1
|
de la Huerta-Schliemann L, Vilella M, Freixas L, Torre I. Effects of Climate and Land Use on the Population Dynamics of the Bank Vole ( Clethrionomys glareolus) in the Southernmost Part of Its Range. Animals (Basel) 2025; 15:839. [PMID: 40150368 PMCID: PMC11939536 DOI: 10.3390/ani15060839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
This study investigated the effects of habitat structure and climatic variables on populations of bank voles (Clethrionomys glareolus), a northern species with adaptations to cooler climate, at the southern end of their range in Western Europe over a 16-year period. This is the first long-term analysis of its kind in this region. The study aims to understand how these variables influence the population dynamics and occupancy of bank voles. The results suggested that warmer years and extreme precipitation events lead to a reduction in bank vole abundance. Although changes in land use were minimal in the plots studied, changes in forest composition, particularly the expansion of coniferous forests at the expense of deciduous forests, were also related to lower bank vole abundance. Occupancy models, taking into account detectability, indicated stable occupancy in all regions. Our results suggest that climate change and habitat alterations, such as changes in forest composition, could pose threats to bank vole populations in these regions.
Collapse
Affiliation(s)
- Lucía de la Huerta-Schliemann
- Chrono-Environnement-UMR 6249 CNRS, Université de Franche-Comté, 16 route de Gray, Cedex, 25030 Besançon, France
- Small Mammal Research Area and BiBio Research Group, Natural Sciences Museum of Granollers, Av. Francesc Macià 51, 08402 Granollers, Spain; (M.V.); (L.F.); (I.T.)
| | - Marc Vilella
- Small Mammal Research Area and BiBio Research Group, Natural Sciences Museum of Granollers, Av. Francesc Macià 51, 08402 Granollers, Spain; (M.V.); (L.F.); (I.T.)
| | - Lídia Freixas
- Small Mammal Research Area and BiBio Research Group, Natural Sciences Museum of Granollers, Av. Francesc Macià 51, 08402 Granollers, Spain; (M.V.); (L.F.); (I.T.)
| | - Ignasi Torre
- Small Mammal Research Area and BiBio Research Group, Natural Sciences Museum of Granollers, Av. Francesc Macià 51, 08402 Granollers, Spain; (M.V.); (L.F.); (I.T.)
| |
Collapse
|
2
|
Gascoigne SJL, Kajin M, Tuljapurkar S, Santos GS, Compagnoni A, Steiner UK, Vinton AC, Jaggi H, Sepil I, Salguero‐Gómez R. Structured Demographic Buffering: A Framework to Explore the Environmental Components and Demographic Mechanisms Underlying Demographic Buffering. Ecol Lett 2025; 28:e70066. [PMID: 40007125 PMCID: PMC11862329 DOI: 10.1111/ele.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 02/27/2025]
Abstract
Environmental stochasticity is a key determinant of population viability. Decades of work exploring how environmental stochasticity influences population dynamics have highlighted the ability of some natural populations to limit the negative effects of environmental stochasticity, one of the strategies being demographic buffering. Whilst various methods exist to quantify demographic buffering, we still do not know which environmental components and demographic mechanisms are most responsible for the demographic buffering observed in natural populations. Here, we introduce a framework to explore the relative impacts of environmental components (i.e., temporal autocorrelation and variance in demographic rates) on demographic buffering and the demographic mechanisms that underly these impacts (i.e., population structure and demographic rates). Using integral projection models, we show how demographic buffering is more sensitive to environmental variance relative to environmental autocorrelation. In addition, environmental autocorrelation and variance impact demographic buffering through distinct demographic mechanisms-i.e., population structure and demographic rates, respectively.
Collapse
Affiliation(s)
- Samuel J. L. Gascoigne
- Department of BiologyUniversity of OxfordOxfordUK
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | - Maja Kajin
- Department of BiologyUniversity of OxfordOxfordUK
- Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | | | - Gabriel Silva Santos
- National Institute of the Atlantic Forest (INMA)Santa TeresaEspírito SantoBrazil
| | - Aldo Compagnoni
- Institute of BiologyMartin Luther University Halle‐WittenburgHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | | | | | - Harman Jaggi
- Biology DepartmentStanford UniversityStanfordCaliforniaUSA
| | - Irem Sepil
- Department of BiologyUniversity of OxfordOxfordUK
| | - Roberto Salguero‐Gómez
- Department of BiologyUniversity of OxfordOxfordUK
- National Laboratory for Grassland & Agro‐EcosystemsLanzhou UniversityLanzhouChina
| |
Collapse
|
3
|
Oro D, Freixas L, Bartrina C, Míguez S, Torre I. Direct and indirect effects of climate and seed dynamics on the breeding performance of a seed predator at the distribution edge. Ecol Evol 2024; 14:e70104. [PMID: 39157667 PMCID: PMC11327614 DOI: 10.1002/ece3.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Marginal populations usually have low densities and are considered to be particularly vulnerable to environmental stochasticity. Using data collected in nest boxes, we analyzed the breeding performance of the edible dormouse (Glis glis), an obligate hibernating rodent and a seed predator in deciduous forests, in two populations at the distribution range's edge. Despite being only 20 km apart from each other, Montseny is a large patch of mixed deciduous forests (oaks and beech), whereas Montnegre would be the harshest habitat, that is, a small, isolated patch with only oaks. First, we studied the differences in climate and tree cover change in the two populations. Second, we analyzed the direct and indirect roles of local climate conditions and seed availability on breeding performance over 10 years in each population. Finally, we explored the influence of tree cover change on the occupancy dynamics in the two populations. Our results showed contrasting responses between populations: in Montseny, asynchronous seed production between oaks and beech precluded skip breeding, and breeding performance increased with seed availability. Furthermore, dormice in Montseny may use pollen production to anticipate the amount of beech nut resources and adjust their breeding effort. Boxes showed higher occupancy and colonization and fewer extinctions in Montseny than in Montnegre, where seed availability did not drive breeding performance. Results from Montnegre suggest that skip breeding was an adaptive response to a more pulsed, harsher environment. Here, females produced a similar number of pups than at Montseny. Long-term studies dealing with population responses in marginal habitats can lead to a deeper understanding of the capacities of organisms to adapt to harsh environments. Although local adaptation is frequently documented across various taxa, studies at the distribution edge may shed light on our still limited comprehension of the underlying mechanisms responsible for its occurrence.
Collapse
Affiliation(s)
- Daniel Oro
- Ecology and Complexity DepartmentCenter of Advanced Studies (CEAB‐CSIC)BlanesSpain
| | - Lídia Freixas
- BiBio Research GroupNatural Sciences Museum of GranollersGranollersSpain
| | - Carme Bartrina
- BiBio Research GroupNatural Sciences Museum of GranollersGranollersSpain
| | | | - Ignasi Torre
- BiBio Research GroupNatural Sciences Museum of GranollersGranollersSpain
| |
Collapse
|
4
|
Torre I, Puig-Montserrat X, Díaz M. Global change effects on Mediterranean small mammal population dynamics: Demography of Algerian mice (Mus spretus) along land use and climate gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160875. [PMID: 36528104 DOI: 10.1016/j.scitotenv.2022.160875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Climate and land use change are key global change drivers shaping future species' distributions and abundances. Negative interactions among effects of drivers can reduce the accuracy of models aimed at predicting such distributions. Here we analyse how climate and land use affected population dynamics and demography of the Algerian mouse (Mus spretus), an open-land thermophilic Mediterranean small mammal. Change to a warmer and drier climate would facilitate the expansion of the species, whereas landscape change (forest encroachment following extensive land abandonment) would produce its retreat. We correlated abundance and demography parameters computed from captures obtained in 16 plots during a 10-years period (2008-2017; SEMICE small mammal monitoring) with climate, vegetation and land use change. Climate became warmer and dryer, and afforestation due to encroachment occurred in 81 % of plots. Expected positive effects of climate warming, derived from bioclimatic niche models, were counterbalanced by negative effects of both increasing hydric deficit and changes in vegetation and landscape structure. Abundance showed a slight but significant decline (-5 %). The species' range was more resilient to change, as shown by occupancy analyses, apparently due to strong local effects of vegetation structure on occupancy. This result highlighted that negative population trends would not necessarily produce range retractions. Simultaneously analysing both abundance trends and occupancy patterns may thus allow for deeper understanding and more accurate predictions of expected population trends in response to interacting global change drivers.
