1
|
Urban MC. Climate change extinctions. Science 2024; 386:1123-1128. [PMID: 39636977 DOI: 10.1126/science.adp4461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Climate change is expected to cause irreversible changes to biodiversity, but predicting those risks remains uncertain. I synthesized 485 studies and more than 5 million projections to produce a quantitative global assessment of climate change extinctions. With increased certainty, this meta-analysis suggests that extinctions will accelerate rapidly if global temperatures exceed 1.5°C. The highest-emission scenario would threaten approximately one-third of species, globally. Amphibians; species from mountain, island, and freshwater ecosystems; and species inhabiting South America, Australia, and New Zealand face the greatest threats. In line with predictions, climate change has contributed to an increasing proportion of observed global extinctions since 1970. Besides limiting greenhouse gases, pinpointing which species to protect first will be critical for preserving biodiversity until anthropogenic climate change is halted and reversed.
Collapse
Affiliation(s)
- Mark C Urban
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Center of Biological Risk, University of Connecticut, Storrs, CT, USA
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
2
|
Mella VSA, Cooper CE, Karr M, Krockenberger A, Madani G, Webb EB, Krockenberger MB. Hot climate, hot koalas: the role of weather, behaviour and disease on thermoregulation. CONSERVATION PHYSIOLOGY 2024; 12:coae032. [PMID: 38803425 PMCID: PMC11129715 DOI: 10.1093/conphys/coae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Thermoregulation is critical for endotherms living in hot, dry conditions, and maintaining optimal core body temperature (Tb) in a changing climate is an increasingly challenging task for mammals. Koalas (Phascolarctos cinereus) have evolved physiological and behavioural strategies to maintain homeostasis and regulate their Tb but are thought to be vulnerable to prolonged heat. We investigated how weather, behaviour and disease influence Tb for wild, free-living koalas during summer in north-west New South Wales. We matched Tb with daily behavioural observations in an ageing population where chlamydial disease is prevalent. Each individual koala had similar Tb rhythms (average Tb = 36.4 ± 0.05°C), but male koalas had higher Tb amplitude and more pronounced daily rhythm than females. Disease disrupted the 24-hr circadian pattern of Tb. Koala Tb increased with ambient temperature (Ta). On the hottest day of the study (maximum Ta = 40.8°C), we recorded the highest (Tb = 40.8°C) but also the lowest (Tb = 32.4°C) Tb ever documented for wild koalas, suggesting that they are more heterothermic than previously recognized. This requires individuals to predict days of extreme Ta from overnight and early morning conditions, adjusting Tb regulation accordingly, and it has never been reported before for koalas. The large diel amplitude and low minimum Tb observed suggest that koalas at our study site are energetically and nutritionally compromised, likely due to their age. Behaviour (i.e. tree hugging and drinking water) was not effective in moderating Tb. These results indicate that Ta and koala Tb are strongly interconnected and reinforce the importance of climate projections for predicting the future persistence of koalas throughout their current distribution. Global climate models forecast that dry, hot weather will continue to escalate and drought events will increase in frequency, duration and severity. This is likely to push koalas and other arboreal folivores towards their thermal limit.
Collapse
Affiliation(s)
- Valentina S A Mella
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christine E Cooper
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Madeline Karr
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Andrew Krockenberger
- Division of Research and Innovation, James Cook University, Cairns, Queensland 4878, Australia
| | - George Madani
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Elliot B Webb
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Department of Planning and Environment, Science, Economics and Insights Division, Parramatta, New South Wales 2150, Australia
| | - Mark B Krockenberger
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
3
|
Gempo N, Yeshi K, Crayn D, Wangchuk P. Climate-Affected Australian Tropical Montane Cloud Forest Plants: Metabolomic Profiles, Isolated Phytochemicals, and Bioactivities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1024. [PMID: 38611553 PMCID: PMC11013060 DOI: 10.3390/plants13071024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
The Australian Wet Tropics World Heritage Area (WTWHA) in northeast Queensland is home to approximately 18 percent of the nation's total vascular plant species. Over the past century, human activity and industrial development have caused global climate changes, posing a severe and irreversible danger to the entire land-based ecosystem, and the WTWHA is no exception. The current average annual temperature of WTWHA in northeast Queensland is 24 °C. However, in the coming years (by 2030), the average annual temperature increase is estimated to be between 0.5 and 1.4 °C compared to the climate observed between 1986 and 2005. Looking further ahead to 2070, the anticipated temperature rise is projected to be between 1.0 and 3.2 °C, with the exact range depending on future emissions. We identified 84 plant species, endemic to tropical montane cloud forests (TMCF) within the WTWHA, which are already experiencing climate change threats. Some of these plants are used in herbal medicines. This study comprehensively reviewed the metabolomics studies conducted on these 84 plant species until now toward understanding their physiological and metabolomics responses to global climate change. This review also discusses the following: (i) recent developments in plant metabolomics studies that can be applied to study and better understand the interactions of wet tropics plants with climatic stress, (ii) medicinal plants and isolated phytochemicals with structural diversity, and (iii) reported biological activities of crude extracts and isolated compounds.
Collapse
Affiliation(s)
- Ngawang Gempo
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Nguma-bada Campus, McGregor Rd., Cairns, QLD 4878, Australia; (N.G.); (P.W.)
- College of Public Health, Medical and Veterinary Services (CPHMVS), James Cook University, Nguma-bada Campus, McGregor Rd., Cairns, QLD 4878, Australia
| | - Karma Yeshi
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Nguma-bada Campus, McGregor Rd., Cairns, QLD 4878, Australia; (N.G.); (P.W.)
- College of Public Health, Medical and Veterinary Services (CPHMVS), James Cook University, Nguma-bada Campus, McGregor Rd., Cairns, QLD 4878, Australia
| | - Darren Crayn
- Australian Tropical Herbarium (ATH), James Cook University, Nguma-bada Campus, McGregor Rd., Cairns, QLD 4878, Australia;
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Nguma-bada Campus, McGregor Rd., Cairns, QLD 4878, Australia; (N.G.); (P.W.)
- College of Public Health, Medical and Veterinary Services (CPHMVS), James Cook University, Nguma-bada Campus, McGregor Rd., Cairns, QLD 4878, Australia
| |
Collapse
|
4
|
Mata-Guel EO, Soh MCK, Butler CW, Morris RJ, Razgour O, Peh KSH. Impacts of anthropogenic climate change on tropical montane forests: an appraisal of the evidence. Biol Rev Camb Philos Soc 2023; 98:1200-1224. [PMID: 36990691 DOI: 10.1111/brv.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
In spite of their small global area and restricted distributions, tropical montane forests (TMFs) are biodiversity hotspots and important ecosystem services providers, but are also highly vulnerable to climate change. To protect and preserve these ecosystems better, it is crucial to inform the design and implementation of conservation policies with the best available scientific evidence, and to identify knowledge gaps and future research needs. We conducted a systematic review and an appraisal of evidence quality to assess the impacts of climate change on TMFs. We identified several skews and shortcomings. Experimental study designs with controls and long-term (≥10 years) data sets provide the most reliable evidence, but were rare and gave an incomplete understanding of climate change impacts on TMFs. Most studies were based on predictive modelling approaches, short-term (<10 years) and cross-sectional study designs. Although these methods provide moderate to circumstantial evidence, they can advance our understanding on climate change effects. Current evidence suggests that increasing temperatures and rising cloud levels have caused distributional shifts (mainly upslope) of montane biota, leading to alterations in biodiversity and ecological functions. Neotropical TMFs were the best studied, thus the knowledge derived there can serve as a proxy for climate change responses in under-studied regions elsewhere. Most studies focused on vascular plants, birds, amphibians and insects, with other taxonomic groups poorly represented. Most ecological studies were conducted at species or community levels, with a marked paucity of genetic studies, limiting understanding of the adaptive capacity of TMF biota. We thus highlight the long-term need to widen the methodological, thematic and geographical scope of studies on TMFs under climate change to address these uncertainties. In the short term, however, in-depth research in well-studied regions and advances in computer modelling approaches offer the most reliable sources of information for expeditious conservation action for these threatened forests.
Collapse
Affiliation(s)
- Erik O Mata-Guel
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Malcolm C K Soh
- National Park Boards, 1 Cluny Road, Singapore, 259569, Singapore
| | - Connor W Butler
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Rebecca J Morris
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Orly Razgour
- Biosciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Kelvin S-H Peh
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
5
|
Connors MG, Yeeles P, Lach L, Rentz DCF. Revision of the genus Calofulcinia Giglio-Tos (Mantodea: Nanomantidae: Fulciniinae) in Australia. Zootaxa 2023; 5296:333-361. [PMID: 37518440 DOI: 10.11646/zootaxa.5296.3.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 08/01/2023]
Abstract
The genus Calofulcinia comprises several species of small, cryptic mantis, three of which have been described from Australia. The genus is infrequently recorded and is thus very poorly known, and even basic questions of species delimitation and distribution have remained virtually unknown since the descriptions of these taxa. We here redescribe and figure the three known Australian species of Calofulcinia in full and provide a detailed key to Australian species. We record significant range extensions for all three species, and provide the first detailed behavioural and ecological records for the genus. In addition, we group the Australian species into a Robust Group (C. paraoxypila) and a Gracile Group (C. australis and C. oxynota), we detail the occurrence of colour polymorphism within the genus, and finally we discuss the apparent microhabitat specificity of Calofulcinia spp. (mosses and lichens) and their preference for cool, moist environments with reference to our changing climate.
