1
|
Ursu GM, Krawic C, Zhitkovich A. Nuclear SUMOylation and Proteotoxic Stress Responses to Metals with Different Ligand Preferences. Chem Res Toxicol 2025; 38:942-953. [PMID: 40243484 DOI: 10.1021/acs.chemrestox.5c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Proteins are vulnerable to damage by a broad range of electrophiles, and cells contain several proteotoxic stress-monitoring systems. Main transcriptional responses to protein damage are driven by cytosolic HSF1 and NRF2 using soft nucleophile Cys-SH as sensors of electrophiles. It is unclear what stress responses are activated by poorly SH-reactive hard electrophiles. We examined protein damage responses in normal human lung cells with equitoxic doses of three carcinogenic metals with different electrophilic softness: soft, cadmium(II), intermediate, cobalt(II), and hard, chromium(III) delivered into cells using chromium(VI)/chromate. Cd(II) strongly activated cytosolic NRF2 and HSF1, produced soluble and insoluble polyubiquitinated proteins in the cytosol, and moderately elevated ER and mitochondrial unfolded protein responses and nuclear polySUMOylation. Cr(III) primarily induced nuclear protein damage and polySUMOylation and was negative for the activation of all cytoplasmic stress responses. Co(II) triggered HSF1, NRF2, and other responses seen with both Cr(III) and Cd(II) except for cytosolic polyubiquitin aggregates. Physiological levels of the antioxidant ascorbate inhibited but did not eliminate NRF2 activation by Co(II) and enhanced polySUMOylation by Cr(VI/III). For all three metals, SUMOylated proteins accumulated in nuclear PML bodies, and their formation was suppressed by PML knockdown. Inhibition of SUMOylation decreased transcription and, even more severely, protein expression of NRF2 and HSF1 targets by Cd(II) and Co(II), revealing the importance of this nuclear response in the functionality of cytosolic stress-activated pathways. Our findings demonstrate that soft and hard metal electrophiles elicit distinct proteotoxic stress responses, with the notable inability of the hard electrophile Cr(III) to trigger cytosolic damage-monitoring systems.
Collapse
Affiliation(s)
- Giorgiana Madalina Ursu
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02903, United States
| | - Casey Krawic
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02903, United States
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02903, United States
| |
Collapse
|
2
|
Jarosiewicz M, Duchnowicz P, Bukowska B. Assessment of membrane and metabolic parameters of erythrocytes exposed to selected bromophenols. Sci Rep 2025; 15:13004. [PMID: 40234590 PMCID: PMC12000553 DOI: 10.1038/s41598-025-97707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025] Open
Abstract
Bromophenols are aromatic compounds containing one or more benzene rings substituted with hydroxyl groups, bromine atoms, and other functional groups. Due to their widespread industrial use, bromophenols such as 2,4-dibromophenol (2,4-DBP), 2,4,6-tribromophenol (2,4,6-TBP) and pentabromophenol (PBP) have become prevalent environmental contaminants. These compounds are primarily found in air, water, and soil and bioaccumulate in various organisms, including fish and birds. Studies have linked bromophenols to oxidative stress, endocrine disruption, and adverse health effects, emphasizing the need to further investigate their biological impacts. Due to their high hydrophobicity and bioaccumulative potential, BPs may penetrate biological membranes, potentially altering their structural and functional properties. This study aimed to evaluate the impact of three bromophenols: 2,4-DBP, 2,4,6-TBP and PBP on erythrocyte membrane parameters and metabolic parameters such as ATP level. These findings highlight the differential effects of bromophenols on erythrocyte membranes, with 2,4-DBP primarily disrupting membrane fluidity and intracellular viscosity, while PBP predominantly affects oxidative processes. This study provides new insights into the potential toxicological mechanisms of BPs and their impact on cellular integrity. Moreover, the number of bromine atoms in bromophenols plays a crucial role in inducing damage to specific cellular structures and, ultimately, in determining their toxicity.
Collapse
Affiliation(s)
- Monika Jarosiewicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland.
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland.
| | - Piotr Duchnowicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| |
Collapse
|
3
|
Godoy P, Hao N. Design principles of gene circuits for longevity. Trends Cell Biol 2025:S0962-8924(25)00040-6. [PMID: 40082090 DOI: 10.1016/j.tcb.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
Aging is a dynamic process that is driven by cellular damage and disruption of homeostatic gene regulatory networks (GRNs). Traditional studies often focus on individual genes, but understanding their interplay is key to unraveling the mechanisms of aging. This review explores the gene circuits that influence longevity and highlights the role of feedback loops in maintaining cellular balance. The SIR2-HAP circuit in yeast serves as a model to explore how mutual inhibition between pathways influences aging trajectories and how engineering stable fixed points or oscillations within these circuits can extend lifespan. Feedback loops crucial for maintaining homeostasis are also reviewed, and we highlight how their destabilization accelerates aging. By leveraging systems and synthetic biology, strategies are proposed that may stabilize these loops within single cells, thereby enhancing their resilience to aging-related damage.
Collapse
Affiliation(s)
- Paula Godoy
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Zhang B, Chen J, Wang J, Pan X. Arsenic exposure induces neural cells senescence and abnormal lipid droplet accumulation leading to social memory impairment in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125779. [PMID: 39894154 DOI: 10.1016/j.envpol.2025.125779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
The long-term harmful effects of arsenic exposure remain one of the important public health issues. The effects of arsenic exposure on the central nervous system, particularly concerning brain structure and function, have been garnering increasing attention. Hence, the aim of this study was to investigate the impact of chronic low-dose arsenic exposure on murine social memory and to elucidate the underlying molecular mechanisms. Male C57BL/6 mice at six months of age were randomly assigned to a control group and three treatment groups with different arsenic concentrations (50, 100, and 200 μg/L), with exposure durations of 30, 90, 180, and 360 days. The five-social memory test and three-chamber social memory test results indicated that chronic low-dose arsenic exposure disrupted social memory in mice. Further analysis revealed that arsenic exposure led to degeneration of neurons within the dorsal CA2 of the hippocampus (dCA2) and the lateral entorhinal cortex (LEC), which are pivotal for the modulation of social memory, and dCA2 neurons demonstrated structural disruptions and cytoplasmic fragmentation. In addition, arsenic exposure induced neurons and glial cells senescence in both dCA2 and LEC, with a particularly pronounced effect in microglia, and worse with dosage increasing of arsenic exposure, correlating with elevated expression levels of p16INK4A, ferritin light chain and the senescence-associated secretory factors TNF-α and IL-1β, and reduced expression of Lamin B1. Moreover, arsenic exposure triggered substantial cytoplasmic lipid droplets accumulation in neurons, astrocytes and microglia, with an upregulation of PLIN2 expression, a protein associated with lipid droplet formation in astrocytes. At the same time, the aberrant accumulation of lipid droplets further aggravated the astrocytes and microglia aging, especially microglia. Additionally, correlation analysis revealed that social memory impairment was negatively correlated with nerve cell senescence and lipid accumulation. Our findings suggest that arsenic exposure induced cellular functional abnormalities by triggering cellular senescence and the accumulation of lipid droplets, thereby exacerbated neuronal degeneration and result in impaired social memory in mice.
Collapse
Affiliation(s)
- Bo Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 561113, China.
| | - Junhong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Jiaojiao Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Xueli Pan
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 561113, China.
| |
Collapse
|
5
|
Koh D, Lee Y, Kim K, Jeon HB, Oh C, Hwang S, Lim M, Lee KP, Park Y, Yang YR, Kim YK, Shim D, Gorospe M, Noh JH, Kim KM. Reduced UPF1 levels in senescence impair nonsense-mediated mRNA decay. Commun Biol 2025; 8:83. [PMID: 39827266 PMCID: PMC11742877 DOI: 10.1038/s42003-025-07502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Cells regulate gene expression through various RNA regulatory mechanisms, and this regulation often becomes less efficient with age, contributing to accelerated aging and various age-related diseases. Nonsense-mediated mRNA decay (NMD), a well-characterized RNA surveillance mechanism, degrades aberrant mRNAs with premature termination codons (PTCs) to prevent the synthesis of truncated proteins. While the role of NMD in cancer and developmental and genetic diseases is well documented, its implications in human aging remain largely unexplored. This study reveals a significant decline in the levels of the protein UPF1, a key player in NMD, during cellular senescence. Additionally, NMD substrates accumulate in senescent cells, along with decreased levels of cap-binding protein 80/20 (CBP80/20)-dependent translation (CT) factors and reduced binding to active polysomes, indicating reduced efficiency of NMD. Moreover, knockdown of UPF1 in proliferating WI-38 cells induces senescence, as evidenced by increased senescence-associated β-galactosidase activity, alterations in senescence-associated molecular markers, increased endogenous γ-H2AX levels, and reduced cell proliferation. These findings suggest that the decline in UPF1 levels during cellular senescence accelerates the senescent phenotype by impairing NMD activity and the consequent accumulation of abnormal mRNA.
Collapse
Affiliation(s)
- Dahyeon Koh
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yebin Lee
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyuchan Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyeong Bin Jeon
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Chaehwan Oh
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sangik Hwang
- Molecular Aging Biology Laboratory (MABL), Department of Biochemistry, College of Natural Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Minjung Lim
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kwang-Pyo Lee
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yeonkyoung Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong Ryoul Yang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yoon Ki Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ji Heon Noh
- Molecular Aging Biology Laboratory (MABL), Department of Biochemistry, College of Natural Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Kyoung Mi Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
6
|
Bora JR, Mahalakshmi R. Empowering canonical biochemicals with cross-linked novelty: Recursions in applications of protein cross-links. Proteins 2025; 93:11-25. [PMID: 37589191 PMCID: PMC7616502 DOI: 10.1002/prot.26571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
Diversity in the biochemical workhorses of the cell-that is, proteins-is achieved by the innumerable permutations offered primarily by the 20 canonical L-amino acids prevalent in all biological systems. Yet, proteins are known to additionally undergo unusual modifications for specialized functions. Of the various post-translational modifications known to occur in proteins, the recently identified non-disulfide cross-links are unique, residue-specific covalent modifications that confer additional structural stability and unique functional characteristics to these biomolecules. We review an exclusive class of amino acid cross-links encompassing aromatic and sulfur-containing side chains, which not only confer superior biochemical characteristics to the protein but also possess additional spectroscopic features that can be exploited as novel chromophores. Studies of their in vivo reaction mechanism have facilitated their specialized in vitro applications in hydrogels and protein anchoring in monolayer chips. Furthering the discovery of unique canonical cross-links through new chemical, structural, and bioinformatics tools will catalyze the development of protein-specific hyperstable nanostructures, superfoods, and biotherapeutics.
