1
|
Zimmer C, Jimeno B, Martin LB. HPA flexibility and FKBP5: promising physiological targets for conservation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220512. [PMID: 38310934 PMCID: PMC10838639 DOI: 10.1098/rstb.2022.0512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/22/2023] [Indexed: 02/06/2024] Open
Abstract
Hypothalamic-pituitary-adrenal axis (HPA) flexibility is an emerging concept recognizing that individuals that will cope best with stressors will probably be those using their hormones in the most adaptive way. The HPA flexibility concept considers glucocorticoids as molecules that convey information about the environment from the brain to the body so that the organismal phenotype comes to complement prevailing conditions. In this context, FKBP5 protein appears to set the extent to which circulating glucocorticoid concentrations can vary within and across stressors. Thus, FKBP5 expression, and the HPA flexibility it causes, seem to represent an individual's ability to regulate its hormones to orchestrate organismal responses to stressors. As FKBP5 expression can also be easily measured in blood, it could be a worthy target of conservation-oriented research attention. We first review the known and likely roles of HPA flexibility and FKBP5 in wildlife. We then describe putative genetic, environmental and epigenetic causes of variation in HPA flexibility and FKBP5 expression among and within individuals. Finally, we hypothesize how HPA flexibility and FKBP5 expression should affect organismal fitness and hence population viability in response to human-induced rapid environmental changes, particularly urbanization. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Cédric Zimmer
- Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, Université Sorbonne Paris Nord, UR 4443, 93430 Villetaneuse, France
| | - Blanca Jimeno
- Instituto Pirenaico de Ecologia (IPE), CSIC, Avenida Nuestra Señora de la Victoria, 16, 22700 Jaca, Spain
| | - Lynn B. Martin
- Center for Global Health and Infectious Disease Research and Center for Genomics, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Gu S, Qi T, Rohr JR, Liu X. Meta-analysis reveals less sensitivity of non-native animals than natives to extreme weather worldwide. Nat Ecol Evol 2023; 7:2004-2027. [PMID: 37932385 DOI: 10.1038/s41559-023-02235-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023]
Abstract
Extreme weather events (EWEs; for example, heatwaves, cold spells, storms, floods and droughts) and non-native species invasions are two major threats to global biodiversity and are increasing in both frequency and consequences. Here we synthesize 443 studies and apply multilevel mixed-effects metaregression analyses to compare the responses of 187 non-native and 1,852 native animal species across terrestrial, freshwater and marine ecosystems to different types of EWE. Our results show that marine animals, regardless of whether they are non-native or native, are overall insensitive to EWEs, except for negative effects of heatwaves on native mollusks, corals and anemone. By contrast, terrestrial and freshwater non-native animals are only adversely affected by heatwaves and storms, respectively, whereas native animals negatively respond to heatwaves, cold spells and droughts in terrestrial ecosystems and are vulnerable to most EWEs except cold spells in freshwater ecosystems. On average, non-native animals displayed low abundance in terrestrial ecosystems, and decreased body condition and life history traits in freshwater ecosystems, whereas native animals displayed declines in body condition, life history traits, abundance, distribution and recovery in terrestrial ecosystems, and community structure in freshwater ecosystems. By identifying areas with high overlap between EWEs and EWE-tolerant non-native species, we also provide locations where native biodiversity might be adversely affected by their joint effects and where EWEs might facilitate the establishment and/or spread of non-native species under continuing global change.
Collapse
Affiliation(s)
- Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Moeller KT, Brashears JA, Davies S, Demare G, Smith GD, Brusch Iv GA, Simpson RK, DeNardo DF. Corticosterone and immune responses to dehydration in squamate reptiles. J Exp Biol 2023; 226:jeb246257. [PMID: 37955054 DOI: 10.1242/jeb.246257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Many environments present some degree of seasonal water limitations; organisms that live in such environments must be adapted to survive periods without permanent water access. Often this involves the ability to tolerate dehydration, which can have adverse physiological effects and is typically considered a physiological stressor. While having many functions, the hormone corticosterone (CORT) is often released in response to stressors, yet increasing plasma CORT while dehydrated could be considered maladaptive, especially for species that experience predictable bouts of dehydration and have related coping mechanisms. Elevating CORT could reduce immunocompetence and have other negative physiological effects. Thus, such species likely have CORT and immune responses adapted to experiencing seasonal droughts. We evaluated how dehydration affects CORT and immune function in eight squamate species that naturally experience varied water limitation. We tested whether hydric state affected plasma CORT concentrations and aspects of immunocompetence (lysis, agglutination, bacterial killing ability and white blood cell counts) differently among species based on how seasonally water limited they are and whether this is constrained by phylogeny. The species represented four familial pairs, with one species of each pair inhabiting environments with frequent access to water and one naturally experiencing extended periods (>30 days) with no access to standing water. The effects of dehydration on CORT and immunity varied among species. Increases in CORT were generally not associated with reduced immunocompetence, indicating CORT and immunity might be decoupled in some species. Interspecies variations in responses to dehydration were more clearly grouped by phylogeny than by habitat type.