Collapse
Affiliation(s)
- Ignasi Torre
- BiBio Research Group, Natural Sciences Museum of Granollers, C/ Francesc Macià 51, E-08402 Granollers, Spain.
| | - Xavier Puig-Montserrat
- BiBio Research Group, Natural Sciences Museum of Granollers, C/ Francesc Macià 51, E-08402 Granollers, Spain
| | - Mario Díaz
- Department of Biogeography and Global Change (BGC-MNCN-CSIC), National Museum of Natural Sciences, C/ Serrano 115 Bis, E-28006 Madrid, Spain.
| |
Collapse
|
5
|
Speed JDM, Evankow AM, Petersen TK, Ranke PS, Nilsen NH, Turner G, Aagaard K, Bakken T, Davidsen JG, Dunshea G, Finstad AG, Hassel K, Husby M, Hårsaker K, Koksvik JI, Prestø T, Vange V. A regionally coherent ecological fingerprint of climate change, evidenced from natural history collections. Ecol Evol 2022; 12:e9471. [PMID: 36340816 PMCID: PMC9627063 DOI: 10.1002/ece3.9471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/02/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
Climate change has dramatic impacts on ecological systems, affecting a range of ecological factors including phenology, species abundance, diversity, and distribution. The breadth of climate change impacts on ecological systems leads to the occurrence of fingerprints of climate change. However, climate fingerprints are usually identified across broad geographical scales and are potentially influenced by publication biases. In this study, we used natural history collections spanning over 250 years, to quantify a range of ecological responses to climate change, including phenology, abundance, diversity, and distributions, across a range of taxa, including vertebrates, invertebrates, plants, and fungi, within a single region, Central Norway. We tested the hypotheses that ecological responses to climate change are apparent and coherent at a regional scale, that longer time series show stronger trends over time and in relation to temperature, and that ecological responses change in trajectory at the same time as shifts in temperature. We identified a clear regional coherence in climate signal, with decreasing abundances of limnic zooplankton (on average by 7691 individuals m-3 °C-1) and boreal forest breeding birds (on average by 1.94 territories km-2 °C-1), and earlier plant flowering phenology (on average 2 days °C-1) for every degree of temperature increase. In contrast, regional-scale species distributions and species diversity were largely stable. Surprisingly, the effect size of ecological response did not increase with study duration, and shifts in responses did not occur at the same time as shifts in temperature. This may be as the long-term studies include both periods of warming and temperature stability, and that ecological responses lag behind warming. Our findings demonstrate a regional climate fingerprint across a long timescale. We contend that natural history collections provide a unique window on a broad spectrum of ecological responses at timescales beyond most ecological monitoring programs. Natural history collections are thus an essential source for long-term ecological research.
Collapse
Affiliation(s)
- James D. M. Speed
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Ann M. Evankow
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
- Natural History MuseumUniversity of OsloOsloNorway
| | - Tanja K. Petersen
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Peter S. Ranke
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Nellie H. Nilsen
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Grace Turner
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Kaare Aagaard
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Torkild Bakken
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Jan G. Davidsen
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Glenn Dunshea
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Anders G. Finstad
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
- Centre for Biodiversity Dynamics, Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Kristian Hassel
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Magne Husby
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
- Section of ScienceNord UniversityLevangerNorway
| | - Karstein Hårsaker
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Jan Ivar Koksvik
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Tommy Prestø
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| | - Vibekke Vange
- Department of Natural HistoryNTNU University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
6
|
Le Coeur C, Yoccoz NG, Salguero-Gómez R, Vindenes Y. Life history adaptations to fluctuating environments: Combined effects of demographic buffering and lability. Ecol Lett 2022; 25:2107-2119. [PMID: 35986627 DOI: 10.1111/ele.14071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 01/07/2023]
Abstract
Demographic buffering and lability have been identified as adaptive strategies to optimise fitness in a fluctuating environment. These are not mutually exclusive, however, we lack efficient methods to measure their relative importance for a given life history. Here, we decompose the stochastic growth rate (fitness) into components arising from nonlinear responses and variance-covariance of demographic parameters to an environmental driver, which allows studying joint effects of buffering and lability. We apply this decomposition for 154 animal matrix population models under different scenarios to explore how these main fitness components vary across life histories. Faster-living species appear more responsive to environmental fluctuations, either positively or negatively. They have the highest potential for strong adaptive demographic lability, while demographic buffering is a main strategy in slow-living species. Our decomposition provides a comprehensive framework to study how organisms adapt to variability through buffering and lability, and to predict species responses to climate change.
Collapse
Affiliation(s)
- Christie Le Coeur
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Nigel G Yoccoz
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Yngvild Vindenes
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Bellin N, Tesi G, Marchesani N, Rossi V. Species distribution modeling and machine learning in assessing the potential distribution of freshwater zooplankton in Northern Italy. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Van Buren R, Searle AB, Meyer SE. Life-history strategy and extinction risk in the warm desert perennial spring ephemeral Astragalus holmgreniorum (Fabaceae). Ecol Evol 2021; 11:16188-16213. [PMID: 34824821 PMCID: PMC8601875 DOI: 10.1002/ece3.8301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 11/07/2022] Open
Abstract
This study of Astragalus holmgreniorum examines its adaptations to the warm desert environment and whether these adaptations will enable it to persist. Its spring ephemeral hemicryptophyte life-history strategy is unusual in warm deserts. We used data from a 22-year demographic study supplemented with reproductive output, seed bank, and germinant survival studies to examine the population dynamics of this species using discrete-time stochastic matrix modeling. The model showed that A. holmgreniorum is likely to persist in the warm desert in spite of high dormant-season mortality. It relies on a stochastically varying environment with high inter-annual variation in precipitation for persistence, but without a long-lived seed bank, environmental stochasticity confers no advantage. Episodic high reproductive output and frequent seedling recruitment along with a persistent seed bank are adaptations that facilitate its survival. These adaptations place its life-history strategy further along the spectrum from "slower" to "faster" relative to other perennial spring ephemerals. The extinction risk for small populations is relatively high even though mean λ s > 1 because of the high variance in year quality. This risk is also strongly dependent on seed bank starting values, creating a moving window of extinction risk that varies with population size through time. Astragalus holmgreniorum life-history strategy combines the perennial spring ephemeral life form with features more characteristic of desert annuals. These adaptations permit persistence in the warm desert environment. A promising conclusion is that new populations of this endangered species can likely be established through direct seeding.
Collapse
Affiliation(s)
| | | | - Susan E. Meyer
- Shrub Sciences LaboratoryUSDA Forest Service Rocky Mountain Research StationProvoUtahUSA
| |
Collapse
|
9
|
Billman PD, Beever EA, McWethy DB, Thurman LL, Wilson KC. Factors influencing distributional shifts and abundance at the range core of a climate-sensitive mammal. GLOBAL CHANGE BIOLOGY 2021; 27:4498-4515. [PMID: 34236759 DOI: 10.1111/gcb.15793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Species are frequently responding to contemporary climate change by shifting to higher elevations and poleward to track suitable climate space. However, depending on local conditions and species' sensitivity, the nature of these shifts can be highly variable and difficult to predict. Here, we examine how the American pika (Ochotona princeps), a philopatric, montane lagomorph, responds to climatic gradients at three spatial scales. Using mixed-effects modeling in an information-theoretic approach, we evaluated a priori model suites regarding predictors of site occupancy, relative abundance, and elevational-range retraction across 760 talus patches, nested within 64 watersheds across the Northern Rocky Mountains of North America, during 2017-2020. The top environmental predictors differed across these response metrics. Warmer temperatures in summer and winter were associated with lower occupancy, lower relative abundances, and greater elevational retraction across watersheds. Occupancy was also strongly influenced by habitat patch size, but only when combined with climate metrics such as actual evapotranspiration. Using a second analytical approach, acute heat stress and summer precipitation best explained retraction residuals (i.e., the relative extent of retraction given the original elevational range of occupancy). Despite the study domain occurring near the species' geographic-range center, where populations might have higher abundances and be at lower risk of climate-related stress, 33.9% of patches showed evidence of recent extirpations. Pika-extirpated sites averaged 1.44℃ warmer in summer than did occupied sites. Additionally, the minimum elevation of pika occupancy has retracted upslope in 69% of watersheds (mean: 281 m). Our results emphasize the nuance associated with evaluating species' range dynamics in response to climate gradients, variability, and temperature exceedances, especially in regions where species occupy gradients of conditions that may constitute multiple range edges. Furthermore, this study highlights the importance of evaluating diverse drivers across response metrics to improve the predictive accuracy of widely used, correlative models.