Collapse
Affiliation(s)
- Jinam Ravindra Bora
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
7
|
Kim S, Kim E, Park M, Kim SH, Kim BG, Na S, Sadongo VW, Wijesinghe WCB, Eom YG, Yoon G, Jeong H, Hwang E, Lee C, Myung K, Kim CU, Choi JM, Min SK, Kwon TH, Min D. Hidden route of protein damage through oxygen-confined photooxidation. Nat Commun 2024; 15:10873. [PMID: 39738007 PMCID: PMC11686182 DOI: 10.1038/s41467-024-55168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Oxidative modifications can disrupt protein folds and functions, and are strongly associated with human aging and diseases. Conventional oxidation pathways typically involve the free diffusion of reactive oxygen species (ROS), which primarily attack the protein surface. Yet, it remains unclear whether and how internal protein folds capable of trapping oxygen (O2) contribute to oxidative damage. Here, we report a hidden pathway of protein damage, which we refer to as O2-confined photooxidation. In this process, O2 is captured in protein cavities and subsequently converted into multiple ROS, primarily mediated by tryptophan residues under blue light irradiation. The generated ROS then attack the protein interior through constrained diffusion, causing protein damage. The effects of this photooxidative reaction appear to be extensive, impacting a wide range of cellular proteins, as supported by whole-cell proteomic analysis. This photooxidative mechanism may represent a latent oxidation pathway in human tissues directly exposed to visible light, such as skin and eyes.
Collapse
Affiliation(s)
- Seoyoon Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Eojin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Mingyu Park
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Seong Ho Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
| | - Seungjin Na
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Victor W Sadongo
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - W C Bhashini Wijesinghe
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Yu-Gon Eom
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Gwangsu Yoon
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Hannah Jeong
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Eunhye Hwang
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Chaiheon Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Chae Un Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jeong-Mo Choi
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
- Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| | - Tae-Hyuk Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
- X-Dynamic Research Center, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
- X-Dynamic Research Center, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
8
|
Riaz Z, Richardson GS, Jin H, Zenitsky G, Anantharam V, Kanthasamy A, Kanthasamy AG. Nuclear pore and nucleocytoplasmic transport impairment in oxidative stress-induced neurodegeneration: relevance to molecular mechanisms in Pathogenesis of Parkinson's and other related neurodegenerative diseases. Mol Neurodegener 2024; 19:87. [PMID: 39578912 PMCID: PMC11585115 DOI: 10.1186/s13024-024-00774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and facilitate the exchange of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The dysfunction of the NPC and nuclear transport plays a significant role in aging and the pathogenesis of various neurodegenerative diseases. Common features among these neurodegenerative diseases, including Parkinson's disease (PD), encompass mitochondrial dysfunction, oxidative stress and the accumulation of insoluble protein aggregates in specific brain regions. The susceptibility of dopaminergic neurons to mitochondrial stress underscores the pivotal role of mitochondria in PD progression. Disruptions in mitochondrial-nuclear communication are exacerbated by aging and α-synuclein-induced oxidative stress in PD. The precise mechanisms underlying mitochondrial impairment-induced neurodegeneration in PD are still unclear. Evidence suggests that perturbations in dopaminergic neuronal nuclei are linked to PD-related neurodegeneration. These perturbations involve structural damage to the nuclear envelope and mislocalization of pivotal transcription factors, potentially driven by oxidative stress or α-synuclein pathology. The presence of protein aggregates, pathogenic mutations, and ongoing oxidative stress can exacerbate the dysfunction of NPCs, yet this mechanism remains understudied in the context of oxidative stress-induced PD. This review summarizes the link between mitochondrial dysfunction and dopaminergic neurodegeneration and outlines the current evidence for nuclear envelope and nuclear transport abnormalities in PD, particularly in oxidative stress. We highlight the potential role of nuclear pore and nucleocytoplasmic transport dysfunction in PD and stress the importance of systematically investigating NPC components in PD.
Collapse
Affiliation(s)
- Zainab Riaz
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Gabriel S Richardson
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Gary Zenitsky
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Arthi Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Anumantha G Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
9
|
Rudan Dimlić M, Raić S, Močibob M, Sanader Maršić Ž, Yao Z, Radman M, Stagljar I. Oxidative protein damage negatively affects protein-protein interaction: The case of KRAS-cRAF. Biochem Biophys Res Commun 2024; 734:150792. [PMID: 39378785 DOI: 10.1016/j.bbrc.2024.150792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Protein-protein interactions (PPIs) play crucial roles in cellular signaling, transmitting signals from the cell surface to its interior. One of the most important signaling cascades is the RAS-RAF-MEK-ERK pathway. This pathway is initiated by various upstream signaling reactions, including receptor tyrosine kinase (RTK) activation, and it controls many biological functions like cell proliferation, differentiation, and survival. Once RAS is activated, it binds RAF and relays the signal to downstream proteins. The RAS-binding domain (RBD) in RAF protein plays a crucial role in this process, facilitating the RAS-ERK pathway signaling. In this study, we explored the effect of oxidative stress induced by UV radiation on the KRAS-RBD interaction. Using the Split Intein-Mediated Protein Ligation (SIMPL) method, we assessed the impact of different UV doses on KRAS-RBD interactions and observed a disruption of this interaction at higher doses. UV-treated samples exhibited high levels of protein carbonylation, as detected by Oxime Blot and mass spectrometry (MS) analysis, indicating oxidative damage. The MS results provided detailed insights into specific carbonylation modifications on the KRAS protein. Our study demonstrates that protein oxidation and carbonylation can disrupt protein-protein interactions, specifically the KRAS/c-RAF interaction. These findings highlight the impact of oxidative stress on signaling pathways, such as those triggered by UV irradiation. A deeper understanding of these molecular changes may aid in developing therapies targeting diseases linked to oxidative stress, including cancer.
Collapse
Affiliation(s)
| | - Sanda Raić
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Marko Močibob
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Zhong Yao
- Donnelly Centre, University of Toronto, Temerty School of Medicine, Ontario, Canada
| | | | - Igor Stagljar
- Mediterranean Institute for Life Sciences, Split, Croatia; Donnelly Centre, University of Toronto, Temerty School of Medicine, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Ontario, Canada; School of Medicine, University of Split, Croatia.
| |
Collapse
|
10
|
Santos DF, Simão S, Nóbrega C, Bragança J, Castelo-Branco P, Araújo IM. Oxidative stress and aging: synergies for age related diseases. FEBS Lett 2024; 598:2074-2091. [PMID: 39112436 DOI: 10.1002/1873-3468.14995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 10/04/2024]
Abstract
Aging is characterized by a progressive decline in physiological function and underlies several disabilities, including the increased sensitivity of cells and tissues to undergo pathological oxidative stress. In recent years, efforts have been made to better understand the relationship between age and oxidative stress and further develop therapeutic strategies to minimize the impact of both events on age-related diseases. In this work, we review the impact of the oxidant and antioxidant systems during aging and disease development and discuss the crosstalk of oxidative stress and other aging processes, with a focus on studies conducted in elderly populations.
Collapse
Affiliation(s)
- Daniela F Santos
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
| | - Sónia Simão
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
| | - José Bragança
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Inês M Araújo
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
11
|
Ma W, He C, Shen C, Zhang G, Pan J, Tang Y, Wang J, Gao T. Bead-based spontaneous Raman codes for multiplex immunoassay. Anal Chim Acta 2024; 1316:342813. [PMID: 38969419 DOI: 10.1016/j.aca.2024.342813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/29/2024] [Accepted: 06/01/2024] [Indexed: 07/07/2024]
Abstract
In the immunoassay process, for fulfilling the need to identify multiple analytes in a small amount of complex sample matrix, it is desirable to develop highly efficient and specific multiplex suspension array technology. Raman coding strategy offers an attractive solution to code the suspension arrays by simply combing narrow spectral bands with stable signal intensities through solid-phase synthesis on the resin beads. Based on this strategy, we report the bead-based spontaneous Raman codes for multiplex immunoassay. The study resulted in superior selectivity of the Raman-encoded beads for binding with single and multiple analytes, respectively. With the use of mixed types of Raman-encoded immunoassay beads, multiple targets in small amounts of samples were identified rapidly and accurately. By confirming the feasibility of bead-based spontaneous Raman codes for multiplex immunoassay, we anticipate this novel technology to be widely applied in the near future.
Collapse
Affiliation(s)
- Weiwei Ma
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Caili He
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Chengyue Shen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Guihao Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Jun Pan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Yuchen Tang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Jinzhi Wang
- Department of Chemistry, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
12
|
Lippi A, Krisko A. Protein aggregation: A detrimental symptom or an adaptation mechanism? J Neurochem 2024; 168:1426-1441. [PMID: 37694504 DOI: 10.1111/jnc.15955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Protein quality control mechanisms oversee numerous aspects of protein lifetime. From the point of protein synthesis, protein homeostasis machineries take part in folding, solubilization, and/or degradation of impaired proteins. Some proteins follow an alternative path upon loss of their solubility, thus are secluded from the cytosol and form protein aggregates. Protein aggregates differ in their function and composition, rendering protein aggregation a complex phenomenon that continues to receive plenty of attention in the scientific and medical communities. Traditionally, protein aggregates have been associated with aging and a large spectrum of protein folding diseases, such as neurodegenerative diseases, type 2 diabetes, or cataract. However, a body of evidence suggests that they may act as an adaptive mechanism to overcome transient stressful conditions, serving as a sink for the removal of misfolded proteins from the cytosol or storage compartments for machineries required upon stress release. In this review, we present examples and evidence elaborating different possible roles of protein aggregation and discuss their potential roles in stress survival, aging, and disease, as well as possible anti-aggregation interventions.
Collapse
Affiliation(s)
- Alice Lippi
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Jonak K, Suppanz I, Bender J, Chacinska A, Warscheid B, Topf U. Ageing-dependent thiol oxidation reveals early oxidation of proteins with core proteostasis functions. Life Sci Alliance 2024; 7:e202302300. [PMID: 38383455 PMCID: PMC10881836 DOI: 10.26508/lsa.202302300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Oxidative post-translational modifications of protein thiols are well recognized as a readily occurring alteration of proteins, which can modify their function and thus control cellular processes. The development of techniques enabling the site-specific assessment of protein thiol oxidation on a proteome-wide scale significantly expanded the number of known oxidation-sensitive protein thiols. However, lacking behind are large-scale data on the redox state of proteins during ageing, a physiological process accompanied by increased levels of endogenous oxidants. Here, we present the landscape of protein thiol oxidation in chronologically aged wild-type Saccharomyces cerevisiae in a time-dependent manner. Our data determine early-oxidation targets in key biological processes governing the de novo production of proteins, protein folding, and degradation, and indicate a hierarchy of cellular responses affected by a reversible redox modification. Comparison with existing datasets in yeast, nematode, fruit fly, and mouse reveals the evolutionary conservation of these oxidation targets. To facilitate accessibility, we integrated the cross-species comparison into the newly developed OxiAge Database.
