1
|
Anvari E, Noorimotlagh Z, Mirzaee SA, Nourmoradi H, Bahmani M, Rashan N, Silva Martinez S, Kamran S, Ahmadi I. Establishing the Mechanisms Involved in the Environmental Exposure to Polychlorinated Biphenyls (PCBs) in the Risk of Male Infertility. Reprod Sci 2025; 32:537-554. [PMID: 39909975 DOI: 10.1007/s43032-025-01794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025]
Abstract
Exposure to toxic chemicals, such as plasticizers, alkylphenol compounds, and polychlorinated biphenyls (PCBs), has increased due to environmental contamination. PCBs, categorized as persistent organic pollutants (POPs), are lipophilic chemicals commonly used in lubricants, cutting oils, and electrical insulators. PCBs may have detrimental effects on hormone-producing glands, potentially contributing to male infertility. Thus, the objective of this study was to provide a comprehensive overview of the adverse effects of PCBs on the male reproductive system. Searches of three electronic databases were performed using MESH terms and 32 studies were included. Although the exact mechanism of action for PCBs remains unclear, several PCBs are regarded as potential endocrine disruptors due to their ability to interact with hormone signaling pathways. PCBs have been found to disrupt physiological functions by mimicking endogenous hormones as agonists or antagonists, altering patterns of hormone synthesis, hormone receptor affinities or numbers, and modulating enzymes involved in hormone secretion. These reports highlight the pleiotropic nature of PCB function and the susceptibility of the reproductive system. Endocrine-disrupting PCBs can mimic, alter, or block hormonal responses, inhibiting natural signaling to the testes and epididymis via various mechanisms such as binding to sex hormone-binding globulin and androgen-binding protein or blocking cell surface receptors. Furthermore, PCBs can alter the hormonal environment in the prostate or seminal vesicles by changing the affinity of androgens for their receptors. The testicles and genital organs may be susceptible to various estrogenic effects, leading to changes in the quality or quantity of their secretions and the volume of semen.
Collapse
Affiliation(s)
- Enayat Anvari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Zahra Noorimotlagh
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran.
- Department of Environmental Health Engineering, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran.
| | - Seyyed Abbas Mirzaee
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran.
- Department of Environmental Health Engineering, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran.
| | - Heshmatllah Nourmoradi
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Mona Bahmani
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Nasrin Rashan
- Department of Midwifery, Faculty of Nursing and Midwifery, Ilam University of Medical Sciences, Ilam, Iran
| | - Susana Silva Martinez
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Shiva Kamran
- Department of Epidemiology, School of Public Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Iraj Ahmadi
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
2
|
Archer LC, Atkinson SN, Lunn NJ, Penk SR, Molnár PK. Energetic constraints drive the decline of a sentinel polar bear population. Science 2025; 387:516-521. [PMID: 39883750 DOI: 10.1126/science.adp3752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025]
Abstract
Human-driven Arctic warming and resulting sea ice loss have been associated with declines in several polar bear populations. However, quantifying how individual responses to environmental change integrate and scale to influence population dynamics in polar bears has yet to be achieved. We developed an individual-based bioenergetic model and hindcast population dynamics across 42 years of observed sea ice conditions in Western Hudson Bay, a region undergoing rapid environmental change. The model successfully captured trends in individual morphometrics, reproduction, and population abundance observed over four decades of empirical monitoring data. Our study provides evidence for the interplay between individual energetics and environmental constraints in shaping population dynamics and for the fundamental role of a single limiting mechanism-energy-underpinning the decline of an apex Arctic predator.