Collapse
Affiliation(s)
- Peter D Billman
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - Erik A Beever
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT, USA
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - David B McWethy
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - Lindsey L Thurman
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT, USA
- U.S. Geological Survey, Northwest Climate Adaptation Science Center, Corvallis, OR, USA
| | - Kenneth C Wilson
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| |
Collapse
|
10
|
Ye H, Wang Z, Hou H, Wu J, Gao Y, Han W, Ru W, Sun G, Wang Y. Localized environmental heterogeneity drives the population differentiation of two endangered and endemic Opisthopappus Shih species. BMC Ecol Evol 2021; 21:56. [PMID: 33858342 PMCID: PMC8050911 DOI: 10.1186/s12862-021-01790-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/08/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Climate heterogeneity not only indirectly shapes the genetic structures of plant populations, but also drives adaptive divergence by impacting demographic dynamics. The variable localized climates and topographic complexity of the Taihang Mountains make them a major natural boundary in Northern China that influences the divergence of organisms distributed across this region. Opisthopappus is an endemic genus of the Taihang Mountains that includes only two spatially partitioned species Opisthopappus longilobus and Opisthopappus taihangensis. For this study, the mechanisms behind the genetic variations in Opisthopappus populations were investigated. RESULTS Using SNP and InDel data coupled with geographic and climatic information, significant genetic differentiation was found to exist either between Opisthopappus populations or two species. All studied populations were divided into two genetic groups with the differentiation of haplotypes between the groups. At approximately 17.44 Ma of the early Miocene, O. taihangensis differentiated from O. longilobus under differing precipitation regimes due to the intensification of the Asian monsoon. Subsequently, intraspecific divergence might be induced by the dramatic climatic transformation from the mid- to late Miocene. During the Pleistocene period, the rapid uplift of the Taihang Mountains coupled with violent climatic oscillations would further promote the diversity of the two species. Following the development of the Taihang Mountains, its complex topography created geographical and ecological heterogeneity, which could lead to spatiotemporal isolation between the Opisthopappus populations. Thus the adaptive divergence might occur within these intraspecific populations in the localized heterogeneous environment of the Taihang Mountains. CONCLUSIONS The localized environmental events through the integration of small-scale spatial effects impacted the demographic history and differentiation mechanism of Opisthopappus species in the Taihang Mountains. The results provide useful information for us to understand the ecology and evolution of organisms in the mountainous environment from population and species perspective.
Collapse
Affiliation(s)
- Hang Ye
- College of Life Science, Shanxi Normal University, Linfen, China
| | - Zhi Wang
- College of Life Science, Shanxi Normal University, Linfen, China
| | - Huimin Hou
- College of Life Science, Shanxi Normal University, Linfen, China
| | - Jiahui Wu
- College of Life Science, Shanxi Normal University, Linfen, China
- Changzhi University, Changzhi, China
| | - Yue Gao
- College of Life Science, Shanxi Normal University, Linfen, China
| | - Wei Han
- College of Life Science, Shanxi Normal University, Linfen, China
| | | | - Genlou Sun
- Saint Mary's University, Halifax, Canada
| | - Yiling Wang
- College of Life Science, Shanxi Normal University, Linfen, China.
| |
Collapse
|
11
|
Le Coeur C, Storkey J, Ramula S. Population responses to observed climate variability across multiple organismal groups. OIKOS 2021. [DOI: 10.1111/oik.07371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Christie Le Coeur
- Dept of Biology, Faculty of Science and Engineering, Univ. of Turku Turku Finland
| | - Jonathan Storkey
- Sustainable Agricultural Sciences, Rothamsted Research Harpenden Hertfordshire UK
| | - Satu Ramula
- Dept of Biology, Faculty of Science and Engineering, Univ. of Turku Turku Finland
| |
Collapse
|
12
|
Kerr JT. Racing against change: understanding dispersal and persistence to improve species' conservation prospects. Proc Biol Sci 2020; 287:20202061. [PMID: 33234075 PMCID: PMC7739496 DOI: 10.1098/rspb.2020.2061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate change is contributing to the widespread redistribution, and increasingly the loss, of species. Geographical range shifts among many species were detected rapidly after predictions of the potential importance of climate change were specified 35 years ago: species are shifting their ranges towards the poles and often to higher elevations in mountainous areas. Early tests of these predictions were largely qualitative, though extraordinarily rapid and broadly based, and statistical tests distinguishing between climate change and other global change drivers provided quantitative evidence that climate change had already begun to cause species’ geographical ranges to shift. I review two mechanisms enabling this process, namely development of approaches for accounting for dispersal that contributes to range expansion, and identification of factors that alter persistence and lead to range loss. Dispersal in the context of range expansion depends on an array of processes, like population growth rates in novel environments, rates of individual species movements to new locations, and how quickly areas of climatically tolerable habitat shift. These factors can be tied together in well-understood mathematical frameworks or modelled statistically, leading to better prediction of extinction risk as climate changes. Yet, species' increasing exposures to novel climate conditions can exceed their tolerances and raise the likelihood of local extinction and consequent range losses. Such losses are the consequence of processes acting on individuals, driven by factors, such as the growing frequency and severity of extreme weather, that contribute local extinction risks for populations and species. Many mechanisms can govern how species respond to climate change, and rapid progress in global change research creates many opportunities to inform policy and improve conservation outcomes in the early stages of the sixth mass extinction.
Collapse
Affiliation(s)
- Jeremy T Kerr
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
13
|
Ye Z, Hooker G, Ellner SP. The Jensen effect and functional single index models: Estimating the ecological implications of nonlinear reaction norms. Ann Appl Stat 2020. [DOI: 10.1214/20-aoas1349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Ye Z, Hooker G. Local quadratic estimation of the curvature in a functional single index model. Scand Stat Theory Appl 2020. [DOI: 10.1111/sjos.12481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zi Ye
- Department of Statistics and Data Science Cornell University USA
| | - Giles Hooker
- Department of Statistics and Data Science Cornell University USA
- Research School of Finance, Actuarial Science and Statistics Australian National University Australia
| |
Collapse
|
15
|
Dallas TA, Antão LH, Pöyry J, Leinonen R, Ovaskainen O. Spatial synchrony is related to environmental change in Finnish moth communities. Proc Biol Sci 2020; 287:20200684. [PMID: 32453988 DOI: 10.1098/rspb.2020.0684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spatially distinct pairs of sites may have similarly fluctuating population dynamics across large geographical distances, a phenomenon called spatial synchrony. However, species rarely exist in isolation, but rather as members of interactive communities, linked with other communities through dispersal (i.e. a metacommunity). Using data on Finnish moth communities sampled across 65 sites for 20 years, we examine the complex synchronous/anti-synchronous relationships among sites using the geography of synchrony framework. We relate site-level synchrony to mean and temporal variation in climatic data, finding that colder and drier sites-and those with the most drastic temperature increases-are important for spatial synchrony. This suggests that faster-warming sites contribute most strongly to site-level estimates of synchrony, highlighting the role of a changing climate to spatial synchrony. Considering the spatial variability in climate change rates is therefore important to understand metacommunity dynamics and identify habitats which contribute most strongly to spatial synchrony.
Collapse
Affiliation(s)
- Tad A Dallas
- Department of Biological Science, Louisiana State University, Baton Rouge, LA, USA.,Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65, FI-00014, Finland
| | - Laura H Antão
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65, FI-00014, Finland
| | - Juha Pöyry
- Finnish Environment Institute (SYKE), Biodiversity Centre, Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Reima Leinonen
- Kainuu Centre for Economic Development, Transport and the Environment, PO Box 115, FI-87101 Kajaani, Finland
| | - Otso Ovaskainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65, FI-00014, Finland.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
16
|
Torre I, Bastardas-Llabot J, Arrizabalaga A, Díaz M. Population dynamics of small endotherms under global change: Greater white-toothed shrews Crocidura russula in Mediterranean habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135799. [PMID: 31810679 DOI: 10.1016/j.scitotenv.2019.135799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Small endotherms would be especially exposed to main global change drivers (habitat and climate changes) but would also be able to withstand them by adjusting population dynamics locally to changing climate- and habitat-driven food and predation conditions. We analyse the relative importance of changes in climate (mean and variability, including relevant time-lags) and habitat conditions on the abundance, age structure and growth rate of Mediterranean populations of a small endotherm, the greater white-toothed shrew Crocidura russula, along a 10-year period (2008-2017). Habitat type and season were the key factors shaping shrew population dynamics, which showed consistent peak numbers in open habitats in autumn, after the spring-summer reproductive period. Significant increases in aridity (increasing temperature and decreasing rainfall) along the study period did not explain variation in shrew numbers, although short-term variations in abundance were negatively related to relative air humidity and temperature over three last months prior to the surveys. Overall, ongoing climate change have not yet affected shrew population dynamics in its core areas of the Mediterranean region, in spite of expectations based on climate change rate in this region and small endotherm sensitivity to these changes. Reliance on open habitats with lower predation pressure would explain the resilience of shrew populations to climate change. However, current trends of land use change (land abandonment and afforestation) threaten Mediterranean open habitats, so that resilience would not last for long if these trends are not counteracted.
Collapse
Affiliation(s)
- Ignasi Torre
- Museu de Ciències Naturals de Granollers, Francesc Macià 51, 08402 Granollers, Spain.
| | | | - Antoni Arrizabalaga
- Museu de Ciències Naturals de Granollers, Francesc Macià 51, 08402 Granollers, Spain
| | - Mario Díaz
- Biogeography and Global Change Department, National Museum of Natural Sciences, Spanish National Research Council, BGC-MNCN-CSIC, C/Serrano 115 Bis, E-28006 Madrid, Spain
| |
Collapse
|
17
|
Phenotypic memory drives population growth and extinction risk in a noisy environment. Nat Ecol Evol 2020; 4:193-201. [PMID: 31988445 PMCID: PMC7025894 DOI: 10.1038/s41559-019-1089-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/19/2019] [Indexed: 11/24/2022]
Abstract
Random environmental fluctuations pose major threats to wild populations. As patterns of environmental noise are themselves altered by global change, there is growing need to identify general mechanisms underlying their effects on population dynamics. This notably requires understanding and predicting population responses to the color of environmental noise, i.e. its temporal autocorrelation pattern. Here, we show experimentally that environmental autocorrelation has a large influence on population dynamics and extinction rates, which can be predicted accurately provided that a memory of past environment is accounted for. We exposed near to 1000 lines of the microalgae Dunaliella salina to randomly fluctuating salinity, with autocorrelation ranging from negative to highly positive. We found lower population growth, and twice as many extinctions, under lower autocorrelation. These responses closely matched predictions based on a tolerance curve with environmental memory, showing that non-genetic inheritance can be a major driver of population dynamics in randomly fluctuating environments.