Collapse
Affiliation(s)
- Karla T Moeller
- School of Life Sciences , Arizona State University, Tempe, AZ 85281, USA
| | - Jacqueline A Brashears
- Natural Sciences Department, LaGuardia Community College, Long Island City, NY 11101, USA
| | - Scott Davies
- Department of Biological Sciences, Quinnipiac University, Hamden, CT 06518, USA
| | - Guillaume Demare
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Research, Invalidenstraße 43, 10115 Berlin, Germany
| | - Geoffrey D Smith
- Department of Biological Sciences, Utah Tech University, St George, UT 84770, USA
| | - George A Brusch Iv
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA
| | - Richard K Simpson
- Nature Conservancy of Canada, Ontario Region, 245 Eglinton Ave East, Suite 410, Toronto, ON, Canada, M4P 3J1
| | - Dale F DeNardo
- School of Life Sciences , Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
4
|
Rollins-Smith LA, Le Sage EH. Heat stress and amphibian immunity in a time of climate change. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220132. [PMID: 37305907 PMCID: PMC10258666 DOI: 10.1098/rstb.2022.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 06/13/2023] Open
Abstract
As a class of vertebrates, amphibians, are at greater risk for declines or extinctions than any other vertebrate group, including birds and mammals. There are many threats, including habitat destruction, invasive species, overuse by humans, toxic chemicals and emerging diseases. Climate change which brings unpredictable temperature changes and rainfall constitutes an additional threat. Survival of amphibians depends on immune defences functioning well under these combined threats. Here, we review the current state of knowledge of how amphibians respond to some natural stressors, including heat and desiccation stress, and the limited studies of the immune defences under these stressful conditions. In general, the current studies suggest that desiccation and heat stress can activate the hypothalamus pituitary-interrenal axis, with possible suppression of some innate and lymphocyte-mediated responses. Elevated temperatures can alter microbial communities in amphibian skin and gut, resulting in possible dysbiosis that fosters reduced resistance to pathogens. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Louise A. Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily H. Le Sage
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Claunch NM, Holding M, Frazier JT, Huff EM, Schonour RB, Vernasco B, Moore IT, Rokyta DR, Taylor EN. Experimental Manipulation of Corticosterone Does Not Affect Venom Composition or Functional Activity in Free-Ranging Rattlesnakes. Physiol Biochem Zool 2021; 94:286-301. [PMID: 34166170 DOI: 10.1086/714936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractVenom is an integral feeding trait in many animal species. Although venom often varies ontogenetically, little is known about the proximate physiological mediators of venom variation within individuals. The glucocorticoid hormone corticosterone (CORT) can alter the transcription and activation of proteins, including homologues of snake venom components such as snake venom metalloproteinases (SVMPs) and phospholipase A2 (PLA2). CORT is endogenously produced by snakes, varies seasonally and also in response to stress, and is a candidate endogenous mediator of changes in venom composition and functional activity. Here, we tested the hypothesis that CORT induces changes in snake venom by sampling the venom of wild adult rattlesnakes before and after they were treated with either empty (control) or CORT-filled (treatment) Silastic implants. We measured longitudinal changes in whole-venom composition, whole-venom total protein content, and enzymatic activity of SVMP and PLA2 components of venom. We also assessed the within-individual repeatability of venom components. Despite successfully elevating plasma CORT in the treatment group, we found no effect of CORT treatment or average plasma CORT level on any venom variables measured. Except for total protein content, venom components were highly repeatable within individuals ([Formula: see text]). Our results indicate that the effects of CORT, a hormone commonly associated with stress and metabolic functions, in adult rattlesnake venom are negligible. Our findings bode well for venom researchers and biomedical applications that rely on the consistency of venoms produced from potentially stressed individuals and provide an experimental framework for future studies of proximate mediators of venom variation across an individual's life span.
Collapse
|
6
|
Laid-back invaders: Cane toads (Rhinella marina) down-regulate their stress responses as they colonize a harsh climate. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Morphological correlates of invasion in Florida cane toad (Rhinella marina) populations: Shortening of legs and reduction in leg asymmetry as populations become established. ACTA OECOLOGICA 2020. [DOI: 10.1016/j.actao.2020.103652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
8
|
Colonization history affects heating rates of invasive cane toads. Sci Rep 2020; 10:12553. [PMID: 32724106 PMCID: PMC7387520 DOI: 10.1038/s41598-020-69529-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 11/09/2022] Open
Abstract
Amphibians in hot climates may be able to avoid high temperatures by controlling their rates of heating. In northern Australia, invasive cane toads (Rhinella marina) experience hot dry conditions in newly-colonized (western) sites but milder conditions in longer-occupied (eastern) sites. Under standardized conditions, toads from western sites heated less rapidly than did conspecifics from an eastern site. The availability of free water slowed heating rates of eastern but not western toads. Thus, the colonization of climatically extreme sites has been accompanied by a rapid shift in the toads’ ability to remain cool under hot conditions, even when free water is not available.
Collapse
|
9
|
Rollins-Smith LA. Global Amphibian Declines, Disease, and the Ongoing Battle between Batrachochytrium Fungi and the Immune System. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.178] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Louise A. Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
10
|
Apirajkamol N(B, James B, Gordon KHJ, Walsh TK, McGaughran A. Oxidative stress delays development and alters gene expression in the agricultural pest moth, Helicoverpa armigera. Ecol Evol 2020; 10:5680-5693. [PMID: 32607183 PMCID: PMC7319138 DOI: 10.1002/ece3.6308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
Stress is a widespread phenomenon that all organisms must endure. Common in nature is oxidative stress, which can interrupt cell homeostasis to cause cell damage and may be derived from respiration or from environmental exposure through diet. As a result of the routine exposure from respiration, many organisms can mitigate the effects of oxidative stress, but less is known about responses to oxidative stress from other sources. Helicoverpa armigera is a major agricultural pest moth that causes significant damage to crops worldwide. Here, we examined the effects of oxidative stress on H. armigera by chronically exposing individuals to paraquat-a free radical producer-and measuring changes in development (weight, developmental rate, lifespan), and gene expression. We found that oxidative stress strongly affected development in H. armigera, with stressed samples spending more time as caterpillars than control samples (>24 vs. ~15 days, respectively) and therefore living longer overall. We found 1,618 up- and 761 down-regulated genes, respectively, in stressed versus control samples. In the up-regulated gene set, was an over-representation of biological processes related to cuticle and chitin development, glycine metabolism, and oxidation-reduction. Oxidative stress clearly impacts physiology and biochemistry in H. armigera and the interesting finding of an extended lifespan in stressed individuals could demonstrate hormesis, the phenomenon whereby toxic compounds can actually be beneficial at low doses. Collectively, our findings provide new insights into physiological and gene expression responses to oxidative stress in invertebrates.
Collapse
Affiliation(s)
- Nonthakorn (Beatrice) Apirajkamol
- Division of Ecology and EvolutionAustralian National UniversityCanberraACTAustralia
- Black Mountain LaboratoriesCommonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
| | - Bill James
- Black Mountain LaboratoriesCommonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
| | - Karl H. J. Gordon
- Black Mountain LaboratoriesCommonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
| | - Tom K. Walsh
- Black Mountain LaboratoriesCommonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
- Adjunct FellowMacquarie UniversitySydneyNSWAustralia
| | - Angela McGaughran
- Division of Ecology and EvolutionAustralian National UniversityCanberraACTAustralia
- Black Mountain LaboratoriesCommonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
| |
Collapse
|
11
|
Castaneda E, Leavings VR, Noss RF, Grace MK. The effects of traffic noise on tadpole behavior and development. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-00933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractTraffic noise is known to negatively affect many wildlife species by interfering with foraging behavior. Frogs often lay their eggs in roadside ditches because they are predator-free, but it is possible that traffic noise could reduce the survival and fitness of tadpoles, creating an ecological trap. In a series of lab experiments, we tested whether traffic noise has a negative impact on tadpole feeding behavior, whether this is mediated by changes in tadpole activity, and whether there is any impact on tadpole growth rate or metamorphosis. Traffic noise exposure significantly reduced the amount of food consumed by Cuban Treefrog (Osteopilus septentrionalis) tadpoles. Traffic noise exposure also increased the activity level of both Southern Toad (Anaxyrus terrestris) and Cuban Treefrog tadpoles, which could possibly make them more noticeable to predators in the wild. However, these behavioral changes were not associated with changes in growth rate or timing of metamorphosis. We caution, however, that this study aimed to isolate the specific impact of traffic noise, and did not investigate other road effects that may be damaging to tadpoles.
