1
|
Mikucki EE, O’Leary TS, Lockwood BL. Heat tolerance, oxidative stress response tuning and robust gene activation in early-stage Drosophila melanogaster embryos. Proc Biol Sci 2024; 291:20240973. [PMID: 39163981 PMCID: PMC11335408 DOI: 10.1098/rspb.2024.0973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
In organisms with complex life cycles, life stages that are most susceptible to environmental stress may determine species persistence in the face of climate change. Early embryos of Drosophila melanogaster are particularly sensitive to acute heat stress, yet tropical embryos have higher heat tolerance than temperate embryos, suggesting adaptive variation in embryonic heat tolerance. We compared transcriptomic responses to heat stress among tropical and temperate embryos to elucidate the gene regulatory basis of divergence in embryonic heat tolerance. The transcriptomes of tropical and temperate embryos differed in both constitutive and heat-stress-induced responses of the expression of relatively few genes, including genes involved in oxidative stress. Most of the transcriptomic response to heat stress was shared among all embryos. Embryos shifted the expression of thousands of genes, including increases in the expression of heat shock genes, suggesting robust zygotic gene activation and demonstrating that, contrary to previous reports, early embryos are not transcriptionally silent. The involvement of oxidative stress genes corroborates recent reports on the critical role of redox homeostasis in coordinating developmental transitions. By characterizing adaptive variation in the transcriptomic basis of embryonic heat tolerance, this study is a novel contribution to the literature on developmental physiology and developmental genetics.
Collapse
Affiliation(s)
- Emily E. Mikucki
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | | |
Collapse
|
2
|
Perez M, Aroh O, Sun Y, Lan Y, Juniper SK, Young CR, Angers B, Qian PY. Third-Generation Sequencing Reveals the Adaptive Role of the Epigenome in Three Deep-Sea Polychaetes. Mol Biol Evol 2023; 40:msad172. [PMID: 37494294 PMCID: PMC10414810 DOI: 10.1093/molbev/msad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
The roles of DNA methylation in invertebrates are poorly characterized, and critical data are missing for the phylum Annelida. We fill this knowledge gap by conducting the first genome-wide survey of DNA methylation in the deep-sea polychaetes dominant in deep-sea vents and seeps: Paraescarpia echinospica, Ridgeia piscesae, and Paralvinella palmiformis. DNA methylation calls were inferred from Oxford Nanopore sequencing after assembling high-quality genomes of these animals. The genomes of these worms encode all the key enzymes of the DNA methylation metabolism and possess a mosaic methylome similar to that of other invertebrates. Transcriptomic data of these polychaetes support the hypotheses that gene body methylation strengthens the expression of housekeeping genes and that promoter methylation acts as a silencing mechanism but not the hypothesis that DNA methylation suppresses the activity of transposable elements. The conserved epigenetic profiles of genes responsible for maintaining homeostasis under extreme hydrostatic pressure suggest DNA methylation plays an important adaptive role in these worms.
Collapse
Affiliation(s)
- Maeva Perez
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, China
- Department of Biological Sciences, Université de Montréal, Montréal, Canada
| | - Oluchi Aroh
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Yanan Sun
- Laboratory of Marine Organism Taxonomy and Phylogeny, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, China
| | - Stanley Kim Juniper
- School of Earth and Ocean Sciences, University of Victoria, Victoria, Canada
| | | | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, Montréal, Canada
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, China
| |
Collapse
|
3
|
McClain CR, Bryant SR, Hanks G, Bowles MW. Extremophiles in Earth's Deep Seas: A View Toward Life in Exo-Oceans. ASTROBIOLOGY 2022; 22:1009-1028. [PMID: 35549348 DOI: 10.1089/ast.2021.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Humanity's search for extraterrestrial life is a modern manifestation of the exploratory and curious nature that has led us through millennia of scientific discoveries. With the ongoing exploration of extraterrestrial bodies, the potential for discovery of extraterrestrial life has expanded. We may better inform this search through an understanding of how life persists and flourishes on Earth in a myriad of environmental extremes. A significant proportion of our knowledge of extremophiles on Earth comes from studies on deep ocean life. Here, we review and synthesize the range of environmental extremes observed in the deep sea, the life that persists in these extreme conditions, and the biological adaptations utilized by these remarkable life-forms. We also review confirmed and predicted extraterrestrial oceans in our solar system and propose deep-sea sites that may serve as planetary field analog environments. We show that the clever ingenuity of evolution under deep-sea conditions suggests that the plausibility of extraterrestrial life is much greater than previously thought.
Collapse
Affiliation(s)
- Craig R McClain
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - S River Bryant
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Granger Hanks
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | | |
Collapse
|
4
|
Madeira D, Fernandes JF, Jerónimo D, Martins P, Ricardo F, Santos A, Domingues MR, Diniz MS, Calado R. Salinity shapes the stress responses and energy reserves of marine polychaetes exposed to warming: From molecular to functional phenotypes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148634. [PMID: 34246144 DOI: 10.1016/j.scitotenv.2021.148634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Estuarine systems are critical transition zones influenced by sea, land and freshwater. An array of human activities impacts these areas leading to multiple-stressor interactions. Temperature and salinity are among the most relevant drivers in estuaries, shaping species growth, reproduction and distribution. However, few studies provide an overview of cellular rewiring processes under multiple-stressor environments. Here, we tested how salinity could shape the response of ragworms Hediste diversicolor, an important bioindicator and commercial species, to elevated temperature. We exposed polychaetes to three temperatures for a month, simulating control, ocean warming and heatwave conditions (24, 27 and 30 °C, respectively) combined with two salinities (20 and 30). We quantified whole-organism performance (wet weight gain and survival), along with cellular stress response (CSR) and energy reserves of worms after 14 and 28 days of exposure. Significant three-way interactions between temperature, salinity and exposure time show the non-linearity of molecular responses. Worms at a salinity of 20 were more sensitive to warming than worms exposed to a salinity of 30. The combination of high temperature and low salinity can act synergistically to induce oxidative stress and macromolecular damage in worm tissues. This finding was supported by an induction of the CSR, with a concomitant decrease of energy reserves, pointing towards a metabolic compensation strategy. However, under a higher salinity (30), the need for a CSR upon thermal challenge was reduced and energy content increased with temperature, which suggests that environmental conditions were within the optimum range. Heatwaves striking low-salinity areas of estuaries can therefore negatively impact the cellular physiology of H. diversicolor, with greater metabolic costs. However, extreme stress levels were not reached as worms incremented wet weight and survival was high under all conditions tested. Our findings are important for the optimization of ragworm aquaculture and adaptive conservation strategies of estuarine systems.