Collapse
|
18
|
Burggren WW. Inadequacy of typical physiological experimental protocols for investigating consequences of stochastic weather events emerging from global warming. Am J Physiol Regul Integr Comp Physiol 2019; 316:R318-R322. [PMID: 30698987 DOI: 10.1152/ajpregu.00307.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increasingly variable, extreme, and nonpredictable weather events are predicted to accompany climate change, and such weather events will especially affect temperate, terrestrial environments. Yet, typical protocols in comparative physiology that examine environmental change typically employ simple step-wise changes in the experimental stressor of interest (e.g., temperature, water availability, oxygen, nutrition). Such protocols fall short of mimicking actual natural environments and may be inadequate for fully exploring the physiological effects of stochastic, extreme weather events. Indeed, numerous studies from the field of thermal biology, especially, indicate nonlinear and sometimes counterintuitive findings associated with variable and fluctuating (but rarely truly stochastic) protocols for temperature change. This Perspective article suggests that alternative experimental protocols should be employed that go beyond step-wise protocols and even beyond variable protocols employing circadian rhythms, for example, to those that actually embrace nonpredictable elements. Such protocols, though admittedly more difficult to implement, are more likely to reveal the capabilities (and, importantly, the limitations) of animals experiencing weather, as distinct from climate. While some possible protocols involving stochasticity are described as examples to stimulate additional thought on experimental design, the overall goal of this Perspective article is to encourage comparative physiologists to entertain incorporation of nonpredictable experimental conditions as they design future experimental protocols.
Collapse
Affiliation(s)
- Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas , Denton, Texas
| |
Collapse
|
19
|
Tredennick AT, Teller B, Adler PB, Hooker G, Ellner SP. Size‐by‐environment interactions: a neglected dimension of species' responses to environmental variation. Ecol Lett 2018; 21:1757-1770. [DOI: 10.1111/ele.13154] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/11/2018] [Accepted: 08/16/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Andrew T. Tredennick
- Department of Wildland Resources and the Ecology Center Utah State University Logan UT USA
| | - Brittany J. Teller
- Department of Biology Pennsylvania State University University Park PA USA
| | - Peter B. Adler
- Department of Wildland Resources and the Ecology Center Utah State University Logan UT USA
| | - Giles Hooker
- Department of Biological Statistics and Computational Biology Cornell University Ithaca NY USA
| | - Stephen P. Ellner
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| |
Collapse
|
20
|
Bernhardt JR, Sunday JM, Thompson PL, O'Connor MI. Nonlinear averaging of thermal experience predicts population growth rates in a thermally variable environment. Proc Biol Sci 2018; 285:rspb.2018.1076. [PMID: 30209223 DOI: 10.1098/rspb.2018.1076] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/21/2018] [Indexed: 11/12/2022] Open
Abstract
As thermal regimes change worldwide, projections of future population and species persistence often require estimates of how population growth rates depend on temperature. These projections rarely account for how temporal variation in temperature can systematically modify growth rates relative to projections based on constant temperatures. Here, we tested the hypothesis that time-averaged population growth rates in fluctuating thermal environments differ from growth rates in constant conditions as a consequence of Jensen's inequality, and that the thermal performance curves (TPCs) describing population growth in fluctuating environments can be predicted quantitatively based on TPCs generated in constant laboratory conditions. With experimental populations of the green alga Tetraselmis tetrahele, we show that nonlinear averaging techniques accurately predicted increased as well as decreased population growth rates in fluctuating thermal regimes relative to constant thermal regimes. We extrapolate from these results to project critical temperatures for population growth and persistence of 89 phytoplankton species in naturally variable thermal environments. These results advance our ability to predict population dynamics in the context of global change.
Collapse
Affiliation(s)
- Joey R Bernhardt
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Jennifer M Sunday
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.,Department of Biology, McGill University, Montreal, QC, Canada H3A 1B1
| | - Patrick L Thompson
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Mary I O'Connor
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
21
|
Stojanova B, Šurinová M, Klápště J, Koláříková V, Hadincová V, Münzbergová Z. Adaptive differentiation of Festuca rubra along a climate gradient revealed by molecular markers and quantitative traits. PLoS One 2018; 13:e0194670. [PMID: 29617461 PMCID: PMC5884518 DOI: 10.1371/journal.pone.0194670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/07/2018] [Indexed: 12/02/2022] Open
Abstract
Species response to climate change is influenced by predictable (selective) and unpredictable (random) evolutionary processes. To understand how climate change will affect present-day species, it is necessary to assess their adaptive potential and distinguish it from the effects of random processes. This will allow predicting how different genotypes will respond to forecasted environmental change. Space for time substitution experiments are an elegant way to test the response of present day populations to climate variation in real time. Here we assess neutral and putatively adaptive variation in 11 populations of Festuca rubra situated along crossed gradients of temperature and moisture using molecular markers and phenotypic measurements, respectively. By comparing population differentiation in putatively neutral molecular markers and phenotypic traits (QST-FST comparisons), we show the existence of adaptive differentiation in phenotypic traits and their plasticity across the climatic gradient. The observed patterns of differentiation are due to the high genotypic and phenotypic differentiation of the populations from the coldest (and wettest) environment. Finally, we observe statistically significant covariation between markers and phenotypic traits, which is likely caused by isolation by adaptation. These results contribute to a better understanding of the current adaptation and evolutionary potential to face climate change of a widespread species. They can also be extrapolated to understand how the studied populations will adjust to upcoming climate change without going through the lengthy process of phenotyping.
Collapse
Affiliation(s)
- Bojana Stojanova
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mária Šurinová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| | - Jaroslav Klápště
- Scion (New Zealand Forest Research Institute Ltd.), Whakarewarewa, Rotorua, New Zealand
| | - Veronika Koláříková
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Věroslava Hadincová
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| | - Zuzana Münzbergová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| |
Collapse
|
22
|
Malanson GP. Interactions and constraints in model species response to environmental heteroscedasticity. J Theor Biol 2017; 419:343-349. [PMID: 28223173 DOI: 10.1016/j.jtbi.2017.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022]
Abstract
Increasing environmental variability could exacerbate the effects of climate change on ecological processes such as population dynamics, or positive and negative effects (favorable or unfavorable weather) could balance. Such a balance could depend on constraints of the processes. Biological and spatial constraints are represented in a spatially explicit individual based simulation of an ecotone reduced to two species on a single environmental gradient. The effects of climate amelioration are simulated from a plant's-eye-view by increasing the establishment and decreasing the mortality rates. Variability is introduced as a random multiplier of these rates, and the strength of the variation is increased through the period of climate change. The biological constraints limit change in the rates, and the extent of the simulation grid represents a spatial constraint. A small increase in environmental variation, multiplied through time with climate change, increases extinction rates. The biological and spatial constraints have little effect on the response of populations. Instead, competition, based on the form of the species response functions to the environmental gradient at the point where they intersect, determines differences in population responses. Positive and negative variations in the environment do not balance because the responses are hierarchical and asymmetric. Differences persist because extinction during a negative anomaly cannot be reversed by a later positive one.
Collapse
Affiliation(s)
- George P Malanson
- Department of Geographical & Sustainability Sciences, University of Iowa, Iowa City, IA 52242 USA.
| |
Collapse
|
23
|
Cavaliere M, Yang G, Danos V, Dakos V. Detecting the Collapse of Cooperation in Evolving Networks. Sci Rep 2016; 6:30845. [PMID: 27492876 PMCID: PMC4974622 DOI: 10.1038/srep30845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/11/2016] [Indexed: 11/10/2022] Open
Abstract
The sustainability of biological, social, economic and ecological communities is often determined by the outcome of social conflicts between cooperative and selfish individuals (cheaters). Cheaters avoid the cost of contributing to the community and can occasionally spread in the population leading to the complete collapse of cooperation. Although such collapse often unfolds unexpectedly, it is unclear whether one can detect the risk of cheater’s invasions and loss of cooperation in an evolving community. Here, we combine dynamical networks and evolutionary game theory to study the abrupt loss of cooperation with tools for studying critical transitions. We estimate the risk of cooperation collapse following the introduction of a single cheater under gradually changing conditions. We observe an increase in the average time it takes for cheaters to be eliminated from the community as the risk of collapse increases. We argue that such slow system response resembles slowing down in recovery rates prior to a critical transition. In addition, we show how changes in community structure reflect the risk of cooperation collapse. We find that these changes strongly depend on the mechanism that governs how cheaters evolve in the community. Our results highlight novel directions for detecting abrupt transitions in evolving networks.