Collapse
|
12
|
Selechnik D, Richardson MF, Shine R, DeVore JL, Ducatez S, Rollins LA. Increased Adaptive Variation Despite Reduced Overall Genetic Diversity in a Rapidly Adapting Invader. Front Genet 2019; 10:1221. [PMID: 31850072 PMCID: PMC6901984 DOI: 10.3389/fgene.2019.01221] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/05/2019] [Indexed: 01/26/2023] Open
Abstract
Invasive species often evolve rapidly following introduction despite genetic bottlenecks that may result from small numbers of founders; however, some invasions may not fit this “genetic paradox”. The invasive cane toad (Rhinella marina) displays high phenotypic variation across its introduced Australian range. Here, we used three genome-wide datasets to characterize their population structure and genetic diversity. We found that toads form three genetic clusters: 1) native range toads, 2) toads from the source population in Hawaii and long-established areas near introduction sites in Australia, and 3) toads from more recently established northern Australian sites. Although we find an overall reduction in genetic diversity following introduction, we do not see this reduction in loci putatively under selection, suggesting that genetic diversity may have been maintained at ecologically relevant traits, or that mutation rates were high enough to maintain adaptive potential. Nonetheless, toads encounter novel environmental challenges in Australia, and the transition between genetic clusters occurs at a point along the invasion transect where temperature rises and rainfall decreases. We identify environmentally associated loci known to be involved in resistance to heat and dehydration. This study highlights that natural selection occurs rapidly and plays a vital role in shaping the structure of invasive populations.
Collapse
Affiliation(s)
- Daniel Selechnik
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia.,Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mark F Richardson
- Deakin Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Richard Shine
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Jayna L DeVore
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Simon Ducatez
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Lee A Rollins
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
13
|
Martin LB, Vitousek M, Donald JW, Flock T, Fuxjager MJ, Goymann W, Hau M, Husak J, Johnson MA, Kircher B, Knapp R, Miller ET, Schoenle LA, Williams T, Francis CD. IUCN Conservation Status Does Not Predict Glucocorticoid Concentrations in Reptiles and Birds. Integr Comp Biol 2019; 58:800-813. [PMID: 30052988 DOI: 10.1093/icb/icy102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circulating glucocorticoids (GCs) are the most commonly used biomarkers of stress in wildlife. However, their utility as a tool for identifying and/or managing at-risk species has varied. Here, we took a very broad approach to conservation physiology, asking whether International Union for the Conservation of Nature (IUCN) listing status (concern versus no obvious concern) and/or location within a geographic range (edge versus non-edge) predicted baseline and post-restraint concentrations of corticosterone (CORT) among many species of birds and reptiles. Even though such an approach can be viewed as coarse, we asked in this analysis whether CORT concentrations might be useful to implicate species at risk. Indeed, our effort, relying on HormoneBase, a repository of data on wildlife steroids, complements several other large-scale efforts in this issue to describe and understand GC variation. Using a phylogenetically informed Bayesian approach, we found little evidence that either IUCN status or edge/non-edge location in a geographic distribution were related to GC levels. However, we did confirm patterns described in previous studies, namely that breeding condition and evolutionary relatedness among species predicted some GC variation. Given the broad scope of our work, we are reluctant to conclude that IUCN status and location within a range are unrelated to GC regulation. We encourage future more targeted efforts on GCs in at-risk populations to reveal how factors leading to IUCN listing or the environmental conditions at range edges impact individual performance and fitness, particularly in the mammals, amphibians, and fish species we could not study here because data are currently unavailable.
Collapse
Affiliation(s)
- Lynn B Martin
- Department of Global Health, University of South Florida, Tampa, FL 33620, USA
| | - Maren Vitousek
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy W Donald
- Coates Library, Trinity University, San Antonio, TX 78212, USA
| | - Travis Flock
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Matthew J Fuxjager
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | - Michaela Hau
- Max Planck Institute for Ornithology, 82319 Starnberg, Germany.,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Jerry Husak
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA
| | - Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Bonnie Kircher
- Department of Biology, University of Florida, Gainesville, FL 32608, USA
| | - Rosemary Knapp
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | | | - Laura A Schoenle
- Department of Global Health, University of South Florida, Tampa, FL 33620, USA.,Department of Biology, Hamilton College, Clinton, NY 13323, USA
| | - Tony Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Clinton D Francis
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
14
|
Barsotti AMG, Titon Junior B, Titon SCM, Gomes FR. Dehydration as a stressor in toads (Rhinella ornata
). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 331:168-174. [DOI: 10.1002/jez.2250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 01/02/2023]
Affiliation(s)
| | - Braz Titon Junior
- Departamento de Fisiologia; Instituto de Biociências, Universidade de São Paulo; São Paulo Brazil
| | | | - Fernando Ribeiro Gomes
- Departamento de Fisiologia; Instituto de Biociências, Universidade de São Paulo; São Paulo Brazil
| |
Collapse
|
15
|
Jessop TS, Webb J, Dempster T, Feit B, Letnic M. Interactions between corticosterone phenotype, environmental stressor pervasiveness and irruptive movement-related survival in the cane toad. J Exp Biol 2018; 221:jeb.187930. [PMID: 30352824 DOI: 10.1242/jeb.187930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022]
Abstract
Animals use irruptive movement to avoid exposure to stochastic and pervasive environmental stressors that impact fitness. Beneficial irruptive movements transfer individuals from high-stress areas (conferring low fitness) to alternative localities that may improve survival or reproduction. However, being stochastic, environmental stressors can limit an animal's preparatory capacity to enhance irruptive movement performance. Thus individuals must rely on pre-existing, or rapidly induced, physiological and behavioural responses. Rapid elevation of glucocorticoid hormones in response to environmental stressors are widely implicated in adjusting physiological and behaviour processes that could influence irruptive movement capacity. However, there remains little direct evidence demonstrating that corticosterone-regulated movement performance or interaction with pervasiveness of environmental stress, confers adaptive movement outcomes. Here, we compared how movement-related survival of cane toads (Rhinella marina) varied with three different experimental corticosterone phenotypes across four increments of increasing environmental stressor pervasiveness (i.e. distance from water in a semi-arid landscape). Our results indicated that toads with phenotypically increased corticosterone levels attained higher movement-related survival compared with individuals with control or lowered corticosterone phenotypes. However, the effects of corticosterone phenotypes on movement-related survival to some extent co-varied with stressor pervasiveness. Thus, our study demonstrates how the interplay between an individual's corticosterone phenotype and movement capacity alongside the arising costs of movement and the pervasiveness of the environmental stressor can affect survival outcomes.