Collapse
Affiliation(s)
- Katarzyna Jonak
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ida Suppanz
- CIBSS Centre for Integrative Biological Signalling Research, University of Freiburg, Freiburg, Germany
| | - Julian Bender
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Research, University of Freiburg, Freiburg, Germany
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ulrike Topf
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Zhang XY, Han PP, Zhao YN, Shen XY, Bi X. Crosstalk between autophagy and ferroptosis mediate injury in ischemic stroke by generating reactive oxygen species. Heliyon 2024; 10:e28959. [PMID: 38601542 PMCID: PMC11004216 DOI: 10.1016/j.heliyon.2024.e28959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Stroke represents a significant threat to global human health, characterized by high rates of morbidity, disability, and mortality. Predominantly, strokes are ischemic in nature. Ischemic stroke (IS) is influenced by various cell death pathways, notably autophagy and ferroptosis. Recent studies have increasingly highlighted the interplay between autophagy and ferroptosis, a process likely driven by the accumulation of reactive oxygen species (ROS). Post-IS, either the inhibition of autophagy or its excessive activation can escalate ROS levels. Concurrently, the interaction between ROS and lipids during ferroptosis further augments ROS accumulation. Elevated ROS levels can provoke endoplasmic reticulum stress-induced autophagy and, in conjunction with free iron (Fe2+), can trigger ferroptosis. Moreover, ROS contribute to protein and lipid oxidation, endothelial dysfunction, and an inflammatory response, all of which mediate secondary brain injury following IS. This review succinctly explores the mechanisms of ROS-mediated crosstalk between autophagy and ferroptosis and the detrimental impact of increased ROS on IS. It also offers novel perspectives for IS treatment strategies.
Collapse
Affiliation(s)
- Xing-Yu Zhang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping-Ping Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Ning Zhao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
15
|
Marcon F, Giunta S, Bignami M. Emerging roles of DNA repair factors in the stability of centromeres. Semin Cell Dev Biol 2024; 156:121-129. [PMID: 37852903 DOI: 10.1016/j.semcdb.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Satellite DNA sequences are an integral part of centromeres, regions critical for faithful segregation of chromosomes during cell division. Because of their complex repetitive structure, satellite DNA may act as a barrier to DNA replication and other DNA based transactions ultimately resulting in chromosome breakage. Over the past two decades, several DNA repair proteins have been shown to bind and function at centromeres. While the importance of these repair factors is highlighted by various structural and numerical chromosome aberrations resulting from their inactivation, their roles in helping to maintain genome stability by solving the intrinsic difficulties of satellite DNA replication or promoting their repair are just starting to emerge. In this review, we summarize the current knowledge on the role of DNA repair and DNA damage response proteins in maintaining the structure and function of centromeres in different contexts. We also report the recent connection between the roles of specific DNA repair factors at these genomic loci with age-related increase of chromosomal instability under physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesca Marcon
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Simona Giunta
- Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185, Italy
| | - Margherita Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
16
|
Brahma D, Sarangi AN, Kaushik R, Gupta AN. Oxidative stress induced conformational changes of human serum albumin. Phys Chem Chem Phys 2024; 26:8528-8538. [PMID: 38411624 DOI: 10.1039/d4cp00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Oxidative stress, generated by reactive oxygen species (ROS), is responsible for the loss of structure and functionality of proteins and is associated with several aging-related diseases. Here, we report an in vitro study to gauge the effect of ROS on the structural rearrangement of human serum albumin (HSA), a plasma protein, through metal-catalyzed oxidation (MCO) at physiological temperature through various biophysical techniques like UV-vis absorption, circular dichroism (CD), differential scanning calorimetry (DSC), MALDI-TOF, FTIR, and Raman spectroscopy. The UV-vis spectra of oxidized HSA show an early blueshift, signifying the unfolding of the protein because of ROS followed by the broadening of the absorption peak at a longer time. The DSC data corroborate the observation, revealing an exothermic transition for the oxidized sample at a longer time, suggesting in situ aggregation. The CD and FTIR spectra indicate the associated secondary structural changes occurring with time, depicting the variation of the helical content of HSA. The amide-III analysis of Raman data also complements the structural changes, and MALDI-TOF data show the mass distribution with time. Overall, this work might help determine the effect of oxidation on the biological activity of serum albumin as it can impact the physiological properties of HSA.
Collapse
Affiliation(s)
- Debdip Brahma
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur, 721302, India.
| | - Akshay Narayan Sarangi
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur, 721302, India.
| | - Rupal Kaushik
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur, 721302, India.
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur, 721302, India.
| |
Collapse
|
17
|
Trivedi R, Knopf B, Rakoczy S, Manocha GD, Brown-Borg H, Jurivich DA. Disrupted HSF1 regulation in normal and exceptional brain aging. Biogerontology 2024; 25:147-160. [PMID: 37707683 PMCID: PMC10794279 DOI: 10.1007/s10522-023-10063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Brain aging is a major risk factor for cognitive diseases such as Alzheimer's disease (AD) and vascular dementia. The rate of aging and age-related pathology are modulated by stress responses and repair pathways that gradually decline with age. However, recent reports indicate that exceptional longevity sustains and may even enhance the stress response. Whether normal and exceptional aging result in either attenuated or enhanced stress responses across all organs is unknown. This question arises from our understanding that biological age differs from chronological age and evidence that the rate of aging varies between organs. Thus, stress responses may differ between organs and depend upon regenerative capacity and ability to manage damaged proteins and proteotoxicity. To answer these questions, we assessed age-dependent changes in brain stress responses with normally aged wild type and long-lived Dwarf mice. Results from this study show that normal aging unfavorably impacts activation of the brain heat shock (HS) axis with key changes noted in the transcription factor, HSF1, and its regulation. Exceptional aging appears to preserve and strengthen many elements of HSF1 activation in the brain. These results support the possibility that reconstitution of aging brain stress responses requires a multi-factorial approach that addresses HSF1 protein levels, its DNA binding, and regulatory elements such as phosphorylation and protein interactions.
Collapse
Affiliation(s)
- Rachana Trivedi
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, 1301 N Columbia Rd, Grand Forks, ND, 58201, USA
| | - Bailey Knopf
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, 1301 N Columbia Rd, Grand Forks, ND, 58201, USA
| | - Sharlene Rakoczy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Gunjan D Manocha
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, 1301 N Columbia Rd, Grand Forks, ND, 58201, USA
| | - Holly Brown-Borg
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Donald A Jurivich
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, 1301 N Columbia Rd, Grand Forks, ND, 58201, USA.
| |
Collapse
|
18
|
Avendaño-Estrada A, Olarte-Casas MÁ, Ávila-Rodríguez MÁ. Vectorial-based analysis of dual-tracer PET imaging: A proof of concept. Comput Biol Med 2024; 168:107705. [PMID: 37979207 DOI: 10.1016/j.compbiomed.2023.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND The diagnosis of neurological diseases is complicated since they often share similar symptoms and occur in different severity levels. Imaging techniques such as PET molecular imaging are helpful for an early and accurate diagnosis and, staging allowing a noninvasive evaluation of the disease. The combination of two radioligands in the same patient could be valuable to achieve these diagnostic goals; nevertheless, the imaging data obtained with two radioligands is commonly interpreted independently. This novel approach to combine the PET data of two radiopharmaceuticals, separately acquired in the same subject, is to obtain new quantitative metrics. PET images of patients with Parkinson's disease (PD) and healthy controls (HC) were analyzed. Voxel-by-voxel uptake is compared by combining the imaging data. Dual-tracer PET imaging analysis was tested with [11C]DTBZ-[11C]Raclopride as proof of concept. RESULTS The new proposed metric based on a resultant vector is capable of efficiently discriminating healthy controls from PD patients (p < 0.0001) allowing the detection of slight changes in patients undergoing therapeutic approaches. Significant differences were found between HC and PD patients for the evaluated radiotracers. CONCLUSIONS The resultant vector appears to deliver useful information that could be helpful to evaluate PD patients under treatment and to improve differential diagnoses.
Collapse
Affiliation(s)
- Arturo Avendaño-Estrada
- Unidad Radiofarmacia-Ciclotrón, Facultad de Medicina, División de Investigación, Universidad Nacional Autónoma de México, Mexico; Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados Sede Sur, Mexico.
| | - Miguel Ángel Olarte-Casas
- Unidad PET/CT, Facultad de Medicina, División de Investigación, Universidad Nacional Autónoma de México, Mexico
| | - Miguel Ángel Ávila-Rodríguez
- Unidad Radiofarmacia-Ciclotrón, Facultad de Medicina, División de Investigación, Universidad Nacional Autónoma de México, Mexico; Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados Sede Sur, Mexico.
| |
Collapse
|
19
|
Srivastava K, Mishra R. Pax6 affects Ras-Raf-ERK1/2 in mouse aging brain. Biogerontology 2023; 24:901-912. [PMID: 37436500 DOI: 10.1007/s10522-023-10044-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023]
Abstract
Pax6, a transcription factor and multifunctional protein, changes during aging. It also interacts with regulator proteins involved in cell metabolism and survival signalling pathways including Ras-GAP. Many forms of Ras, Raf and ERK1/2 are known but information on their region-specific expression patterns are unavailable from brain during aging. Therefore, it has been intended to evaluate expressions of Pax6 and forms of Ras, Raf, ERK1/2 in hippocampus, caudate nucleus, amygdale, cerebral cortex, cerebellum and olfactory lobe. Association of Pax6 with Ras, Raf and ERK1/2 was evaluated in co-culture (PC-12, C6-glia, U-87 MG) of neuroglia cell lines. Impacts of Pax6 were evaluated by siRNA mediated knockdown and expression patterns Ras-Raf-Erk1/2. Analysis of activities of Pax6 and impacts of 5'AMP, wild-type and mutant ERK were done by RT-PCR and luciferase reporter assay. Results indicate age-dependent changes of Pax6, Ras, Raf, ERK1/2 in different regions of brain of young and old mice. Erk1/2 shows synergistic activities to Pax6.
Collapse
Affiliation(s)
- Khushboo Srivastava
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
20
|
Daly MJ. The scientific revolution that unraveled the astonishing DNA repair capacity of the Deinococcaceae: 40 years on. Can J Microbiol 2023; 69:369-386. [PMID: 37267626 DOI: 10.1139/cjm-2023-0059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous (Mn2+)-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid Deinococcus bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of Deinococcus research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Deinococcus Mn-peptide antioxidants and have significant implications for various fields.