Collapse
Affiliation(s)
- Matteo Cavaliere
- School of Informatics, University of Edinburgh, Scotland, United Kingdom
| | - Guoli Yang
- School of Informatics, University of Edinburgh, Scotland, United Kingdom
| | - Vincent Danos
- School of Informatics, University of Edinburgh, Scotland, United Kingdom.,CNRS-ENS, Paris, France
| | - Vasilis Dakos
- Institute of Integrative Biology, Center for Adaptation to a Changing Environment, ETHZ, Zürich, Switzerland
| |
Collapse
|
24
|
Hart SP, Schreiber SJ, Levine JM. How variation between individuals affects species coexistence. Ecol Lett 2016; 19:825-38. [DOI: 10.1111/ele.12618] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/06/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Simon P. Hart
- Institute of Integrative Biology ETH Zürich (Swiss Federal Institute of Technology) Universitätrasse 16 8092 Zürich Switzerland
| | - Sebastian J. Schreiber
- Department of Evolution & Ecology and the Center for Population Biology One Shields Avenue University of California Davis CA 95616 USA
| | - Jonathan M. Levine
- Institute of Integrative Biology ETH Zürich (Swiss Federal Institute of Technology) Universitätrasse 16 8092 Zürich Switzerland
| |
Collapse
|
25
|
Branson DH. Drought Impacts on Competition in Phoetaliotes nebrascensis (Orthoptera Acrididae) in a Northern Mixed Grassland. ENVIRONMENTAL ENTOMOLOGY 2016; 45:492-499. [PMID: 26744453 DOI: 10.1093/ee/nvv225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Global climate change is predicted to significantly modify patterns of precipitation, making it critical to develop a better understanding of how this will modify biotic interactions. Short-term to decadal-scale weather patterns can impact grasshopper population dynamics, but drought impacts on grasshoppers have rarely been studied in manipulative experiments. A cage experiment was conducted in eastern Montana to examine the impact of intra- and interspecific competition and precipitation manipulation treatments on performance of a common melanopline grasshopper Phoetaliotes nebrascensis (Thomas). High-density and drought treatments had similarly strong negative impacts on food availability. Proportional grasshopper survival did not differ significantly by treatment, but density dependence was evident in both body size and reproductive traits. The impact of precipitation and density treatments on grasshopper body size and reproduction were typically similar in magnitude and much larger than interspecific competition, with the exception of male femur length. Even with high late summer precipitation, drought had strong effects on individual body size and future reproduction. This study provides valuable information on population dynamics of an abundant grasshopper, with moderate precipitation reductions negatively affecting reproduction and body size. No positive impacts of drought as predicted by the plant stress hypothesis were observed. The study reinforces the need to examine drought manipulations to better predict grasshopper population changes due to changing climate conditions.
Collapse
Affiliation(s)
- David H Branson
- U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Agricultural Research Lab, 1500 N. Central Avenue, Sidney, MT 59270
| |
Collapse
|
26
|
Teller BJ, Adler PB, Edwards CB, Hooker G, Ellner SP. Linking demography with drivers: climate and competition. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12486] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brittany J. Teller
- Department of Wildland Resources Utah State University Logan UT 84322 USA
| | - Peter B. Adler
- Department of Wildland Resources Utah State University Logan UT 84322 USA
| | - Collin B. Edwards
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY 14853 USA
| | - Giles Hooker
- Department of Biological Statistics and Computational Biology Cornell University Ithaca NY 14853 USA
| | - Stephen P. Ellner
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
27
|
Pickett EJ, Thomson DL, Li TA, Xing S. Jensen's Inequality and the Impact of Short-Term Environmental Variability on Long-Term Population Growth Rates. PLoS One 2015; 10:e0136072. [PMID: 26352857 PMCID: PMC4564168 DOI: 10.1371/journal.pone.0136072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/29/2015] [Indexed: 11/19/2022] Open
Abstract
It is well established in theory that short-term environmental fluctuations could affect the long-term growth rates of wildlife populations, but this theory has rarely been tested and there remains little empirical evidence that the effect is actually important in practice. Here we develop models to quantify the effects of daily, seasonal, and yearly temperature fluctuations on the average population growth rates, and we apply them to long-term data on the endangered Black-faced Spoonbill (Platalea minor); an endothermic species whose population growth rates follow a concave relationship with temperature. We demonstrate for the first time that the current levels of temperature variability, particularly seasonal variability, are already large enough to substantially reduce long-term population growth rates. As the climate changes, our results highlight the importance of considering the ecological effects of climate variability and not just average conditions.
Collapse
Affiliation(s)
- Evan J. Pickett
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - David L. Thomson
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
- Biology Department, College of Science, UAE University, Al Ain, United Arab Emirates
- * E-mail:
| | - Teng A. Li
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Shuang Xing
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Byrne AW, Fogarty U, O'Keeffe J, Newman C. In situ adaptive response to climate and habitat quality variation: spatial and temporal variation in European badger (Meles meles) body weight. GLOBAL CHANGE BIOLOGY 2015; 21:3336-3346. [PMID: 25846328 DOI: 10.1111/gcb.12939] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/11/2015] [Indexed: 06/04/2023]
Abstract
Variation in climatic and habitat conditions can affect populations through a variety of mechanisms, and these relationships can act at different temporal and spatial scales. Using post-mortem badger body weight records from 15 878 individuals captured across the Republic of Ireland (7224 setts across ca. 15 000 km(2) ; 2009-2012), we employed a hierarchical multilevel mixed model to evaluate the effects of climate (rainfall and temperature) and habitat quality (landscape suitability), while controlling for local abundance (unique badgers caught/sett/year). Body weight was affected strongly by temperature across a number of temporal scales (preceding month or season), with badgers being heavier if preceding temperatures (particularly during winter/spring) were warmer than the long-term seasonal mean. There was less support for rainfall across different temporal scales, although badgers did exhibit heavier weights when greater rainfall occurred one or 2 months prior to capture. Badgers were also heavier in areas with higher landscape habitat quality, modulated by the number of individuals captured per sett, consistent with density-dependent effects reducing weights. Overall, the mean badger body weight of culled individuals rose during the study period (2009-2012), more so for males than for females. With predicted increases in temperature, and rainfall, augmented by ongoing agricultural land conversion in this region, we project heavier individual badger body weights in the future. Increased body weight has been associated with higher fecundity, recruitment and survival rates in badgers, due to improved food availability and energetic budgets. We thus predict that climate change could increase the badger population across the Republic of Ireland. Nevertheless, we emphasize that, locally, populations could still be vulnerable to extreme weather variability coupled with detrimental agricultural practice, including population management.
Collapse
Affiliation(s)
- Andrew W Byrne
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stoney Road, Belfast, County Antrim, BT4 3SD, UK
- Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - James O'Keeffe
- Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Agriculture, Food and the Marine, Agriculture House, Dublin 2, Ireland
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney, Abingdon, OX13 5QL, UK
| |
Collapse
|
29
|
The diversity changes of soil microbial communities stimulated by climate, soil type and vegetation type analyzed via a functional gene array. World J Microbiol Biotechnol 2015; 31:1755-63. [DOI: 10.1007/s11274-015-1926-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
|
30
|
Hao YQ, Brockhurst MA, Petchey OL, Zhang QG. Evolutionary rescue can be impeded by temporary environmental amelioration. Ecol Lett 2015; 18:892-8. [PMID: 26119065 DOI: 10.1111/ele.12465] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/13/2015] [Accepted: 05/20/2015] [Indexed: 02/04/2023]
Abstract
Rapid evolutionary adaptation has the potential to rescue from extinction populations experiencing environmental changes. Little is known, however, about the impact of short-term environmental fluctuations during long-term environmental deterioration, an intrinsic property of realistic environmental changes. Temporary environmental amelioration arising from such fluctuations could either facilitate evolutionary rescue by allowing population recovery (a positive demographic effect) or impede it by relaxing selection for beneficial mutations required for future survival (a negative population genetic effect). We address this uncertainty in an experiment with populations of a bacteriophage virus that evolved under deteriorating conditions (gradually increasing temperature). Periodic environmental amelioration (short periods of reduced temperature) caused demographic recovery during the early phase of the experiment, but ultimately reduced the frequency of evolutionary rescue. These experimental results suggest that environmental fluctuations could reduce the potential of evolutionary rescue.