Collapse
Affiliation(s)
- Matthew G Connors
- College of Science and Engineering; James Cook University; PO Box 6811; Cairns; QLD; 4870; Australia.
| | - Peter Yeeles
- College of Science and Engineering; James Cook University; PO Box 6811; Cairns; QLD; 4870; Australia.
| | - Lori Lach
- College of Science and Engineering; James Cook University; PO Box 6811; Cairns; QLD; 4870; Australia.
| | - David C F Rentz
- Adjunct Professor; College of Science and Engineering; James Cook University; PO Box 6811; Cairns; QLD; 4870; Australia.
| |
Collapse
|
6
|
Heard GW, Bolitho LJ, Newell D, Hines HB, Norman P, Willacy RJ, Scheele BC. Drought, fire, and rainforest endemics: A case study of two threatened frogs impacted by Australia's "Black Summer". Ecol Evol 2023; 13:e10069. [PMID: 37214614 PMCID: PMC10197140 DOI: 10.1002/ece3.10069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Deepening droughts and unprecedented wildfires are at the leading edge of climate change. Such events pose an emerging threat to species maladapted to these perturbations, with the potential for steeper declines than may be inferred from the gradual erosion of their climatic niche. This study focused on two species of amphibians-Philoria kundagungan and Philoria richmondensis (Limnodynastidae)-from the Gondwanan rainforests of eastern Australia that were extensively affected by the "Black Summer" megafires of 2019/2020 and the severe drought associated with them. We sought to assess the impact of these perturbations by quantifying the extent of habitat affected by fire, assessing patterns of occurrence and abundance of calling males post-fire, and comparing post-fire occurrence and abundance with that observed pre-fire. Some 30% of potentially suitable habitat for P. kundagungan was fire affected, and 12% for P. richmondensis. Field surveys revealed persistence in some burnt rainforest; however, both species were detected at a higher proportion of unburnt sites. There was a clear negative effect of fire on the probability of site occupancy, abundance and the probability of persistence for P. kundagungan. For P. richmondensis, effects of fire were less evident due to the limited penetration of fire into core habitat; however, occupancy rates and abundance of calling males were depressed during the severe drought that prevailed just prior to the fires, with the reappearance of calling males linked to the degree of rehydration of breeding habitat post-fire. Our results highlight the possibility that severe negative impacts of climate change for montane rainforest endemics may be felt much sooner than commonly anticipated under a scenario of gradual (decadal-scale) changes in mean climatic conditions. Instead, the increased rate of severe stochastic events places these narrow range species at a heightened risk of extinction in the near-term.
Collapse
Affiliation(s)
- Geoffrey W. Heard
- Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Terrestrial Ecosystem Research NetworkUniversity of QueenslandBrisbaneQueenslandAustralia
- Centre for Biodiversity and Conservation ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Liam J. Bolitho
- Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| | - David Newell
- Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| | - Harry B. Hines
- Department of Environment and ScienceQueensland Parks and Wildlife Service and PartnershipsBellbowrieQueenslandAustralia
- Queensland MuseumSouth BrisbaneQueenslandAustralia
| | - Patrick Norman
- Climate Action BeaconGriffith UniversityGold CoastQueenslandAustralia
| | - Rosalie J. Willacy
- Centre for Biodiversity and Conservation ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
- Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| | - Ben C. Scheele
- Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
7
|
de la Fuente A, Navarro A, Williams SE. The climatic drivers of long-term population changes in rainforest montane birds. GLOBAL CHANGE BIOLOGY 2023; 29:2132-2140. [PMID: 36654193 DOI: 10.1111/gcb.16608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 05/28/2023]
Abstract
Climate-driven biodiversity erosion is escalating at an alarming rate. The pressure imposed by climate change is exceptionally high in tropical ecosystems, where species adapted to narrow environmental ranges exhibit strong physiological constraints. Despite the observed detrimental effect of climate change on ecosystems at a global scale, our understanding of the extent to which multiple climatic drivers affect population dynamics is limited. Here, we disentangle the impact of different climatic stressors on 47 rainforest birds inhabiting the mountains of the Australian Wet Tropics using hierarchical population models. We estimate the effect of spatiotemporal changes in temperature, precipitation, heatwaves, droughts and cyclones on the population dynamics of rainforest birds between 2000 and 2016. We find a strong effect of warming and changes in rainfall patterns across the elevational-segregated bird communities, with lowland populations benefiting from increasing temperature and precipitation, while upland species show an inverse strong negative response to the same drivers. Additionally, we find a negative effect of heatwaves on lowland populations, a pattern associated with the observed distribution of these extreme events across elevations. In contrast, cyclones and droughts have a marginal effect on spatiotemporal changes in rainforest bird communities, suggesting a species-specific response unrelated to the elevational gradient. This study demonstrated the importance of unravelling the drivers of climate change impacts on population changes, providing significant insight into the mechanisms accelerating climate-induced biodiversity degradation.
Collapse
Affiliation(s)
- Alejandro de la Fuente
- Centre for Tropical Environmental and Sustainability Science, College of Science & Engineering, James Cook University, Townsville, Australia
| | - Alejandro Navarro
- Centre for Tropical Environmental and Sustainability Science, College of Science & Engineering, James Cook University, Townsville, Australia
| | - Stephen E Williams
- Centre for Tropical Environmental and Sustainability Science, College of Science & Engineering, James Cook University, Townsville, Australia
| |
Collapse
|
8
|
Butterworth NJ, Wallman JF, Johnston NP, Dawson BM, Sharp-Heward J, McGaughran A. The blowfly Chrysomya latifrons inhabits fragmented rainforests, but shows no population structure. Oecologia 2023; 201:703-719. [PMID: 36773072 PMCID: PMC10038970 DOI: 10.1007/s00442-023-05333-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023]
Abstract
Climate change and deforestation are causing rainforests to become increasingly fragmented, placing them at heightened risk of biodiversity loss. Invertebrates constitute the greatest proportion of this biodiversity, yet we lack basic knowledge of their population structure and ecology. There is a compelling need to develop our understanding of the population dynamics of a wide range of rainforest invertebrates so that we can begin to understand how rainforest fragments are connected, and how they will cope with future habitat fragmentation and climate change. Blowflies are an ideal candidate for such research because they are widespread, abundant, and can be easily collected within rainforests. We genotyped 188 blowflies (Chrysomya latifrons) from 15 isolated rainforests and found high levels of gene flow, a lack of genetic structure between rainforests, and low genetic diversity - suggesting the presence of a single large genetically depauperate population. This highlights that: (1) the blowfly Ch. latifrons inhabits a ~ 1000 km stretch of Australian rainforests, where it plays an important role as a nutrient recycler; (2) strongly dispersing flies can migrate between and connect isolated rainforests, likely carrying pollen, parasites, phoronts, and pathogens along with them; and (3) widely dispersing and abundant insects can nevertheless be genetically depauperate. There is an urgent need to better understand the relationships between habitat fragmentation, genetic diversity, and adaptive potential-especially for poorly dispersing rainforest-restricted insects, as many of these may be particularly fragmented and at highest risk of local extinction.
Collapse
Affiliation(s)
- Nathan J Butterworth
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - James F Wallman
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Nikolas P Johnston
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Department of Ecology and Biogeography, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100, Toruń, Poland
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Blake M Dawson
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Joshua Sharp-Heward
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Angela McGaughran
- Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| |
Collapse
|
9
|
Liu BW, Li SY, Zhu H, Liu GX. Phyllosphere eukaryotic microalgal communities in rainforests: Drivers and diversity. PLANT DIVERSITY 2023; 45:45-53. [PMID: 36876308 PMCID: PMC9975471 DOI: 10.1016/j.pld.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/18/2023]
Abstract
Phyllosphere algae are common in tropical rainforests, forming visible biofilms or spots on plant leaf surfaces. However, knowledge of phyllosphere algal diversity and the environmental factors that drive that diversity is limited. The aim of this study is to identify the environmental factors that drive phyllosphere algal community composition and diversity in rainforests. For this purpose, we used single molecule real-time sequencing of full-length 18S rDNA to characterize the composition of phyllosphere microalgal communities growing on four host tree species (Ficus tikoua, Caryota mitis, Arenga pinnata, and Musa acuminata) common to three types of forest over four months at the Xishuangbanna Tropical Botanical Garden, Yunnan Province, China. Environmental 18S rDNA sequences revealed that the green algae orders Watanabeales and Trentepohliales were dominant in almost all algal communities and that phyllosphere algal species richness and biomass were lower in planted forest than in primeval and reserve rainforest. In addition, algal community composition differed significantly between planted forest and primeval rainforest. We also found that algal communities were affected by soluble reactive phosphorous, total nitrogen, and ammonium contents. Our findings indicate that algal community structure is significantly related to forest type and host tree species. Furthermore, this study is the first to identify environmental factors that affect phyllosphere algal communities, significantly contributing to future taxonomic research, especially for the green algae orders Watanabeales and Trentepohliales. This research also serves as an important reference for molecular diversity analysis of algae in other specific habitats, such as epiphytic algae and soil algae.
Collapse
Affiliation(s)
- Ben-Wen Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shu-Yin Li
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological Environment, Wuhan 430072, China
| | - Huan Zhu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guo-Xiang Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
10
|
Extensive range contraction predicted under climate warming for two endangered mountaintop frogs from the rainforests of subtropical Australia. Sci Rep 2022; 12:20215. [PMID: 36418388 PMCID: PMC9684556 DOI: 10.1038/s41598-022-24551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
Montane ecosystems cover approximately 20% of the Earth's terrestrial surface and are centres of endemism. Globally, anthropogenic climate change is driving population declines and local extinctions across multiple montane taxa, including amphibians. We applied the maximum entropy approach to predict the impacts of climate change on the distribution of two poorly known amphibian species (Philoria kundagungan and Philoria richmondensis) endemic to the subtropical uplands of the Gondwana Rainforests of Australia, World Heritage Area (GRAWHA). Firstly, under current climate conditions and also future (2055) low and high warming scenarios. We validated current distribution models against models developed using presence-absence field data. Our models were highly concordant with known distributions and predicted the current distribution of P. kundagungan to contract by 64% under the low warming scenario and by 91% under the high warming scenario and that P. richmondensis would contract by 50% and 85%, respectively. With large areas of habitat already impacted by wildfires, conservation efforts for both these species need to be initiated urgently. We propose several options, including establishing ex-situ insurance populations increasing the long-term viability of both species in the wild through conservation translocations.