Collapse
Affiliation(s)
- Tim S Jessop
- Centre for Integrative Ecology, Deakin University, Victoria, 3220, Australia
| | - Jonathan Webb
- School of the Environment, University of Technology Sydney, NSW 2007, Australia
| | - Tim Dempster
- School of Biosciences, University of Melbourne, Victoria, 3010, Australia
| | - Benjamin Feit
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW 2052, Australia
| | - Mike Letnic
- School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
16
|
de Bruijn R, Romero LM. The role of glucocorticoids in the vertebrate response to weather. Gen Comp Endocrinol 2018; 269:11-32. [PMID: 30012539 DOI: 10.1016/j.ygcen.2018.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Changes in the environment related to inclement weather can threaten survival and reproductive success both through direct adverse exposure and indirectly by decreasing food availability. Glucocorticoids, released during activation of the hypothalamic-pituitary-adrenal axis as part of the stress response, are an important candidate for linking vertebrate coping mechanisms to weather. This review attempts to determine if there is a consensus response of glucocorticoids to exposure to weather-related stimuli, including food availability, precipitation, temperature and barometric pressure. The included studies cover field and laboratory studies for all vertebrate taxa, and are separated into four exposure periods, e.g., hours, days, weeks and months. Each reported result was assigned a score based on the glucocorticoid response, e.g., increased, no change, or decreased. Short-term exposure to weather-related stimuli, of up to 24 h, is generally associated with increased glucocorticoids (79% of studies), suggesting that these stimuli are perceived as stressors by most animals. In contrast, the pattern for exposures longer than 24 h shows more variation, even though a majority of studies still report an increase (64%). Lack of glucocorticoid increases appeared to result from instances where: (1) prolonged exposure was a predictable part of the life history of an animal; (2) environmental context was important for the ultimate effect of a stimulus (e.g., precipitation limited food availability in one environment, but increased food in another); (3) prolonged exposure induced chronic stress; and (4) long-term responses appeared to reflect adaptations to seasonal shifts, instead of to short-term weather. However, there is a strong bias towards studies in domesticated laboratory species and wild animals held in captivity, indicating a need for field studies, especially in reptiles and amphibians. In conclusion, the accumulated literature supports the hypothesis that glucocorticoids can serve as the physiological mechanism promoting fitness during inclement weather.
Collapse
Affiliation(s)
- Robert de Bruijn
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | - L Michael Romero
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
17
|
Changing Thermal Landscapes: Merging Climate Science and Landscape Ecology through Thermal Biology. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40823-018-0034-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Jessop TS, Lane M, Wilson RS, Narayan EJ. Testing for Short- and Long-Term Thermal Plasticity in Corticosterone Responses of an Ectothermic Vertebrate. Physiol Biochem Zool 2018; 91:967-975. [PMID: 29863953 DOI: 10.1086/698664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phenotypic plasticity, broadly defined as the capacity of one genotype to produce more than one phenotype, is a key mechanism for how animals adapt to environmental (including thermal) variation. Vertebrate glucocorticoid hormones exert broad-scale regulation of physiological, behavioral, and morphological traits that influence fitness under many life-history or environmental contexts. Yet the capacity for vertebrates to demonstrate different types of thermal plasticity, including rapid compensation or longer acclimation in glucocorticoid hormone function, when subject to different environmental temperature regimes remains poorly addressed. Here, we explore whether patterns of urinary corticosterone metabolites respond (i.e., evidence of acclimation) to repeated short-term and sustained long-term temperature exposures in an amphibian, the cane toad (Rhinella marina). In response to three repeated short (30-min) high-temperature (37°C) exposures (at 10-d intervals), toads produced urinary corticosterone metabolite responses of sequentially greater magnitude, relative to controls. However, toads subjected to 4 wk of acclimation to either cool (18°C)- or warm (30°C)-temperature environments did not differ significantly in their urinary corticosterone metabolite responses during exposure to a thermal ramp (18°-36°C). Together, these results indicate that adult toads had different, including limited, capacities for their glucocorticoid responses to demonstrate plasticity to different regimes of environmental temperature variation. We advocate further research as necessary to identify plasticity, or lack thereof, in glucocorticoid physiology, to better understand how vertebrates can regulate organismal responses to environmental variation.
Collapse
Affiliation(s)
- Tim S Jessop
- 1 Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, Victoria 3220, Australia
| | - Meagan Lane
- 2 School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robbie S Wilson
- 3 School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Edward J Narayan
- 4 School of Science and Health, Hawkesbury campus, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| |
Collapse
|
19
|
Dupoué A, Rutschmann A, Le Galliard JF, Clobert J, Blaimont P, Sinervo B, Miles DB, Haussy C, Meylan S. Reduction in baseline corticosterone secretion correlates with climate warming and drying across wild lizard populations. J Anim Ecol 2018; 87:1331-1341. [PMID: 29701285 DOI: 10.1111/1365-2656.12843] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/12/2018] [Indexed: 12/25/2022]
Abstract
Climate change should lead to massive loss of biodiversity in most taxa, but the detailed physiological mechanisms underlying population extinction remain largely elusive so far. In vertebrates, baseline levels of hormones such as glucocorticoids (GCs) may be indicators of population state as their secretion to chronic stress can impair survival and reproduction. However, the relationship between GC secretion, climate change and population extinction risk remains unclear. In this study, we investigated whether levels of baseline corticosterone (the main GCs in reptiles) correlate with environmental conditions and associated extinction risk across wild populations of the common lizard Zootoca vivipara. First, we performed a cross-sectional comparison of baseline corticosterone levels along an altitudinal gradient among 14 populations. Then, we used a longitudinal study in eight populations to examine the changes in corticosterone levels following the exposure to a heatwave period. Unexpectedly, baseline corticosterone decreased with increasing thermal conditions at rest in females and was not correlated with extinction risk. In addition, baseline corticosterone levels decreased after exposure to an extreme heatwave period. This seasonal corticosterone decrease was more pronounced in populations without access to standing water. We suggest that low basal secretion of corticosterone may entail downregulating activity levels and limit exposure to adverse climatic conditions, especially to reduce water loss. These new insights suggest that rapid population decline might be preceded by a downregulation of the corticosterone secretion.