Collapse
Affiliation(s)
- Yi-Qi Hao
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, 100875, China
| | | | - Owen L Petchey
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
31
|
Lawson CR, Vindenes Y, Bailey L, van de Pol M. Environmental variation and population responses to global change. Ecol Lett 2015; 18:724-36. [PMID: 25900148 DOI: 10.1111/ele.12437] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/03/2015] [Accepted: 03/24/2015] [Indexed: 12/17/2022]
Abstract
Species' responses to environmental changes such as global warming are affected not only by trends in mean conditions, but also by natural and human-induced environmental fluctuations. Methods are needed to predict how such environmental variation affects ecological and evolutionary processes, in order to design effective strategies to conserve biodiversity under global change. Here, we review recent theoretical and empirical studies to assess: (1) how populations respond to changes in environmental variance, and (2) how environmental variance affects population responses to changes in mean conditions. Contrary to frequent claims, empirical studies show that increases in environmental variance can increase as well as decrease long-term population growth rates. Moreover, environmental variance can alter and even reverse the effects of changes in the mean environment, such that even if environmental variance remains constant, omitting it from population models compromises their ability to predict species' responses to changes in mean conditions. Drawing on theory relating these effects of environmental variance to the curvatures of population growth responses to the environment, we outline how species' traits such as phylogenetic history and body mass could be used to predict their responses to global change under future environmental variability.
Collapse
Affiliation(s)
- Callum R Lawson
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Yngvild Vindenes
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, NO-0371 , Oslo, Norway
| | - Liam Bailey
- Division of Evolution, Ecology & Genetics, The Australian National University, Canberra, ACT 2601, Australia
| | - Martijn van de Pol
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.,Division of Evolution, Ecology & Genetics, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
32
|
Sharma M, Ghosh R, Tarafdar A, Telangre R. An efficient method for zoospore production, infection and real-time quantification of Phytophthora cajani causing Phytophthora blight disease in pigeonpea under elevated atmospheric CO₂. BMC PLANT BIOLOGY 2015; 15:90. [PMID: 25888001 PMCID: PMC4377013 DOI: 10.1186/s12870-015-0470-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/06/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Phytophthora blight caused by Phytophthora cajani is an emerging disease of pigeonpea (Cajanus cajan L.) affecting the crop irrespective of cropping system, cultivar grown and soil types. Current detection and identification methods for Phytophthora species rely primarily on cultural and morphological characteristics, the assessment of which is time-consuming and not always suitable. Sensitive and reliable methods for isolation, identification, zoospore production and estimating infection severity are therefore desirable in case of Phytophthora blight of pigeonpea. RESULTS In this study, protocols for isolation and identification of Phytophthora blight of pigeonpea were standardized. Also the method for zoospore production and in planta infection of P. cajani was developed. Quantification of fungal colonization by P. cajani using real-time PCR was further standardized. Phytophthora species infecting pigeonpea was identified based on mycological characters such as growth pattern, mycelium structure and sporangial morphology of the isolates and confirmed through molecular characterization (sequence deposited in GenBank). For Phytophthora disease development, zoospore suspension of 1 × 10(5) zoospores per ml was found optimum. Phytophthora specific real-time PCR assay was developed using specific primers based on internal transcribed spacer (ITS) 1 and 2. Use of real-time PCR allowed the quantitative estimation of fungal biomass in plant tissues. Detection sensitivities were within the range of 0.001 pg fungal DNA. A study to see the effect of elevated CO₂ on Phytophthora blight incidence was also conducted which indicated no significant difference in disease incidence, but incubation period delayed under elevated CO₂ as compared to ambient level. CONCLUSION The zoospore infection method for Phytophthora blight of pigeonpea will facilitate the small and large scale inoculation experiments and thus devise a platform for rapid and reliable screening against Phytophthora blight disease of pigeonpea. qPCR allowed a reliable detection and quantification of P. cajani in samples with low pathogen densities. This can be useful in early warning systems prior to potential devastating outbreak of the disease.
Collapse
Affiliation(s)
- Mamta Sharma
- Legumes Pathology, International Crop Research Institute for the Semi-Arid Tropics, Patancheru, 502324, Telangana, India.
| | - Raju Ghosh
- Legumes Pathology, International Crop Research Institute for the Semi-Arid Tropics, Patancheru, 502324, Telangana, India.
| | - Avijit Tarafdar
- Legumes Pathology, International Crop Research Institute for the Semi-Arid Tropics, Patancheru, 502324, Telangana, India.
| | - Rameshwar Telangre
- Legumes Pathology, International Crop Research Institute for the Semi-Arid Tropics, Patancheru, 502324, Telangana, India.
| |
Collapse
|
33
|
Culos G, Tyson R. Response of poikilotherms to thermal aspects of climate change. ECOLOGICAL COMPLEXITY 2014. [DOI: 10.1016/j.ecocom.2014.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Dugger KM, Ballard G, Ainley DG, Lyver PO, Schine C. Adélie penguins coping with environmental change: results from a natural experiment at the edge of their breeding range. Front Ecol Evol 2014. [DOI: 10.3389/fevo.2014.00068] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
La Sorte FA, Butchart SHM, Jetz W, Böhning-Gaese K. Range-wide latitudinal and elevational temperature gradients for the world's terrestrial birds: implications under global climate change. PLoS One 2014; 9:e98361. [PMID: 24852009 PMCID: PMC4031198 DOI: 10.1371/journal.pone.0098361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/01/2014] [Indexed: 11/19/2022] Open
Abstract
Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation) and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among species, and the capacity of species to utilize these gradients under climate change.
Collapse
Affiliation(s)
- Frank A. La Sorte
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, United States of America
| | | | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Katrin Böhning-Gaese
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt (Main), Germany
- Department of Biological Sciences, Goethe Universität, Frankfurt (Main), Germany
| |
Collapse
|
36
|
Smallegange IM, Deere JA, Coulson T. Correlative changes in life-history variables in response to environmental change in a model organism. Am Nat 2014; 183:784-97. [PMID: 24823822 DOI: 10.1086/675817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Global change alters the environment, including increases in the frequency of (un)favorable events and shifts in environmental noise color. However, how these changes impact the dynamics of populations, and whether these can be predicted accurately has been largely unexamined. Here we combine recently developed population modeling approaches and theory in stochastic demography to explore how life history, morphology, and average fitness respond to changes in the frequency of favorable environmental conditions and in the color of environmental noise in a model organism (an acarid mite). We predict that different life-history variables respond correlatively to changes in the environment, and we identify different life-history variables, including lifetime reproductive success, as indicators of average fitness and life-history speed across stochastic environments. Depending on the shape of adult survival rate, generation time can be used as an indicator of the response of populations to stochastic change, as in the deterministic case. This work is a useful step toward understanding population dynamics in stochastic environments, including how stochastic change may shape the evolution of life histories.
Collapse
Affiliation(s)
- Isabel M Smallegange
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94084, 1090 GB Amsterdam, The Netherlands
| | | | | |
Collapse
|
37
|
Barraquand F, Yoccoz NG. When can environmental variability benefit population growth? Counterintuitive effects of nonlinearities in vital rates. Theor Popul Biol 2013; 89:1-11. [DOI: 10.1016/j.tpb.2013.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 06/24/2013] [Accepted: 07/16/2013] [Indexed: 11/26/2022]
|
38
|
Barraquand F, Høye TT, Henden JA, Yoccoz NG, Gilg O, Schmidt NM, Sittler B, Ims RA. Demographic responses of a site-faithful and territorial predator to its fluctuating prey: long-tailed skuas and arctic lemmings. J Anim Ecol 2013; 83:375-87. [PMID: 24128282 DOI: 10.1111/1365-2656.12140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 08/26/2013] [Indexed: 11/30/2022]
Abstract
Environmental variability, through interannual variation in food availability or climatic variables, is usually detrimental to population growth. It can even select for constancy in key life-history traits, though some exceptions are known. Changes in the level of environmental variability are therefore important to predict population growth or life-history evolution. Recently, several cyclic vole and lemming populations have shown large dynamical changes that might affect the demography or life-histories of rodent predators. Skuas constitute an important case study among rodent predators, because of their strongly saturating breeding productivity (they lay only two eggs) and high degree of site fidelity, in which they differ from nomadic predators raising large broods in good rodent years. This suggests that they cannot capitalize on lemming peaks to the same extent as nomadic predators and might be more vulnerable to collapses of rodent cycles. We develop a model for the population dynamics of long-tailed skuas feeding on lemmings to assess the demographic consequences of such variable and non-stationary prey dynamics, based on data collected in NE Greenland. The model shows that populations of long-tailed skua sustain well changes in lemming dynamics, including temporary collapses (e.g. 10 years). A high floater-to-breeder ratio emerges from rigid territorial behaviour and a long-life expectancy, which buffers the impact of adult abundance's decrease on the population reproductive output. The size of the floater compartment is affected by changes in both mean and coefficient of variation of lemming densities (but not cycle amplitude and periodicity per se). In Greenland, the average lemming density is below the threshold density required for successful breeding (including during normally cyclic periods). Due to Jensen's inequality, skuas therefore benefit from lemming variability; a positive effect of environmental variation. Long-tailed skua populations are strongly adapted to fluctuating lemming populations, an instance of demographic lability in the reproduction rate. They are also little affected by poor lemming periods, if there are enough floaters, or juveniles disperse to neighbouring populations. The status of Greenland skua populations therefore strongly depends upon floater numbers and juvenile movements, which are not known. This reveals a need to intensify colour-ringing efforts on the long-tailed skua at a circumpolar scale.