Collapse
|
11
|
de la Fuente A, Williams SE. Climate change threatens the future of rain forest ringtail possums by 2050. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Alejandro de la Fuente
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Townsville Queensland Australia
| | - Stephen E. Williams
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering James Cook University Townsville Queensland Australia
| |
Collapse
|
12
|
Turpin G, Ritmejerytė E, Jamie J, Crayn D, Wangchuk P. Aboriginal medicinal plants of Queensland: ethnopharmacological uses, species diversity, and biodiscovery pathways. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2022; 18:54. [PMID: 35948982 PMCID: PMC9364609 DOI: 10.1186/s13002-022-00552-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Aboriginal peoples have occupied the island continent of Australia for millennia. Over 500 different clan groups or nations with distinctive cultures, beliefs, and languages have learnt to live sustainably and harmoniously with nature. They have developed an intimate and profound relationship with the environment, and their use of native plants in food and medicine is largely determined by the environment they lived in. Over 1511 plant species have been recorded as having been used medicinally in Australia. Most of these medicinal plants were recorded from the Aboriginal communities in Northern Territory, New South Wales, South Australia, and Western Australia. Not much has yet been reported on Aboriginal medicinal plants of Queensland. Therefore, the main aim of this review is to collect the literature on the medicinal plants used by Aboriginal peoples of Queensland and critically assess their ethnopharmacological uses. METHODS The information used in this review was collected from archival material and uploaded into the Tropical Indigenous Ethnobotany Centre (TIEC) database. Archival material included botanist's journals/books and old hard copy books. Scientific names of the medicinal plant species were matched against the 'World Flora Online Plant List', and 'Australian Plant Census' for currently accepted species names to avoid repetition. An oral traditional medical knowledge obtained through interviewing traditional knowledge holders (entered in the TIEC database) has not been captured in this review to protect their knowledge. RESULTS This review identified 135 species of Queensland Aboriginal medicinal plants, which belong to 103 genera from 53 families, with Myrtaceae being the highest represented plant family. While trees represented the biggest habit, leaves were the most commonly used plant parts. Of 62 different diseases treated by the medicinal plants, highest number of plants are used for treating skin sores and infections. Few plants identified through this review can be found in other tropical countries but many of these medicinal plants are native to Australia. Many of these medicinal plants are also used as bush food by Aboriginal peoples. CONCLUSION Through extensive literature review, we found that 135 medicinal plants native to Queensland are used for treating 62 different diseases, especially skin infections. Since these medicinal plants are also used as bush food and are rarely studied using the Western scientific protocols, there is a huge potential for bioprospecting and bush food industry.
Collapse
Affiliation(s)
- Gerry Turpin
- Tropical Indigenous Ethnobotany Centre, Australian Tropical Herbarium, James Cook University, Building E1, Cairns Campus, McGregor Road, Smithfield, QLD, 4878, Australia.
- Queensland Herbarium, Department of Environment and Science, Mount Coot-tha Botanical Gardens, Mount Coot-tha Road, Toowong, QLD, 4066, Australia.
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, Cairns Campus, McGregor Road, Smithfield, QLD, 4878, Australia.
| | - Edita Ritmejerytė
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, Cairns Campus, McGregor Road, Smithfield, QLD, 4878, Australia
| | - Joanne Jamie
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Darren Crayn
- Australian Tropical Herbarium, James Cook University, Building E1, Cairns Campus, McGregor Road, Smithfield, QLD, 4878, Australia
- Centre for Tropical Environmental Sustainability Science, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia
| | - Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Building E4, Cairns Campus, McGregor Road, Smithfield, QLD, 4878, Australia.
| |
Collapse
|
13
|
Bruce T, Williams SE, Amin R, L'Hotellier F, Hirsch BT. Laying low: Rugged lowland rainforest preferred by feral cats in the Australian Wet Tropics. Ecol Evol 2022; 12:e9105. [PMID: 35845357 PMCID: PMC9277418 DOI: 10.1002/ece3.9105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/05/2022] Open
Abstract
Invasive mesopredators are responsible for the decline of many species of native mammals worldwide. Feral cats have been causally linked to multiple extinctions of Australian mammals since European colonization. While feral cats are found throughout Australia, most research has been undertaken in arid habitats, thus there is a limited understanding of feral cat distribution, abundance, and ecology in Australian tropical rainforests. We carried out camera-trapping surveys at 108 locations across seven study sites, spanning 200 km in the Australian Wet Tropics. Single-species occupancy analysis was implemented to investigate how environmental factors influence feral cat distribution. Feral cats were detected at a rate of 5.09 photographs/100 days, 11 times higher than previously recorded in the Australian Wet Tropics. The main environmental factors influencing feral cat occupancy were a positive association with terrain ruggedness, a negative association with elevation, and a higher affinity for rainforest than eucalypt forest. These findings were consistent with other studies on feral cat ecology but differed from similar surveys in Australia. Increasingly harsh and consistently wet weather conditions at higher elevations, and improved shelter in topographically complex habitats may drive cat preference for lowland rainforest. Feral cats were positively associated with roads, supporting the theory that roads facilitate access and colonization of feral cats within more remote parts of the rainforest. Higher elevation rainforests with no roads could act as refugia for native prey species within the critical weight range. Regular monitoring of existing roads should be implemented to monitor feral cats, and new linear infrastructure should be limited to prevent encroachment into these areas. This is pertinent as climate change modeling suggests that habitats at higher elevations will become similar to lower elevations, potentially making the environment more suitable for feral cat populations.
Collapse
Affiliation(s)
- Tom Bruce
- Centre for Tropical Environmental and Sustainability ScienceCollege of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Stephen E. Williams
- Centre for Tropical Environmental and Sustainability ScienceCollege of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | | | | | - Ben T. Hirsch
- Centre for Tropical Environmental and Sustainability ScienceCollege of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- Smithsonian Tropical Research InstitutePanamaPanama
| |
Collapse
|
14
|
Torkkola JJ, Wilmer JW, Hutchinson MN, Couper PJ, Oliver PM. Die on this hill? A new monotypic, microendemic and montane vertebrate genus from the Australian Wet Tropics. ZOOL SCR 2022. [DOI: 10.1111/zsc.12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Janne J. Torkkola
- Snake Out Brisbane Kenmore Queensland Australia
- Biodiversity and Geosciences Program Queensland Museum South Brisbane Queensland Australia
| | | | - Mark N. Hutchinson
- South Australian Museum, North Terrace Adelaide South Australia Australia
| | - Patrick J. Couper
- Biodiversity and Geosciences Program Queensland Museum South Brisbane Queensland Australia
| | - Paul M. Oliver
- Biodiversity and Geosciences Program Queensland Museum South Brisbane Queensland Australia
- Centre for Planetary Health and Food Security Griffith University Brisbane Queensland Australia
| |
Collapse
|
15
|
de la Fuente A, Krockenberger A, Hirsch B, Cernusak L, Williams SE. Predicted alteration of vertebrate communities in response to climate‐induced elevational shifts. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Alejandro de la Fuente
- College of Science & Engineering Centre for Tropical Environmental and Sustainability Science, James Cook University Townsville Queensland Australia
| | - Andrew Krockenberger
- Division of Research and Innovation James Cook University Cairns Queensland Australia
| | - Ben Hirsch
- College of Science & Engineering Centre for Tropical Environmental and Sustainability Science, James Cook University Townsville Queensland Australia
| | - Lucas Cernusak
- College of Science and Engineering Centre for Tropical Environmental and Sustainability Science, James Cook University Cairns Queensland Australia
| | - Stephen E. Williams
- College of Science & Engineering Centre for Tropical Environmental and Sustainability Science, James Cook University Townsville Queensland Australia
| |
Collapse
|
16
|
Yang Q, Wang S, Zhao C, Nan Z. Risk assessment of trace elements accumulation in soil-herbage systems at varied elevation in subalpine grassland of northern Tibet Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27636-27650. [PMID: 34982386 DOI: 10.1007/s11356-021-18366-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Ecological environment of remote grassland has become a problem in many countries due to mining, tourism, grazing, and other human activities. In this study, a total of 15 pairs of soil-herbage samples were collected in the northeast of the Tibet Plateau to study the relationship between physicochemical properties and content of trace elements in soils at different elevation, and to examine the accumulation and fractionation of heavy metals in soil-herbage systems. In addition, the ecological risk of the subalpine grassland was also assessed. The average concentrations of Hg, As, Cu, Zn, Pb, Cd, Cr, and Mn in soil were higher than their background values of Gansu soil, but the average concentrations of these heavy metals in herbage satisfied Hygienical Standard for Feeds. The speciation analysis of heavy metals in soil indicated that the exchangeable content of heavy metal was very low, except Pb, Cd, and Mn. There was a linear relationship between pH, CaCO3, total phosphorus (TP), organic matter (OM), concentrations of Hg, As, Zn, Pb, Cr, and Mn in soils, dry weight of herbage, and elevation, while there was a quadratic curve trend between Cu, Cd in soils, and elevation. The results of risk assessment showed that there was no obvious ecological risk in the study area.