Collapse
Affiliation(s)
- Andréaz Dupoué
- CNRS, iEES Paris, UMR 7618, Sorbonne Université, Paris, France
| | - Alexis Rutschmann
- Station d'Ecologie Théorique et Expérimentale du CNRS à Moulis, UMR 5321, Saint Girons, France
| | - Jean François Le Galliard
- CNRS, iEES Paris, UMR 7618, Sorbonne Université, Paris, France.,Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Ecole normale supérieure, CNRS, UMS 3194, PSL Research University, Saint-Pierre-lès-Nemours, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale du CNRS à Moulis, UMR 5321, Saint Girons, France
| | - Pauline Blaimont
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California
| | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California
| | - Donald B Miles
- Station d'Ecologie Théorique et Expérimentale du CNRS à Moulis, UMR 5321, Saint Girons, France.,Department of Biological Sciences, Ohio University, Athens, Ohio
| | - Claudy Haussy
- CNRS, iEES Paris, UMR 7618, Sorbonne Université, Paris, France
| | - Sandrine Meylan
- CNRS, iEES Paris, UMR 7618, Sorbonne Université, Paris, France.,ESPE de Paris, Sorbonne Université, Paris, France
| |
Collapse
|
20
|
Tingley R, Ward-Fear G, Schwarzkopf L, Greenlees MJ, Phillips BL, Brown G, Clulow S, Webb J, Capon R, Sheppard A, Strive T, Tizard M, Shine R. New Weapons in the Toad Toolkit: A Review of Methods to Control and Mitigate the Biodiversity Impacts of Invasive Cane Toads (Rhinella Marina). QUARTERLY REVIEW OF BIOLOGY 2018; 92:123-49. [PMID: 29562120 DOI: 10.1086/692167] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Our best hope of developing innovative methods to combat invasive species is likely to come from the study of high-profile invaders that have attracted intensive research not only into control, but also basic biology. Here we illustrate that point by reviewing current thinking about novel ways to control one of the world’s most well-studied invasions: that of the cane toad in Australia. Recently developed methods for population suppression include more effective traps based on the toad’s acoustic and pheromonal biology. New tools for containing spread include surveillance technologies (e.g., eDNA sampling and automated call detectors), as well as landscape-level barriers that exploit the toad’s vulnerability to desiccation—a strategy that could be significantly enhanced through the introduction of sedentary, range-core genotypes ahead of the invasion front. New methods to reduce the ecological impacts of toads include conditioned taste aversion in free-ranging predators, gene banking, and targeted gene flow. Lastly, recent advances in gene editing and gene drive technology hold the promise of modifying toad phenotypes in ways that may facilitate control or buffer impact. Synergies between these approaches hold great promise for novel and more effective means to combat the toad invasion and its consequent impacts on biodiversity.
Collapse
|
21
|
Feit B, Gordon CE, Webb JK, Jessop TS, Laffan SW, Dempster T, Letnic M. Invasive cane toads might initiate cascades of direct and indirect effects in a terrestrial ecosystem. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1665-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
|
22
|
Vidal-García M, Keogh JS. Invasive cane toads are unique in shape but overlap in ecological niche compared to Australian native frogs. Ecol Evol 2017; 7:7609-7619. [PMID: 29043018 PMCID: PMC5632638 DOI: 10.1002/ece3.3253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 11/29/2022] Open
Abstract
Invasive species are an important issue worldwide but predicting invasiveness, and the underlying mechanisms that cause it, is difficult. There are several primary hypotheses to explain invasion success. Two main hypothesis based on niche spaces stand out as alternative, although not exclusive. The empty niche hypothesis states that invaders occupy a vacant niche space in the recipient community, and the niche competition hypothesis states that invaders overlap with native species in niche space. Studies on trait similarity/dissimilarity between the invader and native species can provide information on their niche overlap. Here, we use the highly invasive and well‐studied cane toad (Rhinella marina) to test these two hypotheses in Australia, and assess its degree of overlap with native species in several niche dimensions. We compare extensive morphological and environmental data of this successful invader to 235 species (97%) of native Australian frogs. Our study is the first to document the significant morphological differences between the invasive cane toad and a continent‐wide frog radiation: despite significant environmental overlap, cane toads were distinct in body size and shape from most Australian frog species, suggesting that in addition to their previously documented phenotypic plasticity and wide environmental and trophic niche breadth, their unique shape also may have contributed to their success as an invasive species in Australia. Thus, the invasive success of cane toads in Australia may be explained through them successfully colonizing an empty niche among Australian anurans. Our results support that the cane toad's distinct morphology may have played a unique role in the invasiveness of this species in Australia, which coupled with a broad environmental niche breadth, would have boosted their ability to expand their distribution across Australia. We also propose RLLR (Relative limb length ratio) as a potentially useful measure of identifying morphological niche uniqueness and a potential measure of invasiveness potential in anuran amphibians.
Collapse
Affiliation(s)
- Marta Vidal-García
- Ecology and Evolution Research School of Biology The Australian National University Canberra ACT Australia
| | - J Scott Keogh
- Ecology and Evolution Research School of Biology The Australian National University Canberra ACT Australia
| |
Collapse
|
23
|
Pottinger TG. Modulation of the stress response in wild fish is associated with variation in dissolved nitrate and nitrite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:550-558. [PMID: 28318786 DOI: 10.1016/j.envpol.2017.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/24/2017] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
Disruption of non-reproductive endocrine systems in wildlife by chemicals has received little attention but represents a potentially significant problem. Nitrate is a major anthropogenic contaminant in the freshwater aquatic environment and has been identified as a potential disrupter of endocrine function in aquatic animals. This study was conducted to investigate the relationship between the function of the neuroendocrine stress axis in fish and inorganic N loading along reaches of rivers receiving cumulative point source and diffuse chemical inputs. To accomplish this, the responsiveness of the stress axis, quantified as the rate of release of cortisol to water across the gills during exposure to a standardised stressor, was measured in three-spined sticklebacks (Gasterosteus aculeatus L.) resident at three sites on each of four rivers in north-west England. The magnitude of the stress response in fish captured at the sites furthest downstream on all rivers was more than twice that of fish captured at upstream sites. Site-specific variation in stress axis reactivity was better explained by between-site variation in concentrations of dissolved nitrate, nitrite, and ammonia than by the concentration of wastewater treatment works effluent. An increase in the magnitude of the stress response was seen among sticklebacks at sites where long-term averaged concentrations of NH3-N, NO3-N and NO2-N exceeded 0.6, 4.0 and 0.1 mg/L respectively. These data suggest that either (i) inorganic N is a better surrogate than wastewater effluent concentration for an unknown factor or factors affecting stress axis function in fish, or (ii) dissolved inorganic N directly exerts a disruptive influence on the function of the neuroendocrine stress axis in fish, supporting concerns that nitrate is an endocrine-modulating chemical.