Collapse
Affiliation(s)
- Frédéric Barraquand
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø, 9037, Norway
| | - Toke T Høye
- Arctic Research Centre, Aarhus University, Aarhus, DK-8000, Denmark.,Department of Bioscience, Aarhus University, Rønde, DK-8410, Denmark
| | - John-André Henden
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø, 9037, Norway
| | - Nigel G Yoccoz
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø, 9037, Norway
| | - Olivier Gilg
- Laboratoire Biogéosciences, UMR CNRS 5561, Université de Bourgogne, Dijon, 21000, France.,Groupe de Recherche en Ecologie Arctique, Francheville, 21440, France
| | - Niels M Schmidt
- Arctic Research Centre, Aarhus University, Aarhus, DK-8000, Denmark.,Department of Bioscience, Aarhus University, Roskilde, DK-4000, Denmark
| | - Benoît Sittler
- Groupe de Recherche en Ecologie Arctique, Francheville, 21440, France.,Institut für Landespflege, University of Freiburg, Freiburg, 79106, Germany
| | - Rolf A Ims
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø, 9037, Norway
| |
Collapse
|
39
|
Nouvellet P, Newman C, Buesching CD, Macdonald DW. A multi-metric approach to investigate the effects of weather conditions on the demographic of a terrestrial mammal, the european badger (Meles meles). PLoS One 2013; 8:e68116. [PMID: 23874517 PMCID: PMC3708947 DOI: 10.1371/journal.pone.0068116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/25/2013] [Indexed: 11/18/2022] Open
Abstract
Models capturing the full effects of weather conditions on animal populations are scarce. Here we decompose yearly temperature and rainfall into mean trends, yearly amplitude of change and residual variation, using daily records. We establish from multi-model inference procedures, based on 1125 life histories (from 1987 to 2008), that European badger (Meles meles) annual mortality and recruitment rates respond to changes in mean trends and to variability in proximate weather components. Variation in mean rainfall was by far the most influential predictor in our analysis. Juvenile survival and recruitment rates were highest at intermediate levels of mean rainfall, whereas low adult survival rates were associated with only the driest, and not the wettest, years. Both juvenile and adult survival rates also exhibited a range of tolerance for residual standard deviation around daily predicted temperature values, beyond which survival rates declined. Life-history parameters, annual routines and adaptive behavioural responses, which define the badgers’ climatic niche, thus appear to be predicated upon a bounded range of climatic conditions, which support optimal survival and recruitment dynamics. That variability in weather conditions is influential, in combination with mean climatic trends, on the vital rates of a generalist, wide ranging and K-selected medium-sized carnivore, has major implications for evolutionary ecology and conservation.
Collapse
Affiliation(s)
- Pierre Nouvellet
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney, Abingdon, Oxfordshire, United Kingdom
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney, Abingdon, Oxfordshire, United Kingdom
| | - Christina D. Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney, Abingdon, Oxfordshire, United Kingdom
| | - David W. Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney, Abingdon, Oxfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Campbell DR, Wendlandt C. Altered precipitation affects plant hybrids differently than their parental species. AMERICAN JOURNAL OF BOTANY 2013; 100:1322-1331. [PMID: 23748678 DOI: 10.3732/ajb.1200473] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY Future changes in environmental conditions may alter evolutionary processes, including hybridization in nature. Frequency of hybrids could be altered via range shifts by the parental species or by changes in prezygotic or postzygotic reproductive isolation. We examined the potential for range shifts and change in postzygotic isolation by determining effects of increasing and decreasing precipitation on leaf physiology and fitness components in the subalpine herbs Ipomopsis aggregata (Polemoniaceae), I. tenuituba¸ and their natural hybrids in a common garden in the habitat of I. aggregata. METHODS Summer precipitation was experimentally doubled or halved over 3 yr in comparison with ambient conditions. We measured relative growth rate, specific leaf area, intrinsic water-use efficiency, survival to reproduction, biomass, number of flowers produced, and floral morphology. KEY RESULTS Ipomopsis tenuituba increased relative growth rate with higher precipitation more so than did I. aggregata during the first summer, but this response did not result in changes across treatments in relative survival or final reproductive success of the two species. When precipitation was reduced, the relative success of hybrids was greater than that of the home species, I. aggregata. In dry conditions, hybrids increased water-use efficiency and fitness as indexed by number of flowers more so than the other plant types did. CONCLUSIONS Increased reproduction in hybrids in the reduced precipitation regime indicates that postzygotic reproductive isolation may breakdown under imposition of dry conditions. These results suggest the potential for frequency of hybrids to increase if severe droughts become more common.
Collapse
Affiliation(s)
- Diane R Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA.
| | | |
Collapse
|
41
|
García-Carreras B, Reuman DC. Are changes in the mean or variability of climate signals more important for long-term stochastic growth rate? PLoS One 2013; 8:e63974. [PMID: 23691131 PMCID: PMC3653831 DOI: 10.1371/journal.pone.0063974] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 04/08/2013] [Indexed: 01/31/2023] Open
Abstract
Population dynamics are affected by changes in both the mean and standard deviation of climate, e.g., changes in average temperature are likely to affect populations, but so are changes in the strength of year-to-year temperature variability. The impacts of increases in average temperature are extensively researched, while the impacts of changes in climate variability are less studied. Is the greater attention given to changes in mean environment justified? To help answer this question we developed a simple population model, explicitly linked to an environmental process. We used the model to compare the sensitivities of a population's long-term stochastic growth rate, a measure of fitness, to changes in the mean and standard deviation of the environment. Results are interpreted in light of a comparative analysis of the relative magnitudes of change in means and standard deviations of biologically relevant climate variables in the United States. Results show that changes in the variability of the environment can be more important for many populations. Changes in mean conditions are likely to have a greater impact than changes in variability on populations far from their ideal environment, for example, populations near species range boundaries and potentially of conservation concern. Populations near range centres and close to their ideal environment are more likely to be affected by changes in variability. Among pest and insect disease vectors, as well as species of commercial value, populations likely to be of greatest economic and public health significance are those near species range centers, living in a near-ideal environment for the species. Observed changes in the variability of climate variables may benefit these populations.
Collapse
|
42
|
Engen S, Saether BE, Armitage KB, Blumstein DT, Clutton-Brock TH, Dobson FS, Festa-Bianchet M, Oli MK, Ozgul A. Estimating the effect of temporally autocorrelated environments on the demography of density-independent age-structured populations. Methods Ecol Evol 2013. [DOI: 10.1111/2041-210x.12043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steinar Engen
- Department of Mathematical Sciences; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; N-7491 Trondheim Norway
| | - Bernt-Erik Saether
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; N-7491 Trondheim Norway
| | - Kenneth B. Armitage
- Department of Ecology and Evolutionary Biology; University of Kansas; Lawrence KS 66045 USA
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology; University of California; Los Angeles CA 90095 USA
| | - Tim H. Clutton-Brock
- Division of Biology; Imperial College London; Silwood Park Campus Ascot Berkshire SL5 7PY UK
| | - F. Stephen Dobson
- Centre d'Ecologie Functionelle et Évolutive; UMR 5175 du CNRS; 1919 route de Mende F-34293 Montpellier Cedex 5 France
- Department of Biological Sciences; Auburn University; Auburn AL 36849 USA
| | | | - Madan K. Oli
- Department of Wildlife Ecology and Conservation; University of Florida; 110 Newins-Ziegler Hall Gainesville FL 32611-0430 USA
| | - Arpat Ozgul
- Department of Wildlife Ecology and Conservation; University of Florida; 110 Newins-Ziegler Hall Gainesville FL 32611-0430 USA
- Department of Zoology; University of Cambridge; Downing Street Cambridge CB2 3EJ UK
| |
Collapse
|
43
|
Cohen JE, Xu M, Schuster WSF. Stochastic multiplicative population growth predicts and interprets Taylor's power law of fluctuation scaling. Proc Biol Sci 2013; 280:20122955. [PMID: 23427171 DOI: 10.1098/rspb.2012.2955] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Taylor's law (TL) asserts that the variance of the density (individuals per area or volume) of a set of comparable populations is a power-law function of the mean density of those populations. Despite the empirical confirmation of TL in hundreds of species, there is little consensus about why TL is so widely observed and how its estimated parameters should be interpreted. Here, we report that the Lewontin-Cohen (henceforth LC) model of stochastic population dynamics, which has been widely discussed and applied, leads to a spatial TL in the limit of large time and provides an explicit, exact interpretation of its parameters. The exponent of TL exceeds 2 if and only if the LC model is supercritical (growing on average), equals 2 if and only if the LC model is deterministic, and is less than 2 if and only if the LC model is subcritical (declining on average). TL and the LC model describe the spatial variability and the temporal dynamics of populations of trees on long-term plots censused over 75 years at the Black Rock Forest, Cornwall, NY, USA.