Collapse
Affiliation(s)
- Qianfang Yang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Key Laboratory of Western China's Environment Systems (Ministry of Education), College of Earth Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shengli Wang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- Key Laboratory of Western China's Environment Systems (Ministry of Education), College of Earth Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Cuicui Zhao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Key Laboratory of Western China's Environment Systems (Ministry of Education), College of Earth Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongren Nan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Key Laboratory of Western China's Environment Systems (Ministry of Education), College of Earth Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
17
|
Uwizelimana JDD, Nsabimana D, Wagner T. Diversity and distribution of Fruit‐feeding butterflies (Lepidoptera: Nymphalidae) in Nyungwe National Park, Rwanda. Afr J Ecol 2022. [DOI: 10.1111/aje.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jean de Dieu Uwizelimana
- Institut für Integrierte Naturwissenschaften Biologie Universität Koblenz‐Landau Koblenz Germany
- College of Science and Technology Biology Department University of Rwanda Kigali‐Rwanda Rwanda
| | - Donat Nsabimana
- College of Agriculture, Animal Sciences and Veterinary Medicine School of Forestry, Biodiversity and Conservation University of Rwanda Butare‐Rwanda Rwanda
| | - Thomas Wagner
- Institut für Integrierte Naturwissenschaften Biologie Universität Koblenz‐Landau Koblenz Germany
| |
Collapse
|
18
|
Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010313. [PMID: 35011546 PMCID: PMC8746929 DOI: 10.3390/molecules27010313] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
Plant secondary metabolites (PSMs) are vital for human health and constitute the skeletal framework of many pharmaceutical drugs. Indeed, more than 25% of the existing drugs belong to PSMs. One of the continuing challenges for drug discovery and pharmaceutical industries is gaining access to natural products, including medicinal plants. This bottleneck is heightened for endangered species prohibited for large sample collection, even if they show biological hits. While cultivating the pharmaceutically interesting plant species may be a solution, it is not always possible to grow the organism outside its natural habitat. Plants affected by abiotic stress present a potential alternative source for drug discovery. In order to overcome abiotic environmental stressors, plants may mount a defense response by producing a diversity of PSMs to avoid cells and tissue damage. Plants either synthesize new chemicals or increase the concentration (in most instances) of existing chemicals, including the prominent bioactive lead compounds morphine, camptothecin, catharanthine, epicatechin-3-gallate (EGCG), quercetin, resveratrol, and kaempferol. Most PSMs produced under various abiotic stress conditions are plant defense chemicals and are functionally anti-inflammatory and antioxidative. The major PSM groups are terpenoids, followed by alkaloids and phenolic compounds. We have searched the literature on plants affected by abiotic stress (primarily studied in the simulated growth conditions) and their PSMs (including pharmacological activities) from PubMed, Scopus, MEDLINE Ovid, Google Scholar, Databases, and journal websites. We used search keywords: "stress-affected plants," "plant secondary metabolites, "abiotic stress," "climatic influence," "pharmacological activities," "bioactive compounds," "drug discovery," and "medicinal plants" and retrieved published literature between 1973 to 2021. This review provides an overview of variation in bioactive phytochemical production in plants under various abiotic stress and their potential in the biodiscovery of therapeutic drugs. We excluded studies on the effects of biotic stress on PSMs.
Collapse
|
19
|
Tebbett SB, Morais J, Bellwood DR. Spatial patchiness in change, recruitment, and recovery on coral reefs at Lizard Island following consecutive bleaching events. MARINE ENVIRONMENTAL RESEARCH 2022; 173:105537. [PMID: 34837738 DOI: 10.1016/j.marenvres.2021.105537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
The world's coral reef ecosystems are steadily being reconfigured by climate change. Lizard Island, on Australia's Great Barrier Reef, offers an opportunity to examine coral reef reassembly following disturbance, as this location has been impacted by consecutive tropical cyclones and consecutive coral bleaching events. Based on repeatedly monitoring the same 349 photoquadrats around Lizard Island over a 5-year period (2016-2021) we revealed that bleaching in 2016 drove a ∼50% reduction in hard coral cover, and a concomitant increase in algal turf cover. From 2018 to 2021, significant increases (>600%) in coral cover were detected on two semi-exposed reefs and were associated with substantial Acropora recruitment. By contrast, fourteen lagoonal and back reefs exhibited virtually no recovery nor Acropora recruitment. Given that the timeframe between disturbances is set to decrease, our results suggest that some recovery is possible immediately after severe cumulative disturbances, although this recovery may be highly spatially heterogenous.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Juliano Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
20
|
Williams SE, de la Fuente A. Long-term changes in populations of rainforest birds in the Australia Wet Tropics bioregion: A climate-driven biodiversity emergency. PLoS One 2021; 16:e0254307. [PMID: 34937065 PMCID: PMC8694438 DOI: 10.1371/journal.pone.0254307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
Many authors have suggested that the vulnerability of montane biodiversity to climate change worldwide is significantly higher than in most other ecosystems. Despite the extensive variety of studies predicting severe impacts of climate change globally, few studies have empirically validated the predicted changes in distribution and population density. Here, we used 17 years (2000–2016) of standardised bird monitoring across latitudinal/elevational gradients in the rainforest of the Australian Wet Tropics World Heritage Area to assess changes in local abundance and elevational distribution. We used relative abundance in 1977 surveys across 114 sites ranging from 0-1500m above sea level and utilised a trend analysis approach (TRIM) to investigate elevational shifts in abundance of 42 species. The local abundance of most mid and high elevation species has declined at the lower edges of their distribution by >40% while lowland species increased by up to 190% into higher elevation areas. Upland-specialised species and regional endemics have undergone dramatic population declines of almost 50%. The “Outstanding Universal Value” of the Australian Wet Tropics World Heritage Area, one of the most irreplaceable biodiversity hotspots on Earth, is rapidly degrading. These observed impacts are likely to be similar in many tropical montane ecosystems globally.
Collapse
Affiliation(s)
- Stephen E. Williams
- Centre for Tropical Environmental Science & Sustainability, College of Science and Engineering, James Cook University, Townsville, Australia
- * E-mail:
| | - Alejandro de la Fuente
- Centre for Tropical Environmental Science & Sustainability, College of Science and Engineering, James Cook University, Townsville, Australia
| |
Collapse
|
21
|
Narouei M, Javadi SA, Khodagholi M, Jafari M, Azizinejad R. Modeling the effects of climate change on the potential distribution of the rangeland species Gymnocarpus decander Forssk (case study: Arid region of southeastern Iran). ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 194:33. [PMID: 34923594 DOI: 10.1007/s10661-021-09657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
The phenomenon of climate change is the biggest environmental challenge in the world. Climate is a determinant factor in species distribution, and climate change will affect the species' abilities to occupy geographic regions. In this study which was conducted in May of 2019, spatio-temporal changes in potential habitats of Gymnocarpus decander were assessed using the MRI-CGCM3 climate change model for RCP2.6 and RCP8.5 scenarios for the near future (2041-2061) and far future (2061-2080) periods for this purpose, climatic variables of 24 synoptic stations across a case study, bio-climatic data and vegetation cover maps of G. decander were used. First, using the factor analysis process, the dimensions of the station-observed climatic variables were reduced to five factors with a total variance of 88.3%. Then, the region was divided into five homogeneous climatic regions using partitional clustering analysis. In this study by using the logistic regression modeling technique, the probability of the presence of the desired species for two groups of independent variables including climatic factors and bioclimatic variables in each of the groups was modeled. The results showed that the best models for determining the potential habitats of G. decander are logistic regression models in groups with independent bioclimatic variables. According to the results obtained from both scenarios, the habitats of G. decander species will decrease in the future. In the most optimistic case, about 8% of G. decander habitats will be lost by 2060 and about 12% by 2080. According to modeling results, currently, 48.2% total area of the region under study has a high potential for the presence of G. decander. Also, results indicate that region number 4 in this study with an altitude range of about 800-1250 m, 16 °C average temperature in the growing season and annual precipitation around 150-170 mm is the major habitat for G. decander. According to climate change under the RCP2.6 scenario, the area of potential habitats of G. decander will decrease to 40% in the near future and 36.4% in the far future; and according to climate change under the RCP8.5 scenario, the area of potential habitats of G. decander will decrease to 23.9% in the near future and 32.5% in the far future. In the far future, because of the increase in total precipitation, some of the lost potential habitats during the near future will be suitable again for G. decander. Due to its stability in harsh environmental conditions, G. decander appears as a type-forming species in a wide range of natural habitats in the study area and is therefore important in terms of soil protection and forage production.
Collapse
Affiliation(s)
- Masome Narouei
- Rangeland Department, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Akbar Javadi
- Rangeland Department, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Morteza Khodagholi
- Rangeland Department, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Jafari
- Rangeland Department, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Azizinejad
- Rangeland Department, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Kracke I, Essl F, Zulka KP, Schindler S. Risks and opportunities of assisted colonization: the perspectives of experts. NATURE CONSERVATION 2021. [DOI: 10.3897/natureconservation.45.72554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Owing to climate change and other anthropogenic environmental changes, the suitability of locations is changing for many biota that consequently have to adapt in situ or to move to other areas. To mitigate the effects of such pressures, assisted colonization is a conservation tool developed to reduce extinction risks by intentionally moving and releasing an organism outside its native range, and thus, to facilitate tracking changing environmental conditions. This conservation tool has been proposed for threatened animals or plants that presumably cannot adapt in situ or follow environmental changes by dispersal or migration. However, there have been contentious debates about the shortcomings and risks of implementing assisted colonization. For this reason, we evaluated the specific opinions of global experts for assisted colonization on potential risks and opportunities that this approach offers. For this purpose, we used an online survey targeted at authors of scientific publications on assisted colonization. The majority (82%) of the 48 respondents were in favor of applying assisted colonization for species that are at risk of global extinction due to anthropogenic environmental change. Most respondents agreed that assisted colonization should be considered only when other conservation tools are not available and that certain preconditions must be met. Some of these were already highlighted in the IUCN guidelines for assisted colonization and include a completed risk assessment, clearly defined management plans and secured political as well as financial support. The advocacy of assisted colonization in response to anthropogenic global environmental changes was only weakly dependent on the geographic origin of the experts and their working background. Regarding possible risks, most of the respondents were concerned about consequences like failure of the long-term establishment of the translocated species and the transmission of diseases and invasiveness potentially endangering native biota. To keep these risks as low as possible most of the experts agreed that a target area must have a reasonable carrying capacity to sustain a minimum viable population and that adaptive management should be implemented. Careful evaluation of assisted colonization projects is required to generate further evidence that needs to be considered for further developing conservation tools for the Anthropocene.
