1
|
Zhang Q, Li T, Jiang H, Cao J, Wang H, Wang Z, Tang Q, Yang N, Zhao J, Wang F. Transcriptomic Insights Into Electroacupuncture Using Different Acupoint Combinations to Repair Mucosal Inflammatory Injury Induced in a Rat Model of Gastric Ulcer. J Inflamm Res 2025; 18:3399-3417. [PMID: 40093956 PMCID: PMC11910035 DOI: 10.2147/jir.s504930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Background Electroacupuncture (EA) is a promising treatment for gastrointestinal disorders, yet the efficacy of different acupoint combinations remains mechanistically undefined. We evaluated the therapeutic effects of different acupoint combinations on mucosal inflammatory injury induced in a rat model of gastric ulcer (GU) and dissected its molecular mechanisms through transcriptomic profiling. Methods A GU rat model was established using hypothermic restrained water immersion stress. EA therapy was administered to the He-Mu (ST36-CV12), Shu-Mu (BL21-CV12), and Yuan-Luo (ST42- ST40) acupoint combinations for 5 days. EA therapeutic effects were evaluated by coat score, fecal moisture percentage, pain threshold, body mass, organ index, histopathological changes, serum level of oxidative stress, and inflammatory cytokine levels in gastric tissue. A transcriptome analysis identified the related differentially expressed genes (DEGs) and central signaling pathway. Real-time quantitative PCR and Western blot were performed to verify the mRNA and protein expression levels of the main genes in the central pathway. Results EA using different acupoint combinations differentially alleviated gastric mucosal injury in GU rats, with the He-Mu group exhibiting superior tissue damage alleviation, as well as inflammation and oxidative stress reductions. A Venn diagram transcriptome analysis revealed a shared central pathway among the three groups, corresponding to focal adhesion. Quantitative validation confirmed that the mRNA, protein, and phosphorylated protein expression of FAK, VCL, and EGFR-the core signal transduction factors of the focal adhesion pathway activated in gastric tissue after EA treatment-were upregulated, consistent with their therapeutic efficacy. Conclusion Our results demonstrated that the He-Mu acupoint combination exhibited superior therapeutic efficacy among the three acupoint combinations. EA using different acupoint combinations improved gastric mucosal injury to varying degrees, and was related to the focal adhesion pathway. The FAK, VCL, and EGFR are promising targets, and further studies are needed to elucidate their functional consequences in GU.
Collapse
Affiliation(s)
- Qi Zhang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
- School of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan City, Hubei Province, People's Republic of China
| | - Tie Li
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - Hailin Jiang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - Jiazhen Cao
- School of Nursing, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - He Wang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - Zhongke Wang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - Qingqing Tang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - Ning Yang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - Jinying Zhao
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| | - Fuchun Wang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun City, Jilin Province, People's Republic of China
| |
Collapse
|
2
|
Liu Z, Zhang X, Ben T, Li M, Jin Y, Wang T, Song Y. Focal adhesion in the tumour metastasis: from molecular mechanisms to therapeutic targets. Biomark Res 2025; 13:38. [PMID: 40045379 PMCID: PMC11884212 DOI: 10.1186/s40364-025-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
The tumour microenvironment is the "hotbed" of tumour cells, providing abundant extracellular support for growth and metastasis. However, the tumour microenvironment is not static and is constantly remodelled by a variety of cellular components, including tumour cells, through mechanical, biological and chemical means to promote metastasis. Focal adhesion plays an important role in cell-extracellular matrix adhesion. An in-depth exploration of the role of focal adhesion in tumour metastasis, especially their contribution at the biomechanical level, is an important direction of current research. In this review, we first summarize the assembly of focal adhesions and explore their kinetics in tumour cells. Then, we describe in detail the role of focal adhesion in various stages of tumour metastasis, especially its key functions in cell migration, invasion, and matrix remodelling. Finally, we describe the anti-tumour strategies targeting focal adhesion and the current progress in the development of some inhibitors against focal adhesion proteins. In this paper, we summarize for the first time that focal adhesion play a positive feedback role in pro-tumour metastatic matrix remodelling by summarizing the five processes of focal adhesion assembly in a multidimensional way. It is beneficial for researchers to have a deeper understanding of the role of focal adhesion in the biological behaviour of tumour metastasis and the potential of focal adhesion as a therapeutic target, providing new ideas for the prevention and treatment of metastases.
