairs of TAD and adjacent human tissues. HASMCs were used for in vitro experiments. Next, EphrinB2 overexpression and depletion in HASMCs were established by EphrinB2-overexpressing vectors and small interfering RNA, respectively. The transfection efficiency was evaluated by qRT-PCR and Western blot. The effects of overexpression and depletion of EphrinB2 on cell proliferation, migration, and invasion were tested in vitro. Cell Counting Kit-8, flow cytometry and transwell migration/invasion, and wound healing assay were used to explore the function of EphrinB2 on HASMC cell lines. The relationship between EphrinB2 and F-actin was assessed by Western blot, immunofluorescence, and Co-IP. RESULTS We found that EphrinB2 was a prognostic biomarker of TAD patients. Moreover, EphrinB2 expression negatively correlated to aortic dissection tissues, and disease incidence of males, suggesting that EphrinB2 might act as a TAD suppressor by promoting proliferation or decreasing apoptosis in HASMC. Next, over-expression of EphrinB2 in HASMC lines drove cell proliferation, migration, and invasion, and inhibited apoptosis while knockdown EphrinB2 showed the opposite phenomenon, respectively. Furthermore, the level of F-actin in mRNA, protein, and distribution in HASMC cell lines highly matched with the expression of EphrinB2, which indicated that EphrinB2 could mediate the HASMC cytoskeleton via inducing F-actin. CONCLUSIONS In conclusion, our results first provided the pivotal role of EphrinB2 in HASMC proliferation initiated by mediating F-actin and demonstrated a prognostic biomarker and the potential targets for therapy to prevent thoracic aortic dissection.
Collapse
Affiliation(s)
- Fan Zhu
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Disease Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Jia Chen
- Department of Laboratory Medicine, Longhua Hospital, 74754Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, 34736Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongting Yao
- Department of Laboratory Medicine, Longhua Hospital, 74754Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobo Hu
- Department of Laboratory Medicine, Longhua Hospital, 74754Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Guo
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Disease Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Engelmann J, Zarrer J, Gensch V, Riecken K, Berenbrok N, Luu TV, Beitzen-Heineke A, Vargas-Delgado ME, Pantel K, Bokemeyer C, Bhamidipati S, Darwish IS, Masuda E, Burstyn-Cohen T, Alberto EJ, Ghosh S, Rothlin C, Hesse E, Taipaleenmäki H, Ben-Batalla I, Loges S. Regulation of bone homeostasis by MERTK and TYRO3. Nat Commun 2022; 13:7689. [PMID: 36509738 PMCID: PMC9744875 DOI: 10.1038/s41467-022-33938-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/07/2022] [Indexed: 12/14/2022] Open
Abstract
The fine equilibrium of bone homeostasis is maintained by bone-forming osteoblasts and bone-resorbing osteoclasts. Here, we show that TAM receptors MERTK and TYRO3 exert reciprocal effects in osteoblast biology: Osteoblast-targeted deletion of MERTK promotes increased bone mass in healthy mice and mice with cancer-induced bone loss, whereas knockout of TYRO3 in osteoblasts shows the opposite phenotype. Functionally, the interaction of MERTK with its ligand PROS1 negatively regulates osteoblast differentiation via inducing the VAV2-RHOA-ROCK axis leading to increased cell contractility and motility while TYRO3 antagonizes this effect. Consequently, pharmacologic MERTK blockade by the small molecule inhibitor R992 increases osteoblast numbers and bone formation in mice. Furthermore, R992 counteracts cancer-induced bone loss, reduces bone metastasis and prolongs survival in preclinical models of multiple myeloma, breast- and lung cancer. In summary, MERTK and TYRO3 represent potent regulators of bone homeostasis with cell-type specific functions and MERTK blockade represents an osteoanabolic therapy with implications in cancer and beyond.
Collapse
Affiliation(s)
- Janik Engelmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jennifer Zarrer
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Martinsried, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Martinsried, Germany
| | - Victoria Gensch
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kristoffer Riecken
- Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolaus Berenbrok
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - The Vinh Luu
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Beitzen-Heineke
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Elena Vargas-Delgado
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Klaus Pantel
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ihab S Darwish
- Rigel Pharmaceuticals, Inc., South San Francisco, CA, USA
| | - Esteban Masuda
- Rigel Pharmaceuticals, Inc., South San Francisco, CA, USA
| | - Tal Burstyn-Cohen
- Faculty of Dental Medicine, Institute for Dental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Emily J Alberto
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sourav Ghosh
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Carla Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Eric Hesse
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Martinsried, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Martinsried, Germany
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Martinsried, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Martinsried, Germany
| | - Isabel Ben-Batalla
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Sonja Loges
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
14
|
Cessna H, Baritaki S, Zaravinos A, Bonavida B. The Role of RKIP in the Regulation of EMT in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14194596. [PMID: 36230521 PMCID: PMC9559516 DOI: 10.3390/cancers14194596] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Raf kinase inhibitor protein (RKIP) expression in cancer cells is significantly reduced and promoting cancer cells growth and invasiveness. Overexpresssion of RKIP has been reported to mediate pleiotropic anti-cancer activities including the inhibition of survival signaling pathways, sensitization to cell death by cytotoxic drugs, inhibition of invasion, EMT and metastasis. The molecular mechanism by which RKIP inhibits EMT is not clear. In this review, we have examined how RKIP inhibits the selected EMT gene products (Snail, vimentin, N-cadherin, laminin alpha) and found that it involves signaling cross-talks between RKIP and each of the EMT gene products. These findings were validated by bioinformatic analyses demonstrating in various human cancers a negative correlation between the expression of RKIP and the expression of the EMT gene products. These findings suggest that targeting RKIP induction in cancer cells will result in multiple hits by inhibiting tumor growth, metastasis and reversal of chemo-immuno resistance. Abstract The Raf Kinase Inhibitor Protein (RKIP) is a unique gene product that directly inhibits the Raf/Mek/Erk and NF-kB pathways in cancer cells and resulting in the inhibition of cell proliferation, viability, EMT, and metastasis. Additionally, RKIP is involved in the regulation of cancer cell resistance to both chemotherapy and immunotherapy. The low expression of RKIP expression in many cancer types is responsible, in part, for the pathogenesis of cancer and its multiple properties. The inhibition of EMT and metastasis by RKIP led to its classification as a tumor suppressor. However, the mechanism by which RKIP mediates its inhibitory effects on EMT and metastases was not clear. We have proposed that one mechanism involves the negative regulation by RKIP of the expression of various gene products that mediate the mesenchymal phenotype as well as the positive regulation of gene products that mediate the epithelial phenotype via signaling cross talks between RKIP and each gene product. We examined several EMT mesenchymal gene products such as Snail, vimentin, N-cadherin, laminin and EPCAM and epithelial gene products such as E-cadherin and laminin. We have found that indeed these negative and positive correlations were detected in the signaling cross-talks. In addition, we have also examined bioinformatic data sets on different human cancers and the findings corroborated, in large part, the findings observed in the signaling cross-talks with few exceptions in some cancer types. The overall findings support the underlying mechanism by which the tumor suppressor RKIP regulates the expression of gene products involved in EMT and metastasis. Hence, the development of agent that can selectively induce RKIP expression in cancers with low expressions should result in the activation of the pleiotropic anti-cancer activities of RKIP and resulting in multiple effects including inhibition of tumor cell proliferation, EMT, metastasis and sensitization of resistant tumor cells to respond to both chemotherapeutics and immunotherapeutics.
Collapse
Affiliation(s)
- Hannah Cessna
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Laboratory, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
15
|
Narasimhan S, Holmes WR, Kaverina I. Merging of ventral fibers at adhesions drives the remodeling of cellular contractile systems in fibroblasts. Cytoskeleton (Hoboken) 2022; 79:81-93. [PMID: 35996927 PMCID: PMC9770016 DOI: 10.1002/cm.21722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 01/30/2023]
Abstract
Ventral stress fibers (VSFs) are contractile actin fibers dynamically attached to cell-matrix focal adhesions. VSFs are critical in cellular traction force production and migration. VSFs vary from randomly oriented short, thinner fibers to long, thick fibers that span along the whole long axis of a cell. De novo VSF formation was shown to occur by cortical actin mesh condensation or by crosslinking of dorsal stress fibers and transverse arcs at the cell front. However, the formation of long VSFs that extend across the whole cell axis is not well understood. Here, we report a novel phenomenon of VSF merging in migratory fibroblast cells, which is guided by mechanical force balance and contributes to VSF alignment along the long cell axis. The mechanism of VSF merging involves two steps: connection of two ventral fibers by an emerging myosin II bridge at an intervening adhesion and intervening adhesion dissolution. Our data indicate that these two steps are interdependent: slow adhesion disassembly leads to the slowing of the myosin bridge formation. Cellular data and computational modeling show that the contact angle between merging fibers decides successful merging, with shallow angles leading to merge failure. Our data and modeling further show that merging increases the share of uniformly aligned long VSFs, likely contributing to directional traction force production. Thus, we characterize merging as a process for dynamic reorganization of VSFs with functional significance for directional cell migration.