Collapse
Affiliation(s)
- Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; University of Quebec in Rimouski (UQAR), Department of Biology, Chemistry and Geography, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada.
| | - Joana Filipa Fernandes
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Daniel Jerónimo
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Patrícia Martins
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Fernando Ricardo
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Andreia Santos
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE-Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Mário Sousa Diniz
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.
| |
Collapse
|
5
|
Caplins SA. Signals of Positive Selection in Sea Slug Transcriptomes. THE BIOLOGICAL BULLETIN 2021; 241:55-64. [PMID: 34436962 DOI: 10.1086/715841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractUnderstanding how species may respond to climate change is of paramount importance. Species that occupy highly heterogenous environments, such as intertidal zone estuarine habitats, provide an ideal test case for examining phenotypic and genomic adaptations to different environmental conditions, which may influence their response to rapidly shifting climatic conditions. The California coast is projected to experience changes in both temperature and salinity, which currently vary seasonally and latitudinally. Using comparative transcriptomics, I documented patterns of positive selection between the northern-dwelling planktotrophic sacoglossan sea slug Alderia modesta, which is remarkably tolerant of low temperatures and low salinities, and its southern congener Alderia willowi, which exhibits a striking flexibility for larval type in response to seasonally shifting changes in temperature and salinity. Out of over 4000 1-to-1 orthologous genes, I found a signal of positive selection between A. willowi and A. modesta for genes involved in cell membrane and cell transport, particularly ion homeostasis (aquaporin), cell-cell signal transduction, and phosphorylation (reduced nicotinamide adenine dinucleotide [NADH] dehydrogenase). Positive selection for ion homeostasis in A. modesta has implications for its ability to tolerate the lower salinity of its northern range, and in A. willowi substitutions in NADH may assist in the high temperature tolerance of its southern California habitats. Identifying these candidate genes enables future studies of their functionalization as we seek to understand the relationship between phenotype and genotype in species whose phenotypes are influenced by environmental conditions.
Collapse
|
6
|
Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate. Nat Commun 2021; 12:3868. [PMID: 34162853 PMCID: PMC8222365 DOI: 10.1038/s41467-021-24141-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/01/2021] [Indexed: 11/09/2022] Open
Abstract
Marine ecosystems with a diverse range of animal groups became established during the early Cambrian (~541 to ~509 Ma). However, Earth's environmental parameters and palaeogeography in this interval of major macro-evolutionary change remain poorly constrained. Here, we test contrasting hypotheses of continental configuration and climate that have profound implications for interpreting Cambrian environmental proxies. We integrate general circulation models and geological observations to test three variants of the 'Antarctocentric' paradigm, with a southern polar continent, and an 'equatorial' configuration that lacks polar continents. This quantitative framework can be applied to other deep-time intervals when environmental proxy data are scarce. Our results show that the Antarctocentric palaeogeographic paradigm can reconcile geological data and simulated Cambrian climate. Our analyses indicate a greenhouse climate during the Cambrian animal radiation, with mean annual sea-surface temperatures between ~9 °C to ~19 °C and ~30 °C to ~38 °C for polar and tropical palaeolatitudes, respectively.
Collapse
|
7
|
Inhibition of HSF1 and SAFB Granule Formation Enhances Apoptosis Induced by Heat Stress. Int J Mol Sci 2021; 22:ijms22094982. [PMID: 34067147 PMCID: PMC8124827 DOI: 10.3390/ijms22094982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Stress resistance mechanisms include upregulation of heat shock proteins (HSPs) and formation of granules. Stress-induced granules are classified into stress granules and nuclear stress bodies (nSBs). The present study examined the involvement of nSB formation in thermal resistance. We used chemical compounds that inhibit heat shock transcription factor 1 (HSF1) and scaffold attachment factor B (SAFB) granule formation and determined their effect on granule formation and HSP expression in HeLa cells. We found that formation of HSF1 and SAFB granules was inhibited by 2,5-hexanediol. We also found that suppression of HSF1 and SAFB granule formation enhanced heat stress-induced apoptosis. In addition, the upregulation of HSP27 and HSP70 during heat stress recovery was suppressed by 2,5-hexanediol. Our results suggested that the formation of HSF1 and SAFB granules was likely to be involved in the upregulation of HSP27 and HSP70 during heat stress recovery. Thus, the formation of HSF1 and SAFB granules was involved in thermal resistance.