Collapse
Affiliation(s)
- Joel E Cohen
- Laboratory of Populations, The Rockefeller University and Columbia University, 1230 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
44
|
Roland J, Matter SF. Variability in winter climate and winter extremes reduces population growth of an alpine butterfly. Ecology 2013; 94:190-9. [DOI: 10.1890/12-0611.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Pauls SU, Nowak C, Bálint M, Pfenninger M. The impact of global climate change on genetic diversity within populations and species. Mol Ecol 2012; 22:925-46. [DOI: 10.1111/mec.12152] [Citation(s) in RCA: 392] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 10/22/2012] [Accepted: 10/25/2012] [Indexed: 12/16/2022]
Affiliation(s)
- Steffen U. Pauls
- Biodiversity and Climate Research Centre (BiK‐F) by Senckenberg Gesellschaft für Naturforschung and Goethe University Senckenberganlage 25 D‐60325 Frankfurt/Main Germany
| | - Carsten Nowak
- Biodiversity and Climate Research Centre (BiK‐F) by Senckenberg Gesellschaft für Naturforschung and Goethe University Senckenberganlage 25 D‐60325 Frankfurt/Main Germany
- Conservation Genetics Group Senckenberg Research Institute and Natural History Museum Frankfurt Clamecystraße 12 D‐63571 Gelnhausen Germany
| | - Miklós Bálint
- Biodiversity and Climate Research Centre (BiK‐F) by Senckenberg Gesellschaft für Naturforschung and Goethe University Senckenberganlage 25 D‐60325 Frankfurt/Main Germany
- Molecular Biology Center, Babes‐Bolyai University Str. Treboniu Laurian 42 400271 Cluj Romania
| | - Markus Pfenninger
- Biodiversity and Climate Research Centre (BiK‐F) by Senckenberg Gesellschaft für Naturforschung and Goethe University Senckenberganlage 25 D‐60325 Frankfurt/Main Germany
| |
Collapse
|
46
|
Meek MH, Wintzer AP, Wetzel WC, May B. Climate change likely to facilitate the invasion of the non-native hydroid, Cordylophora caspia, in the San Francisco Estuary. PLoS One 2012; 7:e46373. [PMID: 23071559 PMCID: PMC3469613 DOI: 10.1371/journal.pone.0046373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 09/02/2012] [Indexed: 11/19/2022] Open
Abstract
Climate change and invasive species can both have negative impacts on native species diversity. Additionally, climate change has the potential to favor invasive species over natives, dealing a double blow to native biodiversity. It is, therefore, vital to determine how changing climate conditions are directly linked to demographic rates and population growth of non-native species so we can quantitatively evaluate how invasive populations may be affected by changing conditions and, in turn, impact native species. Cordylophora caspia, a hydrozoan from the Ponto-Caspian region, has become established in the brackish water habitats of the San Francisco Estuary (SFE). We conducted laboratory experiments to study how temperature and salinity affect C. caspia population growth rates, in order to predict possible responses to climate change. C. Caspia population growth increased nonlinearly with temperature and leveled off at a maximum growth rate near the annual maximum temperature predicted under a conservative climate change scenario. Increasing salinity, however, did not influence growth rates. Our results indicate that C. caspia populations in the SFE will benefit from predicted regional warming trends and be little affected by changes in salinity. The population of C. caspia in the SFE has the potential to thrive under future climate conditions and may subsequently increase its negative impact on the food web.
Collapse
Affiliation(s)
- Mariah H Meek
- Deptartment of Animal Science, University of California-Davis, Davis, California, United States of America.
| | | | | | | |
Collapse
|
47
|
Campbell RD, Nouvellet P, Newman C, Macdonald DW, Rosell F. The influence of mean climate trends and climate variance on beaver survival and recruitment dynamics. GLOBAL CHANGE BIOLOGY 2012; 18:2730-2742. [PMID: 24501052 DOI: 10.1111/j.1365-2486.2012.02739.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/22/2011] [Accepted: 03/26/2012] [Indexed: 06/03/2023]
Abstract
Ecologists are increasingly aware of the importance of environmental variability in natural systems. Climate change is affecting both the mean and the variability in weather and, in particular, the effect of changes in variability is poorly understood. Organisms are subject to selection imposed by both the mean and the range of environmental variation experienced by their ancestors. Changes in the variability in a critical environmental factor may therefore have consequences for vital rates and population dynamics. Here, we examine ≥90-year trends in different components of climate (precipitation mean and coefficient of variation (CV); temperature mean, seasonal amplitude and residual variance) and consider the effects of these components on survival and recruitment in a population of Eurasian beavers (n = 242) over 13 recent years. Within climatic data, no trends in precipitation were detected, but trends in all components of temperature were observed, with mean and residual variance increasing and seasonal amplitude decreasing over time. A higher survival rate was linked (in order of influence based on Akaike weights) to lower precipitation CV (kits, juveniles and dominant adults), lower residual variance of temperature (dominant adults) and lower mean precipitation (kits and juveniles). No significant effects were found on the survival of nondominant adults, although the sample size for this category was low. Greater recruitment was linked (in order of influence) to higher seasonal amplitude of temperature, lower mean precipitation, lower residual variance in temperature and higher precipitation CV. Both climate means and variance, thus proved significant to population dynamics; although, overall, components describing variance were more influential than those describing mean values. That environmental variation proves significant to a generalist, wide-ranging species, at the slow end of the slow-fast continuum of life histories, has broad implications for population regulation and the evolution of life histories.
Collapse
Affiliation(s)
- Ruairidh D Campbell
- Department of Environmental and Health Studies, Faculty of Arts and Sciences, Telemark University College, N-3800 Bø, Telemark, Norway; Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire, OX13 5QL, UK; Animal, Conservation and Education Department, Highland Wildlife Park, The Royal Zoological Society of Scotland, Kincraig, Inverness-shire, PH21 1NL, UK
| | | | | | | | | |
Collapse
|
48
|
Lof ME, Reed TE, McNamara JM, Visser ME. Timing in a fluctuating environment: environmental variability and asymmetric fitness curves can lead to adaptively mismatched avian reproduction. Proc Biol Sci 2012; 279:3161-9. [PMID: 22628472 DOI: 10.1098/rspb.2012.0431] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adaptation in dynamic environments depends on the grain, magnitude and predictability of ecological fluctuations experienced within and across generations. Phenotypic plasticity is a well-studied mechanism in this regard, yet the potentially complex effects of stochastic environmental variation on optimal mean trait values are often overlooked. Using an optimality model inspired by timing of reproduction in great tits, we show that temporal variation affects not only optimal reaction norm slope, but also elevation. With increased environmental variation and an asymmetric relationship between fitness and breeding date, optimal timing shifts away from the side of the fitness curve with the steepest decline. In a relatively constant environment, the timing of the birds is matched with the seasonal food peak, but they become adaptively mismatched in environments with temporal variation in temperature whenever the fitness curve is asymmetric. Various processes affecting the survival of offspring and parents influence this asymmetry, which collectively determine the 'safest' strategy, i.e. whether females should breed before, on, or after the food peak in a variable environment. As climate change might affect the (co)variance of environmental variables as well as their averages, risk aversion may influence how species should shift their seasonal timing in a warming world.
Collapse
Affiliation(s)
- Marjolein E Lof
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700AB Wageningen, The Netherlands
| | | | | | | |
Collapse
|
49
|
McCaffery R, Solonen A, Crone E. Frog population viability under present and future climate conditions: a Bayesian state-space approach. J Anim Ecol 2012; 81:978-85. [DOI: 10.1111/j.1365-2656.2012.01992.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Vercken E, Wellenreuther M, Svensson EI, Mauroy B. Don'T fall off the adaptation cliff: when asymmetrical fitness selects for suboptimal traits. PLoS One 2012; 7:e34889. [PMID: 22509364 PMCID: PMC3324540 DOI: 10.1371/journal.pone.0034889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/07/2012] [Indexed: 11/19/2022] Open
Abstract
The cliff-edge hypothesis introduces the counterintuitive idea that the trait value associated with the maximum of an asymmetrical fitness function is not necessarily the value that is selected for if the trait shows variability in its phenotypic expression. We develop a model of population dynamics to show that, in such a system, the evolutionary stable strategy depends on both the shape of the fitness function around its maximum and the amount of phenotypic variance. The model provides quantitative predictions of the expected trait value distribution and provides an alternative quantity that should be maximized ("genotype fitness") instead of the classical fitness function ("phenotype fitness"). We test the model's predictions on three examples: (1) litter size in guinea pigs, (2) sexual selection in damselflies, and (3) the geometry of the human lung. In all three cases, the model's predictions give a closer match to empirical data than traditional optimization theory models. Our model can be extended to most ecological situations, and the evolutionary conditions for its application are expected to be common in nature.
Collapse
Affiliation(s)
- Elodie Vercken
- Institut Sophia Agrobiotech, UMR 1355 ISA, Institut National de la Recherche Agronomique, Sophia-Antipolis, France.
| | | | | | | |
Collapse
|