Collapse
Affiliation(s)
| | | | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University
| |
Collapse
|
16
|
Zhang Y, Lu Q, Li N, Xu M, Miyamoto T, Liu J. Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway. NPJ Breast Cancer 2022; 8:40. [PMID: 35332167 PMCID: PMC8948359 DOI: 10.1038/s41523-022-00402-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer metastasis is the main cause of cancer death in women, so far, no effective treatment has inhibited breast cancer metastasis. Sulforaphane (SFN), a natural compound derived from broccoli, has shown potential health benefits in many cancers. However, research on breast cancer metastasis is still insufficient. Here, we showed that SFN, including its two isomers of R-SFN and S-SFN, significantly inhibited TGF-β1-induced migration and invasion in breast cancer cells. Proteomic and phosphoproteomic analysis showed that SFN affected the formation of the cytoskeleton. Subsequent experiments confirmed that SFN significantly inhibited TGF-β1-induced actin stress fiber formation and the expression of actin stress fiber formation-associated proteins, including paxillin, IQGAP1, FAK, PAK2, and ROCK. Additionally, SFN is directly bound to RAF family proteins (including ARAF, BRAF, and CRAF) and inhibited MEK and ERK phosphorylation. These in vitro results indicate that SFN targets the RAF/MEK/ERK signaling pathway to inhibit the formation of actin stress fibers, thereby inhibiting breast cancer cell metastasis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Qian Lu
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nan Li
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
17
|
Choo YY, Sakai T, Komatsu S, Ikebe R, Jeffers A, Singh KP, Idell S, Tucker TA, Ikebe M. Calponin 1 contributes to myofibroblast differentiation of human pleural mesothelial cells. Am J Physiol Lung Cell Mol Physiol 2022; 322:L348-L364. [PMID: 35018804 PMCID: PMC8858681 DOI: 10.1152/ajplung.00289.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 11/22/2022] Open
Abstract
Pleural mesothelial cells (PMCs) can become myofibroblasts via mesothelial-mesenchymal transition (MesoMT) and contribute to pleural organization, fibrosis, and rind formation. However, how these transformed mesothelial cells contribute to lung fibrosis remains unclear. Here, we investigated the mechanism of contractile myofibroblast differentiation of PMCs. Transforming growth factor-β (TGF-β) induced marked upregulation of calponin 1 expression, which was correlated with notable cytoskeletal rearrangement in human PMCs (HPMCs) to produce stress fibers. Downregulation of calponin 1 expression reduced stress fiber formation. Interestingly, induced stress fibers predominantly contain α-smooth muscle actin (αSMA) associated with calponin 1 but not β-actin. Calponin 1-associated stress fibers also contained myosin II and α-actinin. Furthermore, focal adhesions were aligned with the produced stress fibers. These results suggest that calponin 1 facilitates formation of stress fibers that resemble contractile myofibrils. Supporting this notion, TGF-β significantly increased the contractile activity of HPMCs, an effect that was abolished by downregulation of calponin 1 expression. We infer that differentiation of HPMCs to contractile myofibroblasts facilitates stiffness of scar tissue in pleura to promote pleural fibrosis (PF) and that upregulation of calponin 1 plays a central role in this process.
Collapse
Affiliation(s)
- Young-Yeon Choo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Tsuyoshi Sakai
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Satoshi Komatsu
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Reiko Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Karan P Singh
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
18
|
Liu J, Smith S, Wang C. Reversing the Epithelial-Mesenchymal Transition in Metastatic Cancer Cells Using CD146-Targeted Black Phosphorus Nanosheets and a Mild Photothermal Treatment. ACS NANO 2022; 16:3208-3220. [PMID: 35089691 DOI: 10.1021/acsnano.1c11070] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer metastasis leads to most deaths in cancer patients, and the epithelial-mesenchymal transition (EMT) is the key mechanism that endows the cancer cells with strong migratory and invasive abilities. Here, we present a nanomaterial-based approach to reverse the EMT in cancer cells by targeting an EMT inducer, CD146, using engineered black phosphorus nanosheets (BPNSs) and a mild photothermal treatment. We demonstrate this approach can convert highly metastatic, mesenchymal-type breast cancer cells to an epithelial phenotype (i.e., reversing EMT), leading to a complete stoppage of cancer cell migration. By using advanced nanomechanical and super-resolution imaging, complemented by immunoblotting, we validate the phenotypic switch in the cancer cells, as evidenced by the altered actin organization and cell morphology, downregulation of mesenchymal protein markers, and upregulation of epithelial protein markers. We also elucidate the molecular mechanism behind the reversal of EMT. Our results reveal that CD146-targeted BPNSs and a mild photothermal treatment synergistically contribute to EMT reversal by downregulating membrane CD146 and perturbing its downstream EMT-related signaling pathways. Considering CD146 overexpression has been confirmed on the surface of a variety of metastatic, mesenchymal-like cancer cells, this approach could be applicable for treating various cancer metastasis via modulating the phenotype switch in cancer cells.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Steve Smith
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Congzhou Wang
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 East St Joseph Street, Rapid City, South Dakota 57701, United States
| |
Collapse
|
19
|
Rimoli CV, Valades-Cruz CA, Curcio V, Mavrakis M, Brasselet S. 4polar-STORM polarized super-resolution imaging of actin filament organization in cells. Nat Commun 2022; 13:301. [PMID: 35027553 PMCID: PMC8758668 DOI: 10.1038/s41467-022-27966-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Single-molecule localization microscopy provides insights into the nanometer-scale spatial organization of proteins in cells, however it does not provide information on their conformation and orientation, which are key functional signatures. Detecting single molecules' orientation in addition to their localization in cells is still a challenging task, in particular in dense cell samples. Here, we present a polarization-splitting scheme which combines Stochastic Optical Reconstruction Microscopy (STORM) with single molecule 2D orientation and wobbling measurements, without requiring a strong deformation of the imaged point spread function. This method called 4polar-STORM allows, thanks to a control of its detection numerical aperture, to determine both single molecules' localization and orientation in 2D and to infer their 3D orientation. 4polar-STORM is compatible with relatively high densities of diffraction-limited spots in an image, and is thus ideally placed for the investigation of dense protein assemblies in cells. We demonstrate the potential of this method in dense actin filament organizations driving cell adhesion and motility.
Collapse
Affiliation(s)
- Caio Vaz Rimoli
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013, Marseille, France
| | - Cesar Augusto Valades-Cruz
- Institut Curie, PSL Research University, UMR144 CNRS, Space-Time imaging of organelles and Endomembranes Dynamics Team, F-75005, Paris, France
- Inria Centre Rennes-Bretagne Atlantique, SERPICO Project Team, F-35042, Rennes, France
| | - Valentina Curcio
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013, Marseille, France
| | - Manos Mavrakis
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013, Marseille, France.
| | - Sophie Brasselet
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013, Marseille, France.
| |
Collapse
|
20
|
Sherrard KM, Cetera M, Horne-Badovinac S. DAAM mediates the assembly of long-lived, treadmilling stress fibers in collectively migrating epithelial cells in Drosophila. eLife 2021; 10:e72881. [PMID: 34812144 PMCID: PMC8610420 DOI: 10.7554/elife.72881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Stress fibers (SFs) are actomyosin bundles commonly found in individually migrating cells in culture. However, whether and how cells use SFs to migrate in vivo or collectively is largely unknown. Studying the collective migration of the follicular epithelial cells in Drosophila, we found that the SFs in these cells show a novel treadmilling behavior that allows them to persist as the cells migrate over multiple cell lengths. Treadmilling SFs grow at their fronts by adding new integrin-based adhesions and actomyosin segments over time. This causes the SFs to have many internal adhesions along their lengths, instead of adhesions only at the ends. The front-forming adhesions remain stationary relative to the substrate and typically disassemble as the cell rear approaches. By contrast, a different type of adhesion forms at the SF's terminus that slides with the cell's trailing edge as the actomyosin ahead of it shortens. We further show that SF treadmilling depends on cell movement and identify a developmental switch in the formins that mediate SF assembly, with Dishevelled-associated activator of morphogenesis acting during migratory stages and Diaphanous acting during postmigratory stages. We propose that treadmilling SFs keep each cell on a linear trajectory, thereby promoting the collective motility required for epithelial migration.
Collapse
Affiliation(s)
- Kristin M Sherrard
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicagoUnited States
| | - Maureen Cetera
- Committee on Development, Regeneration, and Stem Cell Biology, The University of ChicagoChicagoUnited States
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicagoUnited States
- Committee on Development, Regeneration, and Stem Cell Biology, The University of ChicagoChicagoUnited States
| |
Collapse
|
21
|
Castle EL, Robinson CA, Douglas P, Rinker KD, Corcoran JA. Viral Manipulation of a Mechanoresponsive Signaling Axis Disassembles Processing Bodies. Mol Cell Biol 2021; 41:e0039921. [PMID: 34516278 PMCID: PMC8547432 DOI: 10.1128/mcb.00399-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 12/23/2022] Open
Abstract
Processing bodies (PBs) are ribonucleoprotein granules important for cytokine mRNA decay that are targeted for disassembly by many viruses. Kaposi's sarcoma-associated herpesvirus is the etiological agent of the inflammatory endothelial cancer, Kaposi's sarcoma, and a PB-regulating virus. The virus encodes kaposin B (KapB), which induces actin stress fibers (SFs) and cell spindling as well as PB disassembly. We now show that KapB-mediated PB disassembly requires actin rearrangements, RhoA effectors, and the mechanoresponsive transcription activator, YAP. Moreover, ectopic expression of active YAP or exposure of ECs to mechanical forces caused PB disassembly in the absence of KapB. We propose that the viral protein KapB activates a mechanoresponsive signaling axis and links changes in cell shape and cytoskeletal structures to enhanced inflammatory molecule expression using PB disassembly. Our work implies that cytoskeletal changes in other pathologies may similarly impact the inflammatory environment.