Collapse
|
23
|
Torkkola JJ, Chauvenet ALM, Hines H, Oliver PM. Distributional modelling, megafires and data gaps highlight probable underestimation of climate change risk for two lizards from Australia’s montane rainforests. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janne J. Torkkola
- Snake Out Brisbane 14 Ranger Street Kenmore Queensland 4069Australia
| | - Alienor L. M. Chauvenet
- School of Environment and Science, Centre for Planetary Health and Food Security Griffith University 170 Kessels Rd Brisbane Queensland 4121Australia
| | - Harry Hines
- Queensland Parks and Wildlife Service Moggill QueenslandAustralia
- Biodiversity and Geosciences Program Queensland Museum South Brisbane Queensland Australia
| | - Paul M. Oliver
- School of Environment and Science, Centre for Planetary Health and Food Security Griffith University 170 Kessels Rd Brisbane Queensland 4121Australia
- Biodiversity and Geosciences Program Queensland Museum South Brisbane Queensland Australia
| |
Collapse
|
24
|
Diversity and Systematics of Limbless Skinks (Anomalopus) from Eastern Australia and the Skeletal Changes that Accompany the Substrate Swimming Body Form. J HERPETOL 2021. [DOI: 10.1670/20-137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Genomic Approaches for Conservation Management in Australia under Climate Change. Life (Basel) 2021; 11:life11070653. [PMID: 34357024 PMCID: PMC8304512 DOI: 10.3390/life11070653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
Conservation genetics has informed threatened species management for several decades. With the advent of advanced DNA sequencing technologies in recent years, it is now possible to monitor and manage threatened populations with even greater precision. Climate change presents a number of threats and challenges, but new genomics data and analytical approaches provide opportunities to identify critical evolutionary processes of relevance to genetic management under climate change. Here, we discuss the applications of such approaches for threatened species management in Australia in the context of climate change, identifying methods of facilitating viability and resilience in the face of extreme environmental stress. Using genomic approaches, conservation management practices such as translocation, targeted gene flow, and gene-editing can now be performed with the express intention of facilitating adaptation to current and projected climate change scenarios in vulnerable species, thus reducing extinction risk and ensuring the protection of our unique biodiversity for future generations. We discuss the current barriers to implementing conservation genomic projects and the efforts being made to overcome them, including communication between researchers and managers to improve the relevance and applicability of genomic studies. We present novel approaches for facilitating adaptive capacity and accelerating natural selection in species to encourage resilience in the face of climate change.
Collapse
|
26
|
Pearson RG, Connolly NM, Davis AM, Brodie JE. Fresh waters and estuaries of the Great Barrier Reef catchment: Effects and management of anthropogenic disturbance on biodiversity, ecology and connectivity. MARINE POLLUTION BULLETIN 2021; 166:112194. [PMID: 33690082 DOI: 10.1016/j.marpolbul.2021.112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/27/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
We review the literature on the ecology, connectivity, human impacts and management of freshwater and estuarine systems in the Great Barrier Reef catchment (424,000 km2), on the Australian east coast. The catchment has high biodiversity, with substantial endemicity (e.g., lungfish). Freshwater and estuarine ecosystems are closely linked to the land and are affected by human disturbance, including climate change, flow management, land clearing, habitat damage, weed invasion, and excessive sediments, nutrients and pesticides. They require holistic integrated management of impacts, interactions, and land-sea linkages. This requirement is additional to land management aimed at reducing pollutant delivery to reef waters. Despite advances in research and management over recent decades, there are substantial deficiencies that need addressing, including understanding of physical and biological processes and impacts in ground waters, large rivers and estuaries; ecological effects of pesticides; management and mitigation for invasive species and climate change; and explicit protection of non-marine waters.
Collapse
Affiliation(s)
- Richard G Pearson
- TropWater and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - Niall M Connolly
- Queensland Department of Agriculture and Fisheries, Townsville, Queensland 4814, Australia.
| | - Aaron M Davis
- TropWater, James Cook University, Townsville, Queensland 4811, Australia.
| | - Jon E Brodie
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
27
|
Bandh SA, Shafi S, Peerzada M, Rehman T, Bashir S, Wani SA, Dar R. Multidimensional analysis of global climate change: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24872-24888. [PMID: 33763833 DOI: 10.1007/s11356-021-13139-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/21/2021] [Indexed: 05/25/2023]
Abstract
Even though climate change involves much more than warming, it is the name given to a set of physical phenomena. It is a long-term change in weather patterns that characterises different regions of the world. The warming effect in the earth's atmosphere has dramatically increased through the influence of some heat-taping gases emitted by various human activities, especially fossil fuel burning. The more the input of such gases, the more will be the warming effect in the coming times. Global climate change is already visible in various parts of the larger ecosystems like forests, fisheries, biodiversity, and agriculture; however, it is now also influencing the supply of freshwater, human health, and well-being. This paper reviews climate change drivers, its global scenario, major global events, and assessing climate change impacts. The most daunting problem of economic and ecological risks, along with the threats to humanity, is also discussed. The paper further reviews the species' vulnerability to climate change and the heat waves and human migration vis-à-vis climate change. Climate change politics and coverage of climate change episodes in mass media is the special focus of this review that concludes with a few mitigation measures.
Collapse
Affiliation(s)
- Suhaib A Bandh
- P.G. Department of Environmental Science, Sri Pratap College Campus, Cluster University, Srinagar, 190001, India.
| | - Sana Shafi
- P.G. Department of Environmental Science, Sri Pratap College Campus, Cluster University, Srinagar, 190001, India
| | - Mohazeb Peerzada
- P.G. Department of Environmental Science, Sri Pratap College Campus, Cluster University, Srinagar, 190001, India
| | - Tanzeela Rehman
- P.G. Department of Environmental Science, Sri Pratap College Campus, Cluster University, Srinagar, 190001, India
| | - Shahnaz Bashir
- P.G. Department of Environmental Science, Sri Pratap College Campus, Cluster University, Srinagar, 190001, India
| | - Shahid A Wani
- P.G. Department of Environmental Science, Sri Pratap College Campus, Cluster University, Srinagar, 190001, India
| | - Rubiya Dar
- Center of Research for Development CORD, University of Kashmir, Srinagar, 190006, India
| |
Collapse
|
28
|
Azambuja G, Martins IK, Franco JL, Dos Santos TG. Effects of mancozeb on heat Shock protein 70 (HSP70) and its relationship with the thermal physiology of Physalaemus henselii (Peters, 1872) tadpoles (Anura: Leptodactylidae). J Therm Biol 2021; 98:102911. [PMID: 34016338 DOI: 10.1016/j.jtherbio.2021.102911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/26/2022]
Abstract
Negative impacts on amphibians have been reported due to contamination by agrochemicals. However, until now, no study has tested the effect of the fungicide mancozeb (MZ) on thermal tolerance and its relationship with the expression of heat shock proteins (HSPs). MZ is the best-selling broad-spectrum fungicide in the world, which negatively affects non-target organisms. Here, we tested for the first time the effects of MZ on critical thermal maximum (CTmax) and its relationship to the expression of heat shock protein 70 (HSP70) in tadpoles of Physalameus henselii, a colder-adapted species in southernmost of the Neotropical region. A sublethal concentration of 2 mg/L was used. We found that the CTmax of the MZ-treated group was lower than that of the control group. In addition, there was an increase in HSP70 expression in tadpoles exposed to MZ and in tadpoles that underwent heat treatment. However, tadpoles subjected to MZ and heat treatment showed no induced HSP70 protein expression. Our results demonstrated that sublethal doses of the fungicide MZ negatively affected the thermal physiology and heat shock protein expression in tadpoles of P. henselii by inducing an increase in HSP70 concentration and by reducing the critical CTmax supported by tadpoles. It is important to understand the relationship between environmental contamination and physiological thermal limits in our current scenario of high rates of habitat conversion associated with unrestricted use of agrochemicals, as well as the challenging environmental changes induced by global warming.
Collapse
Affiliation(s)
- Guilherme Azambuja
- Universidade Federal de Santa Maria,Av. Roraima, Nº 1000, Santa Maria, RS, Brazil.
| | | | | | | |
Collapse
|
29
|
Diversity and Distribution of the Dominant Ant Genus Anonychomyrma (Hymenoptera: Formicidae) in the Australian Wet Tropics. DIVERSITY 2020. [DOI: 10.3390/d12120474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Anonychomyrma is a dolichoderine ant genus of cool-temperate Gondwanan origin with a current distribution that extends from the north of southern Australia into the Australasian tropics. Despite its abundance and ecological dominance, little is known of its species diversity and distribution throughout its range. Here, we describe the diversity and distribution of Anonychomyrma in the Australian Wet Tropics bioregion, where only two of the many putative species are described. We hypothesise that the genus in tropical Australia retains a preference for cool wet rainforests reminiscent of the Gondwanan forests that once dominated Australia, but now only exist in upland habitats of the Wet Tropics. Our study was based on extensive recent surveys across five subregions and along elevation and vertical (arboreal) gradients. We integrated genetic (CO1) data with morphology to recognise 22 species among our samples, 20 of which appeared to be undescribed. As predicted, diversity and endemism were concentrated in uplands above 900 m a.s.l. Distribution modelling of the nine commonest species identified maximum temperature of the warmest month, rainfall seasonality, and rainfall of the wettest month as correlates of distributional patterns across subregions. Our study supported the notion that Anonychomyrma radiated from a southern temperate origin into the tropical zone, with a preference for areas of montane rainforest that were stably cool and wet over the late quaternary.