Collapse
|
8
|
Madeira D, Fernandes JF, Jerónimo D, Ricardo F, Santos A, Domingues MR, Calado R. Calcium homeostasis and stable fatty acid composition underpin heatwave tolerance of the keystone polychaete Hediste diversicolor. ENVIRONMENTAL RESEARCH 2021; 195:110885. [PMID: 33609552 DOI: 10.1016/j.envres.2021.110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Extreme weather events, such as heatwaves, are becoming increasingly frequent, long-lasting and severe as global climate change continues, shaping marine biodiversity patterns worldwide. Increased risk of overheating and mortality across major taxa have been recurrently observed, jeopardizing the sustainability of ecosystem services. Molecular responses of species, which scale up to physiological and population responses, are determinant processes that modulate species sensitivity or tolerance to extreme weather events. Here, by integrating proteomic, fatty acid profiling and physiological approaches, we show that the tolerance of the intertidal ragworm Hediste diversicolor, a keystone species in estuarine ecosystems and an emergent blue bio-resource, to long-lasting heatwaves (24 vs 30 °C for 30 days) is shaped by calcium homeostasis, immune function and stability of fatty acid profiles. These features potentially enabled H. diversicolor to increase its thermal tolerance limit by 0.81 °C under the heatwave scenario and maintain survival. No growth trade-offs were detected, as wet weight remained stable across conditions. Biological variation of physiological parameters was lower when compared to molecular measures. Proteins showed an overall elevated coefficient of variation, although decreasing molecular variance under the heatwave scenario was observed for both proteins and fatty acids. This finding is consistent with the phenomenon of physiological canalization in extreme environments and contradicts the theory that novel conditions increase trait variation. Our results show that keystone highly valued marine polychaetes are tolerant to heatwaves, confirming the potential of H. diversicolor as a blue bio-resource and opening new avenues for sustainable marine aquaculture development.
Collapse
Affiliation(s)
- Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal; UCIBIO, REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal; University of Quebec in Rimouski (UQAR), Department of Biology, Chemistry and Geography, 300 Allée des Ursulines, Rimouski, QC, G5L 3A1, Canada.
| | - Joana Filipa Fernandes
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Daniel Jerónimo
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Fernando Ricardo
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Andreia Santos
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal; ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada Do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal.
| |
Collapse
|
9
|
Annelids in Extreme Aquatic Environments: Diversity, Adaptations and Evolution. DIVERSITY 2021. [DOI: 10.3390/d13020098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We review the variety of morphological, physiological and behavioral modifications that annelids have acquired to cope with environments either unsuitable for, or on the limits of, survival for most animals. We focus on polychaetes (excluding sipunculans and echiurans) and clitellates (oligochaetes and leeches) and source information mostly from the primary literature. We identified many modifications common to both polychaetes and clitellates, and others that are specific to one or the other group. For example, certain land-adapted polychaetes show reduction in nuchal organs, epidermal ciliation and receptor cells, and other coastal polychaetes use adhesive glands and glue-reinforced tubes to maintain position in surf zones, while oligochaetes, with their simple body plans, appear to be ‘pre-adapted’ to life underground. Modifications common to both groups include the ability to construct protective cocoons, make cryoprotective substances such as antifreeze and heat shock proteins, develop gills, transform their bodies into a home for symbiotic chemoautotrophic bacteria, metabolize contaminants, and display avoidance behaviors. Convergent evolution in both directions has enabled annelids to transition from salt water to freshwater, sea to land via beaches, freshwater to soil, and surface water to subterranean water. A superficially simple worm-like body and a mostly benthic/burrowing lifestyle has facilitated radiation into every conceivable environment, making annelids among the most common and diverse animal groups on the planet.
Collapse
|
10
|
Yuan P, He L, Chen D, Sun Y, Ge Z, Shen D, Lu Y. Proteomic characterization of Mycobacterium tuberculosis reveals potential targets of bostrycin. J Proteomics 2020; 212:103576. [DOI: 10.1016/j.jprot.2019.103576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/13/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022]
|
11
|
Carra S, Alberti S, Benesch JLP, Boelens W, Buchner J, Carver JA, Cecconi C, Ecroyd H, Gusev N, Hightower LE, Klevit RE, Lee HO, Liberek K, Lockwood B, Poletti A, Timmerman V, Toth ME, Vierling E, Wu T, Tanguay RM. Small heat shock proteins: multifaceted proteins with important implications for life. Cell Stress Chaperones 2019; 24:295-308. [PMID: 30758704 PMCID: PMC6439001 DOI: 10.1007/s12192-019-00979-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Small Heat Shock Proteins (sHSPs) evolved early in the history of life; they are present in archaea, bacteria, and eukaryota. sHSPs belong to the superfamily of molecular chaperones: they are components of the cellular protein quality control machinery and are thought to act as the first line of defense against conditions that endanger the cellular proteome. In plants, sHSPs protect cells against abiotic stresses, providing innovative targets for sustainable agricultural production. In humans, sHSPs (also known as HSPBs) are associated with the development of several neurological diseases. Thus, manipulation of sHSP expression may represent an attractive therapeutic strategy for disease treatment. Experimental evidence demonstrates that enhancing the chaperone function of sHSPs protects against age-related protein conformation diseases, which are characterized by protein aggregation. Moreover, sHSPs can promote longevity and healthy aging in vivo. In addition, sHSPs have been implicated in the prognosis of several types of cancer. Here, sHSP upregulation, by enhancing cellular health, could promote cancer development; on the other hand, their downregulation, by sensitizing cells to external stressors and chemotherapeutics, may have beneficial outcomes. The complexity and diversity of sHSP function and properties and the need to identify their specific clients, as well as their implication in human disease, have been discussed by many of the world's experts in the sHSP field during a dedicated workshop in Québec City, Canada, on 26-29 August 2018.
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Nanotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy.