Collapse
Affiliation(s)
- Elizabeth L. Castle
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolyn-Ann Robinson
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Pauline Douglas
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kristina D. Rinker
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Chemical and Petroleum Engineering and Centre for Bioengineering Research and Education, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A. Corcoran
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Hauke L, Narasimhan S, Primeßnig A, Kaverina I, Rehfeldt F. A Focal Adhesion Filament Cross-correlation Kit for fast, automated segmentation and correlation of focal adhesions and actin stress fibers in cells. PLoS One 2021; 16:e0250749. [PMID: 34506490 PMCID: PMC8432882 DOI: 10.1371/journal.pone.0250749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Focal adhesions (FAs) and associated actin stress fibers (SFs) form a complex mechanical system that mediates bidirectional interactions between cells and their environment. This linked network is essential for mechanosensing, force production and force transduction, thus directly governing cellular processes like polarization, migration and extracellular matrix remodeling. We introduce a tool for fast and robust coupled analysis of both FAs and SFs named the Focal Adhesion Filament Cross-correlation Kit (FAFCK). Our software can detect and record location, axes lengths, area, orientation, and aspect ratio of focal adhesion structures as well as the location, length, width and orientation of actin stress fibers. This enables users to automate analysis of the correlation of FAs and SFs and study the stress fiber system in a higher degree, pivotal to accurately evaluate transmission of mechanocellular forces between a cell and its surroundings. The FAFCK is particularly suited for unbiased and systematic quantitative analysis of FAs and SFs necessary for novel approaches of traction force microscopy that uses the additional data from the cellular side to calculate the stress distribution in the substrate. For validation and comparison with other tools, we provide datasets of cells of varying quality that are labelled by a human expert. Datasets and FAFCK are freely available as open source under the GNU General Public License.
Collapse
Affiliation(s)
- Lara Hauke
- Third Institute of Physics—Biophysics, Georg-August-University Göttingen, Göttingen, Germany
| | - Shwetha Narasimhan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Andreas Primeßnig
- Third Institute of Physics—Biophysics, Georg-August-University Göttingen, Göttingen, Germany
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States of America
- * E-mail: (IK); (FR)
| | - Florian Rehfeldt
- Third Institute of Physics—Biophysics, Georg-August-University Göttingen, Göttingen, Germany
- Experimental Physics I, University of Bayreuth, Bayreuth, Germany
- * E-mail: (IK); (FR)
| |
Collapse
|
23
|
Yamazaki S, Ueno Y, Hosoki R, Saito T, Idehara T, Yamaguchi Y, Otani C, Ogawa Y, Harata M, Hoshina H. THz irradiation inhibits cell division by affecting actin dynamics. PLoS One 2021; 16:e0248381. [PMID: 34339441 PMCID: PMC8328307 DOI: 10.1371/journal.pone.0248381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/17/2021] [Indexed: 11/25/2022] Open
Abstract
Biological phenomena induced by terahertz (THz) irradiation are described in recent reports, but underlying mechanisms, structural and dynamical change of specific molecules are still unclear. In this paper, we performed time-lapse morphological analysis of human cells and found that THz irradiation halts cell division at cytokinesis. At the end of cytokinesis, the contractile ring, which consists of filamentous actin (F-actin), needs to disappear; however, it remained for 1 hour under THz irradiation. Induction of the functional structures of F-actin was also observed in interphase cells. Similar phenomena were also observed under chemical treatment (jasplakinolide), indicating that THz irradiation assists actin polymerization. We previously reported that THz irradiation enhances the polymerization of purified actin in vitro; our current work shows that it increases cytoplasmic F-actin in vivo. Thus, we identified one of the key biomechanisms affected by THz waves.
Collapse
Affiliation(s)
- Shota Yamazaki
- Terahertz Sensing and Imaging Research Team, RIKEN Center for Advanced Photonics, Sendai, Miyagi, Japan
- * E-mail: (SY); (MH); (HH)
| | - Yuya Ueno
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Ryosuke Hosoki
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Takanori Saito
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Toshitaka Idehara
- Research Center for Development of Far-Infrared Region, University of Fukui (FIR UF), Bunkyo, Fukui, Japan
| | - Yuusuke Yamaguchi
- Research Center for Development of Far-Infrared Region, University of Fukui (FIR UF), Bunkyo, Fukui, Japan
| | - Chiko Otani
- Terahertz Sensing and Imaging Research Team, RIKEN Center for Advanced Photonics, Sendai, Miyagi, Japan
| | - Yuichi Ogawa
- Laboratory of Bio-Sensing Engineering, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
- * E-mail: (SY); (MH); (HH)
| | - Hiromichi Hoshina
- Terahertz Sensing and Imaging Research Team, RIKEN Center for Advanced Photonics, Sendai, Miyagi, Japan
- * E-mail: (SY); (MH); (HH)
| |
Collapse
|
24
|
Zhou JK, Fan X, Cheng J, Liu W, Peng Y. PDLIM1: Structure, function and implication in cancer. Cell Stress 2021; 5:119-127. [PMID: 34396044 PMCID: PMC8335553 DOI: 10.15698/cst2021.08.254] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023] Open
Abstract
PDLIM1, a member of the PDZ-LIM family, is a cytoskeletal protein and functions as a platform to form distinct protein complexes, thus participating in multiple physiological processes such as cytoskeleton regulation and synapse formation. Emerging evidence demonstrates that PDLIM1 is dysregualted in a variety of tumors and plays essential roles in tumor initiation and progression. In this review, we summarize the structure and function of PDLIM1, as well as its important roles in human cancers.
Collapse
Affiliation(s)
- Jian-Kang Zhou
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Fan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Cheng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Prasad P, Roy SS. Glutamine regulates ovarian cancer cell migration and invasion through ETS1. Heliyon 2021; 7:e07064. [PMID: 34136678 PMCID: PMC8180613 DOI: 10.1016/j.heliyon.2021.e07064] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/15/2021] [Accepted: 05/11/2021] [Indexed: 11/15/2022] Open
Abstract
Cancer cells are dependent on glutamine for their metabolism and growth. Despite being the most abundant amino acid in the blood, glutamine deprivation occurs in the core of the tumor rendering less access to glutamine to the nearby tumor cells. Tumor cells mostly use the glutamine for mitochondrial oxidative phosphorylation (OXPHOS) to produce energy and the ingredients of the biomass required for the highly proliferating and metastatic ovarian cancer cells. But there is a lack of reports on the regulation of glutamine starvation on metastatic behavior and epithelial to mesenchymal transition (EMT) of ovarian cancer cells. We found that glutamine starvation reduced the migration and invasion properties of the ovarian cancer cells, PA1 and SKOV3. The expression of the invasion-inducing proteins, like matrix metalloproteinases (MMP2 and MMP9), were downregulated upon glutamine starvation. MMP genes are mostly regulated by the ETS1 oncogenic transcription factor in invasive tumor cells. Here we demonstrated the significant involvement of ETS1 on EMT and invasion in glutamine-deprived cells. We have further shown that the regulation of ETS1 expression and nuclear localization upon glutamine starvation is controlled in a cell type-specific manner. In PA1 cells, glutamine-induced ETS1 over-expression is HIF1α-dependent, while in SKOV3, its translocation to the nucleus is regulated through the mTOR pathway. Considering all, our study suggests that glutamine plays a very significant role in migration and invasion in ovarian cancer cells and ETS1 plays a key role in inducing such oncogenic parameters.
Collapse
Affiliation(s)
- Parash Prasad
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research, CSIR- Indian Institute of Chemical Biology Campus, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
26
|
Gaston C, De Beco S, Doss B, Pan M, Gauquelin E, D'Alessandro J, Lim CT, Ladoux B, Delacour D. EpCAM promotes endosomal modulation of the cortical RhoA zone for epithelial organization. Nat Commun 2021; 12:2226. [PMID: 33850145 PMCID: PMC8044225 DOI: 10.1038/s41467-021-22482-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 03/11/2021] [Indexed: 01/13/2023] Open
Abstract
At the basis of cell shape and behavior, the organization of actomyosin and its ability to generate forces are widely studied. However, the precise regulation of this contractile network in space and time is unclear. Here, we study the role of the epithelial-specific protein EpCAM, a contractility modulator, in cell shape and motility. We show that EpCAM is required for stress fiber generation and front-rear polarity acquisition at the single cell level. In fact, EpCAM participates in the remodeling of a transient zone of active RhoA at the cortex of spreading epithelial cells. EpCAM and RhoA route together through the Rab35/EHD1 fast recycling pathway. This endosomal pathway spatially organizes GTP-RhoA to fine tune the activity of actomyosin resulting in polarized cell shape and development of intracellular stiffness and traction forces. Impairment of GTP-RhoA endosomal trafficking either by silencing EpCAM or by expressing Rab35/EHD1 mutants prevents proper myosin-II activity, stress fiber formation and ultimately cell polarization. Collectively, this work shows that the coupling between co-trafficking of EpCAM and RhoA, and actomyosin rearrangement is pivotal for cell spreading, and advances our understanding of how biochemical and mechanical properties promote cell plasticity.