Collapse
Affiliation(s)
- Michael J Daly
- Uniformed Services University of the Health Sciences (USUHS), School of Medicine, Department of Pathology, Bethesda, MD 20814-4799, USA
- Committee on Planetary Protection (CoPP), National Academies of Sciences, Washington, DC 20001, USA
| |
Collapse
|
21
|
Chou SM, Yen YH, Yuan F, Zhang SC, Chong CM. Neuronal Senescence in the Aged Brain. Aging Dis 2023; 14:1618-1632. [PMID: 37196117 PMCID: PMC10529744 DOI: 10.14336/ad.2023.0214] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/14/2023] [Indexed: 05/19/2023] Open
Abstract
Cellular senescence is a highly complicated cellular state that occurs throughout the lifespan of an organism. It has been well-defined in mitotic cells by various senescent features. Neurons are long-lived post-mitotic cells with special structures and functions. With age, neurons display morphological and functional changes, accompanying alterations in proteostasis, redox balance, and Ca2+ dynamics; however, it is ambiguous whether these neuronal changes belong to the features of neuronal senescence. In this review, we strive to identify and classify changes that are relatively specific to neurons in the aging brain and define them as features of neuronal senescence through comparisons with common senescent features. We also associate them with the functional decline of multiple cellular homeostasis systems, proposing the possibility that these systems are the main drivers of neuronal senescence. We hope this summary will serve as a steppingstone for further inputs on a comprehensive but relatively specific list of phenotypes for neuronal senescence and in particular their underlying molecular events during aging. This will in turn shine light on the association between neuronal senescence and neurodegeneration and lead to the development of strategies to perturb the processes.
Collapse
Affiliation(s)
- Shu-Min Chou
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
| | - Yu-Hsin Yen
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
| | - Fang Yuan
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
| | - Su-Chun Zhang
- Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore.
- Department of Neuroscience, Department of Neurology, Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
22
|
Taneva SG, Todinova S, Andreeva T. Morphometric and Nanomechanical Screening of Peripheral Blood Cells with Atomic Force Microscopy for Label-Free Assessment of Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:14296. [PMID: 37762599 PMCID: PMC10531602 DOI: 10.3390/ijms241814296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant social and economic impact in today's society. NDDs are predicted to become the second-most common cause of death in the next few decades due to an increase in life expectancy but also to a lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways contributing to these pathologies. The development of new approaches for early diagnosis and new therapies, together with the identification of non-invasive and more cost-effective diagnostic biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells (platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs-Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine, in particular for early diagnostics of various medical conditions. AFM is a unique instrument without an analog, allowing the generation of three-dimensional cell images with extremely high spatial resolution at near-atomic scale, which are complemented by insights into the mechanical properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve as biomarkers in combination with the currently used diagnostic tools. We highlight the strong correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS, and AD.
Collapse
Affiliation(s)
- Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
- Faculty of Life Sciences, Reutlingen University, Alteburgstraße 150, D-72762 Reutlingen, Germany
| |
Collapse
|
23
|
González-Vidal A, Mercado-Sáenz S, Burgos-Molina AM, Alamilla-Presuel JC, Alcaraz M, Sendra-Portero F, Ruiz-Gómez MJ. Molecular Mechanisms of Resistance to Ionizing Radiation in S. cerevisiae and Its Relationship with Aging, Oxidative Stress, and Antioxidant Activity. Antioxidants (Basel) 2023; 12:1690. [PMID: 37759994 PMCID: PMC10525530 DOI: 10.3390/antiox12091690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The repair of the damage produced to the genome and proteome by the action of ionizing radiation, oxidizing agents, and during aging is important to maintain cellular homeostasis. Many of the metabolic pathways influence multiple processes. In this way, this work aims to study the relationship between resistance/response to ionizing radiation, cellular aging, and the response mechanisms to oxidative stress, free radicals, reactive oxygen species (ROS), and antioxidant activity in the yeast S. cerevisiae. Systems biology allows us to use tools that reveal the molecular mechanisms common to different cellular response phenomena. The results found indicate that homologous recombination, non-homologous end joining, and base excision repair pathways are the most important common processes necessary to maintain cellular homeostasis. The metabolic routes of longevity regulation are those that jointly contribute to the three phenomena studied. This study proposes eleven common biomarkers for response/resistance to ionizing radiation and aging (EXO1, MEC1, MRE11, RAD27, RAD50, RAD51, RAD52, RAD55, RAD9, SGS1, YKU70) and two biomarkers for response/resistance to radiation and oxidative stress, free radicals, ROS, and antioxidant activity (NTG1, OGG1). In addition, it is important to highlight that the HSP104 protein could be a good biomarker common to the three phenomena studied.
Collapse
Affiliation(s)
- Alejandro González-Vidal
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; (A.G.-V.); (J.C.A.-P.); (F.S.-P.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía (PTA), 29590 Málaga, Spain; (S.M.-S.); (A.M.B.-M.)
| | - Silvia Mercado-Sáenz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía (PTA), 29590 Málaga, Spain; (S.M.-S.); (A.M.B.-M.)
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Físico Deportiva, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Antonio M. Burgos-Molina
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía (PTA), 29590 Málaga, Spain; (S.M.-S.); (A.M.B.-M.)
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Juan C. Alamilla-Presuel
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; (A.G.-V.); (J.C.A.-P.); (F.S.-P.)
| | - Miguel Alcaraz
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain;
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; (A.G.-V.); (J.C.A.-P.); (F.S.-P.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía (PTA), 29590 Málaga, Spain; (S.M.-S.); (A.M.B.-M.)
| | - Miguel J. Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; (A.G.-V.); (J.C.A.-P.); (F.S.-P.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía (PTA), 29590 Málaga, Spain; (S.M.-S.); (A.M.B.-M.)
| |
Collapse
|
24
|
Ladouce R, Combes GF, Trajković K, Drmić Hofman I, Merćep M. Oxime blot: A novel method for reliable and sensitive detection of carbonylated proteins in diverse biological systems. Redox Biol 2023; 63:102743. [PMID: 37207613 DOI: 10.1016/j.redox.2023.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Oxidative stress and oxidative protein damage occur in various biological processes and diseases. The carbonyl group on amino acid side chains is the most widely used protein oxidation biomarker. Carbonyl groups are commonly detected indirectly through their reaction with 2,4-dinitrophenylhydrazine (DNPH) and subsequent labeling with an anti-DNP antibody. However, the DNPH immunoblotting method lacks protocol standardization, exhibits technical bias, and has low reliability. To overcome these shortcomings, we have developed a new blotting method in which the carbonyl group reacts with the biotin-aminooxy probe to form a chemically stable oxime bond. The reaction speed and the extent of the carbonyl group derivatization are increased by adding a p-phenylenediamine (pPDA) catalyst under neutral pH conditions. These improvements are crucial since they ensure that the carbonyl derivatization reaction reaches a plateau within hours and increases the sensitivity and robustness of protein carbonyl detection. Furthermore, derivatization under pH-neutral conditions facilitates a good SDS-PAGE protein migration pattern, avoids protein loss by acidic precipitation, and is directly compatible with protein immunoprecipitation. This work describes the new Oxime blot method and demonstrates its use in detecting protein carbonylation in complex matrices from diverse biological samples.
Collapse
Affiliation(s)
- Romain Ladouce
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia
| | - Guillaume Fabien Combes
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000, Split, Croatia.
| | - Katarina Trajković
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, 21000, Split, Croatia
| | - Irena Drmić Hofman
- University Department of Health Studies, University of Split, 21000, Split, Croatia; School of Medicine, University of Split, 21000, Split, Croatia
| | - Mladen Merćep
- Mediterranean Institute for Life Sciences (MedILS), Meštrovićevo šetalište 45, 21000, Split, Croatia; Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia; Zora Foundation, Ruđera Boškovića 21, 21000, Split, Croatia.
| |
Collapse
|
25
|
Teker HT, Ceylani T, Keskin S, Samgane G, Mansuroglu S, Baba B, Allahverdi H, Acıkgoz E, Gurbanov R. Age-related differences in response to plasma exchange in male rat liver tissues: insights from histopathological and machine-learning assisted spectrochemical analyses. Biogerontology 2023:10.1007/s10522-023-10032-3. [PMID: 37017896 DOI: 10.1007/s10522-023-10032-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
This study aimed to examine the biological effects of blood plasma exchange in liver tissues of aged and young rats using machine learning methods and spectrochemical and histopathological approaches. Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) were the machine learning algorithms employed. Young plasma was given to old male rats (24 months), while old plasma was given to young male rats (5 weeks) for thirty days. LDA (95.83-100%) and SVM (87.5-91.67%) detected significant qualitative changes in liver biomolecules. In old rats, young plasma infusion increased the length of fatty acids, triglyceride, lipid carbonyl, and glycogen levels. Nucleic acid concentration, phosphorylation, and carbonylation rates of proteins were also increased, whereas a decrease in protein concentration was measured. Aged plasma decreased protein carbonylation, triglyceride, and lipid carbonyl levels. Young plasma infusion improved hepatic fibrosis and cellular degeneration and reduced hepatic microvesicular steatosis in aged rats. Otherwise, old plasma infusion in young rats caused disrupted cellular organization, steatosis, and increased fibrosis. Young plasma administration increased liver glycogen accumulation and serum albumin levels. Aged plasma infusion raised serum ALT levels while diminished ALP concentrations in young rats, suggesting possible liver dysfunction. Young plasma increased serum albumin levels in old rats. The study concluded that young plasma infusion might be associated with declined liver damage and fibrosis in aged rats, while aged plasma infusion negatively impacted liver health in young rats. These results imply that young blood plasma holds potential as a rejuvenation therapy for liver health and function.
Collapse
Affiliation(s)
- Hikmet Taner Teker
- Department of Medical Biology and Genetics, Ankara Medipol University, Ankara, Turkey
| | - Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
- Department of Food Quality Control and Analysis, Muş Alparslan University, Muş, Turkey
| | - Seda Keskin
- Department of Histology and Embryology, Van Yuzuncu Yil University, Van, Turkey
| | - Gizem Samgane
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Sina Mansuroglu
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Burcu Baba
- Department of Medical Biochemistry, Yüksek İhtisas University, Ankara, Turkey
| | - Huseyin Allahverdi
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
| | - Eda Acıkgoz
- Department of Histology and Embryology, Van Yuzuncu Yil University, Van, Turkey
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey.
- Central Research Laboratory, Bilecik Şeyh Edebali University, Bilecik, Turkey.
| |
Collapse
|
26
|
Korkola NC, Stillman MJ. Structural Role of Cadmium and Zinc in Metallothionein Oxidation by Hydrogen Peroxide: The Resilience of Metal-Thiolate Clusters. J Am Chem Soc 2023; 145:6383-6397. [PMID: 36914167 DOI: 10.1021/jacs.2c13578] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Oxidative stress is a state involving an imbalance of reactive oxygen species in a cell and is linked to a variety of diseases. The metal-binding protein metallothionein (MT) may play a role in protection due to its high cysteine content. Many studies have shown that oxidative stress will cause MT to both form disulfide bonds and release bound metals. However, studies on the more biologically relevant partially metalated MTs have been largely neglected. Additionally, most studies to date have used spectroscopic methods that cannot detect specific intermediate species. In this paper, we describe the oxidation and the subsequent metal displacement pathway of fully and partially metalated MTs with hydrogen peroxide. The rates of the reactions were monitored using electrospray ionization mass spectrometry (ESI-MS) techniques, which resolved and characterized the individual intermediate Mx(SH)yMT species. The rate constants were calculated for each species formation. Through ESI-MS and circular dichroism spectroscopy, it was found that the three metals in the β-domain were the first to be released from the fully metalated MTs. The Cd(II) in the partially metalated Cd(II)-bound MTs rearranged to form a protective Cd4MT cluster structure upon exposure to oxidation. The partially metalated Zn(II)-bound MTs oxidized at a faster rate as the Zn(II) did not rearrange in response to oxidation. Additionally, density functional theory calculations showed that the terminally bound cysteines were more negative and thus more susceptible to oxidation than the bridging cysteines. The results of this study highlight the importance of metal-thiolate structures and metal identity in MT's response to oxidation.