Collapse
Affiliation(s)
- Zonghao Liu
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaofang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Tianru Ben
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Mo Li
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Yi Jin
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning Province, 110042, People's Republic of China.
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, 116024, P. R. China.
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
| |
Collapse
|
3
|
Graeve FD, Debreuve E, Pushpalatha KV, Zhang X, Rahmoun S, Kozlowski D, Cedilnik N, Vijayakumar J, Cassini P, Schaub S, Descombes X, Besse F. An image-based RNAi screen identifies the EGFR signaling pathway as a regulator of Imp RNP granules. J Cell Sci 2024; 137:jcs262119. [PMID: 39479884 PMCID: PMC11698055 DOI: 10.1242/jcs.262119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Biomolecular condensates have recently retained much attention given that they provide a fundamental mechanism of cellular organization. Among those, cytoplasmic ribonucleoprotein (RNP) granules selectively and reversibly concentrate RNA molecules and regulatory proteins, thus contributing to the spatiotemporal regulation of associated RNAs. Extensive in vitro work has unraveled the molecular and chemical bases of RNP granule assembly. The signaling pathways controlling this process in a cellular context are, however, still largely unknown. Here, we aimed at identifying regulators of cytoplasmic RNP granules characterized by the presence of the evolutionarily conserved Imp RNA-binding protein (a homolog of IGF2BP proteins). We performed a high-content image-based RNAi screen targeting all Drosophila genes encoding RNA-binding proteins, phosphatases and kinases. This led to the identification of dozens of genes regulating the number of Imp-positive RNP granules in S2R+ cells, among which were components of the MAPK pathway. Combining functional approaches, phospho-mapping and generation of phospho-variants, we further showed that EGFR signaling inhibits Imp-positive RNP granule assembly through activation of the MAPK-ERK pathway and downstream phosphorylation of Imp at the S15 residue. This work illustrates how signaling pathways can regulate cellular condensate assembly by post-translational modifications of specific components.
Collapse
Affiliation(s)
- Fabienne De Graeve
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Eric Debreuve
- Université Côte D'Azur, CNRS, INRIA, I3S, 06902 Sophia Antipolis, France
| | | | - Xuchun Zhang
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Somia Rahmoun
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Djampa Kozlowski
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Nicolas Cedilnik
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Jeshlee Vijayakumar
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Paul Cassini
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Sebastien Schaub
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
- Université Sorbonne, CNRS, LBDV, 06230 Villefranche-sur-mer, France
| | - Xavier Descombes
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Florence Besse
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| |
Collapse
|
4
|
Wu Y, Yang J, Wang X, Guo J, Tan Z, Guan F, Cao L. NCAM and attached polysialic acid affect behaviors of breast epithelial cells through differential signaling pathways. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39420834 DOI: 10.3724/abbs.2024176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Neural cell adhesion molecule (NCAM), a common mammalian cell surface glycoprotein, is the major substrate of polysialic acid (polySia). Polysialylated NCAM occurs in many types of cancer, but rarely in normal adult tissues. The functional role of NCAM hypersialylation in the epithelial-mesenchymal transition (EMT) process remains unclear. The present study indicates that NCAM and attached polysialic acid affect behaviors of breast epithelial cells through differential signaling pathways. NCAM and polysialylated NCAM are aberrantly regulated in breast cancer cells. They are both upregulated in normal breast epithelial cells undergoing EMT. Western blot analysis demonstrates that NCAM-140 overexpression induces EMT in breast epithelial cells and promotes cell proliferation and migration through activation of the β-catenin/slug signaling pathway. Modification of polySia attached to NCAM modulates cell adhesion and promotes cell motility through activation of the EGFR/STAT3 pathway. These observations contribute to clarifying the molecular mechanisms by which polysialic acid and its major substrate, NCAM, modulate cell behaviors, and highlight the significance of increased polysialylated expression on NCAM during EMT and tumor development.