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center (BIOTEC), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Justin L P Benesch
- Department of Chemistry, Physical and Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Wilbert Boelens
- Department of Biomolecular Chemistry, Institute of Molecules and Materials, Radboud University, NL-6500, Nijmegen, The Netherlands
| | - Johannes Buchner
- Center for Integrated Protein Science Munich (CIPSM) and Department Chemie, Technische Universität München, D-85748, Garching, Germany
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125, Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125, Modena, Italy
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 117234
| | - Lawrence E Hightower
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269-3125, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Hyun O Lee
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Brent Lockwood
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Univrsità degli Studi di Milano, Milan, Italy
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Melinda E Toth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Tangchun Wu
- MOE Key Lab of Environment and Health, Tongji School of Public Health, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei, China
| | - Robert M Tanguay
- Laboratory of Cell and Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, QC, Québec, G1V 0A6, Canada.
| |
Collapse
|
12
|
Chen N, Huang Z, Lu C, Shen Y, Luo X, Ke C, You W. Different Transcriptomic Responses to Thermal Stress in Heat-Tolerant and Heat-Sensitive Pacific Abalones Indicated by Cardiac Performance. Front Physiol 2019; 9:1895. [PMID: 30687115 PMCID: PMC6334008 DOI: 10.3389/fphys.2018.01895] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
The Pacific abalone Haliotis discus hannai is one of the most economically important mollusks in China. Even though it has been farmed in southern China for almost 20 years, summer mortality remains the most challengeable problem for Pacific abalone aquaculture recently. Here, we determined the different heat tolerance ability for five selective lines of H. discus hannai by measuring the cardiac performance and Arrhenius breakpoint temperature (ABT). The Red line (RL) and Yangxia line (YL) were determined as the most heat-sensitive and most heat-tolerant line, respectively. Heart rates for RL were significantly lower than those of the YL at the same temperature (p < 0.05). The differentially expressed genes (DEGs), which were enriched in several pathways including cardiac muscle contraction, glutathione metabolism and oxidative phosphorylation, were identified between RL and YL at control temperature (20°C) and heat stress temperature (28.5°C, the ABT of the RL) by RNA-seq method. In the RL, 3370 DEGs were identified between the control and the heat-stress temperature, while only 1351 DEGs were identified in YL between these two temperature tests. Most of these DEGs were enriched in the pathways such as protein processing in endoplasmic reticulum, nucleotide binding and oligomerization domain (NOD) like receptor signaling, and ubiquitin mediated proteolysis. Notably, the most heat-tolerant line YL used an effective heat-protection strategy based on moderate transcriptional changes and regulation on the expression of key genes.
Collapse
Affiliation(s)
- Nan Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chengkuan Lu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yawei Shen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Highly sensitive avoidance plays a key role in sensory adaptation to deep-sea hydrothermal vent environments. PLoS One 2018; 13:e0189902. [PMID: 29298328 PMCID: PMC5752015 DOI: 10.1371/journal.pone.0189902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/04/2017] [Indexed: 01/07/2023] Open
Abstract
The environments around deep-sea hydrothermal vents are very harsh conditions for organisms due to the possibility of exposure to highly toxic compounds and extremely hot venting there. Despite such extreme environments, some indigenous species have thrived there. Alvinellid worms (Annelida) are among the organisms best adapted to high-temperature and oxidatively stressful venting regions. Although intensive studies of the adaptation of these worms to the environments of hydrothermal vents have been made, little is known about the worms' sensory adaptation to the severe chemical conditions there. To examine the sensitivity of the vent-endemic worm Paralvinella hessleri to low pH and oxidative stress, we determined the concentration of acetic acid and hydrogen peroxide that induced avoidance behavior of this worm, and compared these concentrations to those obtained for related species inhabiting intertidal zones, Thelepus sp. The concentrations of the chemicals that induced avoidance behavior of P. hessleri were 10-100 times lower than those for Thelepus sp. To identify the receptors for these chemicals, chemical avoidance tests were performed with the addition of ruthenium red, a blocker of transient receptor potential (TRP) channels. This treatment suppressed the chemical avoidance behavior of P. hessleri, which suggests that TRP channels are involved in the chemical avoidance behavior of this species. Our results revealed for the first time hypersensitive detection systems for acid and for oxidative stress in the vent-endemic worm P. hessleri, possibly mediated by TRP channels, suggesting that such sensory systems may have facilitated the adaptation of this organism to harsh vent environments.
Collapse
|
14
|
Lockwood BL, Julick CR, Montooth KL. Maternal loading of a small heat shock protein increases embryo thermal tolerance in Drosophila melanogaster. J Exp Biol 2017; 220:4492-4501. [PMID: 29097593 PMCID: PMC5769566 DOI: 10.1242/jeb.164848] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
Abstract
Maternal investment is likely to have direct effects on offspring survival. In oviparous animals whose embryos are exposed to the external environment, maternal provisioning of molecular factors like mRNAs and proteins may help embryos cope with sudden changes in the environment. Here, we sought to modify the maternal mRNA contribution to offspring embryos and test for maternal effects on acute thermal tolerance in early embryos of Drosophila melanogaster We drove in vivo overexpression of a small heat shock protein gene (Hsp23) in female ovaries and measured the effects of acute thermal stress on offspring embryonic survival and larval development. We report that overexpression of the Hsp23 gene in female ovaries produced offspring embryos with increased thermal tolerance. We also found that brief heat stress in the early embryonic stage (0-1 h old) caused decreased larval performance later in life (5-10 days old), as indexed by pupation height. Maternal overexpression of Hsp23 protected embryos against this heat-induced defect in larval performance. Our data demonstrate that transient products of single genes have large and lasting effects on whole-organism environmental tolerance. Further, our results suggest that maternal effects have a profound impact on offspring survival in the context of thermal variability.