Collapse
Affiliation(s)
- Natalie C Korkola
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| |
Collapse
|
27
|
Abstract
Oxidative stress is the result of an imbalance between the formation of reactive oxygen species (ROS) and the levels of enzymatic and non-enzymatic antioxidants. The assessment of biological redox status is performed by the use of oxidative stress biomarkers. An oxidative stress biomarker is defined as any physical structure or process or chemical compound that can be assessed in a living being (in vivo) or in solid or fluid parts thereof (in vitro), the determination of which is a reproducible and reliable indicator of oxidative stress. The use of oxidative stress biomarkers allows early identification of the risk of developing diseases associated with this process and also opens up possibilities for new treatments. At the end of the last century, interest in oxidative stress biomarkers began to grow, due to evidence of the association between the generation of free radicals and various pathologies. Up to now, a significant number of studies have been carried out to identify and apply different oxidative stress biomarkers in clinical practice. Among the most important oxidative stress biomarkers, it can be mentioned the products of oxidative modifications of lipids, proteins, nucleic acids, and uric acid as well as the measurement of the total antioxidant capacity of fluids in the human body. In this review, we aim to present recent advances and current knowledge on the main biomarkers of oxidative stress, including the discovery of new biomarkers, with emphasis on the various reproductive complications associated with variations in oxidative stress levels.
Collapse
|
28
|
Young plasma transfer recovers decreased sperm counts and restores epigenetics in aged testis. Exp Gerontol 2023; 172:112042. [PMID: 36481396 DOI: 10.1016/j.exger.2022.112042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Aging is one of the causes of male infertility, and abnormal global DNA methylation and imprinting defects have been characterized in testis during biological aging. One of the important emerging approaches aims to take advantage of the healing properties of young blood plasma to limit the progression of aging in various organs in the body. We aimed to show whether blood plasma transfer has an effect on DNA methylation and spermatogenetic cell development. In addition, we aimed to show whether the young plasma transfer to old mice has an effect on the rejuvenation of the old and whether the impaired DNA methylation and PCNA expression in old age can be restored. METHODS Groups were (i) young control, (ii) young plasma transfer to aged, (iii) aged control, (iv) aged plasma transfer to young. We utilized IHC and WB in protein level of Dnmts. For the global DNA methylation level, we used 5-methylcytosine staining. We also analyzed PCNA protein expressions in all groups by IHC. RESULTS We found that transfusion of young plasma into the old animal restored DNA methylation and PCNA expression as it did in the young animal. Most importantly, we observed an increase in spermatogonia and spermatid counts in older animals after young blood plasma transfer. CONCLUSIONS Our findings show that young plasma transfer can restore epigenetic disorders that occur with aging and solve infertility problems by increasing the sperm count that decreases. It needs to be supported by different studies, especially human studies.
Collapse
|
29
|
Benoit I, Burty-Valin E, Radman M. A Proteome-Centric View of Ageing, including that of the Skin and Age-Related Diseases: Considerations of a Common Cause and Common Preventative and Curative Interventions. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2023; 16:79-85. [PMID: 36660191 PMCID: PMC9842513 DOI: 10.2147/ccid.s397751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
The proteome comprises all proteins of a cell or organism. To carry their catalytic and structure-related functions, proteins must be correctly folded into their unique native three-dimensional structures. Common oxidative protein damage affects their functionality by impairing their catalytic and interactive specificities. Oxidative damage occurs preferentially to misfolded proteins and fixes the misfolded state. This review provides an overview of the mechanism and consequences of oxidative proteome damage - specifically irreversible protein carbonylation - in relation to ageing, including that of the skin as well as to age-related degeneration and diseases (ARDD) and their mitigation. A literature review of published manuscripts, available from PubMed, focusing on proteome, proteostasis, proteotoxicity, protein carbonylation, related inflammatory diseases, ARDD and the impact of the damaged proteome on ageing. During ageing, proteome damage, especially protein carbonylation, correlates with biological age. Carbonylated proteins form aggregates which can be considered as markers and accelerators of ageing and are common markers of most ARDD. Protein carbonylation leads to general ageing of the organism and organs including the skin and potentially to diseases including Alzheimer and Parkinson disease, diabetes, psoriasis, and skin cancer. Current research is promising and may open new therapeutic approaches and perspectives by targeting proteome protection as an age and ARDD management strategy.
Collapse
Affiliation(s)
- Isabelle Benoit
- Medical Relations, NAOS-ILS, Aix-en-Provence, France,Correspondence: Isabelle Benoit, NAOS-ILS, Aix-en-Provence, 13593, France, Tel +33442163060, Email
| | | | - Miroslav Radman
- Faculté de Médecine, INSERM U1001, Université R.-Descartes Paris-5, Paris, France,Scientific Affairs, Mediterranean Institute for Life Science, Split, Croatia
| |
Collapse
|
30
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
31
|
Hardiany NS, Agusta I, Dewi S, Iswanti FC, Paramita R. Protein and Energy Supplements for the Elderly. Subcell Biochem 2023; 103:309-339. [PMID: 37120474 DOI: 10.1007/978-3-031-26576-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The proportion of elderly individuals is rising globally, and data have shown that as high as 8% of the elderly community suffer from malnutrition. Protein energy malnutrition has shown to elevate morbidity and mortality risk in the elderly; therefore, protein and energy supplement are needed for the elderly populations to create healthy conditions. This chapter describes about general structure of protein, protein turnover, amino acid metabolism including metabolism in the elderly, protein change in aging, supplementation of amino acid as well as vitamin and mineral for the elderly. The discussion in this section aims to provide a general description of protein, amino acids, changes in amino acid metabolism in the elderly, and the benefits of supplementing amino acids as well as vitamins and minerals for the elderly.
Collapse
Affiliation(s)
- Novi Silvia Hardiany
- Department of Biochemistry and Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
- Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
- Molecular Biology and Proteomic Core Facilities, Indonesia Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
| | - Istiqomah Agusta
- Department of Biochemistry and Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Syarifah Dewi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Febriana Catur Iswanti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomic Core Facilities, Indonesia Medical Education and Research Institute, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Reni Paramita
- Department of Biochemistry and Molecular Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
32
|
Assessment of PABPN1 nuclear inclusions on a large cohort of patients and in a human xenograft model of oculopharyngeal muscular dystrophy. Acta Neuropathol 2022; 144:1157-1170. [PMID: 36197469 PMCID: PMC9637588 DOI: 10.1007/s00401-022-02503-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/26/2022] [Accepted: 09/17/2022] [Indexed: 01/26/2023]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a rare muscle disease characterized by an onset of weakness in the pharyngeal and eyelid muscles. The disease is caused by the extension of a polyalanine tract in the Poly(A) Binding Protein Nuclear 1 (PABPN1) protein leading to the formation of intranuclear inclusions or aggregates in the muscle of OPMD patients. Despite numerous studies stressing the deleterious role of nuclear inclusions in cellular and animal OPMD models, their exact contribution to human disease is still unclear. In this study, we used a large and unique collection of human muscle biopsy samples to perform an in-depth analysis of PABPN1 aggregates in relation to age, genotype and muscle status with the final aim to improve our understanding of OPMD physiopathology. Here we demonstrate that age and genotype influence PABPN1 aggregates: the percentage of myonuclei containing PABPN1 aggregates increases with age and the chaperone HSP70 co-localize more frequently with PABPN1 aggregates with a larger polyalanine tract. In addition to the previously described PRMT1 and HSP70 co-factors, we identified new components of PABPN1 aggregates including GRP78/BiP, RPL24 and p62. We also observed that myonuclei containing aggregates are larger than myonuclei without. When comparing two muscles from the same patient, a similar amount of aggregates is observed in different muscles, except for the pharyngeal muscle where fewer aggregates are observed. This could be due to the peculiar nature of this muscle which has a low level of PAPBN1 and contains regenerating fibers. To confirm the fate of PABPN1 aggregates in a regenerating muscle, we generated a xenograft model by transplanting human OPMD muscle biopsy samples into the hindlimb of an immunodeficient mouse. Xenografts from subjects with OPMD displayed regeneration of human myofibers and PABPN1 aggregates were rapidly present-although to a lower extent-after muscle fiber regeneration. Our data obtained on human OPMD samples add support to the dual non-exclusive models in OPMD combining toxic PABPN1 intranuclear inclusions together with PABPN1 loss of function which altogether result in this late-onset and muscle selective disease.
Collapse
|
33
|
Perneel J, Rademakers R. Identification of TMEM106B amyloid fibrils provides an updated view of TMEM106B biology in health and disease. Acta Neuropathol 2022; 144:807-819. [PMID: 36056242 PMCID: PMC9547799 DOI: 10.1007/s00401-022-02486-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023]
Abstract
Since the initial identification of TMEM106B as a risk factor for frontotemporal lobar degeneration (FTLD), multiple genetic studies have found TMEM106B variants to modulate disease risk in a variety of brain disorders and healthy aging. Neurodegenerative disorders are typically characterized by inclusions of misfolded proteins and since lysosomes are an important site for cellular debris clearance, lysosomal dysfunction has been closely linked to neurodegeneration. Consequently, many causal mutations or genetic risk variants implicated in neurodegenerative diseases encode proteins involved in endosomal-lysosomal function. As an integral lysosomal transmembrane protein, TMEM106B regulates several aspects of lysosomal function and multiple studies have shown that proper TMEM106B protein levels are crucial for maintaining lysosomal health. Yet, the precise function of TMEM106B at the lysosomal membrane is undetermined and it remains unclear how TMEM106B modulates disease risk. Unexpectedly, several independent groups recently showed that the C-terminal domain (AA120-254) of TMEM106B forms amyloid fibrils in the brain of patients with a diverse set of neurodegenerative conditions. The recognition that TMEM106B can form amyloid fibrils and is present across neurodegenerative diseases sheds new light on TMEM106B as a central player in neurodegeneration and brain health, but also raises important new questions. In this review, we summarize current knowledge and place a decade's worth of TMEM106B research into an exciting new perspective.