Collapse
Affiliation(s)
- Louise C Archer
- Laboratory of Quantitative Global Change Ecology, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | | | - Nicholas J Lunn
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, Edmonton, AB, Canada
| | - Stephanie R Penk
- Laboratory of Quantitative Global Change Ecology, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Péter K Molnár
- Laboratory of Quantitative Global Change Ecology, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Accolla C, Schmolke A, Vaugeois M, Galic N. Density-dependent population regulation in freshwater fishes and small mammals: A literature review and insights for Ecological Risk Assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1225-1236. [PMID: 37750350 DOI: 10.1002/ieam.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
The regulation of populations through density dependence (DD) has long been a central tenet of studies of ecological systems. As an important factor in regulating populations, DD is also crucial for understanding risks to populations from stressors, including its incorporation into population models applied for this purpose. However, study of density-dependent regulation is challenging because it can occur through various mechanisms, and their identification in the field, as well as the quantification of the consequences on individuals and populations, can be difficult. We conducted a targeted literature review specifically focusing on empirical laboratory or field studies addressing negative DD in freshwater fish and small rodent populations, two vertebrate groups considered in pesticide Ecological Risk Assessment (ERA). We found that the most commonly recognized causes of negative DD were food (63% of 19 reviewed fish studies, 40% of 25 mammal studies) or space limitations (32% of mammal studies). In addition, trophic interactions were reported as causes of population regulation, with predation shaping mostly small mammal populations (36% of the mammal studies) and cannibalism impacting freshwater fish (26%). In the case of freshwater fish, 63% of the studies were experimental (i.e., with a length of weeks or months). They generally focused on the individual-level causes and effects of DD, and had a short duration. Moreover, DD affected mostly juvenile growth and survival of fish (68%). On the other hand, studies on small mammals were mainly based on time series analyzing field population properties over longer timespans (68%). Density dependence primarily affected survival in subadult and adult mammal stages and, to a lesser extent, reproduction (60% vs. 36%). Furthermore, delayed DD was often observed (56%). We conclude by making suggestions on future research paths, providing recommendations for including DD in population models developed for ERA, and making the best use of the available data. Integr Environ Assess Manag 2024;20:1225-1236. © 2023 Syngenta Crop Protection. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | - Maxime Vaugeois
- Syngenta Crop Protection LLC, Greensboro, North Carolina, USA
| | - Nika Galic
- Syngenta Crop Protection AG, Basel, Switzerland
| |
Collapse
|
4
|
Accolla C, Vaugeois M, Grimm V, Moore AP, Rueda-Cediel P, Schmolke A, Forbes VE. A Review of Key Features and Their Implementation in Unstructured, Structured, and Agent-Based Population Models for Ecological Risk Assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:521-540. [PMID: 33124764 DOI: 10.1002/ieam.4362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/15/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Population models can provide valuable tools for ecological risk assessment (ERA). A growing amount of work on model development and documentation is now available to guide modelers and risk assessors to address different ERA questions. However, there remain misconceptions about population models for ERA, and communication between regulators and modelers can still be hindered by a lack of clarity in the underlying formalism, implementation, and complexity of different model types. In particular, there is confusion about differences among types of models and the implications of including or ignoring interactions of organisms with each other and their environment. In this review, we provide an overview of the key features represented in population models of relevance for ERA, which include density dependence, spatial heterogeneity, external drivers, stochasticity, life-history traits, behavior, energetics, and how exposure and effects are integrated in the models. We differentiate 3 broadly defined population model types (unstructured, structured, and agent-based) and explain how they can represent these key features. Depending on the ERA context, some model features will be more important than others, and this can inform model type choice, how features are implemented, and possibly the collection of additional data. We show that nearly all features can be included irrespective of formalization, but some features are more or less easily incorporated in certain model types. We also analyze how the key features have been used in published population models implemented as unstructured, structured, and agent-based models. The overall aim of this review is to increase confidence and understanding by model users and evaluators when considering the potential and adequacy of population models for use in ERA. Integr Environ Assess Manag 2021;17:521-540. © 2020 SETAC.