Collapse
Affiliation(s)
- Brent L Lockwood
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Cole R Julick
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
15
|
Fontanillas E, Galzitskaya OV, Lecompte O, Lobanov MY, Tanguy A, Mary J, Girguis PR, Hourdez S, Jollivet D. Proteome Evolution of Deep-Sea Hydrothermal Vent Alvinellid Polychaetes Supports the Ancestry of Thermophily and Subsequent Adaptation to Cold in Some Lineages. Genome Biol Evol 2017; 9:279-296. [PMID: 28082607 PMCID: PMC5381640 DOI: 10.1093/gbe/evw298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 12/22/2022] Open
Abstract
Temperature, perhaps more than any other environmental factor, is likely to influence the evolution of all organisms. It is also a very interesting factor to understand how genomes are shaped by selection over evolutionary timescales, as it potentially affects the whole genome. Among thermophilic prokaryotes, temperature affects both codon usage and protein composition to increase the stability of the transcriptional/translational machinery, and the resulting proteins need to be functional at high temperatures. Among eukaryotes less is known about genome evolution, and the tube-dwelling worms of the family Alvinellidae represent an excellent opportunity to test hypotheses about the emergence of thermophily in ectothermic metazoans. The Alvinellidae are a group of worms that experience varying thermal regimes, presumably having evolved into these niches over evolutionary times. Here we analyzed 423 putative orthologous loci derived from 6 alvinellid species including the thermophilic Alvinella pompejana and Paralvinella sulfincola. This comparative approach allowed us to assess amino acid composition, codon usage, divergence, direction of residue changes and the strength of selection along the alvinellid phylogeny, and to design a new eukaryotic thermophilic criterion based on significant differences in the residue composition of proteins. Contrary to expectations, the alvinellid ancestor of all present-day species seems to have been thermophilic, a trait subsequently maintained by purifying selection in lineages that still inhabit higher temperature environments. In contrast, lineages currently living in colder habitats likely evolved under selective relaxation, with some degree of positive selection for low-temperature adaptation at the protein level.
Collapse
Affiliation(s)
- Eric Fontanillas
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France
| | - Oxana V Galzitskaya
- Laboratory of Protein Physics, Institute of Protein Research, RAS, Institutskaya street, 4, 142290 Pushchino, Moscow, Russia
| | - Odile Lecompte
- CSTB - ICUBE, UMR7357, Faculté de Médecine, 4 rue Kirschleger, 67085 Strasbourg, France
| | - Mikhail Y Lobanov
- Laboratory of Protein Physics, Institute of Protein Research, RAS, Institutskaya street, 4, 142290 Pushchino, Moscow, Russia
| | - Arnaud Tanguy
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France
| | - Jean Mary
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France
| | - Peter R Girguis
- Department of Organismic & Evolutionary Biology, Harvard University Biological Laboratories, Cambridge, MA
| | - Stéphane Hourdez
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France
| | - Didier Jollivet
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe ABICE, Station Biologique de Roscoff, 29688 Roscoff, France
| |
Collapse
|
16
|
Ginn BR. The thermodynamics of protein aggregation reactions may underpin the enhanced metabolic efficiency associated with heterosis, some balancing selection, and the evolution of ploidy levels. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 126:1-21. [PMID: 28185903 DOI: 10.1016/j.pbiomolbio.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/24/2017] [Indexed: 01/04/2023]
Abstract
Identifying the physical basis of heterosis (or "hybrid vigor") has remained elusive despite over a hundred years of research on the subject. The three main theories of heterosis are dominance theory, overdominance theory, and epistasis theory. Kacser and Burns (1981) identified the molecular basis of dominance, which has greatly enhanced our understanding of its importance to heterosis. This paper aims to explain how overdominance, and some features of epistasis, can similarly emerge from the molecular dynamics of proteins. Possessing multiple alleles at a gene locus results in the synthesis of different allozymes at reduced concentrations. This in turn reduces the rate at which each allozyme forms soluble oligomers, which are toxic and must be degraded, because allozymes co-aggregate at low efficiencies. The model developed in this paper can explain how heterozygosity impacts the metabolic efficiency of an organism. It can also explain why the viabilities of some inbred lines seem to decline rapidly at high inbreeding coefficients (F > 0.5), which may provide a physical basis for truncation selection for heterozygosity. Finally, the model has implications for the ploidy level of organisms. It can explain why polyploids are frequently found in environments where severe physical stresses promote the formation of soluble oligomers. The model can also explain why complex organisms, which need to synthesize aggregation-prone proteins that contain intrinsically unstructured regions (IURs) and multiple domains because they facilitate complex protein interaction networks (PINs), tend to be diploid while haploidy tends to be restricted to relatively simple organisms.
Collapse
Affiliation(s)
- B R Ginn
- University of Georgia, GA 30602, United States.
| |
Collapse
|
17
|
Vornanen M. The temperature dependence of electrical excitability in fish hearts. J Exp Biol 2016; 219:1941-52. [DOI: 10.1242/jeb.128439] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/17/2016] [Indexed: 01/08/2023]
Abstract
ABSTRACT
Environmental temperature has pervasive effects on the rate of life processes in ectothermic animals. Animal performance is affected by temperature, but there are finite thermal limits for vital body functions, including contraction of the heart. This Review discusses the electrical excitation that initiates and controls the rate and rhythm of fish cardiac contraction and is therefore a central factor in the temperature-dependent modulation of fish cardiac function. The control of cardiac electrical excitability should be sensitive enough to respond to temperature changes but simultaneously robust enough to protect against cardiac arrhythmia; therefore, the thermal resilience and plasticity of electrical excitation are physiological qualities that may affect the ability of fishes to adjust to climate change. Acute changes in temperature alter the frequency of the heartbeat and the duration of atrial and ventricular action potentials (APs). Prolonged exposure to new thermal conditions induces compensatory changes in ion channel expression and function, which usually partially alleviate the direct effects of temperature on cardiac APs and heart rate. The most heat-sensitive molecular components contributing to the electrical excitation of the fish heart seem to be Na+ channels, which may set the upper thermal limit for the cardiac excitability by compromising the initiation of the cardiac AP at high temperatures. In cardiac and other excitable cells, the different temperature dependencies of the outward K+ current and inward Na+ current may compromise electrical excitability at temperature extremes, a hypothesis termed the temperature-dependent depression of electrical excitation.