Collapse
Affiliation(s)
- Yurong Wu
- Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Juhong Yang
- Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xin Wang
- Shandong University of Arts, Ji'nan 250300, China
| | - Jia Guo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
| | - Zengqi Tan
- Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, School of Medicine, Northwest University, Xi'an 710069, China
| | - Feng Guan
- Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Lin Cao
- Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, School of Medicine, Northwest University, Xi'an 710069, China
| |
Collapse
|
5
|
Aksan B, Kenkel AK, Yan J, Sánchez Romero J, Missirlis D, Mauceri D. VEGFD signaling balances stability and activity-dependent structural plasticity of dendrites. Cell Mol Life Sci 2024; 81:354. [PMID: 39158743 PMCID: PMC11335284 DOI: 10.1007/s00018-024-05357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
Mature neurons have stable dendritic architecture, which is essential for the nervous system to operate correctly. The ability to undergo structural plasticity, required to support adaptive processes like memory formation, is still present in mature neurons. It is unclear what molecular and cellular processes control this delicate balance between dendritic structural plasticity and stabilization. Failures in the preservation of optimal dendrite structure due to atrophy or maladaptive plasticity result in abnormal connectivity and are associated with various neurological diseases. Vascular endothelial growth factor D (VEGFD) is critical for the maintenance of mature dendritic trees. Here, we describe how VEGFD affects the neuronal cytoskeleton and demonstrate that VEGFD exerts its effects on dendrite stabilization by influencing the actin cortex and reducing microtubule dynamics. Further, we found that during synaptic activity-induced structural plasticity VEGFD is downregulated. Our findings revealed that VEGFD, acting on its cognate receptor VEGFR3, opposes structural changes by negatively regulating dendrite growth in cultured hippocampal neurons and in vivo in the adult mouse hippocampus with consequences on memory formation. A phosphoproteomic screening identified several regulatory proteins of the cytoskeleton modulated by VEGFD. Among the actin cortex-associated proteins, we found that VEGFD induces dephosphorylation of ezrin at tyrosine 478 via activation of the striatal-enriched protein tyrosine phosphatase (STEP). Activity-triggered structural plasticity of dendrites was impaired by expression of a phospho-deficient mutant ezrin in vitro and in vivo. Thus, VEGFD governs the equilibrium between stabilization and plasticity of dendrites by acting as a molecular brake of structural remodeling.
Collapse
Affiliation(s)
- Bahar Aksan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Ann-Kristin Kenkel
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Jing Yan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Javier Sánchez Romero
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Dimitris Missirlis
- Department of Cellular Biophysics, Max-Planck-Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
- Department Molecular and Cellular Neuroscience, Institute of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany.
| |
Collapse
|
6
|
Delaunay M, Paterek A, Gautschi I, Scherler G, Diviani D. AKAP2-anchored extracellular signal-regulated kinase 1 (ERK1) regulates cardiac myofibroblast migration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119674. [PMID: 38242328 DOI: 10.1016/j.bbamcr.2024.119674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Cardiac fibrosis is a major cause of dysfunctions and arrhythmias in failing hearts. At the cellular level fibrosis is mediated by cardiac myofibroblasts, which display an increased migratory capacity and secrete large amounts of extracellular matrix. These properties allow myofibroblasts to invade, remodel and stiffen the myocardium and eventually alter cardiac function. While the enhanced ability of cardiac myofibroblasts to migrate has been proposed to contribute to the initiation of the fibrotic process, the molecular mechanisms controlling their motile function have been poorly defined. In this context, our current findings indicate that A-kinase anchoring protein 2 (AKAP2) associates with actin at the leading edge of migrating cardiac myofibroblasts. Proteomic analysis of the AKAP2 interactome revealed that this anchoring protein assembles a signaling complex composed of the extracellular regulated kinase 1 (ERK1) and its upstream activator Grb2 that mediates the activation of ERK in cardiac myofibroblasts. Silencing AKAP2 expression results in a significant reduction in the phosphorylation of ERK1 and its downstream effector WAVE2, a protein involved in actin polymerization, and impairs the ability of cardiac myofibroblasts to migrate. Importantly, disruption of the interaction between AKAP2 and F-actin using cell-permeant competitor peptides, inhibits the activation of the ERK-WAVE2 signaling axis, resulting in a reduction of the translocation of Arp2 to the leading-edge membrane and in inhibition of cardiac myofibroblast migration. Collectively, these findings suggest that AKAP2 functions as an F-actin bound molecular scaffold mediating the activation of an ERK1-dependent promigratory transduction pathway in cardiac myofibroblasts.