Collapse
Affiliation(s)
- Chiara Accolla
- Department of Ecology, Evolution, and Behavior, College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - Maxime Vaugeois
- Department of Ecology, Evolution, and Behavior, College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - Volker Grimm
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Adrian P Moore
- Department of Ecology, Evolution, and Behavior, College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| | - Pamela Rueda-Cediel
- Department of Ecology, Evolution, and Behavior, College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| | | | - Valery E Forbes
- Department of Ecology, Evolution, and Behavior, College of Biological Sciences, University of Minnesota, St Paul, Minnesota, USA
| |
Collapse
|
5
|
Hoondert RPJ, Ragas AMJ, Hendriks AJ. Simulating changes in polar bear subpopulation growth rate due to legacy persistent organic pollutants - Temporal and spatial trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142380. [PMID: 33254886 DOI: 10.1016/j.scitotenv.2020.142380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/18/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Although atmospheric concentrations of many conventional persistent organic pollutants (POPs) have decreased in the Arctic over the past few decades, levels of most POPs and mercury remain high since the 1990s or start to increase again in Arctic areas, especially polar bears. So far, studies generally focused on individual effects of POPs, and do not directly link POP concentrations in prey species to population-specific parameters. In this study we therefore aimed to estimate the effect of legacy POPs and mercury on population growth rate of nineteen polar bear subpopulations. We modelled population development in three scenarios, based on species sensitivity distributions (SSDs) derived for POPs based on ecotoxicity data for endothermic species. In the first scenario, ecotoxicity data for polar bears were based on the HC50 (the concentration at which 50% of the species is affected). The other two scenarios were based on the HC5 and HC95. Considerable variation in effects of POPs could be observed among the scenarios. In our intermediate scenario, we predicted subpopulation decline for ten out of 15 polar bear subpopulations. The estimated population growth rate was least reduced in Gulf of Boothia and Foxe Basin. On average, PCB concentrations in prey (in μg/g toxic equivalency (TEQ)) posed the largest threat to polar bear subpopulations, with negative modelled population growth rates for the majority of subpopulations. We did not find a correlation between modelled population changes and monitored population trends for the majority of chemical-subpopulation combinations. Modelled population growth rates increased over time, implying a decreasing effect of PCBs, DDTs, and mercury. Polar bear subpopulations are reportedly still declining in four out of the seven subpopulations for which sufficient long-term monitoring data is available, as reported by the IUCN-PBSG. This implies that other emerging pollutants or other anthropogenic stressors may affect polar bear subpopulations.
Collapse
Affiliation(s)
- Renske P J Hoondert
- Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University Nijmegen, the Netherlands.
| | - Ad M J Ragas
- Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University Nijmegen, the Netherlands; Faculty of Management, Science and Technology, Open University, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University Nijmegen, the Netherlands
| |
Collapse
|
6
|
Routti H, Atwood TC, Bechshoft T, Boltunov A, Ciesielski TM, Desforges JP, Dietz R, Gabrielsen GW, Jenssen BM, Letcher RJ, McKinney MA, Morris AD, Rigét FF, Sonne C, Styrishave B, Tartu S. State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:1063-1083. [PMID: 30901781 DOI: 10.1016/j.scitotenv.2019.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 05/03/2023]
Abstract
The polar bear (Ursus maritimus) is among the Arctic species exposed to the highest concentrations of long-range transported bioaccumulative contaminants, such as halogenated organic compounds and mercury. Contaminant exposure is considered to be one of the largest threats to polar bears after the loss of their Arctic sea ice habitat due to climate change. The aim of this review is to provide a comprehensive summary of current exposure, fate, and potential health effects of contaminants in polar bears from the circumpolar Arctic required by the Circumpolar Action Plan for polar bear conservation. Overall results suggest that legacy persistent organic pollutants (POPs) including polychlorinated biphenyls, chlordanes and perfluorooctane sulfonic acid (PFOS), followed by other perfluoroalkyl compounds (e.g. carboxylic acids, PFCAs) and brominated flame