Collapse
Affiliation(s)
- Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, PO Box 111, Joensuu 80101, Finland
| |
Collapse
|
18
|
Nakamura-Kusakabe I, Nagasaki T, Kinjo A, Sassa M, Koito T, Okamura K, Yamagami S, Yamanaka T, Tsuchida S, Inoue K. Effect of sulfide, osmotic, and thermal stresses on taurine transporter mRNA levels in the gills of the hydrothermal vent-specific mussel Bathymodiolus septemdierum. Comp Biochem Physiol A Mol Integr Physiol 2016; 191:74-79. [DOI: 10.1016/j.cbpa.2015.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 01/16/2023]
|
19
|
Lockwood BL, Connor KM, Gracey AY. The environmentally tuned transcriptomes of Mytilus mussels. J Exp Biol 2015; 218:1822-33. [DOI: 10.1242/jeb.118190] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT
Transcriptomics is a powerful tool for elucidating the molecular mechanisms that underlie the ability of organisms to survive and thrive in dynamic and changing environments. Here, we review the major contributions in this field, and we focus on studies of mussels in the genus Mytilus, which are well-established models for the study of ecological physiology in fluctuating environments. Our review is organized into four main sections. First, we illustrate how the abiotic forces of the intertidal environment drive the rhythmic coupling of gene expression to diel and tidal cycles in Mytilus californianus. Second, we discuss the challenges and pitfalls of conducting transcriptomic studies in field-acclimatized animals. Third, we examine the link between transcriptomic responses to environmental stress and biogeographic distributions in blue mussels, Mytilus trossulus and Mytilus galloprovincialis. Fourth, we present a comparison of transcriptomic datasets and identify 175 genes that share common responses to heat stress across Mytilus species. Taken together, these studies demonstrate that transcriptomics can provide an informative snapshot of the physiological state of an organism within an environmental context. In a comparative framework, transcriptomics can reveal how natural selection has shaped patterns of transcriptional regulation that may ultimately influence biogeography.
Collapse
Affiliation(s)
- Brent L. Lockwood
- Department of Biology, University of Vermont, 120 Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA
| | - Kwasi M. Connor
- Marine Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Andrew Y. Gracey
- Marine Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| |
Collapse
|
20
|
Abstract
ABSTRACT
Environmental (acute and chronic temperature, osmotic, hypoxic and pH) stress challenges the cellular redox balance and can lead to the increased production of reactive oxygen species (ROS). This review provides an overview of the reactions producing and scavenging ROS in the mitochondria, endoplasmic reticulum (ER) and peroxisome. It then compares these reactions with the findings of a number of studies investigating the proteomic responses of marine organisms to environmentally induced oxidative stress. These responses indicate that the thioredoxin–peroxiredoxin system is possibly more frequently recruited to scavenge H2O2 than the glutathione system. Isoforms of superoxide dismutase (SOD) are not ubiquitously induced in parallel, suggesting that SOD scavenging activity is sometimes sufficient. The glutathione system plays an important role in some organisms and probably also contributes to protecting protein thiols during environmental stress. Synthesis pathways of cysteine and selenocysteine, building blocks for glutathione and glutathione peroxidase, also play an important role in scavenging ROS during stress. The increased abundance of glutaredoxin and DyP-type peroxidase suggests a need for regulating the deglutathionylation of proteins and scavenging of peroxynitrite. Reducing equivalents for these scavenging reactions are generated by proteins of the pentose phosphate pathway and by NADP-dependent isocitrate dehydrogenase. Furthermore, proteins representing reactions of the tricarboxylic acid cycle and the electron transport system generating NADH and ROS, including those of complex I, II and III, are frequently reduced in abundance with stress. Protein maturation in the ER likely represents another source of ROS during environmental stress, as indicated by simultaneous changes in ER chaperones and antioxidant proteins. Although there are still too few proteomic analyses of non-model organisms exposed to environmental stress for a general pattern to emerge, hyposaline and low pH stress show different responses from temperature and hypoxic stress. Furthermore, comparisons of closely related congeners differing in stress tolerance start to provide insights into biochemical processes contributing to adaptive differences, but more of these comparisons are needed to draw general conclusions. To fully take advantage of a systems approach, studies with longer time courses, including several tissues and more species comparisons are needed.
Collapse
|
21
|
Shigeno S, Tame A, Uematsu K, Miura T, Tsuchida S, Fujikura K. Dual Cellular Supporters: Multi-Layer Glial Wrapping and the Penetrative Matrix Specialized in Deep-Sea Hydrothermal Vent Endemic Scale-Worms. THE BIOLOGICAL BULLETIN 2015; 228:217-226. [PMID: 26124448 DOI: 10.1086/bblv228n3p217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hydrothermal vent organisms undergo extreme environments that may require unique innovations. The present study reports a distinct case of cellular supportive systems in the nervous systems of a scale-worm, Branchinotogluma japonica, endemic to deep-sea hydrothermal vents. We found two organizations in the tissues of these animals. First, multi-layers of glia ensheath the ventral cell bodies of the brain and ventral nerve cord, in a manner similar to that of myelin or lamellar ensheathments. Second, matrices of numerous penetrative fibers, or tonofilaments, composed of bundles of ca. 20-nm fibers, are directly connected with the basal parts of epidermal cuticles and run into the diffuse intercellular spaces of the brain neuropils and peripheral nerves. Both types of tissue might be mechanical supportive structures for the neuronal cell bodies. In addition, as a glial function, the multi-layer membranes and the epithelial support cells may be required for physicochemical homeostatic regulation to filter toxic heavy metals and for inhibiting breakdown of glial membrane integrity under strong oxidative stress imposed by hypoxia in the hydrothermal vent environment. Similar functions are known in the well-studied cases of the blood-brain barrier in mammalian brains, including in human stroke.