Collapse
Affiliation(s)
- Tom G Pottinger
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK.
| |
Collapse
|
24
|
The impact of transportation and translocation on dispersal behaviour in the invasive cane toad. Oecologia 2017; 184:411-422. [PMID: 28432445 DOI: 10.1007/s00442-017-3871-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
Biological invasions transport organisms to novel environments; but how does the translocation process influence movement patterns of the invader? Plausibly, the stress of encountering a novel environment, or of the transport process, might induce rapid dispersal from the release site-potentially enhancing (or reducing) invader success and spread. We investigated the effect of transportation and release to novel environments on dispersal-relevant traits of one of the world's most notorious invaders, the cane toad (Rhinella marina). We collected toads in northern New South Wales from heath and woodland habitats, manipulated the level of transport stress and either returned toads to their exact collection point (residents) or reciprocally translocated them to a novel site. Both translocation and the level of transport stress drastically altered toad dispersal rates for at least 5 days post-release. Translocated toads (depending on their level of transport stress and release habitat) moved on average two to five times further per day (mean range 67-148 m) than did residents (mean range 22-34 m). Translocated toads also moved on more days, and moved further from their release point than did resident toads, but did not move in straighter lines. A higher level of transport stress (simulating long-distance translocation) had no significant effect on movements of resident toads but amplified the dispersal of translocated toads only when released into woodland habitat. These behavioural shifts induced by translocation and transportation may affect an invader's ability to colonise novel sites, and need to be incorporated into plans for invader control.
Collapse
|
25
|
The behavioural consequences of translocation: how do invasive cane toads (Rhinella marina) respond to transport and release to novel environments? Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2245-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Jessop TS, Lane ML, Teasdale L, Stuart-Fox D, Wilson RS, Careau V, Moore IT. Multiscale Evaluation of Thermal Dependence in the Glucocorticoid Response of Vertebrates. Am Nat 2016; 188:342-56. [DOI: 10.1086/687588] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
27
|
Brown GP, Kelehear C, Shilton CM, Phillips BL, Shine R. Stress and immunity at the invasion front: a comparison across cane toad (Rhinella marina) populations. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12623] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gregory P. Brown
- School of Biological Sciences; University of Sydney; Sydney NSW 2006 Australia
| | - Crystal Kelehear
- School of Biological Sciences; University of Sydney; Sydney NSW 2006 Australia
- Smithsonian Tropical Research Institute; Apartado 0843-03092 Balboa Ancon Republic of Panama
| | - Catherine M. Shilton
- Berrimah Veterinary Laboratories; Northern Territory, Department of Primary Industries and Fisheries; Berrimah NT 0828 Australia
| | | | - Rick Shine
- School of Biological Sciences; University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
28
|
Jessop TS, Anson JR, Narayan E, Lockwood T. An Introduced Competitor Elevates Corticosterone Responses of a Native Lizard (Varanus varius). Physiol Biochem Zool 2015; 88:237-45. [DOI: 10.1086/680689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Rollins LA, Richardson MF, Shine R. A genetic perspective on rapid evolution in cane toads (Rhinella marina). Mol Ecol 2015; 24:2264-76. [PMID: 25894012 DOI: 10.1111/mec.13184] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
The process of biological invasion exposes a species to novel pressures, in terms of both the environments it encounters and the evolutionary consequences of range expansion. Several invaders have been shown to exhibit rapid evolutionary changes in response to those pressures, thus providing robust opportunities to clarify the processes at work during rapid phenotypic transitions. The accelerating pace of invasion of cane toads (Rhinella marina) in tropical Australia during its 80-year history has been well characterized at the phenotypic level, including common-garden experiments that demonstrate heritability of several dispersal-relevant traits. Individuals from the invasion front (and their progeny) show distinctive changes in morphology, physiology and behaviour that, in combination, result in far more rapid dispersal than is true of conspecifics from long-colonized areas. The extensive body of work on cane toad ecology enables us to place into context studies of the genetic basis of these traits. Our analyses of differential gene expression from toads from both ends of this invasion-history transect reveal substantial upregulation of many genes, notably those involved in metabolism and cellular repair. Clearly, then, the dramatically rapid phenotypic evolution of cane toads in Australia has been accompanied by substantial shifts in gene expression, suggesting that this system is well suited to investigating the genetic underpinnings of invasiveness.
Collapse
Affiliation(s)
- Lee A Rollins
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Pigdons Road, Geelong, Vic., 3217, Australia
| | | | | |
Collapse
|
30
|
Winwood-Smith HS, Alton LA, Franklin CE, White CR. Does greater thermal plasticity facilitate range expansion of an invasive terrestrial anuran into higher latitudes? CONSERVATION PHYSIOLOGY 2015; 3:cov010. [PMID: 27293695 PMCID: PMC4778455 DOI: 10.1093/conphys/cov010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/04/2015] [Accepted: 02/08/2015] [Indexed: 05/25/2023]
Abstract
Temperature has pervasive effects on physiological processes and is critical in setting species distribution limits. Since invading Australia, cane toads have spread rapidly across low latitudes, but slowly into higher latitudes. Low temperature is the likely factor limiting high-latitude advancement. Several previous attempts have been made to predict future cane toad distributions in Australia, but understanding the potential contribution of phenotypic plasticity and adaptation to future range expansion remains challenging. Previous research demonstrates the considerable thermal metabolic plasticity of the cane toad, but suggests limited thermal plasticity of locomotor performance. Additionally, the oxygen-limited thermal tolerance hypothesis predicts that reduced aerobic scope sets thermal limits for ectotherm performance. Metabolic plasticity, locomotor performance and aerobic scope are therefore predicted targets of natural selection as cane toads invade colder regions. We measured these traits at temperatures of 10, 15, 22.5 and 30°C in low- and high-latitude toads acclimated to 15 and 30°C, to test the hypothesis that cane toads have adapted to cooler temperatures. High-latitude toads show increased metabolic plasticity and higher resting metabolic rates at lower temperatures. Burst locomotor performance was worse for high-latitude toads. Other traits showed no regional differences. We conclude that increased metabolic plasticity may facilitate invasion into higher latitudes by maintaining critical physiological functions at lower temperatures.