Collapse
|
30
|
Hyman IT, Köhler F. Feeling sluggish: The extreme semislugs of Australia (
Stylommatophora
,
Helicarionidae
). J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
von Takach B, Scheele BC, Moore H, Murphy BP, Banks SC. Patterns of niche contraction identify vital refuge areas for declining mammals. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Brenton von Takach
- Research Institute for the Environment and Livelihoods Charles Darwin University Darwin NT Australia
| | - Ben C. Scheele
- Fenner School of Environment and Society Australian National University Canberra ACT Australia
- National Environmental Science Program Threatened Species Recovery Hub Australia
| | - Harry Moore
- School of Environmental Science Institute for Land, Water and Society Charles Sturt University Albury NSW Australia
| | - Brett P. Murphy
- Research Institute for the Environment and Livelihoods Charles Darwin University Darwin NT Australia
- National Environmental Science Program Threatened Species Recovery Hub Australia
| | - Sam C. Banks
- Research Institute for the Environment and Livelihoods Charles Darwin University Darwin NT Australia
| |
Collapse
|
32
|
Uzqueda A, Burnett S, Bertola LV, Hoskin CJ. Quantifying range decline and remaining populations of the large marsupial carnivore of Australia’s tropical rainforest. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Large predators are particularly susceptible to population declines due to large area requirements, low population density, and conflict with humans. Their low density and secretive habits also make it difficult to know the spatial extent, size, and connectivity of populations; declines hence can go unnoticed. Here, we quantified decline in a large marsupial carnivore, the spotted-tailed quoll (Dasyurus maculatus gracilis), endemic to the Wet Tropics rainforest of northeast Australia. We compiled a large database of occurrence records and used species distributional modeling to estimate the distribution in four time periods (Pre-1956, 1956–1975, 1976–1995, 1996–2016) using climate layers and three human-use variables. The most supported variables in the distribution models were climatic, with highly suitable quoll habitat having relatively high precipitation, low temperatures, and a narrow annual range in temperature. Land-use type and road density also influenced quoll distribution in some time periods. The modeling revealed a significant decline in the distribution of D. m. gracilis over the last century, with contraction away from peripheral areas and from large areas of the Atherton Tablelands in the center of the distribution. Tests of the change in patch availability for populations of 20, 50, and 100 individuals revealed a substantial (17–32%) decline in available habitat for all population sizes, with a particular decline (31–40%) in core habitat (i.e., excluding edges). Six remaining populations were defined. Extrapolating capture–recapture density estimates derived from two populations in 2017 suggests these populations are small and range from about 10 to 160 individuals. Our total population estimate sums to 424 individuals, but we outline why this estimate is positively skewed and that the actual population size may be < 300 individuals. Continued decline and apparent absence in areas of highly suitable habitat suggests some threats are not being captured in our models. From our results, we provide management and research recommendations for this enigmatic predator.
Collapse
Affiliation(s)
- Adriana Uzqueda
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Scott Burnett
- School of Science and Engineering, University of the Sunshine Coast, QLD, Australia
| | - Lorenzo V Bertola
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
33
|
Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau. PLoS One 2020; 15:e0234848. [PMID: 32555722 PMCID: PMC7299383 DOI: 10.1371/journal.pone.0234848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 06/03/2020] [Indexed: 11/19/2022] Open
Abstract
Under the context of global climate change, vegetation on the Tibetan Plateau (TP) has experienced significant changes during the past three decades. In this study, the spatiotemporal changes of growing season vegetation index (GSVI) on the TP were analyzed using various methods from pixel level to ecoregion level. In addition, a relative importance approach was employed to investigate the regulating effect of temperature and precipitation on vegetation. During the period of 1982-2012, vegetation on the TP was generally experiencing a greening trend, but with pronounced fluctuations. The interannual variation of the long-term GSVI was most significant in the Qaidam Basin and southern forest. At ecoregion scale, vegetation in the arid and frigid arid zones showed a browning tendency, with other ecoregions presenting greener trends. Over a large proportion of the TP, there exist change points in the GSVI time series, which were mainly concentered around the year 1996 and 2000. The Hurst exponent identified that a majority (88%) of the vegetation on the plateau would maintain a persistent trend in the future, which would mainly consist of undetermined development and greening trends. TP vegetation during the 1990s experienced more greening than in the 1980s or 2000s according to the interdecadal analysis. The long-term change in growing season vegetation was most positively correlated with the temperature during the same period, followed by the temperature in the preseason and postseason periods. There were more negative relationships of vegetation change with precipitation than with temperature. The relative contribution of the temperature to the vegetation changes exhibited an opposite spatial pattern to that of precipitation. Overall, the findings in this work provide an essential archive of decade-scale vegetation dynamics that may be helpful for projecting the future ecosystem dynamics on the Tibetan Plateau, such as the consistent greening.
Collapse
|
34
|
Ajene IJ, Khamis F, van Asch B, Pietersen G, Rasowo BA, Ekesi S, Mohammed S. Habitat suitability and distribution potential of Liberibacter species (
“Candidatus
Liberibacter asiaticus
”
and
“Candidatus
Liberibacter africanus
”
) associated with citrus greening disease. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Inusa Jacob Ajene
- International Center of Insect Physiology and Ecology Nairobi Kenya
- Department of Genetics Stellenbosch University Stellenbosch South Africa
- Department of Crop Protection Faculty of Agriculture Ahmadu Bello University Zaria Nigeria
| | - Fathiya Khamis
- International Center of Insect Physiology and Ecology Nairobi Kenya
| | - Barbara van Asch
- Department of Genetics Stellenbosch University Stellenbosch South Africa
| | - Gerhard Pietersen
- Department of Genetics Stellenbosch University Stellenbosch South Africa
| | | | - Sunday Ekesi
- International Center of Insect Physiology and Ecology Nairobi Kenya
| | - Samira Mohammed
- International Center of Insect Physiology and Ecology Nairobi Kenya
| |
Collapse
|
35
|
Vegetation Phenological Changes in Multiple Landforms and Responses to Climate Change. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2020. [DOI: 10.3390/ijgi9020111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vegetation phenology is highly sensitive to climate change, and the phenological responses of vegetation to climate factors vary over time and space. Research on the vegetation phenology in different climatic regimes will help clarify the key factors affecting vegetation changes. In this paper, based on a time-series reconstruction of Moderate-Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data using the Savitzky–Golay filtering method, the phenology parameters of vegetation were extracted, and the Spatio-temporal changes from 2001 to 2016 were analyzed. Moreover, the response characteristics of the vegetation phenology to climate changes, such as changes in temperature, precipitation, and sunshine hours, were discussed. The results showed that the responses of vegetation phenology to climatic factors varied within different climatic regimes and that the Spatio-temporal responses were primarily controlled by the local climatic and topographic conditions. The following were the three key findings. (1) The start of the growing season (SOS) has a regular variation with the latitude, and that in the north is later than that in the south. (2) In arid areas in the north, the SOS is mainly affected by the temperature, and the end of the growing season (EOS) is affected by precipitation, while in humid areas in the south, the SOS is mainly affected by precipitation, and the EOS is affected by the temperature. (3) Human activities play an important role in vegetation phenology changes. These findings would help predict and evaluate the stability of different ecosystems.
Collapse
|
36
|
Rowland J, Hoskin CJ, Burnett S. Distribution and diet of feral cats (Felis catus) in the Wet Tropics of north-eastern Australia, with a focus on the upland rainforest. WILDLIFE RESEARCH 2020. [DOI: 10.1071/wr19201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
ContextFeral cats have been identified as a key threat to Australia’s biodiversity, particularly in arid areas and tropical woodlands. Their presence, abundance and potential impacts in rainforest have received less attention.
AimsTo investigate the distribution and diet of feral cats (Felis catus) in upland rainforest of the Wet Tropics.
MethodsWe collated available occurrence records from the Wet Tropics, and data from upland camera-trapping surveys over an 8-year period, to assess geographic and elevational distribution of feral cats in the bioregion. We also assessed the diet of feral cats from scats collected at upland sites.
Key resultsFeral cats are widespread through the Wet Tropics bioregion, from the lowlands to the peaks of the highest mountains (>1600m), and in all vegetation types. Abundance appears to vary greatly across the region. Cats were readily detected during camera-trap surveys in some upland rainforest areas (particularly in the southern Atherton Tablelands and Bellenden Ker Range), but were never recorded in some areas (Thornton Peak, the upland rainforest of Windsor Tableland and Danbulla National Park) despite numerous repeated camera-trap surveys over the past 8 years at some of these sites. Scat analysis suggested that small mammals comprise ~70% of the diet of feral cats at an upland rainforest site. Multivariate analysis could not detect a difference in mammal community at sites where cats were detected or not.
ConclusionsFeral cats are widespread in the Wet Tropics and appear to be common in some upland areas. However, their presence and abundance are variable across the region, and the drivers of this variability are not resolved. Small mammals appear to be the primary prey in the rainforest, although the impacts of cats on the endemic and threatened fauna of the Wet Tropics is unknown.
ImplicationsGiven their documented impact in some ecosystems, research is required to examine the potential impact of cats on Wet Tropics fauna, particularly the many upland endemic vertebrates. Studies are needed on (1) habitat and prey selection, (2) population dynamics, and (3) landscape source–sink dynamics of feral cats in the Wet Tropics.
