1
|
Nan M, Wang JB, Siokis M, St. Leger RJ. Latitudinal Clines in Climate and Sleep Patterns Shape Disease Outcomes in Drosophila melanogaster Infected by Metarhizium anisopliae. Ecol Evol 2025; 15:e71047. [PMID: 40027417 PMCID: PMC11868735 DOI: 10.1002/ece3.71047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
Major latitudinal clines have been observed in Drosophila melanogaster, a human commensal that originated in tropical Africa and has subsequently dispersed globally to colonize temperate habitats. However, despite the crucial role pathogens play in species distribution, our understanding of how geographical factors influence disease susceptibility remains limited. This investigation explored the effects of latitudinal clines and biomes on disease resistance using the common fly pathogen Metarhizium anisopliae and 43 global Drosophila melanogaster populations. The findings revealed correlations between disease resistance and latitudinal gradients of sleep duration, temperature, and humidity. Although enhanced defenses may be driven by fungal diversity at tropical latitudes, the most disease-resistant tropical males also showed the highest susceptibility to desiccation. This suggests potential trade-offs between abiotic stress resistance, necessary for survival in temperate habitats, and disease resistance. Furthermore, the study uncovered interactions between sex, mating status, sleep, and abiotic stresses, affecting disease resistance. Notably, longer-sleeping males and virgin flies survived infections longer, with additional daytime sleep post-infection being protective, particularly in the most resistant fly lines. These observations support the hypothesis that sleep and disease defense are intertwined traits linked to organismal fitness and subject to joint clinal evolution.
Collapse
Affiliation(s)
- Mintong Nan
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Jonathan B. Wang
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Michail Siokis
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | | |
Collapse
|
2
|
Gonzalez VH, Herbison N, Robles Perez G, Panganiban T, Haefner L, Tscheulin T, Petanidou T, Hranitz J. Bees display limited acclimation capacity for heat tolerance. Biol Open 2024; 13:bio060179. [PMID: 38427330 PMCID: PMC10979511 DOI: 10.1242/bio.060179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024] Open
Abstract
Bees are essential pollinators and understanding their ability to cope with extreme temperature changes is crucial for predicting their resilience to climate change, but studies are limited. We measured the response of the critical thermal maximum (CTMax) to short-term acclimation in foragers of six bee species from the Greek island of Lesvos, which differ in body size, nesting habit, and level of sociality. We calculated the acclimation response ratio as a metric to assess acclimation capacity and tested whether bees' acclimation capacity was influenced by body size and/or CTMax. We also assessed whether CTMax increases following acute heat exposure simulating a heat wave. Average estimate of CTMax varied among species and increased with body size but did not significantly shift in response to acclimation treatment except in the sweat bee Lasioglossum malachurum. Acclimation capacity averaged 9% among species and it was not significantly associated with body size or CTMax. Similarly, the average CTMax did not increase following acute heat exposure. These results indicate that bees might have limited capacity to enhance heat tolerance via acclimation or in response to prior heat exposure, rendering them physiologically sensitive to rapid temperature changes during extreme weather events. These findings reinforce the idea that insects, like other ectotherms, generally express weak plasticity in CTMax, underscoring the critical role of behavioral thermoregulation for avoidance of extreme temperatures. Conserving and restoring native vegetation can provide bees temporary thermal refuges during extreme weather events.