Collapse
Affiliation(s)
- Cécile Gaston
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Simon De Beco
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Bryant Doss
- Mechanobiology Institute, T-lab, Singapore, Singapore
| | - Meng Pan
- Mechanobiology Institute, T-lab, Singapore, Singapore
| | - Estelle Gauquelin
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Joseph D'Alessandro
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | | | - Benoit Ladoux
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Delphine Delacour
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France.
| |
Collapse
|
27
|
Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function. Int J Mol Sci 2021; 22:ijms22063279. [PMID: 33807043 PMCID: PMC8004672 DOI: 10.3390/ijms22063279] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such information would generate leverage for advanced articular cartilage repair. Serial passaging, pro-inflammatory cytokine signaling (TNF-α, IL-1α, IL-1β, IL-6, and IL-8), growth factors (TGF-α), and osteoarthritis not only induce dedifferentiation but also converge on RhoA/ROCK/Rac1/mDia1/mDia2/Cdc42 to promote actin polymerization/crosslinking for stress fiber (SF) formation. SF formation takes center stage in phenotype control, as both SF formation and SOX9 phosphorylation for COL2 expression are ROCK activity-dependent. Explaining how it is molecularly possible that dedifferentiation induces low COL2 expression but high SF formation, this review theorized that, in chondrocyte SOX9, phosphorylation by ROCK might effectively be sidelined in favor of other SF-promoting ROCK substrates, based on a differential ROCK affinity. In turn, actin depolymerization for redifferentiation would “free-up” ROCK to increase COL2 expression. Moreover, the actin cytoskeleton regulates COL1 expression, modulates COL2/aggrecan fragment generation, and mediates a fibrogenic/catabolic expression profile, highlighting that actin dynamics-regulating processes decisively control the chondrocyte phenotype. This suggests modulating the balance between actin polymerization/depolymerization for therapeutically controlling the chondrocyte phenotype.
Collapse
|
28
|
Wang Y, Yang Y, Wang X, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Micropattern-controlled chirality of focal adhesions regulates the cytoskeletal arrangement and gene transfection of mesenchymal stem cells. Biomaterials 2021; 271:120751. [PMID: 33740614 DOI: 10.1016/j.biomaterials.2021.120751] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Cell chirality has been demonstrated to be important for controlling cell functions. However, it is not clear how the chirality of the extracellular microenvironment regulates cell adhesion and cytoskeletal structures and therefore affects gene transfection. In this study, the chirality of focal adhesions and the cytoskeleton of single human mesenchymal stem cells (hMSCs) was controlled by specially designed micropatterns, and its influence on gene transfection was investigated. Micropatterns with different cell adhesion areas and swirling stripe lines were prepared by micropatterning fibronectin on polystyrene surfaces. The chiral micropatterns induced the formation of chiral focal adhesions and chiral cytoskeletal structures. Gene transfection efficiency was enhanced with increasing adhesion area, while hMSCs on left-handed and right-handed swirling micropatterns showed the same level of gene transfection. When the swirling angle was changed from 0°, 30°, and 60° to 90°, the gene transfection efficiency at a swirling angle of 60° was the lowest. The influence of cell chirality on gene transfection was strongly associated with cellular uptake capacity, DNA synthesis and cytoskeletal mechanics. The results demonstrated that cytoskeletal swirling had a significant influence on gene transfection.
Collapse
Affiliation(s)
- Yongtao Wang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yingjun Yang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Xinlong Wang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
29
|
Combustion-derived particles from biomass sources differently promote epithelial-to-mesenchymal transition on A549 cells. Arch Toxicol 2021; 95:1379-1390. [PMID: 33481051 PMCID: PMC8032642 DOI: 10.1007/s00204-021-02983-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/06/2021] [Indexed: 01/26/2023]
Abstract
Combustion-derived particles (CDPs), due to the presence in their composition of several toxic and carcinogenic chemical compounds, such as polycyclic aromatic hydrocarbons (PAHs) and metals, are linked to several respiratory diseases, including lung cancer. Epithelial-to-mesenchymal transition (EMT) is a crucial step in lung cancer progression, involving several morphological and phenotypical changes. The study aims to investigate how exposure to CDPs from different biomass sources might be involved in cancer development, focusing mainly on the effects linked to EMT and invasion on human A549 lung cells. Biomass combustion-derived particles (BCDPs) were collected from a stove fuelled with pellet, charcoal or wood, respectively. A time course and dose response evaluation on cell viability and pro-inflammatory response was performed to select the optimal conditions for EMT-related studies. A significant release of IL-8 was found after 72 h of exposure to 2.5 μg/cm2 BCDPs. The EMT activation was then examined by evaluating the expression of some typical markers, such as E-cadherin and N-cadherin, and the possible enhanced migration and invasiveness. Sub-acute exposure revealed that BCDPs differentially modulated cell viability, migration and invasion, as well as the expression of proteins linked to EMT. Results showed a reduction in the epithelial marker E-cadherin and a parallel increase in the mesenchymal markers N-cadherin, mainly after exposure to charcoal and wood. Migration and invasion were also increased. In conclusion, our results suggest that BCDPs with a higher content of organic compounds (e.g. PAHs) in their chemical composition might play a crucial role in inducing pro-carcinogenic effects on epithelial cells.
Collapse
|
30
|
Eloranta K, Nousiainen R, Cairo S, Pakarinen MP, Wilson DB, Pihlajoki M, Heikinheimo M. Neuropilin-2 Is Associated With Increased Hepatoblastoma Cell Viability and Motility. Front Pediatr 2021; 9:660482. [PMID: 34239847 PMCID: PMC8257959 DOI: 10.3389/fped.2021.660482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/27/2021] [Indexed: 12/29/2022] Open
Abstract
The neuropilins NRP1 and NRP2 are multifunctional glycoproteins that have been implicated in several cancer-related processes including cell survival, migration, and invasion in various tumor types. Here, we examine the role of neuropilins in hepatoblastoma (HB), the most common pediatric liver malignancy. Using a combination of immunohistochemistry, RNA analysis and western blotting, we observed high level expression of NRP1 and NRP2 in 19 of 20 HB specimens and in a majority of human HB cell lines (HUH6 and five cell lines established from patient-derived xenografts) studied but not in normal hepatocytes. Silencing of NRP2 expression in HUH6 and HB-282 HB cells resulted in decreased cell viability, impaired cytoskeleton remodeling, and reduced cell motility, suggesting that NRP2 contributes to the malignant phenotype. We propose that neuropilins warrant further investigation as biomarkers of HB and potential therapeutic targets.
Collapse
Affiliation(s)
- Katja Eloranta
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ruth Nousiainen
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Stefano Cairo
- XenTech, Evry, France.,Istituto di Ricerca Pediatrica, Padova, Italy
| | - Mikko P Pakarinen
- Pediatric Surgery, and Pediatric Liver and Gut Research Group, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, United States.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Marjut Pihlajoki
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Markku Heikinheimo
- Pediatric Research Center, Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, United States
| |
Collapse
|
31
|
Wang Y, Yang Y, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Regulation of gene transfection by cell size, shape and elongation on micropatterned surfaces. J Mater Chem B 2021; 9:4329-4339. [PMID: 34013946 DOI: 10.1039/d1tb00815c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gene transfection has been widely studied due to its potential applications in tissue repair and gene therapy. Many studies have focused on designing gene carriers and developing novel transfection techniques. However, the influence of cell size, shape and elongation on gene transfection has rarely been investigated. In this study, poly(vinyl alcohol)-micropatterned surfaces were prepared to precisely manipulate the size, shape and elongation of mesenchymal stem cells, and the influences of these factors on gene transfection were investigated. Cell size showed a significant influence on gene transfection. Elongation could affect the gene transfection of large cells but not small cells. Cells with a large spreading area and high aspect ratio showed high transfection with exogenous plasmid DNA. In particular, the transfection efficiency was the highest in micropatterned cells with a spreading area of 5024 μm2 and an aspect ratio of 8 : 1. In contrast, cell shape had no significant influence on gene transfection. The different influences of cell size, shape and elongation were correlated with their respective impacts on cytoskeletal structures, cellular nanoparticle uptake and DNA synthesis. Cells with a large size and elongated morphology showed well-organized actin filaments with a high cellular modulus, therefore promoting cellular nanoparticle uptake and DNA synthesis. Cells with different shapes showed similarities in actin filament organization, cellular modulus, uptake capacity and DNA synthesis. The results suggest the importance of cell size and elongation in exogenous gene transfection and should provide useful information for gene transfection and gene therapy.