Collapse
Affiliation(s)
- Hugh S Winwood-Smith
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lesley A Alton
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig E Franklin
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig R White
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
31
|
Letnic M, Webb JK, Jessop TS, Dempster T. Restricting access to invasion hubs enables sustained control of an invasive vertebrate. J Appl Ecol 2015. [DOI: 10.1111/1365-2664.12390] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mike Letnic
- School of Biological, Earth and Environmental Sciences; University of New South Wales; Sydney NSW 2052 Australia
- Centre for Ecosystem Science; University of New South Wales; Sydney NSW 2052 Australia
- School of Biological Sciences; University of Sydney; Sydney NSW 2006 Australia
| | - Jonathan K. Webb
- School of Biological Sciences; University of Sydney; Sydney NSW 2006 Australia
- School of the Environment; University of Technology Sydney; Sydney NSW 2007 Australia
| | - Tim S. Jessop
- Department of Zoology; University of Melbourne; Melbourne Vic. 3010 Australia
| | - Tim Dempster
- Department of Zoology; University of Melbourne; Melbourne Vic. 3010 Australia
| |
Collapse
|
32
|
Kaiser K, Devito J, Jones CG, Marentes A, Perez R, Umeh L, Weickum RM, McGovern KE, Wilson EH, Saltzman W. Reproductive and immune effects of chronic corticosterone treatment in male White's treefrogs, Litoria caerulea. CONSERVATION PHYSIOLOGY 2015; 3:cov022. [PMID: 27293707 PMCID: PMC4778456 DOI: 10.1093/conphys/cov022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/17/2015] [Accepted: 04/25/2015] [Indexed: 05/08/2023]
Abstract
Amphibian populations are declining globally. The potential contribution of glucocorticoid hormones to these declines has received little attention, but chronic elevation of glucocorticoids has been linked to a suite of negative outcomes across vertebrate taxa. Recently, chronic environmental stress has been associated with precipitous declines in sperm count and sperm viability in White's treefrogs (Litoria caerulea), but the mechanism remains unknown. In order to determine whether corticosterone is responsible for suppressing reproductive and immune function in this species, we elevated circulating concentrations of corticosterone in 10 male captive-bred frogs via transdermal application for 7 days. We compared sperm count, sperm viability, splenic cell count and circulating leucocyte counts in corticosterone-treated frogs with those in untreated control frogs. Chronic application of exogenous corticosterone led to supraphysiological circulating concentrations of corticosterone, but had no effect on sperm count or viability. However, corticosterone-treated frogs demonstrated a significant decrease in circulating eosinophils, which are immune cells implicated in fighting a variety of pathogens, including extracellular parasites. These findings suggest that although chronic elevation of circulating corticosterone is not necessarily associated with reproductive suppression in this species, it may cause immunosuppression. Thus, chronic glucocorticoid elevations in amphibians might enhance susceptibility to infection with pathogens and parasites, and their potential contributions to global population declines warrant further study.
Collapse
Affiliation(s)
- Kristine Kaiser
- Department of Biology, University of California, Riverside, CA 92521, USA
- Corresponding author: Department of Biology, Pomona College, Claremont, CA 91711, USA. Tel: +1 909 607 0880.
| | - Julia Devito
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Caitlin G. Jones
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Adam Marentes
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Rachel Perez
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Lisa Umeh
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Regina M. Weickum
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Kathryn E. McGovern
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Emma H. Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Wendy Saltzman
- Department of Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
33
|
Brown GP, Phillips BL, Dubey S, Shine R. Invader immunology: invasion history alters immune system function in cane toads (Rhinella marina) in tropical Australia. Ecol Lett 2014; 18:57-65. [PMID: 25399668 DOI: 10.1111/ele.12390] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 02/06/2023]
Abstract
Because an individual's investment into the immune system may modify its dispersal rate, immune function may evolve rapidly in an invader. We collected cane toads (Rhinella marina) from sites spanning their 75-year invasion history in Australia, bred them, and raised their progeny in standard conditions. Evolved shifts in immune function should manifest as differences in immune responses among the progeny of parents collected in different locations. Parental location did not affect the offspring's cell-mediated immune response or stress response, but blood from the offspring of invasion-front toads had more neutrophils, and was more effective at phagocytosis and killing bacteria. These latter measures of immune function are negatively correlated with rate of dispersal in free-ranging toads. Our results suggest that the invasion of tropical Australia by cane toads has resulted in rapid genetically based compensatory shifts in the aspects of immune responses that are most compromised by the rigours of long-distance dispersal.
Collapse
Affiliation(s)
- Gregory P Brown
- School of Biological Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | |
Collapse
|
34
|
Jessop TS, Dempster T, Letnic M, Webb JK. Interplay among nocturnal activity, melatonin, corticosterone and performance in the invasive cane toad (Rhinella marinus). Gen Comp Endocrinol 2014; 206:43-50. [PMID: 25063397 DOI: 10.1016/j.ygcen.2014.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 06/26/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
Most animals conduct daily activities exclusively either during the day or at night. Here, hormones such as melatonin and corticosterone, greatly influence the synchronization or regulation of physiological and behavioral cycles needed for daily activity. How then do species that exhibit more flexible daily activity patterns, responses to ecological, environmental or life-history processes, regulate daily hormone profiles important to daily performance? This study examined the consequences of (1) nocturnal activity on diel profiles of melatonin and corticosterone and (2) the effects of experimentally increased acute melatonin levels on physiological and metabolic performance in the cane toad (Rhinella marinus). Unlike inactive captive toads that had a distinct nocturnal melatonin profile, nocturnally active toads sampled under field and captive conditions, exhibited decreased nocturnal melatonin profiles with no evidence for any phase shift. Nocturnal corticosterone levels were significantly higher in field active toads than captive toads. In toads with experimentally increased melatonin levels, plasma lactate and glucose responses following recovery post exercise were significantly different from control toads. However, exogenously increased melatonin did not affect resting metabolism in toads. These results suggest that toads could adjust daily hormone profiles to match nocturnal activity requirements, thereby avoiding performance costs induced by high nocturnal melatonin levels. The ability of toads to exhibit plasticity in daily hormone cycles, could have broad implications for how they and other animals utilize behavioral flexibility to optimize daily activities in response to natural and increasingly human mediated environmental variation.
Collapse
Affiliation(s)
- Tim S Jessop
- Department of Zoology, University of Melbourne, Victoria 3010, Australia.
| | - Tim Dempster
- Department of Zoology, University of Melbourne, Victoria 3010, Australia
| | - Mike Letnic
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, NSW 2052, Australia
| | - Jonathan K Webb
- School of the Environment, University of Technology, Broadway, NSW 2007, Australia
| |
Collapse
|
35
|
Brown GP, Shine R. Immune response varies with rate of dispersal in invasive cane toads (Rhinella marina). PLoS One 2014; 9:e99734. [PMID: 24936876 PMCID: PMC4061023 DOI: 10.1371/journal.pone.0099734] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/16/2014] [Indexed: 11/24/2022] Open
Abstract
What level of immunocompetence should an animal maintain while undertaking long-distance dispersal? Immune function (surveillance and response) might be down-regulated during prolonged physical exertion due to energy depletion, and/or to avoid autoimmune reactions arising from damaged tissue. On the other hand, heightened immune vigilance might be favored if the organism encounters novel pathogens as it enters novel environments. We assessed the links between immune defense and long-distance movement in a population of invasive cane toads (Rhinella marina) in Australia. Toads were radio-tracked for seven days to measure their activity levels and were then captured and subjected to a suite of immune assays. Toads that moved further showed decreased bacteria-killing ability in their plasma and decreased phagocytic activity in their whole blood, but a heightened skin-swelling response to phytohemagglutinin. Baseline and post-stress corticosterone levels were unrelated to distance moved. Thus, long-distance movement in cane toads is associated with a dampened response in some systems and enhanced response in another. This pattern suggests that sustained activity is accompanied by trade-offs among immune components rather than an overall down or up-regulation. The finding that high mobility is accompanied by modification of the immune system has important implications for animal invasions.