Collapse
Affiliation(s)
- Shuichi Shigeno
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan;
| | - Akihiro Tame
- Marine Works Japan LTD., 3-54-1 Oppamahigashi, Yokosuka 237-0063, Japan; and
| | - Katsuyuki Uematsu
- Marine Works Japan LTD., 3-54-1 Oppamahigashi, Yokosuka 237-0063, Japan; and
| | - Tomoyuki Miura
- Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki 889-2192, Japan
| | - Shinji Tsuchida
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Katsunori Fujikura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| |
Collapse
|
22
|
Liu Z, Dai S, Bones J, Ray S, Cha S, Karger BL, Li JJ, Wilson L, Hinckle G, Rossomando A. A quantitative proteomic analysis of cellular responses to high glucose media in Chinese hamster ovary cells. Biotechnol Prog 2015; 31:1026-38. [PMID: 25857574 DOI: 10.1002/btpr.2090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 03/11/2015] [Indexed: 12/12/2022]
Abstract
A goal in recombinant protein production using Chinese hamster ovary (CHO) cells is to achieve both high specific productivity and high cell density. Addition of glucose to the culture media is necessary to maintain both cell growth and viability. We varied the glucose concentration in the media from 5 to 16 g/L and found that although specific productivity of CHO-DG44 cells increased with the glucose level, the integrated viable cell density decreased. To examine the biological basis of these results, we conducted a discovery proteomic study of CHO-DG44 cells grown under batch conditions in normal (5 g/L) or high (15 g/L) glucose over 3, 6, and 9 days. Approximately 5,000 proteins were confidently identified against an mRNA-based CHO-DG44 specific proteome database, with 2,800 proteins quantified with at least two peptides. A self-organizing map algorithm was used to deconvolute temporal expression profiles of quantitated proteins. Functional analysis of altered proteins suggested that differences in growth between the two glucose levels resulted from changes in crosstalk between glucose metabolism, recombinant protein expression, and cell death, providing an overall picture of the responses to high glucose environment. The high glucose environment may enhance recombinant dihydrofolate reductase in CHO cells by up-regulating NCK1 and down-regulating PRKRA, and may lower integrated viable cell density by activating mitochondrial- and endoplasmic reticulum-mediated cell death pathways by up-regulating HtrA2 and calpains. These proteins are suggested as potential targets for bioengineering to enhance recombinant protein production.
Collapse
Affiliation(s)
- Zhenke Liu
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Shujia Dai
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Jonathan Bones
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Somak Ray
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Sangwon Cha
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Barry L Karger
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Jingyi Jessica Li
- Dept. of Statistics, University of California, Los Angeles, CA, 90095
| | - Lee Wilson
- Alnylam Pharmaceuticals, Cambridge, MA, 02142
| | | | | |
Collapse
|
23
|
Porcelli D, Butlin RK, Gaston KJ, Joly D, Snook RR. The environmental genomics of metazoan thermal adaptation. Heredity (Edinb) 2015; 114:502-14. [PMID: 25735594 PMCID: PMC4815515 DOI: 10.1038/hdy.2014.119] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 01/07/2023] Open
Abstract
Continued and accelerating change in the thermal environment places an ever-greater priority on understanding how organisms are going to respond. The paradigm of ‘move, adapt or die', regarding ways in which organisms can respond to environmental stressors, stimulates intense efforts to predict the future of biodiversity. Assuming that extinction is an unpalatable outcome, researchers have focussed attention on how organisms can shift in their distribution to stay in the same thermal conditions or can stay in the same place by adapting to a changing thermal environment. How likely these respective outcomes might be depends on the answer to a fundamental evolutionary question, namely what genetic changes underpin adaptation to the thermal environment. The increasing access to and decreasing costs of next-generation sequencing (NGS) technologies, which can be applied to both model and non-model systems, provide a much-needed tool for understanding thermal adaptation. Here we consider broadly what is already known from non-NGS studies about thermal adaptation, then discuss the benefits and challenges of different NGS methodologies to add to this knowledge base. We then review published NGS genomics and transcriptomics studies of thermal adaptation to heat stress in metazoans and compare these results with previous non-NGS patterns. We conclude by summarising emerging patterns of genetic response and discussing future directions using these increasingly common techniques.
Collapse
Affiliation(s)
- D Porcelli
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - R K Butlin
- 1] Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK [2] Sven Lovén Centre-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - K J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - D Joly
- 1] Laboratoire Evolution, Génomes et Spéciation, CNRS-UPR 9034, Gif sur Yvette, France [2] Université Paris-Sud, Orsay, France
| | - R R Snook
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
24
|
Gleason LU, Burton RS. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snailChlorostoma funebralis. Mol Ecol 2015; 24:610-27. [DOI: 10.1111/mec.13047] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Lani U. Gleason
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| | - Ronald S. Burton
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093-0202 USA
| |
Collapse
|
25
|
Shigeno S, Ogura A, Mori T, Toyohara H, Yoshida T, Tsuchida S, Fujikura K. Sensing deep extreme environments: the receptor cell types, brain centers, and multi-layer neural packaging of hydrothermal vent endemic worms. Front Zool 2014; 11:82. [PMID: 25505488 PMCID: PMC4261566 DOI: 10.1186/s12983-014-0082-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/23/2014] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Deep-sea alvinellid worm species endemic to hydrothermal vents, such as Alvinella and Paralvinella, are considered to be among the most thermotolerant animals known with their adaptability to toxic heavy metals, and tolerance of highly reductive and oxidative stressful environments. Despite the number of recent studies focused on their overall transcriptomic, proteomic, and metabolic stabilities, little is known regarding their sensory receptor cells and electrically active neuro-processing centers, and how these can tolerate and function in such harsh conditions. RESULTS We examined the extra- and intracellular organizations of the epidermal ciliated sensory cells and their higher centers in the central nervous system through immunocytochemical, ultrastructural, and neurotracing analyses. We observed that these cells were rich in mitochondria and possessed many electron-dense granules, and identified specialized glial cells and serial myelin-like repeats in the head sensory systems of Paralvinella hessleri. Additionally, we identified the major epidermal sensory pathways, in which a pair of distinct mushroom bodies-like or small interneuron clusters was observed. These sensory learning and memory systems are commonly found in insects and annelids, but the alvinellid inputs are unlikely derived from the sensory ciliary cells of the dorsal head regions. CONCLUSIONS Our evidence provides insight into the cellular and system-wide adaptive structure used to sense, process, and combat the deep-sea hydrothermal vent environment. The alvinellid sensory cells exhibit characteristics of annelid ciliary types, and among the most unique features were the head sensory inputs and structure of the neural cell bodies of the brain, which were surrounded by multiple membranes. We speculated that such enhanced protection is required for the production of normal electrical signals, and to avoid the breakdown of the membrane surrounding metabolically fragile neurons from oxidative stress. Such pivotal acquisition is not broadly found in the all body parts, suggesting the head sensory inputs are specific, and these heterogenetic protection mechanisms may be present in alvinellid worms.