Collapse
Affiliation(s)
- Yongtao Wang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. and Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yingjun Yang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. and Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. and Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
32
|
Yang X, Wang G, Huang X, Cheng M, Han Y. RNA-seq reveals the diverse effects of substrate stiffness on epidermal ovarian cancer cells. Aging (Albany NY) 2020; 12:20493-20511. [PMID: 33091877 PMCID: PMC7655203 DOI: 10.18632/aging.103906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022]
Abstract
Background: Increasing evidence has confirmed that ovarian cancer is a mechanically responsive tumor both in vivo and in vitro. However, an understanding of the complete molecular mechanism involved in the response to substrate stiffness is lacking, as the associated transcriptome-wide effects have not been mapped. This limited understanding has restricted the identification of potential mechanically responsive targets in ovarian cancer. Results: To address these limitations, we used a polyacrylamide hydrogel system with a tunable Young’s modulus that broadly ranged from soft (1 kPa) to normal (6 kPa) and stiff (60 kPa) and investigated the effect of substrate rigidity on the morphology, spreading area, and cytoskeleton of SKOV-3 epidermal ovarian cancer (EOC) cells. RNA-seq analysis of these cells was then performed at appropriate timepoints to map the transcriptome-wide changes associated with stiffness sensing. We identified a large number of stiffness-sensing genes as well as many genes that were enriched in cancer-related pathways. Informed by these diverse expression results and based on bioinformatics analysis, we evaluated the hypothesis that PLEC and TNS2, which are located in focal adhesions and regulated by lnc-ZNF136, may play key roles in the EOC response to substrate stiffness. Conclusion: Overall, the results of the present study reveal previously unknown features of the EOC stiffness response and provide new insights into EOC metastasis in the clinic.
Collapse
Affiliation(s)
- Xiaoxu Yang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Guohui Wang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Xiaolei Huang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Yangyang Han
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| |
Collapse
|
33
|
Mierke CT. Mechanical Cues Affect Migration and Invasion of Cells From Three Different Directions. Front Cell Dev Biol 2020; 8:583226. [PMID: 33043017 PMCID: PMC7527720 DOI: 10.3389/fcell.2020.583226] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Cell migration and invasion is a key driving factor for providing essential cellular functions under physiological conditions or the malignant progression of tumors following downward the metastatic cascade. Although there has been plentiful of molecules identified to support the migration and invasion of cells, the mechanical aspects have not yet been explored in a combined and systematic manner. In addition, the cellular environment has been classically and frequently assumed to be homogeneous for reasons of simplicity. However, motility assays have led to various models for migration covering only some aspects and supporting factors that in some cases also include mechanical factors. Instead of specific models, in this review, a more or less holistic model for cell motility in 3D is envisioned covering all these different aspects with a special emphasis on the mechanical cues from a biophysical perspective. After introducing the mechanical aspects of cell migration and invasion and presenting the heterogeneity of extracellular matrices, the three distinct directions of cell motility focusing on the mechanical aspects are presented. These three different directions are as follows: firstly, the commonly used invasion tests using structural and structure-based mechanical environmental signals; secondly, the mechano-invasion assay, in which cells are studied by mechanical forces to migrate and invade; and thirdly, cell mechanics, including cytoskeletal and nuclear mechanics, to influence cell migration and invasion. Since the interaction between the cell and the microenvironment is bi-directional in these assays, these should be accounted in migration and invasion approaches focusing on the mechanical aspects. Beyond this, there is also the interaction between the cytoskeleton of the cell and its other compartments, such as the cell nucleus. In specific, a three-element approach is presented for addressing the effect of mechanics on cell migration and invasion by including the effect of the mechano-phenotype of the cytoskeleton, nucleus and the cell's microenvironment into the analysis. In precise terms, the combination of these three research approaches including experimental techniques seems to be promising for revealing bi-directional impacts of mechanical alterations of the cellular microenvironment on cells and internal mechanical fluctuations or changes of cells on the surroundings. Finally, different approaches are discussed and thereby a model for the broad impact of mechanics on cell migration and invasion is evolved.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
34
|
Chang CH, Yano KI, Sato T. Nanosecond pulsed current under plasma-producing conditions induces morphological alterations and stress fiber formation in human fibrosarcoma HT-1080 cells. Arch Biochem Biophys 2020; 681:108252. [PMID: 31911153 DOI: 10.1016/j.abb.2020.108252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 11/24/2022]
Abstract
Cold atmospheric plasma (CAP) is a promising means for various biomedical applications, including cancer therapy. Although the biological action of CAP is considered to be brought about by synergistic effects of reactive species and electrical factors of CAP, limited information is currently available on the contribution of electrical factors to CAP-induced cell responses. We have previously demonstrated that nanosecond pulsed current (nsPC) under CAP-producing conditions significantly promoted the motility of human HT-1080 cells. In this study, we explored the effects of nsPC on cell morphology associated with cell motility. We observed that nsPC stimulation caused extended cell shape, membrane protrusion formation, and increased cell surface area, but not cell death induction. nsPC stimulation also caused elevated intracellular ROS and Ca2+. HT-1080 cells can undergo two modes of cell motility, namely mesenchymal and ameboid motility, and we found that morphological features of mesenchymal motility was partly shared with nsPC-stimulated cells. Furthermore, nsPC-stimulated cells had extended stress fibers composed of filamentous actin. Taken together, this study provides a novel insight into the electrical aspect of CAP action, and we speculate that nsPC activates a certain mechanism involving intracellular signaling for stress fiber formation, leading to altered cell morphology and increased cell motility.
Collapse
Affiliation(s)
- Chia-Hsing Chang
- Department of Mechanical System Engineering, Tohoku University, Japan
| | - Ken-Ichi Yano
- Institute of Pulsed Power Science, Kumamoto University, Japan
| | - Takehiko Sato
- Institute of Fluid Science, Tohoku University, Japan.
| |
Collapse
|
35
|
Gasilina A, Vitali T, Luo R, Jian X, Randazzo PA. The ArfGAP ASAP1 Controls Actin Stress Fiber Organization via Its N-BAR Domain. iScience 2019; 22:166-180. [PMID: 31785555 PMCID: PMC6889188 DOI: 10.1016/j.isci.2019.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/30/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
ASAP1 is a multi-domain ArfGAP that controls cell migration, spreading, and focal adhesion dynamics. Although its GAP activity contributes to remodeling of the actin cytoskeleton, it does not fully explain all cellular functions of ASAP1. Here we find that ASAP1 regulates actin filament assembly directly through its N-BAR domain and controls stress fiber maintenance. ASAP1 depletion caused defects in stress fiber organization. Conversely, overexpression of ASAP1 enhanced actin remodeling. The BAR-PH fragment was sufficient to affect actin. ASAP1 with the BAR domain replaced with the BAR domain of the related ACAP1 did not affect actin. The BAR-PH tandem of ASAP1 bound and bundled actin filaments directly, whereas the presence of the ArfGAP and the C-terminal linker/SH3 domain reduced binding and bundling of filaments by BAR-PH. Together these data provide evidence that ASAP1 may regulate the actin cytoskeleton through direct interaction of the BAR-PH domain with actin filaments.
Collapse
Affiliation(s)
- Anjelika Gasilina
- Section on Regulation of Ras Superfamily, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2042, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Teresa Vitali
- Section on Regulation of Ras Superfamily, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2042, Bethesda, MD 20892, USA
| | - Ruibai Luo
- Section on Regulation of Ras Superfamily, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2042, Bethesda, MD 20892, USA
| | - Xiaoying Jian
- Section on Regulation of Ras Superfamily, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2042, Bethesda, MD 20892, USA
| | - Paul A Randazzo
- Section on Regulation of Ras Superfamily, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2042, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Vohnoutka RB, Gulvady AC, Goreczny G, Alpha K, Handelman SK, Sexton JZ, Turner CE. The focal adhesion scaffold protein Hic-5 regulates vimentin organization in fibroblasts. Mol Biol Cell 2019; 30:3037-3056. [PMID: 31644368 PMCID: PMC6880880 DOI: 10.1091/mbc.e19-08-0442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion (FA)-stimulated reorganization of the F-actin cytoskeleton regulates cellular size, shape, and mechanical properties. However, FA cross-talk with the intermediate filament cytoskeleton is poorly understood. Genetic ablation of the FA-associated scaffold protein Hic-5 in mouse cancer-associated fibroblasts (CAFs) promoted a dramatic collapse of the vimentin network, which was rescued following EGFP-Hic-5 expression. Vimentin collapse correlated with a loss of detergent-soluble vimentin filament precursors and decreased vimentin S72/S82 phosphorylation. Additionally, fluorescence recovery after photobleaching analysis indicated impaired vimentin dynamics. Microtubule (MT)-associated EB1 tracking and Western blotting of MT posttranslational modifications indicated no change in MT dynamics that could explain the vimentin collapse. However, pharmacological inhibition of the RhoGTPase Cdc42 in Hic-5 knockout CAFs rescued the vimentin collapse, while pan-formin inhibition with SMIFH2 promoted vimentin collapse in Hic-5 heterozygous CAFs. Our results reveal novel regulation of vimentin organization/dynamics by the FA scaffold protein Hic-5 via modulation of RhoGTPases and downstream formin activity.