Collapse
|
37
|
Abstract
Climate change is a certainty, but the degree and rate of change, as well as impacts of those changes are highly site-specific. Natural World Heritage sites represent a treasure to be managed and sustained for all humankind. Each World Heritage site is so designated on the basis of one or more Outstanding Universal Values. Because climate change impacts are site-specific, adaptation to sustain Universal Values also must be specific. As such, climate change adaptation is a wicked problem, with no clear action strategies available. Further, adaptation resources are limited at every site. Each site management team must decide which adaptations are appropriate investments. A triage approach guides that evaluation. Some impacts will be so large and/or uncertain that the highest probability of adaptation success comes from a series of uncertain actions that reduce investment risk. Others will be small, certain, comfortable and yet have low probable impact on the Universal Value. A triage approach guides the management team toward highest probable return on investment, involving stakeholders from the surrounding landscape, advancing engagement and communication, and increasing transparency and accountability.
Collapse
|
38
|
Nowrouzi S, Bush A, Harwood T, Staunton KM, Robson SKA, Andersen AN. Incorporating habitat suitability into community projections: Ant responses to climate change in the Australian Wet Tropics. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Somayeh Nowrouzi
- Zoology and Ecology, College of Science and Engineering James Cook University Townsville Queensland Australia
- CSIRO Land and Water Darwin Northern Territory Australia
- CSIRO Land and Water Canberra Australian Capital Territory Australia
| | - Alex Bush
- CSIRO Land and Water Canberra Australian Capital Territory Australia
- Environment and Climate Change Canada University of New Brunswick Fredericton New Brunswick Canada
| | - Tom Harwood
- CSIRO Land and Water Canberra Australian Capital Territory Australia
| | - Kyran M. Staunton
- College of Public Health, Medical and Veterinary Sciences James Cook University Cairns Queensland Australia
- Australian Institute of Tropical Health and Medicine James Cook University Cairns Queensland Australia
| | - Simon K. A. Robson
- School of Health, Medical and Applied Sciences Central Queensland University Townsville Queensland Australia
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| | - Alan N. Andersen
- CSIRO Land and Water Darwin Northern Territory Australia
- Research Institute for the Environment and Livelihoods Charles Darwin University Darwin Northern Territory Australia
| |
Collapse
|
39
|
Forecasting the response to global warming in a heat-sensitive species. Sci Rep 2019; 9:3048. [PMID: 30816191 PMCID: PMC6395821 DOI: 10.1038/s41598-019-39450-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/21/2019] [Indexed: 01/02/2023] Open
Abstract
Avoiding hyperthermia entails considerable metabolic costs for endotherms. Such costs increase in warm conditions, when endotherms may trade food intake for cooler areas to avoid heat stress and maximize their energy balance. The need to reduce heat stress may involve the adoption of tactics affecting space use and foraging behaviour, which are important to understand and predict the effects of climate change and inform conservation. We used resource selection models to examine the behavioural response to heat stress in the Alpine ibex (Capra ibex), a cold-adapted endotherm particularly prone to overheating. Ibex avoided heat stress by selecting the space based on the maximum daily temperature rather than moving hourly to ‘surf the heat wave’, which minimised movement costs but prevented optimal foraging. By integrating these findings with new climate forecasts, we predict that rising temperatures will force mountain ungulates to move upward and overcrowd thermal refugia with reduced carrying capacity. Our approach helps in identifying priority areas for the conservation of mountain species.
Collapse
|
40
|
Reside AE, Critchell K, Crayn DM, Goosem M, Goosem S, Hoskin CJ, Sydes T, Vanderduys EP, Pressey RL. Beyond the model: expert knowledge improves predictions of species' fates under climate change. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01824. [PMID: 30390399 DOI: 10.1002/eap.1824] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 05/25/2023]
Abstract
The need to proactively manage landscapes and species to aid their adaptation to climate change is widely acknowledged. Current approaches to prioritizing investment in species conservation generally rely on correlative models, which predict the likely fate of species under different climate change scenarios. Yet, while model statistics can be improved by refining modeling techniques, gaps remain in understanding the relationship between model performance and ecological reality. To investigate this, we compared standard correlative species distribution models to highly accurate, fine-scale, distribution models. We critically assessed the ecological realism of each species' model, using expert knowledge of the geography and habitat in the study area and the biology of the study species. Using interactive software and an iterative vetting with experts, we identified seven general principles that explain why the distribution modeling under- or overestimated habitat suitability, under both current and predicted future climates. Importantly, we found that, while temperature estimates can be dramatically improved through better climate downscaling, many models still inaccurately reflected moisture availability. Furthermore, the correlative models did not account for biotic factors, such as disease or competitor species, and were unable to account for the likely presence of micro refugia. Under-performing current models resulted in widely divergent future projections of species' distributions. Expert vetting identified regions that were likely to contain micro refugia, even where the fine-scale future projections of species distributions predicted population losses. Based on the results, we identify four priority conservation actions required for more effective climate change adaptation responses. This approach to improving the ecological realism of correlative models to understand climate change impacts on species can be applied broadly to improve the evidence base underpinning management responses.
Collapse
Affiliation(s)
- April E Reside
- College of Science & Engineering, James Cook University, Townsville, Queensland, 4811, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Kay Critchell
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Darren M Crayn
- Centre for Tropical Environmental Sustainability Science, James Cook University, Cairns, Queensland, 4878, Australia
- Australian Tropical Herbarium, James Cook University, McGregor Road, Smithfield, Queensland, 4878, Australia
| | - Miriam Goosem
- College of Science & Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Stephen Goosem
- College of Science & Engineering, James Cook University, Townsville, Queensland, 4811, Australia
- Wet Tropics Management Authority, P.O. Box 2050, Cairns, Queensland, 4870, Australia
| | - Conrad J Hoskin
- College of Science & Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Travis Sydes
- Far North Queensland Regional Organisation of Councils, Cairns, Queensland, 4870, Australia
| | - Eric P Vanderduys
- CSIRO Ecosystem Sciences, ATSIP PMB PO, Aitkenvale, Queensland, 4814, Australia
| | - Robert L Pressey
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
41
|
Turton SM. Reef‐to‐ridge ecological perspectives of high‐energy storm events in northeast Australia. Ecosphere 2019. [DOI: 10.1002/ecs2.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Stephen M. Turton
- Division of Higher Education Central Queensland University Cairns Queensland 4870 Australia
| |
Collapse
|
42
|
Handayani F, Goldingay RL, McHugh D, Leslie N. Extensive range contraction predicted under climate warming for a gliding mammal in north-eastern Australia. AUSTRALIAN MAMMALOGY 2019. [DOI: 10.1071/am16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We used MaxEnt to model the current distribution of the yellow-bellied glider (Petaurus australis) and to predict the likely shift in the species’ future distribution under climate-warming scenarios in the Wet Tropics (WT) Bioregion in north Queensland and in the South-eastern Queensland (SEQld) Bioregion, which encompasses south-eastern Queensland and north-eastern New South Wales. Bioclimatic layers were used to generate models from 57 independent records in the WT and 428 records in SEQld. The modelled distribution of core habitat under current climate showed a good fit to the data, encompassing 91% and 88% of the records in each area, respectively. Modelling of future warming scenarios suggests that large contractions in distribution could occur in both bioregions. In the WT, 98% of core habitat is predicted to be lost under low warming (1°C increase) and 100% under high warming (2−3°C increase) by 2070. In SEQld, 80% of core habitat is predicted to be lost under low warming and 90% under high warming by 2070. These results suggest that this species is highly vulnerable to climate warming and highlight the importance of focusing conservation efforts at the bioregional scale. There is also a need to identify potential thermal refuges and ensure habitat connectivity.
Collapse
|
43
|
Hoffmann AA, Rymer PD, Byrne M, Ruthrof KX, Whinam J, McGeoch M, Bergstrom DM, Guerin GR, Sparrow B, Joseph L, Hill SJ, Andrew NR, Camac J, Bell N, Riegler M, Gardner JL, Williams SE. Impacts of recent climate change on terrestrial flora and fauna: Some emerging Australian examples. AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12674] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group School of BioSciences Bio21 Institute The University of Melbourne Melbourne Victoria 3010 Australia
| | - Paul D. Rymer
- Hawkesbury Institute for the Environment University of Western Sydney Penrith New South Wales
| | - Margaret Byrne
- Biodiversity and Conservation Science Western Australian Department of Biodiversity, Conservation, and Attractions Science Division Bentley Delivery Centre Bentley Western Australia Australia
| | - Katinka X. Ruthrof
- School of Veterinary and Life Sciences Murdoch University Murdoch Western Australia Australia
- Department of Biodiversity, Conservation and Attractions Kings Park Science Perth Western Australia Australia
| | - Jennie Whinam
- Geography and Spatial Sciences University of Tasmania Hobart Tasmania Australia
| | - Melodie McGeoch
- School of Biological Sciences Monash University Melbourne Victoria Australia
| | | | - Greg R. Guerin
- TERN School of Biological Sciences and Environment Institute University of Adelaide Adelaide South Australia Australia
| | - Ben Sparrow
- TERN School of Biological Sciences and Environment Institute University of Adelaide Adelaide South Australia Australia
| | - Leo Joseph
- Australian National Wildlife Collection National Research Collections Australia CSIRO Canberra Australian Capital Territory Australia
| | - Sarah J. Hill
- Insect Ecology Lab Centre of Excellence for Behavioural and Physiological Ecology University of New England Armidale New South Wales Australia
| | - Nigel R. Andrew
- Insect Ecology Lab Centre of Excellence for Behavioural and Physiological Ecology University of New England Armidale New South Wales Australia
| | - James Camac
- Centre of Excellence for Biosecurity Risk Analysis The University of Melbourne Melbourne Victoria Australia
| | - Nicholas Bell
- Pest and Environmental Adaptation Research Group School of BioSciences Bio21 Institute The University of Melbourne Melbourne Victoria 3010 Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment University of Western Sydney Penrith New South Wales
| | - Janet L. Gardner
- Division of Ecology & Evolution, Research School of Biology Australian National University Canberra Australian Capital Territory Australia
| | - Stephen E. Williams
- Centre for Tropical Environmental and Sustainability Science College of Science & Engineering James Cook University Townsville Queensland Australia
| |
Collapse
|
44
|
Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Martin G, Yanez-Arenas C, Chen C, Plowright RK, Webb RJ, Skerratt LF. Climate Change Could Increase the Geographic Extent of Hendra Virus Spillover Risk. ECOHEALTH 2018; 15:509-525. [PMID: 29556762 PMCID: PMC6245089 DOI: 10.1007/s10393-018-1322-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 12/10/2017] [Accepted: 01/29/2018] [Indexed: 05/29/2023]
Abstract
Disease risk mapping is important for predicting and mitigating impacts of bat-borne viruses, including Hendra virus (Paramyxoviridae:Henipavirus), that can spillover to domestic animals and thence to humans. We produced two models to estimate areas at potential risk of HeV spillover explained by the climatic suitability for its flying fox reservoir hosts, Pteropus alecto and P. conspicillatus. We included additional climatic variables that might affect spillover risk through other biological processes (such as bat or horse behaviour, plant phenology and bat foraging habitat). Models were fit with a Poisson point process model and a log-Gaussian Cox process. In response to climate change, risk expanded southwards due to an expansion of P. alecto suitable habitat, which increased the number of horses at risk by 175-260% (110,000-165,000). In the northern limits of the current distribution, spillover risk was highly uncertain because of model extrapolation to novel climatic conditions. The extent of areas at risk of spillover from P. conspicillatus was predicted shrink. Due to a likely expansion of P. alecto into these areas, it could replace P. conspicillatus as the main HeV reservoir. We recommend: (1) HeV monitoring in bats, (2) enhancing HeV prevention in horses in areas predicted to be at risk, (3) investigate and develop mitigation strategies for areas that could experience reservoir host replacements.