Collapse
Affiliation(s)
- Marion Delaunay
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Aleksandra Paterek
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Ivan Gautschi
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Greta Scherler
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Dario Diviani
- Department of Biomedical Sciences, Faculty of Biology et Medicine, University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
7
|
Benedetti A, Turco C, Gallo E, Daralioti T, Sacconi A, Pulito C, Donzelli S, Tito C, Dragonetti M, Perracchio L, Blandino G, Fazi F, Fontemaggi G. ID4-dependent secretion of VEGFA enhances the invasion capability of breast cancer cells and activates YAP/TAZ via integrin β3-VEGFR2 interaction. Cell Death Dis 2024; 15:113. [PMID: 38321003 PMCID: PMC10847507 DOI: 10.1038/s41419-024-06491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Understanding the mechanisms of breast cancer cell communication underlying cell spreading and metastasis formation is fundamental for developing new therapies. ID4 is a proto-oncogene overexpressed in the basal-like subtype of triple-negative breast cancer (TNBC), where it promotes angiogenesis, cancer stem cells, and BRACA1 misfunction. Here, we show that ID4 expression in BC cells correlates with the activation of motility pathways and promotes the production of VEGFA, which stimulates the interaction of VEGFR2 and integrin β3 in a paracrine fashion. This interaction induces the downstream focal adhesion pathway favoring migration, invasion, and stress fiber formation. Furthermore, ID4/ VEGFA/ VEGFR2/ integrin β3 signaling stimulates the nuclear translocation and activation of the Hippo pathway member's YAP and TAZ, two critical executors for cancer initiation and progression. Our study provides new insights into the oncogenic roles of ID4 in tumor cell migration and YAP/TAZ pathway activation, suggesting VEGFA/ VEGFR2/ integrin β3 axis as a potential target for BC treatment.
Collapse
Affiliation(s)
- Anna Benedetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Turco
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Enzo Gallo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Theodora Daralioti
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Biostatistics and Bioinformatics Unit, Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Martina Dragonetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Letizia Perracchio
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.
| | - Giulia Fontemaggi
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
8
|
Arntz OJ, Thurlings RM, Blaney Davidson EN, Jansen PWTC, Vermeulen M, Koenders MI, van der Kraan PM, van de Loo FAJ. Profiling of plasma extracellular vesicles identifies proteins that strongly associate with patient's global assessment of disease activity in rheumatoid arthritis. Front Med (Lausanne) 2024; 10:1247778. [PMID: 38274452 PMCID: PMC10808582 DOI: 10.3389/fmed.2023.1247778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/30/2023] [Indexed: 01/27/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovial inflammation and cartilage/bone damage. Intercellular messengers such as IL-1 and TNF play a crucial role in the pathophysiology of RA but have limited diagnostic and prognostic values. Therefore, we assessed whether the protein content of the recently discovered extracellular vesicles (EVs), which have gained attention in the pathogenesis of RA, correlates with disease activity parameters in RA patients. Methods We identified and quantified proteins in plasma-derived EVs (pEVs), isolated by size exclusion chromatography from 17 RA patients by mass spectrophotometry (MS). Quantified protein levels were correlated with laboratory and clinical parameters and the patient's own global assessment of their disease activity (PGA-VAS). In a second MS run, the pEV proteins of nine other RA patients were quantified and compared to those from nine healthy controls (HC). Results No differences were observed in the concentration, size, and protein content of pEVs from RA patients. Proteomics revealed >95% overlapping proteins in RA-pEVs, compared to HC-pEVs (data are available via ProteomeXchange with identifier PXD046058). Remarkably, in both runs, the level of far more RA-pEV proteins correlated positively to PGA-VAS than to either clinical or laboratory parameters. Interestingly, all observed PGA-VAS positively correlated RA-pEV proteins were associated with the actin-cytoskeleton linker proteins, ezrin, and moesin. Conclusion Our observation suggests that PGA-VAS (loss of vitality) may have a different underlying pathological mechanism in RA, possibly related to enhanced muscle actin-cytoskeleton activity. Furthermore, our study contributes to the growing awareness and evidence that pEVs contain valuable biomarkers for diseases, with added value for RA patients.