Collapse
Affiliation(s)
- Rishel B Vohnoutka
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Anushree C Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Gregory Goreczny
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Kyle Alpha
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Samuel K Handelman
- Division of Gastroenterology, Department of Internal Medicine, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
37
|
Puleo JI, Parker SS, Roman MR, Watson AW, Eliato KR, Peng L, Saboda K, Roe DJ, Ros R, Gertler FB, Mouneimne G. Mechanosensing during directed cell migration requires dynamic actin polymerization at focal adhesions. J Cell Biol 2019; 218:4215-4235. [PMID: 31594807 PMCID: PMC6891092 DOI: 10.1083/jcb.201902101] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/16/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022] Open
Abstract
The mechanical properties of a cell's microenvironment influence many aspects of cellular behavior, including cell migration. Durotaxis, the migration toward increasing matrix stiffness, has been implicated in processes ranging from development to cancer. During durotaxis, mechanical stimulation by matrix rigidity leads to directed migration. Studies suggest that cells sense mechanical stimuli, or mechanosense, through the acto-myosin cytoskeleton at focal adhesions (FAs); however, FA actin cytoskeletal remodeling and its role in mechanosensing are not fully understood. Here, we show that the Ena/VASP family member, Ena/VASP-like (EVL), polymerizes actin at FAs, which promotes cell-matrix adhesion and mechanosensing. Importantly, we show that EVL regulates mechanically directed motility, and that suppression of EVL expression impedes 3D durotactic invasion. We propose a model in which EVL-mediated actin polymerization at FAs promotes mechanosensing and durotaxis by maturing, and thus reinforcing, FAs. These findings establish dynamic FA actin polymerization as a central aspect of mechanosensing and identify EVL as a crucial regulator of this process.
Collapse
Affiliation(s)
- Julieann I Puleo
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Sara S Parker
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Mackenzie R Roman
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Adam W Watson
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Kiarash Rahmani Eliato
- Department of Physics, Center for Biological Physics, and Biodesign Institute, Arizona State University, Tempe, AZ
| | - Leilei Peng
- College of Optical Sciences, University of Arizona, Tucson, AZ
| | - Kathylynn Saboda
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | - Denise J Roe
- University of Arizona Cancer Center and Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | - Robert Ros
- Department of Physics, Center for Biological Physics, and Biodesign Institute, Arizona State University, Tempe, AZ
| | - Frank B Gertler
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Ghassan Mouneimne
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
38
|
Pranda MA, Gray KM, DeCastro AJL, Dawson GM, Jung JW, Stroka KM. Tumor Cell Mechanosensing During Incorporation into the Brain Microvascular Endothelium. Cell Mol Bioeng 2019; 12:455-480. [PMID: 31719927 DOI: 10.1007/s12195-019-00591-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction Tumor metastasis to the brain occurs in approximately 20% of all cancer cases and often occurs due to tumor cells crossing the blood-brain barrier (BBB). The brain microenvironment is comprised of a soft hyaluronic acid (HA)-rich extracellular matrix with an elastic modulus of 0.1-1 kPa, whose crosslinking is often altered in disease states. Methods To explore the effects of HA crosslinking on breast tumor cell migration, we developed a biomimetic model of the human brain endothelium, consisting of brain microvascular endothelial cell (HBMEC) monolayers on HA and gelatin (HA/gelatin) films with different degrees of crosslinking, as established by varying the concentration of the crosslinker Extralink. Results and Discussion Metastatic breast tumor cell migration speed, diffusion coefficient, spreading area, and aspect ratio increased with decreasing HA crosslinking, a mechanosensing trend that correlated with tumor cell actin organization but not CD44 expression. Meanwhile, breast tumor cell incorporation into endothelial monolayers was independent of HA crosslinking density, suggesting that alterations in HA crosslinking density affect tumor cells only after they exit the vasculature. Tumor cells appeared to exploit both the paracellular and transcellular routes of trans-endothelial migration. Quantitative phenotyping of HBMEC junctions via a novel Python software revealed a VEGF-dependent decrease in punctate VE-cadherin junctions and an increase in continuous and perpendicular junctions when HBMECs were treated with tumor cell-secreted factors. Conclusions Overall, our quantitative results suggest that a combination of biochemical and physical factors promote tumor cell migration through the BBB.
Collapse
Affiliation(s)
- Marina A Pranda
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD 20742 USA
| | - Kelsey M Gray
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD 20742 USA
| | - Ariana Joy L DeCastro
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD 20742 USA
| | - Gregory M Dawson
- Department of Biology, University of Maryland, College Park, College Park, MD 20742 USA
| | - Jae W Jung
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD 20742 USA
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, College Park, MD 20742 USA.,Biophysics Program, University of Maryland, College Park, College Park, MD 20742 USA.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland - Baltimore, Baltimore, MD 21201 USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland - Baltimore, Baltimore, MD 21201 USA.,Fischell Department of Bioengineering, University of Maryland, College Park, 3110 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD 20742 USA
| |
Collapse
|
39
|
Shojaee A, Parham A, Ejeian F, Nasr Esfahani MH. Equine adipose mesenchymal stem cells (eq-ASCs) appear to have higher potential for migration and musculoskeletal differentiation. Res Vet Sci 2019; 125:235-243. [PMID: 31310927 DOI: 10.1016/j.rvsc.2019.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 05/14/2019] [Accepted: 06/30/2019] [Indexed: 12/28/2022]
Abstract
Equine adipose-derived mesenchymal stem cells (eq-ASCs) possess excellent regeneration potential especially for treatment of musculoskeletal disorders. Besides their common characteristics, MSCs harvested from different species reveal some species-specific and donor-dependent behaviors. Hence, the molecular analysis of MSCs may shed more light on their future clinical application of these cells. This study aimed to investigate some behavioral aspects of eq-ASCs in vitro which may influence the efficacy of stem cell therapy. For this purpose, MSCs of a donor horse were isolated, characterized and expanded under normal culture conditions. During continuous culture condition, eq-ASCs were started to formed aggregated structures that was accompanied with the up-regulation of migratory related genes including transforming growth factor beta 1 (TGFB1) and its receptor 3 (TGFBR3), and snail family transcriptional repressor 1 (SNAI1), E-cadherin (CDH1) and β-catenin (CTNNB1). Moreover, the expression of a musculoskeletal progenitor marker, scleraxis bHLH transcription factor (SCX), was also increased after 3 days. In order to clarify the impact of TGFB signaling pathway on cultured cells, gain- and loss-of-function treatment by TGFB3 and SB431542 (TGFB inhibitor) were performed, respectively. We found that TGFB3 treatment exaggerated the aggregate formation effects, in some extend via induction of cytoskeletal actin rearrangement, while inhibition of TGFB signaling pathway by SB431542 reversed this phenomenon. Overall, our findings support the fact that eq-ASCs have an inherent capacity for migration, which was enhanced by TGFB3 treatment and, this ability may play crucial role in cell motility and wound healing of transplanted cells.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Alternative Regenerative Medicine Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Fatemeh Ejeian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
40
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
41
|
Macrin D, Alghadeer A, Zhao YT, Miklas JW, Hussein AM, Detraux D, Robitaille AM, Madan A, Moon RT, Wang Y, Devi A, Mathieu J, Ruohola-Baker H. Metabolism as an early predictor of DPSCs aging. Sci Rep 2019; 9:2195. [PMID: 30778087 PMCID: PMC6379364 DOI: 10.1038/s41598-018-37489-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Tissue resident adult stem cells are known to participate in tissue regeneration and repair that follows cell turnover, or injury. It has been well established that aging impedes the regeneration capabilities at the cellular level, but it is not clear if the different onset of stem cell aging between individuals can be predicted or prevented at an earlier stage. Here we studied the dental pulp stem cells (DPSCs), a population of adult stem cells that is known to participate in the repair of an injured tooth, and its properties can be affected by aging. The dental pulp from third molars of a diverse patient group were surgically extracted, generating cells that had a high percentage of mesenchymal stem cell markers CD29, CD44, CD146 and Stro1 and had the ability to differentiate into osteo/odontogenic and adipogenic lineages. Through RNA seq and qPCR analysis we identified homeobox protein, Barx1, as a marker for DPSCs. Furthermore, using high throughput transcriptomic and proteomic analysis we identified markers for DPSC populations with accelerated replicative senescence. In particular, we show that the transforming growth factor-beta (TGF-β) pathway and the cytoskeletal proteins are upregulated in rapid aging DPSCs, indicating a loss of stem cell characteristics and spontaneous initiation of terminal differentiation. Importantly, using metabolic flux analysis, we identified a metabolic signature for the rapid aging DPSCs, prior to manifestation of senescence phenotypes. This metabolic signature therefore can be used to predict the onset of replicative senescence. Hence, the present study identifies Barx1 as a DPSCs marker and dissects the first predictive metabolic signature for DPSCs aging.