Collapse
Affiliation(s)
- Shuichi Shigeno
- Department for Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa Japan
| | - Atsushi Ogura
- Nagahama Institute of Bio-Science and Technology, Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, 526-0829, Shiga Japan
| | - Tsukasa Mori
- Nihon University, 1866 Kameino, Fujisawa, 252-0880, Kanagawa Japan
| | - Haruhiko Toyohara
- Division of Applied Biosciences, Kyoto University, Graduate School of Agriculture, Laboratory of Marine Biological Function, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8602 Japan
| | - Takao Yoshida
- Department for Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa Japan
| | - Shinji Tsuchida
- Department for Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa Japan
| | - Katsunori Fujikura
- Department for Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa Japan
| |
Collapse
|
26
|
Tomanek L. Proteomics to study adaptations in marine organisms to environmental stress. J Proteomics 2014; 105:92-106. [PMID: 24788067 DOI: 10.1016/j.jprot.2014.04.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/25/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Comparisons of proteomic responses of closely related congeners and populations have shown which cellular processes are critical to adapt to environmental stress. For example, several proteomic species comparisons showed that increasing abundances of oxidative stress proteins indicate that reactive oxygen species (ROS) represent a ubiquitous signal and possible co-stressor of warm and cold temperature, acute hyposaline and low pH stress, possibly causing a shift from pro-oxidant NADH-producing to anti-oxidant NADPH-producing and -consuming metabolic pathways. Changes in cytoskeletal and actin-binding proteins in response to several stressors, including ROS, suggest that both are important structural and functional elements in responding to stress. Disruption of protein homeostasis, e.g., increased abundance of molecular chaperones, was severe in response to acute heat stress, inducing proteolysis, but was also observed in response to chronic heat and cold stress and was concentrated to the endoplasmic reticulum during hyposaline stress. Small GTPases affecting vesicle formation and transport, Ca(2+)-signaling and ion transport responded to salinity stress in species- and population-specific ways. Aerobic energy metabolism was in general down-regulated in response to temperature, hypoxia, hyposalinity and low pH stress, but other metabolic pathways were activated to respond to increased oxidative stress or to switch metabolic fuels. Thus, comparative proteomics is a powerful approach to identify functionally adaptive variation. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Lars Tomanek
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Sciences, Environmental Proteomics Laboratory, 1 Grand Ave., San Luis Obispo, CA 93407-0401, USA.
| |
Collapse
|
27
|
Chandramouli KH, Ravasi T, Reish D, Qian PY. Proteomic changes between male and female worms of the polychaetous annelid Neanthes arenaceodentata before and after spawning. PLoS One 2013; 8:e72990. [PMID: 24023665 PMCID: PMC3758283 DOI: 10.1371/journal.pone.0072990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/23/2013] [Indexed: 12/02/2022] Open
Abstract
The Neanthesacuminata species complex (Polychaeta) are cosmopolitan in distribution. Neanthesarenaceodentata, Southern California member of the N. acuminata complex, has been widely used as toxicological test animal in the marine environment. Method of reproduction is unique in this polychaete complex. Same sexes fight and opposite sexes lie side by side until egg laying. Females lose about 75% of their weight and die after laying eggs. The male, capable of reproducing up to nine times, fertilizes the eggs and incubates the embryos for 3-4 weeks. The objective of this study was to determine if there is any set of proteins that influences this unique pattern of reproduction. Gel-based two-dimensional electrophoresis (2-DE) and gel-free quantitative proteomics methods were used to identify differential protein expression patterns before and after spawning in both male and female N. arenaceodentata. Males showed a higher degree of similarity in protein expression patterns but females showed large changes in phosphoproteme before and after spawning. There was a decrease (about 70%) in the number of detected phosphoproteins in spent females. The proteins involved in muscular development, cell signaling, structure and integrity, and translation were differentially expressed. This study provides proteomic insights of the male and female worms that may serve as a foundation for better understanding of unusual reproductive patterns in polychaete worms.
Collapse
Affiliation(s)
- Kondethimmanahalli H. Chandramouli
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Integrative Systems Biology Laboratory, Division of Biological and Environmental Sciences and Engineering, Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Timothy Ravasi
- Integrative Systems Biology Laboratory, Division of Biological and Environmental Sciences and Engineering, Division of Applied Mathematics and Computer Sciences, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Donald Reish
- Department of Biological Sciences, California State University Long Beach, California, United States of America
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
28
|
Detection and Characterisation of Mutations Responsible for Allele-Specific Protein Thermostabilities at the Mn-Superoxide Dismutase Gene in the Deep-Sea Hydrothermal Vent Polychaete Alvinella pompejana. J Mol Evol 2013; 76:295-310. [DOI: 10.1007/s00239-013-9559-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 03/27/2013] [Indexed: 12/19/2022]
|
29
|
Tomanek L. Introduction to the Symposium "Comparative Proteomics of Environmental and Pollution Stress". Integr Comp Biol 2012; 52:622-5. [DOI: 10.1093/icb/ics116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|