Collapse
Affiliation(s)
- Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Natalie Herbison
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | | | - Trisha Panganiban
- Department of Biological Sciences, California State University, Los Angeles, CA, 35229, USA
| | - Laura Haefner
- Biology Department, Waynesburg University, PA, 47243, USA
| | - Thomas Tscheulin
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, University Hill, Mytilene, 81100, Greece
| | - Theodora Petanidou
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, University Hill, Mytilene, 81100, Greece
| | - John Hranitz
- Department of Biology, Commonwealth University of Pennsylvania, Bloomsburg, 17815 PA, USA
| |
Collapse
|
3
|
van Heerwaarden B, Sgrò C, Kellermann VM. Threshold shifts and developmental temperature impact trade-offs between tolerance and plasticity. Proc Biol Sci 2024; 291:20232700. [PMID: 38320612 PMCID: PMC10846935 DOI: 10.1098/rspb.2023.2700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Mounting evidence suggests that ectotherms are already living close to their upper physiological thermal limits. Phenotypic plasticity has been proposed to reduce the impact of climate change in the short-term providing time for adaptation, but the tolerance-plasticity trade-off hypothesis predicts organisms with higher tolerance have lower plasticity. Empirical evidence is mixed, which may be driven by methodological issues such as statistical artefacts, nonlinear reaction norms, threshold shifts or selection. Here, we examine whether threshold shifts (organisms with higher tolerance require stronger treatments to induce maximum plastic responses) influence tolerance-plasticity trade-offs in hardening capacity for desiccation tolerance and critical thermal maximum (CTMAX) across Drosophila species with varying distributions/sensitivity to desiccation/heat stress. We found evidence for threshold shifts in both traits; species with higher heat/desiccation tolerance required longer hardening treatments to induce maximum hardening responses. Species with higher heat tolerance also showed reductions in hardening capacity at higher developmental acclimation temperatures. Trade-off patterns differed depending on the hardening treatment used and the developmental temperature flies were exposed to. Based on these findings, studies that do not consider threshold shifts, or that estimate plasticity under a narrow set of environments, will have a limited ability to assess trade-off patterns and differences in plasticity across species/populations more broadly.
Collapse
Affiliation(s)
| | - Carla Sgrò
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Vanessa M. Kellermann
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
- School of Agriculture Biomedicine and Environment, La Trobe University, Bundoora 3086, Victoria, Australia
| |
Collapse
|
4
|
Ostwald MM, Tretter S, Buellesbach J, Calixto JM, Fewell JH, Gadau J, Baudier KM. Body mass and cuticular hydrocarbon profiles, but not queen number, underlie worker desiccation resistance in a facultatively polygynous harvester ant (Pogonomyrmex californicus). J Comp Physiol B 2023; 193:261-269. [PMID: 37120421 DOI: 10.1007/s00360-023-01488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/17/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
As small-bodied terrestrial organisms, insects face severe desiccation risks in arid environments, and these risks are increasing under climate change. Here, we investigate the physiological, chemical, and behavioral mechanisms by which harvester ants, one of the most abundant arid-adapted insect groups, cope with desiccating environmental conditions. We aimed to understand how body size, cuticular hydrocarbon profiles, and queen number impact worker desiccation resistance in the facultatively polygynous harvester ant, Pogonomyrmex californicus. We measured survival at 0% humidity of field-collected worker ants sourced from three closely situated populations within a semi-arid region of southern California. These populations vary in queen number, with one population dominated by multi-queen colonies (primary polygyny), one population dominated by single-queen colonies, and one containing an even mix of single- and multi-queen colonies. We found no effect of population on worker survival in desiccation assays, suggesting that queen number does not influence colony desiccation resistance. Across populations, however, body mass and cuticular hydrocarbon profiles significantly predicted desiccation resistance. Larger-bodied workers survived longer in desiccation assays, emphasizing the importance of reduced surface area-to-volume ratios in maintaining water balance. Additionally, we observed a positive relationship between desiccation resistance and the abundance of n-alkanes, supporting previous work that has linked these high-melting point compounds to improved body water conservation. Together, these results contribute to an emerging model explaining the physiological mechanisms of desiccation resistance in insects.