Collapse
Affiliation(s)
- Dannie Macrin
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India
| | - Ammar Alghadeer
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98109, USA.,Department of Biomedical Dental Sciences, Imam Abdulrahman bin Faisal University, College of Dentistry, Dammam, 31441, Saudi Arabia
| | - Yan Ting Zhao
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98109, USA
| | - Jason W Miklas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Abdiasis M Hussein
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
| | - Damien Detraux
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
| | - Aaron M Robitaille
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Pharmacology, University of Washington, Seattle, WA, 98109, USA
| | - Anup Madan
- Covance Genomics Laboratory, Redmond, WA, 98052, USA
| | - Randall T Moon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Pharmacology, University of Washington, Seattle, WA, 98109, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Arikketh Devi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India
| | - Julie Mathieu
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Comparative Medicine, University of Washington, School of Medicine, Seattle, WA, 98195, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA. .,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA. .,Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98109, USA. .,Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
42
|
Wang J, Lei P, Gamil AAA, Lagos L, Yue Y, Schirmer K, Mydland LT, Øverland M, Krogdahl Å, Kortner TM. Rainbow Trout ( Oncorhynchus Mykiss) Intestinal Epithelial Cells as a Model for Studying Gut Immune Function and Effects of Functional Feed Ingredients. Front Immunol 2019; 10:152. [PMID: 30792715 PMCID: PMC6374633 DOI: 10.3389/fimmu.2019.00152] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 12/04/2022] Open
Abstract
The objective of this study was to evaluate the suitability of the rainbow trout intestinal epithelial cell line (RTgutGC) as an in vitro model for studies of gut immune function and effects of functional feed ingredients. Effects of lipopolysaccharide (LPS) and three functional feed ingredients [nucleotides, mannanoligosaccharides (MOS), and beta-glucans] were evaluated in RTgutGC cells grown on conventional culture plates and transwell membranes. Permeation of fluorescently-labeled albumin, transepithelial electrical resistance (TEER), and tight junction protein expression confirmed the barrier function of the cells. Brush border membrane enzyme activities [leucine aminopeptidase (LAP) and maltase] were detected in the RTgutGC cells but activity levels were not modulated by any of the exposures. Immune related genes were expressed at comparable relative basal levels as these in rainbow trout distal intestine. LPS produced markedly elevated gene expression levels of the pro-inflammatory cytokines il1b, il6, il8, and tnfa but had no effect on ROS production. Immunostaining demonstrated increased F-actin contents after LPS exposure. Among the functional feed ingredients, MOS seemed to be the most potent modulator of RTgutGC immune and barrier function. MOS significantly increased albumin permeation and il1b, il6, il8, tnfa, and tgfb expression, but suppressed ROS production, cell proliferation and myd88 expression. Induced levels of il1b and il8 were also observed after treatment with nucleotides and beta-glucans. For barrier function related genes, all treatments up-regulated the expression of cldn3 and suppressed cdh1 levels. Beta-glucans increased TEER levels and F-actin content. Collectively, the present study has provided new information on how functional ingredients commonly applied in aquafeeds can affect intestinal epithelial function in fish. Our findings suggest that RTgutGC cells possess characteristic features of functional intestinal epithelial cells indicating a potential for use as an efficient in vitro model to evaluate effects of bioactive feed ingredients on gut immune and barrier functions and their underlying cellular mechanisms.
Collapse
Affiliation(s)
- Jie Wang
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Peng Lei
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Amr Ahmed Abdelrahim Gamil
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Leidy Lagos
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Yang Yue
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,EPF Lausanne, School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland.,ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, Zurich, Switzerland
| | - Liv Torunn Mydland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Åshild Krogdahl
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Trond M Kortner
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| |
Collapse
|
43
|
Fasudil Promotes BMSC Migration via Activating the MAPK Signaling Pathway and Application in a Model of Spinal Cord Injury. Stem Cells Int 2018; 2018:9793845. [PMID: 30693038 PMCID: PMC6332870 DOI: 10.1155/2018/9793845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/25/2018] [Accepted: 10/28/2018] [Indexed: 02/08/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are considered as transplants for the treatment of central nervous system (CNS) trauma, but the therapeutic effect is restricted by their finite mobility and homing capacity. Fasudil (FAS), a potent Rho kinase inhibitor, has been reported to alleviate nerve damage and induce the differentiation of BMSCs into neuron-like cells. However, the effect of FAS on the migration of BMSCs remains largely unknown. The present study revealed that FAS significantly enhanced the migration ability and actin stress fiber formation of BMSCs in vitro with an optimal concentration of 30 μmol/L. Moreover, we found that activation of the MAPK signaling pathway was involved in these FAS-mediated phenomena. In vivo, cells pretreated with FAS showed greater homing capacity from the injection site to the spinal cord injury site. Taken together, the present results indicate that FAS acts as a promoting factor of BMSC migration both in vitro and in vivo, possibly by inducing actin stress fiber formation via the MAPK signaling pathway, suggesting that FAS might possess synergistic effect in stem cell transplantation of CNS trauma.
Collapse
|
44
|
Song Y, Lee SY, Kim AR, Kim S, Heo J, Shum D, Kim SH, Choi I, Lee YJ, Seo HR. Identification of radiation-induced EndMT inhibitors through cell-based phenomic screening. FEBS Open Bio 2018; 9:82-91. [PMID: 30652076 PMCID: PMC6325571 DOI: 10.1002/2211-5463.12552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/09/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022] Open
Abstract
Radiation‐induced pulmonary fibrosis (RIPF) triggers physiological abnormalities. Endothelial‐to‐mesenchymal transition (EndMT) is the phenotypic conversion of endothelial cells to fibroblast‐like cells and is involved in RIPF. In this study, we established a phenomic screening platform to measure radiation‐induced stress fibers and optimized the conditions for high‐throughput screening using human umbilical vein endothelial cells (HUVECs) to develop compounds targeting RIPF. The results of screening indicated that CHIR‐99021 reduced radiation‐induced fibrosis, as evidenced by an enlargement of cell size and increases in actin stress fibers and α‐smooth muscle actin expression. These effects were elicited without inducing serious toxicity in HUVECs, and the cytotoxic effect of ionizing radiation (IR) in nonsmall cell lung cancer was also enhanced. These results demonstrate that CHIR‐99021 enhanced the effects of IR therapy by suppressing radiation‐induced EndMT in lung cancer.
Collapse
Affiliation(s)
- Yeonhwa Song
- Cancer Biology Laboratory Institut Pasteur Korea Seongnam-si Korea
| | - Su-Yeon Lee
- Cancer Biology Laboratory Institut Pasteur Korea Seongnam-si Korea
| | - A-Ram Kim
- Cancer Biology Laboratory Institut Pasteur Korea Seongnam-si Korea
| | - Sanghwa Kim
- Cancer Biology Laboratory Institut Pasteur Korea Seongnam-si Korea
| | - Jinyeong Heo
- Assay Development and Screening Institut Pasteur Korea Seongnam-si Korea
| | - David Shum
- Assay Development and Screening Institut Pasteur Korea Seongnam-si Korea
| | - Se-Hyuk Kim
- Cancer Biology Laboratory Institut Pasteur Korea Seongnam-si Korea
| | - Inhee Choi
- Medicinal Chemistry Institut Pasteur Korea Seongnam-si Korea
| | - Yoon-Jin Lee
- Division of Radiation Effects Korea Institute of Radiological and Medical Sciences Seoul Korea
| | - Haeng Ran Seo
- Cancer Biology Laboratory Institut Pasteur Korea Seongnam-si Korea
| |
Collapse
|
45
|
Raman A, Parnell SC, Zhang Y, Reif GA, Dai Y, Khanna A, Daniel E, White C, Vivian JL, Wallace DP. Periostin overexpression in collecting ducts accelerates renal cyst growth and fibrosis in polycystic kidney disease. Am J Physiol Renal Physiol 2018; 315:F1695-F1707. [PMID: 30332313 DOI: 10.1152/ajprenal.00246.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In polycystic kidney disease (PKD), persistent activation of cell proliferation and matrix production contributes to cyst growth and fibrosis, leading to progressive deterioration of renal function. Previously, we showed that periostin, a matricellular protein involved in tissue repair, is overexpressed by cystic epithelial cells of PKD kidneys. Periostin binds αVβ3-integrins and activates integrin-linked kinase (ILK), leading to Akt/mammalian target of rapamycin (mTOR)-mediated proliferation of human PKD cells. By contrast, periostin does not stimulate the proliferation of normal human kidney cells. This difference in the response to periostin is due to elevated expression of αVβ3-integrins by cystic cells. To determine whether periostin accelerates cyst growth and fibrosis, we generated mice with conditional overexpression of periostin in the collecting ducts (CDs). Ectopic CD expression of periostin was not sufficient to induce cyst formation or fibrosis in wild-type mice. However, periostin overexpression in pcy/pcy ( pcy) kidneys significantly increased mTOR activity, cell proliferation, cyst growth, and interstitial fibrosis; and accelerated the decline in renal function. Moreover, CD-specific overexpression of periostin caused a decrease in the survival of pcy mice. These pathological changes were accompanied by increased renal expression of vimentin, α-smooth muscle actin, and type I collagen. We also found that periostin increased gene expression of pathways involved in repair, including integrin and growth factor signaling and ECM production, and it stimulated focal adhesion kinase, Rho GTPase, cytoskeletal reorganization, and migration of PKD cells. These results suggest that periostin stimulates signaling pathways involved in an abnormal tissue repair process that contributes to cyst growth and fibrosis in PKD.