retardants, are still the main compounds in polar bears. Concentrations of several legacy POPs that have been banned for decades in most parts of the world have generally declined in polar bears. Current spatial trends of contaminants vary widely between compounds and recent studies suggest increased concentrations of both POPs and PFCAs in certain subpopulations. Correlative field studies, supported by in vitro studies, suggest that contaminant exposure disrupts circulating levels of thyroid hormones and lipid metabolism, and alters neurochemistry in polar bears. Additionally, field and in vitro studies and risk assessments indicate the potential for adverse impacts to polar bear immune functions from exposure to certain contaminants.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Todd C Atwood
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA
| | - Thea Bechshoft
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Andrei Boltunov
- Marine Mammal Research and Expedition Center, 36 Nahimovskiy pr., Moscow 117997, Russia
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | | | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Department of Arctic Technology, University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| | - Robert J Letcher
- Ecotoxicology and Wildlife Heath Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario K1A 0H3, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Ste.-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Adam D Morris
- Ecotoxicology and Wildlife Heath Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario K1A 0H3, Canada
| | - Frank F Rigét
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Bjarne Styrishave
- Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen OE, Denmark
| | - Sabrina Tartu
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| |
Collapse
|
7
|
Ciesielski TM, Sonne C, Ormbostad I, Aars J, Lie E, Bytingsvik J, Jenssen BM. Effects of biometrics, location and persistent organic pollutants on blood clinical-chemical parameters in polar bears (Ursus maritimus) from Svalbard, Norway. ENVIRONMENTAL RESEARCH 2018; 165:387-399. [PMID: 29860211 DOI: 10.1016/j.envres.2018.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/11/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
In the present study, blood clinical-chemical parameters (BCCPs) were analysed in 20 female and 18 male Svalbard polar bears (Ursus maritimus) captured in spring 2007. The aim was to study how age, body condition (BC), biometrics, plasma lipid content and geographical location may confound the relationship between persistent organic pollutants (POPs) including PCBs, HCB, chlordanes, DDTs, HCHs, mirex and OH-PCBs and the concentrations of 12 specific BCCPs (hematocrit [HCT], hemoglobin [HB], aspartate aminotransferase [ASAT], alanine aminotransferase [ALAT], γ-glutamyltransferase [GGT], creatine kinase [CK], triglycerides [TG], cholesterol [CHOL], high-density lipoprotein [HDL], creatinine (CREA], urea, potassium (K]), and to investigate if any of these BCCPs may be applied as potential biomarkers for POP exposure in polar bears. Initial PCA and O-PLS modelling showed that age, lipids, BC and geographical location (longitude and latitude) were important parameters explaining BCCPs in females. Following subsequent partial correlation analyses correcting for age and lipids, multiple POPs in females were still significantly correlated with HCT and HDL (all p < 0.05). In males, age, BM, BC and longitude were important parameters explaining BCCPs. Following partial correlation analyses correcting for age, biometrics, lipids and longitude in males, multiple POPs were significantly correlated with HCT, ASAT, GGT and CHOL (all p < 0.05). In conclusion, several confounding parameters has to be taken into account when studying the relations between BCCPs and POPs in polar bears. When correcting for these, in particular HCT may be used as a simple cost-efficient biomarker of POP exposure in polar bears. Furthermore, decreasing HDL concentrations and increasing CHOL concentration with increasing POP concentrations may indicate responses related to increased risk of cardiovascular disease. We therefore suggest to further study POP exposure and lipidome response to increase knowledge of the risk of cardiometabolic syndrome in polar bears.
Collapse
Affiliation(s)
- Tomasz Maciej Ciesielski
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, POBox 358, DK-4000 Roskilde, Denmark.
| | - Ingunn Ormbostad
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Elisabeth Lie
- Norwegian Institute for Water research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway.
| | - Jenny Bytingsvik
- Akvaplan-niva AS, Fram Centre - High North Research Centre for Climate and the Environment, Hjalmar Johansens Gate 14, 9007 Tromsø, Norway.