Collapse
Affiliation(s)
- Jolien Perneel
- VIB Center for Molecular Neurology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
34
|
Martemucci G, Portincasa P, Di Ciaula A, Mariano M, Centonze V, D'Alessandro AG. Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mech Ageing Dev 2022; 206:111707. [PMID: 35839856 DOI: 10.1016/j.mad.2022.111707] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive loss of tissue and organ function due to genetic and environmental factors, nutrition, and lifestyle. Oxidative stress is one the most important mechanisms of cellular senescence and increased frailty, resulting in several age-linked, noncommunicable diseases. Contributing events include genomic instability, telomere shortening, epigenetic mechanisms, reduced proteome homeostasis, altered stem-cell function, defective intercellular communication, progressive deregulation of nutrient sensing, mitochondrial dysfunction, and metabolic unbalance. These complex events and their interplay can be modulated by dietary habits and the ageing process, acting as potential measures of primary and secondary prevention. Promising nutritional approaches include the Mediterranean diet, the intake of dietary antioxidants, and the restriction of caloric intake. A comprehensive understanding of the ageing processes should promote new biomarkers of risk or diagnosis, but also beneficial treatments oriented to increase lifespan.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Michele Mariano
- Unità Operativa Complessa di Radiodiagnostica Universitaria, Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Vincenzo Centonze
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Angela Gabriella D'Alessandro
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
35
|
Yamaguchi M, Tatara Y, Nugraha ED, Sato Y, Miura T, Hosoda M, Syaifudin M, Tokonami S, Kashiwakura I. Serum Proteomic and Oxidative Modification Profiling in Mice Exposed to Total Body X-Irradiation. Antioxidants (Basel) 2022; 11:antiox11091710. [PMID: 36139779 PMCID: PMC9495380 DOI: 10.3390/antiox11091710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/25/2022] Open
Abstract
The details of the dose-dependent response of serum proteins exposed to ionizing radiation, especially the oxidative modification response in amino acid sequences of albumin, the most abundant protein, are unknown. Thus, a proteomic analysis of the serum components from mice exposed to total body X-irradiation (TBI) ranging from 0.5 Gy to 3.0 Gy was conducted using LC-MS/MS. The analysis of oxidative modification sequences of albumin (mOMSA) in TBI mouse serum revealed significant moderate or strong correlations between the X-irradiation exposure dose and modification of 11 mOMSAs (especially the 97th, 267th and 499th lysine residues, 159th methionine residue and 287th tyrosine residues). In the case of X-irradiation of serum alone, significant correlations were also found in the 14 mOMSAs. In addition, a dose-dependent variation in six proteins (Angiotensinogen, Odorant-binding protein 1a, Serine protease inhibitor A3K, Serum paraoxonase/arylesterase 1, Prothrombin and Epidermal growth factor receptor) was detected in the serum of mice exposed to TBI. These findings suggest the possibility that the protein variation and serum albumin oxidative modification responses found in exposed individuals are important indicators for considering the effects of radiation on living organisms, along with DNA damage, and suggests their possible application as biomarkers of radiation dose estimation.
Collapse
Affiliation(s)
- Masaru Yamaguchi
- Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
| | - Yota Tatara
- Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Eka Djatnika Nugraha
- The Research Center for Safety, Metrology, and Nuclear Quality Technology (PRTKMMN), Research Organization for Nuclear Energy, National Research and Innovation Agency of Indonesia (BRIN), JI. Lebak Bulus Raya No. 49, Jakarta Selatan 12440, DKI Jakarta, Indonesia
| | - Yoshiaki Sato
- Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
| | - Tomisato Miura
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Masahiro Hosoda
- Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Mukh Syaifudin
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Kw. Puspiptek, Setu, Tangerang Selatan 15312, Banten, Indonesia
| | - Shinji Tokonami
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Ikuo Kashiwakura
- Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
- Correspondence:
| |
Collapse
|
36
|
Anderson RT, Bradley TA, Smith DM. Hyperactivation of the proteasome in Caenorhabditis elegans protects against proteotoxic stress and extends lifespan. J Biol Chem 2022; 298:102415. [PMID: 36007615 PMCID: PMC9486566 DOI: 10.1016/j.jbc.2022.102415] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all age-related neurodegenerative diseases (NDs) can be characterized by the accumulation of proteins inside and outside the cell that are thought to significantly contribute to disease pathogenesis. One of the cell’s primary systems for the degradation of misfolded/damaged proteins is the ubiquitin proteasome system (UPS), and its impairment is implicated in essentially all NDs. Thus, upregulating this system to combat NDs has garnered a great deal of interest in recent years. Various animal models have focused on stimulating 26S activity and increasing 20S proteasome levels, but thus far, none have targeted intrinsic activation of the 20S proteasome itself. Therefore, we constructed an animal model that endogenously expresses a hyperactive, open gate proteasome in Caenorhabditis elegans. The gate-destabilizing mutation that we introduced into the nematode germline yielded a viable nematode population with enhanced proteasomal activity, including peptide, unstructured protein, and ubiquitin-dependent degradation activities. We determined these nematodes showed a significantly increased lifespan and substantial resistance to oxidative and proteotoxic stress but a significant decrease in fecundity. Our results show that introducing a constitutively active proteasome into a multicellular organism is feasible and suggests targeting the proteasome gating mechanism as a valid approach for future age-related disease research efforts in mammals.
Collapse
Affiliation(s)
- Raymond T Anderson
- Department of Biochemistry, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV 26506
| | - Thomas A Bradley
- Department of Biochemistry, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV 26506
| | - David M Smith
- Department of Biochemistry, West Virginia University School of Medicine, 64 Medical Center Dr., Morgantown, WV 26506.
| |
Collapse
|
37
|
Liu Y, Pan X, Bao Y, Wei L, Gao Y. Many kinds of oxidized proteins are present more in the urine of the elderly. Clin Proteomics 2022; 19:22. [PMID: 35733114 PMCID: PMC9214981 DOI: 10.1186/s12014-022-09360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Many studies have shown an association between aging and oxidation. To our knowledge, there have been no studies exploring aging-related urine proteome modifications. The purpose of this study was to explore differences in global chemical modifications of urinary protein at different ages. METHODS Discovery (n=38) cohort MS data including children, young and old groups were downloaded from three published studies, and this data was analyzed using open-pFind for identifying modifications. Verification cohort human samples (n=28) including young, middle-aged, and old groups, rat samples (n=7) at three-time points after birth, adulthood, and old age were collected and processed in the laboratory simultaneously based on label-free quantification combined with pFind. RESULTS Discovery cohort: there were 28 kinds of differential oxidations in the old group that were higher than those in the young or children group in. Verification cohort: there were 17 kinds of differential oxidations of 49 oxidized proteins in the middle and old groups, which were significantly higher than those in the young group. Both oxidations and oxidized proteins distinguished different age groups well. There were also 15 kinds of differential oxidations in old age higher than others in the rat cohort. The results showed that the validation experiment was basically consistent with the results of the discovery experiment, showing that the level of oxidized proteins in urine increased significantly with age. CONCLUSIONS Our study is the first to show that oxidative proteins occur in urine and that oxidations are higher in older than younger ages. Perhaps improving the degree of excretion of oxidative protein in vivo through the kidney is helpful for maintaining the homeostasis of the body's internal environment, delaying aging and the occurrence of senile diseases.
Collapse
Affiliation(s)
- Yongtao Liu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, 100875, China
| | - Xuanzhen Pan
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, 100875, China
| | - Yijin Bao
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, 100875, China
| | - Lilong Wei
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
38
|
Marcon F, Meschini R, Iorio E, Palleschi S, De Luca G, Siniscalchi E, Conti L, Chirico M, Pisanu ME, De Battistis F, Rossi B, Minoprio A, Giuliani A, Karran P, Bignami M. Young transgenic hMTH1 mice are protected against dietary fat-induced metabolic stress-implications for enhanced longevity. Aging Cell 2022; 21:e13605. [PMID: 35670027 PMCID: PMC9282835 DOI: 10.1111/acel.13605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/10/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
hMTH1 protects against mutation during oxidative stress. It degrades 8‐oxodGTP to exclude potentially mutagenic oxidized guanine from DNA. hMTH1 expression is linked to ageing. Its downregulation in cultured cells accelerates RAS‐induced senescence, and its overexpression in hMTH1‐Tg mice extends lifespan. In this study, we analysed the effects of a brief (5 weeks) high‐fat diet challenge (HFD) in young (2 months old) and adult (7 months old) wild‐type (WT) and hMTH1‐Tg mice. We report that at 2 months, hMTH1 overexpression ameliorated HFD‐induced weight gain, changes in liver metabolism related to mitochondrial dysfunction and oxidative stress. It prevented DNA damage as quantified by a comet assay. At 7 months old, these HFD‐induced effects were less severe and hMTH1‐Tg and WT mice responded similarly. hMTH1 overexpression conferred lifelong protection against micronucleus induction, however. Since the canonical activity of hMTH1 is mutation prevention, we conclude that hMTH1 protects young mice against HFD by reducing genome instability during the early period of rapid growth and maximal gene expression. hMTH1 protection is redundant in the largely non‐growing, differentiated tissues of adult mice. In hMTH1‐Tg mice, expression of a less heavily mutated genome throughout life provides a plausible explanation for their extended longevity.
Collapse
Affiliation(s)
- Francesca Marcon
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Meschini
- Department of Ecological and Biological Sciences, Tuscia University, Viterbo, Italy
| | - Egidio Iorio
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Simonetta Palleschi
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele De Luca
- Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ester Siniscalchi
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Luigi Conti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mattea Chirico
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Barbara Rossi
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Minoprio
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Margherita Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
39
|
Bettinger JQ, Simon M, Korotkov A, Welle KA, Hryhorenko JR, Seluanov A, Gorbunova V, Ghaemmaghami S. Accurate Proteomewide Measurement of Methionine Oxidation in Aging Mouse Brains. J Proteome Res 2022; 21:1495-1509. [PMID: 35584362 PMCID: PMC9171897 DOI: 10.1021/acs.jproteome.2c00127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/28/2022]
Abstract
The oxidation of methionine has emerged as an important post-translational modification of proteins. A number of studies have suggested that the oxidation of methionines in select proteins can have diverse impacts on cell physiology, ranging from detrimental effects on protein stability to functional roles in cell signaling. Despite its importance, the large-scale investigation of methionine oxidation in a complex matrix, such as the cellular proteome, has been hampered by technical limitations. We report a methodology, methionine oxidation by blocking (MobB), that allows for accurate and precise quantification of low levels of methionine oxidation typically observed in vivo. To demonstrate the utility of this methodology, we analyzed the brain tissues of young (6 m.o.) and old (20 m.o.) mice and identified over 280 novel sites for in vivo methionine oxidation. We further demonstrated that oxidation stoichiometries for specific methionine residues are highly consistent between individual animals and methionine sulfoxides are enriched in clusters of functionally related gene products including membrane and extracellular proteins. However, we did not detect significant changes in methionine oxidation in brains of old mice. Our results suggest that under normal conditions, methionine oxidation may be a biologically regulated process rather than a result of stochastic chemical damage.