Collapse
Affiliation(s)
- Gerardo Martin
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.
- , Guadalupe Victoria, Mexico.
- Ecological Health Research Group, Department of Infectious Disease Epidemiology, Imperial College London, St. Mary's campus, Praed Street, London, W2 1NY, UK.
| | - Carlos Yanez-Arenas
- Laboratorio de Conservación de la Biodiversidad, Parque Científico y Tecnológico de Yucatán, Universidad, Universidad Nacional Autónoma de México, Mérida, Yucatán, Mexico
| | - Carla Chen
- Australian Institute of Marine Sciences, Townsville, QLD, Australia
| | - Raina K Plowright
- Bozeman Disease Ecology Lab, Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Rebecca J Webb
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Lee F Skerratt
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
46
|
Wardhaugh CW, Stone MJ, Stork NE. Seasonal variation in a diverse beetle assemblage along two elevational gradients in the Australian Wet Tropics. Sci Rep 2018; 8:8559. [PMID: 29867113 PMCID: PMC5986770 DOI: 10.1038/s41598-018-26216-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/21/2018] [Indexed: 11/25/2022] Open
Abstract
Altered abiotic conditions resulting from human-induced climate change are already driving changes in the spatial and temporal distributions of many organisms. For insects, how species are distributed across elevations is relatively well known, but data on their seasonality at different elevations are lacking. Here we show seasonal variation in beetle abundance and species richness along two spatially-distinct elevational transects (350-1000 m and 100-1000 m asl) in the rainforests of northern Australia. Temperature was the best predictor of temporal abundance and species richness patterns, while rainfall had little influence. Elevation had little effect on seasonal changes in abundance or diversity. Adults of most beetle species exhibited long season-lengths (>6 months of the year) with distinct peaks in abundance during the summer wet-season. We found evidence of phenotypic variation among the more widespread species, with seasonal peaks in abundance often not coinciding across elevations or transects. Due to the wide elevational range of most species, and the lack of consistency in the seasonality of wide-spread individual species, we suggest that many beetles inhabiting the low to mid-elevation mountains in the Wet Tropics, and potentially other tropical rainforests, are not as vulnerable to extinction due to climate change as many other organisms.
Collapse
Affiliation(s)
- C W Wardhaugh
- Faculty of Science, University of South Bohemia, Branišovska 31, 370 05, Ceske Budejovice, Czech Republic.
- Scion (New Zealand Forest Research Institute), PO Box 3020, Rotorua, 3010, New Zealand.
| | - M J Stone
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Nathan Campus 170 Kessels Road, Nathan, Queensland, 4111, Australia
| | - N E Stork
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Nathan Campus 170 Kessels Road, Nathan, Queensland, 4111, Australia
| |
Collapse
|
47
|
Yuni LPEK, Jones SM, Wapstra E. Thermal biology of the spotted snow skink, Niveoscincus ocellatus, along an altitudinal gradient. AUST J ZOOL 2018. [DOI: 10.1071/zo18014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Body temperatures in ectotherms are strongly affected by their thermal environment. Ectotherms respond to variation in the thermal environment either by modification of behavioural thermoregulation to maintain their optimal body temperature or by shifting their optimal body temperature. In this study, the body temperatures of males of three populations of spotted snow skinks, Niveoscincus ocellatus, living along an altitudinal gradient (low, mid, and high altitude) were studied in the field and laboratory in spring, summer, and autumn, representing the full activity period of this species. The environmental variation across both sites and seasons affected their field active body temperatures. At the low and mid altitude, N. ocellatus had a higher mean body temperature than at the high altitude. Animals achieved their thermal preference at the low and mid altitude sites in all seasons. At the high altitude, however, N. ocellatus struggled to reach its preferred body temperatures, especially in autumn. The lower body temperature at the high-altitude site is likely due to limited thermal opportunity and/or an effect of avoiding the costs associated with increased intensity of basking.
Collapse
|
48
|
Bertola LV, Higgie M, Hoskin CJ. Resolving distribution and population fragmentation in two leaf-tailed gecko species of north-east Australia: key steps in the conservation of microendemic species. AUST J ZOOL 2018. [DOI: 10.1071/zo18036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
North Queensland harbours many microendemic species. These species are of conservation concern due to their small and fragmented populations, coupled with threats such as fire and climate change. We aimed to resolve the distribution and population genetic structure in two localised Phyllurus leaf-tailed geckos: P. gulbaru and P. amnicola. We conducted field surveys to better resolve distributions, used Species Distribution Models (SDMs) to assess the potential distribution, and then used the SDMs to target further surveys. We also sequenced all populations for a mitochondrial gene to assess population genetic structure. Our surveys found additional small, isolated populations of both species, including significant range extensions. SDMs revealed the climatic and non-climatic variables that best predict the distribution of these species. Targeted surveys based on the SDMs found P. gulbaru at an additional two sites but failed to find either species at other sites, suggesting that we have broadly resolved their distributions. Genetic analysis revealed population genetic structuring in both species, including deeply divergent mitochondrial lineages. Current and potential threats are overlain on these results to determine conservation listings and identify management actions. More broadly, this study highlights how targeted surveys, SDMs, and genetic data can rapidly increase our knowledge of microendemic species, and direct management.
Collapse
|
49
|
Gotsch SG, Davidson K, Murray JG, Duarte VJ, Draguljić D. Vapor pressure deficit predicts epiphyte abundance across an elevational gradient in a tropical montane region. AMERICAN JOURNAL OF BOTANY 2017; 104:1790-1801. [PMID: 29196341 DOI: 10.3732/ajb.1700247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
PREMISE OF THE STUDY Tropical Montane Cloud Forests (TMCFs) are important ecosystems to study and preserve because of their high biodiversity and critical roles in local and regional ecosystem processes. TMCFs may be particularly affected by changes in climate because of the narrow bands of microclimate they occupy and the vulnerability of TMCF species to projected increases in cloud base heights and drought. A comprehensive understanding of the structure and function of TMCFs is lacking and difficult to attain because of variation in topography within and across TMCF sites. This causes large differences in microclimate and forest structure at both large and small scales. METHODS In this study, we estimated the abundance of the entire epiphyte community in the canopy (bryophytes, herbaceous vascular plants, woody epiphytes, and canopy dead organic matter) in six sites. In each of the sites we installed a complete canopy weather station to link epiphyte abundance to a number of microclimatic parameters. KEY RESULTS We found significant differences in epiphyte abundance across the sites; epiphyte abundance increased with elevation and leaf wetness, but decreased as vapor pressure deficit (VPD) increased. Epiphyte abundance had the strongest relationship with VPD; there were differences in VPD that could not be explained by elevation alone. CONCLUSIONS By measuring this proxy of canopy VPD, TMCF researchers will better understand differences in microclimate and plant community composition across TMCF sites. Incorporating such information in comparative studies will allow for more meaningful comparisons across TMCFs and will further conservation and management efforts in this ecosystem.
Collapse
Affiliation(s)
- Sybil G Gotsch
- Franklin and Marshall College, Department of Biology, Lancaster, Pennsylvania 17603 USA
| | - Kenneth Davidson
- Franklin and Marshall College, Department of Biology, Lancaster, Pennsylvania 17603 USA
| | - Jessica G Murray
- Franklin and Marshall College, Department of Biology, Lancaster, Pennsylvania 17603 USA
| | - Vanessa J Duarte
- Franklin and Marshall College, Department of Biology, Lancaster, Pennsylvania 17603 USA
| | - Danel Draguljić
- Franklin and Marshall College, Department of Mathematics, Lancaster, Pennsylvania 17603 USA
| |
Collapse
|
50
|
Global Warming Leading to Phenological Responses in the Process of Urbanization, South Korea. SUSTAINABILITY 2017. [DOI: 10.3390/su9122203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|