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, POBox 358, DK-4000 Roskilde, Denmark; Department of Arctic Technology, The University Centre in Svarbard, POBox 156, NO-9171 Longyearbyen, Norway.
| |
Collapse
|
8
|
Sonne C, Letcher RJ, Jenssen BM, Desforges JP, Eulaers I, Andersen-Ranberg E, Gustavson K, Styrishave B, Dietz R. A veterinary perspective on One Health in the Arctic. Acta Vet Scand 2017; 59:84. [PMID: 29246165 PMCID: PMC5732494 DOI: 10.1186/s13028-017-0353-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/08/2017] [Indexed: 11/22/2022] Open
Abstract
Exposure to long-range transported industrial chemicals, climate change and diseases is posing a risk to the overall health and populations of Arctic wildlife. Since local communities are relying on the same marine food web as marine mammals in the Arctic, it requires a One Health approach to understand the holistic ecosystem health including that of humans. Here we collect and identify gaps in the current knowledge of health in the Arctic and present the veterinary perspective of One Health and ecosystem dynamics. The review shows that exposure to persistent organic pollutants (POPs) is having multiple organ-system effects across taxa, including impacts on neuroendocrine disruption, immune suppression and decreased bone density among others. Furthermore, the warming Arctic climate is suspected to influence abiotic and biotic long-range transport and exposure pathways of contaminants to the Arctic resulting in increases in POP exposure of both wildlife and human populations. Exposure to vector-borne diseases and zoonoses may increase as well through range expansion and introduction of invasive species. It will be important in the future to investigate the effects of these multiple stressors on wildlife and local people to better predict the individual-level health risks. It is within this framework that One Health approaches offer promising opportunities to survey and pinpoint environmental changes that have effects on wildlife and human health.
Collapse
Affiliation(s)
- Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Robert James Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3 Canada
| | - Bjørn Munro Jenssen
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Arctic Technology, The University Centre in Svalbard, PO Box 156, 9171 Longyearbyen, Norway
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Igor Eulaers
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Emilie Andersen-Ranberg
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Kim Gustavson
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Bjarne Styrishave
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| |
Collapse
|
9
|
Sonne C, Torjesen PA, Fuglei E, Muir DCG, Jenssen BM, Jørgensen EH, Dietz R, Ahlstrøm Ø. Exposure to Persistent Organic Pollutants Reduces Testosterone Concentrations and Affects Sperm Viability and Morphology during the Mating Peak Period in a Controlled Experiment on Farmed Arctic Foxes (Vulpes lagopus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4673-4680. [PMID: 28301147 DOI: 10.1021/acs.est.7b00289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigated testosterone production and semen parameters in farmed Arctic foxes by dietary exposure to persistent organic pollutants (POPs) for 22 months. Eight male foxes were given a diet of POP-contaminated minke whale blubber, whereas their eight male siblings were fed a control diet containing pig fat as the main fat source. The minke whale-based feed contained a ∑POPs concentration of 802 ng/g ww, whereas the pig-based feed contained ∑POPs of 24 ng/g ww. At the end of the experiment, ∑POP concentrations in adipose tissue were 8856 ± 2535 ng/g ww in the exposed foxes and 1264 ± 539 ng/g ww in the control foxes. The exposed group had 45-64% significantly lower testosterone concentrations during their peak mating season compared to the controls (p ≤ 0.05), while the number of dead and defect sperm cells was 27% (p = 0.07) and 15% (p = 0.33) higher in the exposed group. Similar effects during the mating season in wild Arctic foxes may affect mating behavior and reproductive success. On the basis of these results, we recommend testosterone as a sensitive biomarker of POP exposure and that seasonal patterns are investigated when interpreting putative endocrine disruption in Arctic wildlife with potential population-level effects.
Collapse
Affiliation(s)
- Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology , Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Peter A Torjesen
- Department of Endocrinology, Hormone Laboratory , Oslo University Hospital, NO-0514 Oslo, Norway
| | - Eva Fuglei
- Norwegian Polar Institute , Fram Centre, NO-9296 Tromsø, Norway
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada , Burlington, Ontario, Canada L7S 1A1
| | - Bjørn Munro Jenssen
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology , Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
- Department of Biology, Norwegian University of Science and Technology , NO-7491 Trondheim, Norway
- Department of Arctic Technology, The University Centre in Svarbard , P.O. Box 156, NO-9171 Longyearbyen, Norway
| | - Even H Jørgensen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway , NO-9037 Tromsø, Norway
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology , Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Øystein Ahlstrøm
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences , NO-1433 Ås, Norway
| |
Collapse
|