Collapse
Affiliation(s)
- John Q. Bettinger
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Matthew Simon
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Anatoly Korotkov
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Kevin A. Welle
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Jennifer R. Hryhorenko
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Andrei Seluanov
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Vera Gorbunova
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
- Department
of Medicine, University of Rochester Medical
Center, Rochester, New York 14627, United States
| | - Sina Ghaemmaghami
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
- University
of Rochester Mass Spectrometry Resource Laboratory, Rochester, New York 14627, United States
| |
Collapse
|
40
|
Al-Nusaif M, Cheng C, Li T, Jia C, Wang P, Li S, Le W. Abnormal Vacuole Membrane Protein-1 Expression in Parkinson’s Disease Patients. Front Neurosci 2022; 16:760932. [PMID: 35464320 PMCID: PMC9019220 DOI: 10.3389/fnins.2022.760932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Parkinson’s disease (PD) is pathologically characterized by progressive dopaminergic (DAergic) neuron loss in the substantia nigra pars compacta (SNpc) and accumulation of intracytoplasmic α-synuclein-containing Lewy bodies. Autophagy has been identified as a critical component in the development and progression of PD. Several autophagy genes have been identified as being altered in PD. One of those genes, vacuole membrane protein-1 (VMP1), an autophagy protein localized in the endoplasmic reticulum (ER) in DAergic neurons, has been shown to cause motor disorder, severe loss of DAergic neurons, and autophagy flux disturbance in the VMP1 knockout mouse model. Objective To evaluate for the first time the alteration on the expression of the VMP1 gene and its clinical correlations in peripheral blood mononuclear cells (PBMCs) of a relatively large sample of PD patients. Methods We assessed the VMP1 mRNA levels in PD patients (n = 229) and healthy controls (HC) (n = 209) using real-time quantitative PCR (RT-qPCR), and the VMP1 protein levels in PD patients (n = 27) and HC (n = 27) using Western blot (WB). Then, we analyzed the VMP1 expression levels and clinical features of PD patients. Results Our findings revealed that VMP1 levels in the PD group were significantly lower than in the HC group (RT-qPCR p < 0.01 and WB p < 0.001). The VMP1 expression was significantly lower as the disease progressed, which could be ameliorated by administering DAergic receptor agonists. Moreover, receiver operating characteristic (ROC) curve analysis showed that VMP1 mRNA and protein level area under the curves (AUCs) were 64.5%, p < 0.01, and 83.4%, p < 0.01, respectively. Conclusion This case-control study demonstrates that peripheral VMP1 level altered in PD patients and may serve as a potential endogenous diagnostic marker of PD.
Collapse
Affiliation(s)
- Murad Al-Nusaif
- Center for Clinical Research on Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cheng Cheng
- Center for Clinical Research on Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Tianbai Li
- Center for Clinical Research on Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Congcong Jia
- Center for Clinical Research on Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Panpan Wang
- Center for Clinical Research on Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Institute of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Weidong Le,
| |
Collapse
|
41
|
Network Theoretical Approach to Explore Factors Affecting Signal Propagation and Stability in Dementia’s Protein-Protein Interaction Network. Biomolecules 2022; 12:biom12030451. [PMID: 35327643 PMCID: PMC8946103 DOI: 10.3390/biom12030451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Dementia—a syndrome affecting human cognition—is a major public health concern given to its rising prevalence worldwide. Though multiple research studies have analyzed disorders such as Alzheimer’s disease and Frontotemporal dementia using a systems biology approach, a similar approach to dementia syndrome as a whole is required. In this study, we try to find the high-impact core regulating processes and factors involved in dementia’s protein–protein interaction network. We also explore various aspects related to its stability and signal propagation. Using gene interaction databases such as STRING and GeneMANIA, a principal dementia network (PDN) consisting of 881 genes and 59,085 interactions was achieved. It was assortative in nature with hierarchical, scale-free topology enriched in various gene ontology (GO) categories and KEGG pathways, such as negative and positive regulation of apoptotic processes, macroautophagy, aging, response to drug, protein binding, etc. Using a clustering algorithm (Louvain method of modularity maximization) iteratively, we found a number of communities at different levels of hierarchy in PDN consisting of 95 “motif-localized hubs”, out of which, 7 were present at deepest level and hence were key regulators (KRs) of PDN (HSP90AA1, HSP90AB1, EGFR, FYN, JUN, CELF2 and CTNNA3). In order to explore aspects of network’s resilience, a knockout (of motif-localized hubs) experiment was carried out. It changed the network’s topology from a hierarchal scale-free topology to scale-free, where independent clusters exhibited greater control. Additionally, network experiments on interaction of druggable genome and motif-localized hubs were carried out where UBC, EGFR, APP, CTNNB1, NTRK1, FN1, HSP90AA1, MDM2, VCP, CTNNA1 and GRB2 were identified as hubs in the resultant network (RN). We finally concluded that stability and resilience of PDN highly relies on motif-localized hubs (especially those present at deeper levels), making them important therapeutic intervention candidates. HSP90AA1, involved in heat shock response (and its master regulator, i.e., HSF1), and EGFR are most important genes in pathology of dementia apart from KRs, given their presence as KRs as well as hubs in RN.
Collapse
|
42
|
Shcherbakov D, Nigri M, Akbergenov R, Brilkova M, Mantovani M, Petit PI, Grimm A, Karol AA, Teo Y, Sanchón AC, Kumar Y, Eckert A, Thiam K, Seebeck P, Wolfer DP, Böttger EC. Premature aging in mice with error-prone protein synthesis. SCIENCE ADVANCES 2022; 8:eabl9051. [PMID: 35235349 PMCID: PMC8890705 DOI: 10.1126/sciadv.abl9051] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The main source of error in gene expression is messenger RNA decoding by the ribosome. Translational accuracy has been suggested on a purely correlative basis to positively coincide with maximum possible life span among different rodent species, but causal evidence that translation errors accelerate aging in vivo and limit life span is lacking. We have now addressed this question experimentally by creating heterozygous knock-in mice that express the ribosomal ambiguity mutation RPS9 D95N, resulting in genome-wide error-prone translation. Here, we show that Rps9 D95N knock-in mice exhibit reduced life span and a premature onset of numerous aging-related phenotypes, such as reduced weight, chest deformation, hunchback posture, poor fur condition, and urinary syndrome, together with lymphopenia, increased levels of reactive oxygen species-inflicted damage, accelerated age-related changes in DNA methylation, and telomere attrition. Our results provide an experimental link between translational accuracy, life span, and aging-related phenotypes in mammals.
Collapse
Affiliation(s)
- Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Martina Nigri
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, CH-8057 Zurich, Switzerland
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Margarita Brilkova
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Matilde Mantovani
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | | | - Amandine Grimm
- Universitäre Psychiatrische Kliniken Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, CH-4055 Basel, Switzerland
| | - Agnieszka A. Karol
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Youjin Teo
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Adrián Cortés Sanchón
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Yadhu Kumar
- Eurofins Genomics Europe Sequencing GmbH, D-78467 Konstanz, Germany
| | - Anne Eckert
- Universitäre Psychiatrische Kliniken Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, CH-4055 Basel, Switzerland
| | | | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, CH-8057 Zurich, Switzerland
| | - David P. Wolfer
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, CH-8057 Zurich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
- Corresponding author.
| |
Collapse
|
43
|
Maysinger D, Sanader Maršić Ž, Gran ER, Shobo A, Macairan JR, Zhang I, Perić Bakulić M, Antoine R, Multhaup G, Bonačić-Kouteckỳ V. Insights into the Impact of Gold Nanoclusters Au 10SG 10 on Human Microglia. ACS Chem Neurosci 2022; 13:464-476. [PMID: 35080850 DOI: 10.1021/acschemneuro.1c00621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The purpose of the current study is to uncover the impact of small liganded gold nanoclusters with 10 gold atoms and 10 glutathione ligands (Au10SG10) on several biomarkers in human microglia. We established the links connecting the atomically precise structure of Au10SG10 with their properties and changes in several biomolecules under oxidative stress. Au10SG10 caused the loss of mitochondrial metabolic activity, increased lipid peroxidation and translocation of an alarmin molecule, high mobility group box 1 (HMGB1), from the nucleus to the cytosol. Molecular modeling provided an insight into the location of amino acid interaction sites with Au10SG10 and the nature of bonds participating in these interactions. We show that Au10SG10 can bind directly to the defined sites of reduced, oxidized, and acetylated HMGB1. Further studies with similar complementary approaches merging live-cell analyses, determination of biomarkers, and cell functions could lead to optimized gold nanoclusters best suited for diagnostic and bioimaging purposes in neuroscience.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology & Therapeutics, McGill University, H3G 1Y6 Montréal, Canada
- Interdisciplinary Center for Advanced Science and Technology (ICAST) at University of Split, Meštrovićevo šetalište 45, 21000 Split, Croatia
| | - Željka Sanader Maršić
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Republic of Croatia
- Interdisciplinary Center for Advanced Science and Technology (ICAST) at University of Split, Meštrovićevo šetalište 45, 21000 Split, Croatia
| | - Evan Rizzel Gran
- Department of Pharmacology & Therapeutics, McGill University, H3G 1Y6 Montréal, Canada
| | - Adeola Shobo
- Department of Pharmacology & Therapeutics, McGill University, H3G 1Y6 Montréal, Canada
| | - Jun-Ray Macairan
- Department of Chemical Engineering, McGill University, H3A 0C5 Montréal, Canada
| | - Issan Zhang
- Department of Pharmacology & Therapeutics, McGill University, H3G 1Y6 Montréal, Canada
| | - Martina Perić Bakulić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
- Interdisciplinary Center for Advanced Science and Technology (ICAST) at University of Split, Meštrovićevo šetalište 45, 21000 Split, Croatia
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Université Claude Bernard Lyon 1, CNRS, Univ Lyon, F-69100 Villeurbanne, France
| | - Gerhard Multhaup
- Department of Pharmacology & Therapeutics, McGill University, H3G 1Y6 Montréal, Canada
| | - Vlasta Bonačić-Kouteckỳ
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
- Interdisciplinary Center for Advanced Science and Technology (ICAST) at University of Split, Meštrovićevo šetalište 45, 21000 Split, Croatia
- Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
44
|
Morphometry and Stiffness of Red Blood Cells—Signatures of Neurodegenerative Diseases and Aging. Int J Mol Sci 2021; 23:ijms23010227. [PMID: 35008653 PMCID: PMC8745649 DOI: 10.3390/ijms23010227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Human red blood cells (RBCs) are unique cells with the remarkable ability to deform, which is crucial for their oxygen transport function, and which can be significantly altered under pathophysiological conditions. Here we performed ultrastructural analysis of RBCs as a peripheral cell model, looking for specific signatures of the neurodegenerative pathologies (NDDs)—Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), utilizing atomic force (AFM) and conventional optical (OM) microscopy. We found significant differences in the morphology and stiffness of RBCs isolated from patients with the selected NDDs and those from healthy individuals. Neurodegenerative pathologies’ RBCs are characterized by a reduced abundance of biconcave discoid shape, lower surface roughness and a higher Young’s modulus, compared to healthy cells. Although reduced, the biconcave is still the predominant shape in ALS and AD cells, while the morphology of PD is dominated by crenate cells. The features of RBCs underwent a marked aging-induced transformation, which followed different aging pathways for NDDs and normal healthy states. It was found that the diameter, height and volume of the different cell shape types have different values for NDDs and healthy cells. Common and specific morphological signatures of the NDDs were identified.