Collapse
Affiliation(s)
| | - Sandra Tretter
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jan Buellesbach
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | | | - Jürgen Gadau
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Kaitlin M Baudier
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
5
|
Horváth V, Guirao-Rico S, Salces-Ortiz J, Rech GE, Green L, Aprea E, Rodeghiero M, Anfora G, González J. Gene expression differences consistent with water loss reduction underlie desiccation tolerance of natural Drosophila populations. BMC Biol 2023; 21:35. [PMID: 36797754 PMCID: PMC9933328 DOI: 10.1186/s12915-023-01530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Climate change is one of the main factors shaping the distribution and biodiversity of organisms, among others by greatly altering water availability, thus exposing species and ecosystems to harsh desiccation conditions. However, most of the studies so far have focused on the effects of increased temperature. Integrating transcriptomics and physiology is key to advancing our knowledge on how species cope with desiccation stress, and these studies are still best accomplished in model organisms. RESULTS Here, we characterized the natural variation of European D. melanogaster populations across climate zones and found that strains from arid regions were similar or more tolerant to desiccation compared with strains from temperate regions. Tolerant and sensitive strains differed not only in their transcriptomic response to stress but also in their basal expression levels. We further showed that gene expression changes in tolerant strains correlated with their physiological response to desiccation stress and with their cuticular hydrocarbon composition, and functionally validated three of the candidate genes identified. Transposable elements, which are known to influence stress response across organisms, were not found to be enriched nearby differentially expressed genes. Finally, we identified several tRNA-derived small RNA fragments that differentially targeted genes in response to desiccation stress. CONCLUSIONS Overall, our results showed that basal gene expression differences across individuals should be analyzed if we are to understand the genetic basis of differential stress survival. Moreover, tRNA-derived small RNA fragments appear to be relevant across stress responses and allow for the identification of stress-response genes not detected at the transcriptional level.
Collapse
Affiliation(s)
- Vivien Horváth
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | | | | | - Gabriel E Rech
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - Llewellyn Green
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - Eugenio Aprea
- Agriculture Food Environment Centre (C3A), University of Trento, San Michele All'adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige (TN), Italy
| | - Mirco Rodeghiero
- Agriculture Food Environment Centre (C3A), University of Trento, San Michele All'adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige (TN), Italy
| | - Gianfranco Anfora
- Agriculture Food Environment Centre (C3A), University of Trento, San Michele All'adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'adige (TN), Italy
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain.
| |
Collapse
|
6
|
Benoit JB, McCluney KE, DeGennaro MJ, Dow JAT. Dehydration Dynamics in Terrestrial Arthropods: From Water Sensing to Trophic Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:129-149. [PMID: 36270273 PMCID: PMC9936378 DOI: 10.1146/annurev-ento-120120-091609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the transition from water to land, maintaining water balance has been a key challenge for terrestrial arthropods. We explore factors that allow terrestrial arthropods to survive within a variably dry world and how they shape ecological interactions. Detection of water and hydration is critical for maintaining water content. Efficient regulation of internal water content is accomplished by excretory and osmoregulatory systems that balance water intake and loss. Biochemical and physiological responses are necessary as water content declines to prevent and repair the damage that occurs during dehydration. Desiccation avoidance can occur seasonally or daily via a move to more favorable areas. Dehydration and its avoidance have ecological impacts that extend beyond a single species to alter trophic interactions. As climate changes, evolutionary and ecological processes will be critical to species survival during drought.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Kevin E McCluney
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA;
| | - Matthew J DeGennaro
- Department of Biological Sciences, Florida International University and Biomolecular Sciences Institute, Miami, Florida, USA;
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, United Kingdom;
| |
Collapse
|
7
|
Chakraborty A, Walter GM, Monro K, Alves AN, Mirth CK, Sgrò CM. Within-population variation in body size plasticity in response to combined nutritional and thermal stress is partially independent from variation in development time. J Evol Biol 2023; 36:264-279. [PMID: 36208146 PMCID: PMC10092444 DOI: 10.1111/jeb.14099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/11/2023]
Abstract
Ongoing climate change has forced animals to face changing thermal and nutritional environments. Animals can adjust to such combinations of stressors via plasticity. Body size is a key trait influencing organismal fitness, and plasticity in this trait in response to nutritional and thermal conditions varies among genetically diverse, locally adapted populations. The standing genetic variation within a population can also influence the extent of body size plasticity. We generated near-isogenic lines from a newly collected population of Drosophila melanogaster at the mid-point of east coast Australia and assayed body size for all lines in combinations of thermal and nutritional stress. We found that isogenic lines showed distinct underlying patterns of body size plasticity in response to temperature and nutrition that were often different from the overall population response. We then tested whether plasticity in development time could explain, and therefore regulate, variation in body size to these combinations of environmental conditions. We selected five genotypes that showed the greatest variation in response to combined thermal and nutritional stress and assessed the correlation between response of developmental time and body size. While we found significant genetic variation in development time plasticity, it was a poor predictor of body size among genotypes. Our results therefore suggest that multiple developmental pathways could generate genetic variation in body size plasticity. Our study emphasizes the need to better understand genetic variation in plasticity within a population, which will help determine the potential for populations to adapt to ongoing environmental change.