Collapse
Affiliation(s)
- Gregory P Brown
- School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Richard Shine
- School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Letnic M, Webb JK, Jessop TS, Florance D, Dempster T. Artificial water points facilitate the spread of an invasive vertebrate in arid Australia. J Appl Ecol 2014. [DOI: 10.1111/1365-2664.12232] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mike Letnic
- Centre for Ecosystem Science; School of Biological; Earth and Environmental Sciences; University of New South Wales; Sydney NSW 2052 Australia
| | - Jonathan K. Webb
- School of the Environment; University of Technology Sydney; Sydney NSW 2007 Australia
| | - Tim S. Jessop
- Department of Zoology; University of Melbourne; Melbourne Vic. 3010 Australia
| | - Daniel Florance
- School of Biological Sciences; University of Sydney; Sydney NSW 2006 Australia
| | - Tim Dempster
- Department of Zoology; University of Melbourne; Melbourne Vic. 3010 Australia
| |
Collapse
|
37
|
Narayan EJ, Hero JM. Acute thermal stressor increases glucocorticoid response but minimizes testosterone and locomotor performance in the cane toad (Rhinella marina). PLoS One 2014; 9:e92090. [PMID: 24643017 PMCID: PMC3958476 DOI: 10.1371/journal.pone.0092090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/19/2014] [Indexed: 11/18/2022] Open
Abstract
Climatic warming is a global problem and acute thermal stressor in particular could be considered as a major stressor for wildlife. Cane toads (Rhinella marina) have expanded their range into warmer regions of Australia and they provide a suitable model species to study the sub-lethal impacts of thermal stressor on the endocrine physiology of amphibians. Presently, there is no information to show that exposure to an acute thermal stressor could initiate a physiological stress (glucocorticoid) response and secondly, the possible effects on reproductive hormones and performance. Answering these questions is important for understanding the impacts of extreme temperature on amphibians. In this study, we experimented on cane toads from Queensland, Australia by acclimating them to mildly warm temperature (25°C) and then exposing to acute temperature treatments of 30°, 35° or 40°C (hypothetical acute thermal stressors). We measured acute changes in the stress hormone corticosterone and the reproductive hormone testosterone using standard capture and handling protocol and quantified the metabolites of both hormones non-invasively using urinary enzyme-immunoassays. Furthermore, we measured performance trait (i.e. righting response score) in the control acclimated and the three treatment groups. Corticosterone stress responses increased in all toads during exposure to an acute thermal stressor. Furthermore, exposure to a thermal stressor also decreased testosterone levels in all toads. The duration of the righting response (seconds) was longer for toads that were exposed to 40°C than to 30°, 35° or 25°C. The increased corticosterone stress response with increased intensity of the acute thermal stressor suggests that the toads perceived this treatment as a stressor. Furthermore, the results also highlight a potential trade-off with performance and reproductive hormones. Ultimately, exposure acute thermal stressors due to climatic variability could impact amphibians at multiple eco-physiological levels through impacts on endocrine physiology, performance and potentially fitness traits (e.g. reproductive output).
Collapse
Affiliation(s)
- Edward J Narayan
- Environmental Futures Research Institute, School of Environment, Griffith University, Gold Coast Campus, Australia
| | - Jean-Marc Hero
- Environmental Futures Research Institute, School of Environment, Griffith University, Gold Coast Campus, Australia
| |
Collapse
|
38
|
Webb JK, Letnic M, Jessop TS, Dempster T. Behavioural flexibility allows an invasive vertebrate to survive in a semi-arid environment. Biol Lett 2014; 10:20131014. [PMID: 24573152 DOI: 10.1098/rsbl.2013.1014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plasticity or evolution in behavioural responses are key attributes of successful animal invasions. In northern Australia, the invasive cane toad (Rhinella marina) recently invaded semi-arid regions. Here, cane toads endure repeated daily bouts of severe desiccation and thermal stress during the long dry season (April-October). We investigated whether cane toads have shifted their ancestral nocturnal rehydration behaviour to one that exploits water resources during the day. Such a shift in hydration behaviour could increase the fitness of individual toads by reducing exposure to desiccation and thermal stress suffered during the day even within terrestrial shelters. We used a novel method (acoustic tags) to monitor the daily hydration behaviour of 20 toads at two artificial reservoirs on Camfield station, Northern Territory. Remarkably, cane toads visited reservoirs to rehydrate during daylight hours, with peaks in activity between 9.00 and 17.00. This diurnal pattern of rehydration activity contrasts with nocturnal rehydration behaviour exhibited by adult toads in their native geographical range and more mesic parts of Australia. Our results demonstrate that cane toads phase shift a key behaviour to survive in a harsh semi-arid landscape. Behavioural phase shifts have rarely been reported in invasive species but could facilitate ongoing invasion success.
Collapse
Affiliation(s)
- Jonathan K Webb
- School of the Environment, University of Technology Sydney, , Broadway, New South Wales 2007, Australia
| | | | | | | |
Collapse
|
39
|
Peacock D, Wakelin-King GA, Shepherd B. Cane toads (Rhinella marina) in south-western Queensland: invasion front, spread and how Cooper Creek geomorphology could enable invasion into north-eastern South Australia. AUST J ZOOL 2014. [DOI: 10.1071/zo14025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The invasion of northern Australia by the poisonous cane toad is well recognised, as is its devastating impacts on numerous local native species. However, there is little recognition that the toads are spreading into south-western Queensland. Utilising local knowledge, a limited survey was undertaken within the Cooper Creek catchment to locate the invasion front. Dispersal during 2010–11 floods has established cane toads as far south as Jundah. Integrating this information with landform mapping indicates that cane toad invasion can continue south-west down the Cooper Creek. Though arid, Cooper Creek’s geomorphology renders it partially independent of local climate, and permanent and semipermanent waterholes (including RAMSAR-listed wetlands) are found downstream from Windorah and into the Strzelecki Desert. Natural landforms provide potential daytime shelter and breeding sites, and additional suitable habitat created by human activity is also widespread. Even unsuccessful attempts at breeding may be detrimental to regional ecology, especially fish populations, at critical stages of their boom/bust cycle. We conclude that there is no reason why cane toads cannot penetrate further down the Cooper Creek, threatening wetlands in north-eastern South Australia. Published models of cane toad expansion, which conclude that north-eastern South Australia is too dry for cane toad populations to establish, are based on climatic parameters that significantly under-represent true habitat availability.
Collapse
|