Collapse
|
45
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
46
|
Todinova S, Krumova S, Bogdanova D, Danailova A, Zlatareva E, Kalaydzhiev N, Langari A, Milanov I, Taneva SG. Red Blood Cells' Thermodynamic Behavior in Neurodegenerative Pathologies and Aging. Biomolecules 2021; 11:biom11101500. [PMID: 34680133 PMCID: PMC8534019 DOI: 10.3390/biom11101500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
The main trend of current research in neurodegenerative diseases (NDDs) is directed towards the discovery of novel biomarkers for disease diagnostics and progression. The pathological features of NDDs suggest that diagnostic markers can be found in peripheral fluids and cells. Herein, we investigated the thermodynamic behavior of the peripheral red blood cells (RBCs) derived from patients diagnosed with three common NDDs—Parkinson’s disease (PD), Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS) and compared it with that of healthy individuals, evaluating both fresh and aged RBCs. We established that NDDs can be differentiated from the normal healthy state on the basis of the variation in the thermodynamic parameters of the unfolding of major RBCs proteins—the cytoplasmic hemoglobin (Hb) and the membrane Band 3 (B3) protein. A common feature of NDDs is the higher thermal stability of both Hb and B3 proteins along the RBCs aging, while the calorimetric enthalpy can distinguish PD from ALS and AD. Our data provide insights into the RBCs thermodynamic behavior in two complex and tightly related phenomena—neurodegenerative pathologies and aging, and it suggests that the determined thermodynamic parameters are fingerprints of the altered conformation of Hb and B3 protein and modified RBCs’ aging in the studied NDDs.
Collapse
Affiliation(s)
- Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev, 1113 Sofia, Bulgaria; (S.T.); (S.K.); (A.D.); (A.L.)
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev, 1113 Sofia, Bulgaria; (S.T.); (S.K.); (A.D.); (A.L.)
| | - Desislava Bogdanova
- Department of Neurology, University Multiprofile Hospital for Active Treatment in Neurology and Psychiatry Sv. Naum, 1113 Sofia, Bulgaria; (D.B.); (E.Z.); (N.K.); (I.M.)
| | - Avgustina Danailova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev, 1113 Sofia, Bulgaria; (S.T.); (S.K.); (A.D.); (A.L.)
| | - Elena Zlatareva
- Department of Neurology, University Multiprofile Hospital for Active Treatment in Neurology and Psychiatry Sv. Naum, 1113 Sofia, Bulgaria; (D.B.); (E.Z.); (N.K.); (I.M.)
| | - Nikolay Kalaydzhiev
- Department of Neurology, University Multiprofile Hospital for Active Treatment in Neurology and Psychiatry Sv. Naum, 1113 Sofia, Bulgaria; (D.B.); (E.Z.); (N.K.); (I.M.)
| | - Ariana Langari
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev, 1113 Sofia, Bulgaria; (S.T.); (S.K.); (A.D.); (A.L.)
| | - Ivan Milanov
- Department of Neurology, University Multiprofile Hospital for Active Treatment in Neurology and Psychiatry Sv. Naum, 1113 Sofia, Bulgaria; (D.B.); (E.Z.); (N.K.); (I.M.)
| | - Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev, 1113 Sofia, Bulgaria; (S.T.); (S.K.); (A.D.); (A.L.)
- Correspondence:
| |
Collapse
|
47
|
Gangwar A, Paul S, Arya A, Ahmad Y, Bhargava K. Altitude acclimatization via hypoxia-mediated oxidative eustress involves interplay of protein nitrosylation and carbonylation: A redoxomics perspective. Life Sci 2021; 296:120021. [PMID: 34626604 DOI: 10.1016/j.lfs.2021.120021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
AIM Hypoxia is an important feature of multiple diseases like cancer and obesity and also an environmental stressor to high altitude travelers. Emerging research suggests the importance of redox signaling in physiological responses transforming the notion of oxidative stress into eustress and distress. However, the behavior of redox protein post-translational modifications (PTMs), and their correlation with stress acclimatization in humans remains sketchy. Scant information exists about modifications in redoxome during physiological exposure to environmental hypoxia. In this study, we investigated redox PTMs, nitrosylation and carbonylation, in context of extended environmental hypoxia exposure. METHODS The volunteers were confirmed to be free of any medical conditions and matched for age and weight. The human global redoxome and the affected networks were investigated using TMT-labeled quantitative proteo-bioinformatics and biochemical assays. The percolator PSM algorithm was used for peptide-spectrum match (PSM) validation in database searches. The FDR for peptide matches was set to 0.01. 1-way ANOVA and Tukey's Multiple Comparison test were used for biochemical assays. p-value<0.05 was considered statistically significant. Three independent experiments (biological replicates) were performed. Results were presented as Mean ± standard error of mean (SEM). KEY FINDINGS This investigation revealed direct and indirect interplay between nitrosylation and carbonylation especially within coagulation and inflammation networks; interlinked redox signaling (via nitrosylation‑carbonylation); and novel nitrosylation and carbonylation sites in individual proteins. SIGNIFICANCE This study elucidates the role of redox PTMs in hypoxia signaling favoring tolerance and survival. Also, we demonstrated direct and indirect interplay between nitrosylation and carbonylation is crucial to extended hypoxia tolerance.
Collapse
Affiliation(s)
- Anamika Gangwar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Subhojit Paul
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Aditya Arya
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| | - Kalpana Bhargava
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| |
Collapse
|
48
|
Fitzgerald DM, Rosenberg SM. Biology before the SOS Response-DNA Damage Mechanisms at Chromosome Fragile Sites. Cells 2021; 10:2275. [PMID: 34571923 PMCID: PMC8465572 DOI: 10.3390/cells10092275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
The Escherichia coli SOS response to DNA damage, discovered and conceptualized by Evelyn Witkin and Miroslav Radman, is the prototypic DNA-damage stress response that upregulates proteins of DNA protection and repair, a radical idea when formulated in the late 1960s and early 1970s. SOS-like responses are now described across the tree of life, and similar mechanisms of DNA-damage tolerance and repair underlie the genome instability that drives human cancer and aging. The DNA damage that precedes damage responses constitutes upstream threats to genome integrity and arises mostly from endogenous biology. Radman's vision and work on SOS, mismatch repair, and their regulation of genome and species evolution, were extrapolated directly from bacteria to humans, at a conceptual level, by Radman, then many others. We follow his lead in exploring bacterial molecular genomic mechanisms to illuminate universal biology, including in human disease, and focus here on some events upstream of SOS: the origins of DNA damage, specifically at chromosome fragile sites, and the engineered proteins that allow us to identify mechanisms. Two fragility mechanisms dominate: one at replication barriers and another associated with the decatenation of sister chromosomes following replication. DNA structures in E. coli, additionally, suggest new interpretations of pathways in cancer evolution, and that Holliday junctions may be universal molecular markers of chromosome fragility.
Collapse
Affiliation(s)
- Devon M. Fitzgerald
- Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, Molecular Virology and Microbiology, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M. Rosenberg
- Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, Molecular Virology and Microbiology, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
49
|
Uddin MS, Yu WS, Lim LW. Exploring ER stress response in cellular aging and neuroinflammation in Alzheimer's disease. Ageing Res Rev 2021; 70:101417. [PMID: 34339860 DOI: 10.1016/j.arr.2021.101417] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
One evident hallmark of Alzheimer's disease (AD) is the irregular accumulation of proteins due to changes in proteostasis involving endoplasmic reticulum (ER) stress. To alleviate ER stress and reinstate proteostasis, cells undergo an integrated signaling cascade called the unfolded protein response (UPR) that reduces the number of misfolded proteins and inhibits abnormal protein accumulation. Aging is associated with changes in the expression of ER chaperones and folding enzymes, leading to the impairment of proteostasis, and accumulation of misfolded proteins. The disrupted initiation of UPR prevents the elimination of unfolded proteins, leading to ER stress. In AD, the accumulation of misfolded proteins caused by sustained cellular stress leads to neurodegeneration and neuronal death. Current research has revealed that ER stress can trigger an inflammatory response through diverse transducers of UPR. Although the involvement of a neuroinflammatory component in AD has been documented for decades, whether it is a contributing factor or part of the neurodegenerative events is so far unknown. Besides, a feedback loop occurs between neuroinflammation and ER stress, which is strongly associated with neurodegenerative processes in AD. In this review, we focus on the current research on ER stress and UPR in cellular aging and neuroinflammatory processes, leading to memory impairment and synapse dysfunction in AD.
Collapse
|
50
|
Jarosiewicz M, Duchnowicz P, Jarosiewicz P, Huras B, Bukowska B. An In Vitro Comparative Study of the Effects of Tetrabromobisphenol A and Tetrabromobisphenol S on Human Erythrocyte Membranes-Changes in ATP Level, Perturbations in Membrane Fluidity, Alterations in Conformational State and Damage to Proteins. Int J Mol Sci 2021; 22:ijms22179443. [PMID: 34502352 PMCID: PMC8431071 DOI: 10.3390/ijms22179443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/21/2023] Open
Abstract
Brominated flame retardants (BFRs) are substances used to reduce the flammability of plastics. Among this group, tetrabormobisphenol A (TBBPA) is currently produced and used on the greatest scale, but due to the emerging reports on its potential toxicity, tetrabromobisphenol S (TBBPS)—a compound with a very similar structure—is used as an alternative. Due to the fact that the compounds in question are found in the environment and in biological samples from living organisms, including humans, and due to the insufficient toxicological knowledge about them, it is necessary to assess their impacts on living organisms and verify the validity of TBBPA replacement by TBBPS. The RBC membrane was chosen as the research model. This is a widely accepted research model for assessing the toxicity of xenobiotics, and it is the first barrier to compounds entering circulation. It was found that TBBPA and TBBPS caused increases in the fluidity of the erythrocyte membrane in their hydrophilic layer, and conformational changes to membrane proteins. They also caused thiol group elevation, an increase in lipid peroxidation (TBBPS only) and decreases in the level of ATP in cells. They also caused changes in the size and shape of RBCs. TBBPA caused changes in the erythrocyte membrane at lower concentrations compared to TBBPS at an occupational exposure level.
Collapse
Affiliation(s)
- Monika Jarosiewicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.D.); (B.B.)
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence:
| | - Piotr Duchnowicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.D.); (B.B.)
| | - Paweł Jarosiewicz
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland;
| | - Bogumiła Huras
- Łukasiewicz Research Network, Institute of Industrial Organic Chemistry, Annopol 6 Str, 03-236 Warsaw, Poland;
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.D.); (B.B.)
| |
Collapse
|