Collapse
Affiliation(s)
- Onno J. Arntz
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rogier M. Thurlings
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Pascal W. T. C. Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Marije I. Koenders
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Fons A. J. van de Loo
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
9
|
Ullo MF, Case LB. How cells sense and integrate information from different sources. WIREs Mech Dis 2023:e1604. [PMID: 36781396 DOI: 10.1002/wsbm.1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
Cell signaling is a fundamental cellular process that enables cells to sense and respond to information in their surroundings. At the molecular level, signaling is primarily carried out by transmembrane protein receptors that can initiate complex downstream signal transduction cascades to alter cellular behavior. In the human body, different cells can be exposed to a wide variety of environmental conditions, and cells express diverse classes of receptors capable of sensing and integrating different signals. Furthermore, different receptors and signaling pathways can crosstalk with each other to calibrate the cellular response. Crosstalk occurs through multiple mechanisms at different levels of signaling pathways. In this review, we discuss how cells sense and integrate different chemical, mechanical, and spatial signals as well as the mechanisms of crosstalk between pathways. To illustrate these concepts, we use a few well-studied signaling pathways, including receptor tyrosine kinases and integrin receptors. Finally, we discuss the implications of dysregulated cellular sensing on driving diseases such as cancer. This article is categorized under: Cancer > Molecular and Cellular Physiology Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Maria F Ullo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lindsay B Case
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Pallarès ME, Pi-Jaumà I, Fortunato IC, Grazu V, Gómez-González M, Roca-Cusachs P, de la Fuente JM, Alert R, Sunyer R, Casademunt J, Trepat X. Stiffness-dependent active wetting enables optimal collective cell durotaxis. NATURE PHYSICS 2022:s41567-022-01835-1. [PMCID: PMC7617391 DOI: 10.1038/s41567-022-01835-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/13/2022] [Indexed: 05/17/2025]
Abstract
The directed migration of cellular clusters enables morphogenesis, wound healing, and collective cancer invasion. Gradients of substrate stiffness are known to direct the migration of cellular clusters in a process called collective durotaxis, but underlying mechanisms remain unclear. Here, we unveil a connection between collective durotaxis and the wetting properties of cellular clusters. We show that clusters of cancer cells dewet soft substrates and wet stiff ones. At intermediate stiffness, at the crossover from low to high wettability, clusters on uniform-stiffness substrates become maximally motile, and clusters on stiffness gradients exhibit optimal durotaxis. Durotactic velocity increases with cluster size, stiffness gradient, and actomyosin activity. We demonstrate this behavior on substrates coated with the cell-cell adhesion protein E-cadherin and then establish its generality on substrates coated with extracellular matrix. We develop a physical model of three-dimensional active wetting that explains this mode of collective durotaxis in terms of a balance between in-plane active traction and tissue contractility, and out-of-plane surface tension. Finally, we show that the distribution of cluster displacements has a heavy tail, with infrequent but large cellular hops that contribute to durotactic migration. Our study demonstrates a physical mechanism of collective durotaxis, through both cell-cell and cell-substrate adhesion ligands, based on the wetting properties of active droplets.
Collapse
Affiliation(s)
- Macià-Esteve Pallarès
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
| | - Irina Pi-Jaumà
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Isabela Corina Fortunato
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
| | - Valeria Grazu
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza50009, Spain
- Consejo Superior de Investigaciones Científicas, 50018Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería (CIBER-BBN), 08028Barcelona, Spain
| | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, 08036Barcelona, Spain
| | - Jesus M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza50009, Spain
- Consejo Superior de Investigaciones Científicas, 50018Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería (CIBER-BBN), 08028Barcelona, Spain
| | - Ricard Alert
- Max Planck Institute for the Physics of Complex Systems, 01187Dresden, Germany
- Center for Systems Biology Dresden, 01307Dresden, Germany
| | - Raimon Sunyer
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, 08036Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08010Universitat de Barcelona, Barcelona, Spain
| | - Jaume Casademunt
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST)08028Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería (CIBER-BBN), 08028Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, 08036Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010Barcelona, Spain
| |
Collapse
|