Collapse
Affiliation(s)
- Archana Raman
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - Stephen C Parnell
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas
| | - Yan Zhang
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Gail A Reif
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Yuqiao Dai
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Aditi Khanna
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Emily Daniel
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Corey White
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Jay L Vivian
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Darren P Wallace
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| |
Collapse
|
46
|
Bade ND, Kamien RD, Assoian RK, Stebe KJ. Edges impose planar alignment in nematic monolayers by directing cell elongation and enhancing migration. SOFT MATTER 2018; 14:6867-6874. [PMID: 30079410 PMCID: PMC7359601 DOI: 10.1039/c8sm00612a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Boundaries play an important role in the emergence of nematic order in classical liquid crystal systems; we explore their importance in adhesive cells that form active nematics. In particular, we study how cells are affected by an edge, which in our experiments is a boundary between adhesive and non-adhesive domains on a planar surface. We find that such edges induce elongation and direct the migration of isolated fibroblasts. In confluent monolayers, these elongated cells co-align and migrate to form an active, two-dimensional nematic structure in which edges enforce planar alignment and provide local slip to streams of cells that move along them. On an adhesive square island of dimensions 1 mm × 1 mm, cells near the edges in confluent nematic monolayers have enhanced alignment and velocity. The corners of the adhesive island seed defects with signs that depend on the direction of the motion of the streams of cells that meet there. Distortions emerge with rotations of -π/2 to form a -1/4 defect for streams that move clockwise or counterclockwise, and +π/2 to form a +1/4 defect for converging streams. We explore how cells transmit alignment information to each other in the absence of an edge by studying cell pairs and find that while such pairs do co-align, this alignment is only transient and short lived. These results shed light on the importance of edges in imposing nematic order in confluent monolayers and how edges can be used as tools to pattern the long-range organization of cells for tissue engineering applications.
Collapse
Affiliation(s)
- Nathan D Bade
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Randall D Kamien
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard K Assoian
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA and Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Zamani L, Lundqvist M, Zhang Y, Aberg M, Edfors F, Bidkhori G, Lindahl A, Mie A, Mardinoglu A, Field R, Turner R, Rockberg J, Chotteau V. High Cell Density Perfusion Culture has a Maintained Exoproteome and Metabolome. Biotechnol J 2018; 13:e1800036. [DOI: 10.1002/biot.201800036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/03/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Leila Zamani
- Department Industrial Biotechnology; School of Engineering Sciences in Chemistry, Biotechnology, and Health; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
| | - Magnus Lundqvist
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; Wallenberg Centre for Protein Research; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; AdBIOPRO, Centre for Advanced Bioproduction by Continuous Processing; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
| | - Ye Zhang
- Department Industrial Biotechnology; School of Engineering Sciences in Chemistry, Biotechnology, and Health; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; Wallenberg Centre for Protein Research; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
| | - Magnus Aberg
- Department of Analytical Chemistry; Stockholm University; 106 91 Stockholm Sweden
| | - Fredrik Edfors
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; Science for Life Laboratory; KTH-Royal Institute of Technology; 171 65 Stockholm Sweden
| | - Gholamreza Bidkhori
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; Science for Life Laboratory; KTH-Royal Institute of Technology; 171 65 Stockholm Sweden
| | - Anna Lindahl
- Department of Oncology-Pathology; Science for Life Laboratory; Karolinska Institutet; 171 65 Solna Sweden
| | - Axel Mie
- Department of Clinical Science and Education; Karolinska Institute; 118 83 Solna Sweden
| | - Adil Mardinoglu
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; Science for Life Laboratory; KTH-Royal Institute of Technology; 171 65 Stockholm Sweden
| | - Raymond Field
- Department of Oncology-Pathology; Science for Life Laboratory; Karolinska Institutet; 171 65 Solna Sweden
| | - Richard Turner
- Department of Oncology-Pathology; Science for Life Laboratory; Karolinska Institutet; 171 65 Solna Sweden
| | - Johan Rockberg
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; Wallenberg Centre for Protein Research; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; AdBIOPRO, Centre for Advanced Bioproduction by Continuous Processing; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
| | - Veronique Chotteau
- Department Industrial Biotechnology; School of Engineering Sciences in Chemistry, Biotechnology, and Health; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; Wallenberg Centre for Protein Research; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
- School of Engineering Sciences in Chemistry, Biotechnology, and Health; AdBIOPRO, Centre for Advanced Bioproduction by Continuous Processing; KTH-Royal Institute of Technology; 106 91 Stockholm Sweden
- Biopharmaceutical Development; MedImmune; CB21 6GH Cambridge United Kingdom
| |
Collapse
|
48
|
Hall ET, Ogden SK. Preserve Cultured Cell Cytonemes through a Modified Electron Microscopy Fixation. Bio Protoc 2018; 8:e2898. [PMID: 30906805 DOI: 10.21769/bioprotoc.2898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Immunocytochemistry of cultured cells is a common and effective technique for determining compositions and localizations of proteins within cellular structures. However, traditional cultured cell fixation and staining protocols are not effective in preserving cultured cell cytonemes, long specialized filopodia that are dedicated to morphogen transport. As a result, limited mechanistic interrogation has been performed to assess their regulation. We developed a fixation protocol for cultured cells that preserves cytonemes, which allows for immunofluorescent analysis of endogenous and over-expressed proteins localizing to the delicate cellular structures.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Cell and Molecular Biology, St. Jude Children's Hospital, Memphis, TN, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Hospital, Memphis, TN, USA
| |
Collapse
|
49
|
Lee S, Kassianidou E, Kumar S. Actomyosin stress fiber subtypes have unique viscoelastic properties and roles in tension generation. Mol Biol Cell 2018; 29:1992-2004. [PMID: 29927349 PMCID: PMC6232976 DOI: 10.1091/mbc.e18-02-0106] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actomyosin stress fibers (SFs) support cell shape and migration by directing intracellular tension to the extracellular matrix (ECM) via focal adhesions. Migrating cells exhibit three SF subtypes (dorsal SFs, transverse arcs, and ventral SFs), which differ in their origin, location, and ECM connectivity. While each subtype is hypothesized to play unique structural roles, this idea has not been directly tested at the single-SF level. Here, we interrogate the mechanical properties of single SFs of each subtype based on their retraction kinetics following laser incision. While each SF subtype bears distinct mechanical properties, these properties are highly interdependent, with incision of dorsal fibers producing centripetal recoil of adjacent transverse arcs and the retraction of incised transverse arcs being limited by attachment points to dorsal SFs. These observations hold whether cells are allowed to spread freely or are confined to crossbow ECM patterns. Consistent with this interdependence, subtype-specific knockdown of dorsal SFs (palladin) or transverse arcs (mDia2) influences ventral SF retraction. These altered mechanics are partially phenocopied in cells cultured on ECM microlines that preclude assembly of dorsal SFs and transverse arcs. Our findings directly demonstrate that different SF subtypes play distinct roles in generating tension and form a mechanically interdependent network.
Collapse
Affiliation(s)
- Stacey Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762
| | - Elena Kassianidou
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762
| | - Sanjay Kumar
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1762
| |
Collapse
|
50
|
Focal Adhesions Undergo Longitudinal Splitting into Fixed-Width Units. Curr Biol 2018; 28:2033-2045.e5. [PMID: 29910076 DOI: 10.1016/j.cub.2018.04.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/12/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023]
Abstract
Focal adhesions (FAs) and stress fibers (SFs) act in concert during cell motility and in response to the extracellular environment. Although the structures of mature FAs and SFs are well studied, less is known about how they assemble and mature de novo during initial cell spreading. In this study using live-cell Airyscan microscopy, we find that FAs undergo "splitting" during their assembly, in which the FA divides along its longitudinal axis. Before splitting, FAs initially appear as assemblies of multiple linear units (FAUs) of 0.3-μm width. Splitting occurs between FAUs, resulting in mature FAs of either a single FAU or of a small number of FAUs that remain attached at their distal tips. Variations in splitting occur based on cell type and extracellular matrix. Depletion of adenomatous polyposis coli (APC) or vasodilator-stimulated phosphoprotein (VASP) results in reduced splitting. FA-associated tension increases progressively during splitting. Early in cell spreading, ventral SFs are detected first, with other SF sub-types (transverse arcs and dorsal SFs) being detected later. Our findings suggest that the fundamental unit of FAs is the fixed-width FAU, and that dynamic interactions between FAUs control adhesion morphology.
Collapse
|