Collapse
Affiliation(s)
| | - Greg M Walter
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Keyne Monro
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - André N Alves
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Wang Z, Receveur JP, Pu J, Cong H, Richards C, Liang M, Chung H. Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons. eLife 2022; 11:e80859. [PMID: 36473178 PMCID: PMC9757832 DOI: 10.7554/elife.80859] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Maintaining water balance is a universal challenge for organisms living in terrestrial environments, especially for insects, which have essential roles in our ecosystem. Although the high surface area to volume ratio in insects makes them vulnerable to water loss, insects have evolved different levels of desiccation resistance to adapt to diverse environments. To withstand desiccation, insects use a lipid layer called cuticular hydrocarbons (CHCs) to reduce water evaporation from the body surface. It has long been hypothesized that the water-proofing capability of this CHC layer, which can confer different levels of desiccation resistance, depends on its chemical composition. However, it is unknown which CHC components are important contributors to desiccation resistance and how these components can determine differences in desiccation resistance. In this study, we used machine-learning algorithms, correlation analyses, and synthetic CHCs to investigate how different CHC components affect desiccation resistance in 50 Drosophila and related species. We showed that desiccation resistance differences across these species can be largely explained by variation in CHC composition. In particular, length variation in a subset of CHCs, the methyl-branched CHCs (mbCHCs), is a key determinant of desiccation resistance. There is also a significant correlation between the evolution of longer mbCHCs and higher desiccation resistance in these species. Given that CHCs are almost ubiquitous in insects, we suggest that evolutionary changes in insect CHC components can be a general mechanism for the evolution of desiccation resistance and adaptation to diverse and changing environments.
Collapse
Affiliation(s)
- Zinan Wang
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- Ecology, Evolution, and Behavior Program, Michigan State UniversityEast LansingUnited States
| | - Joseph P Receveur
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- Ecology, Evolution, and Behavior Program, Michigan State UniversityEast LansingUnited States
- Institute for Genome Sciences, University of MarylandBaltimoreUnited States
| | - Jian Pu
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- College of Agriculture, Sichuan Agricultural UniversitySichuanChina
| | - Haosu Cong
- Department of Entomology, Michigan State UniversityEast LansingUnited States
| | - Cole Richards
- Department of Entomology, Michigan State UniversityEast LansingUnited States
| | - Muxuan Liang
- Department of Biostatistics, University of FloridaGainesvilleUnited States
| | - Henry Chung
- Department of Entomology, Michigan State UniversityEast LansingUnited States
- Ecology, Evolution, and Behavior Program, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
9
|
Huisamen EJ, Karsten M, Terblanche JS. Are Signals of Local Environmental Adaptation Diluted by Laboratory Culture? CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100048. [PMID: 36683956 PMCID: PMC9846451 DOI: 10.1016/j.cris.2022.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
Insects have the ability to readily adapt to changes in environmental conditions, however the strength of local environmental adaptation signals under divergent conditions and the occurrence of trait inertia after relaxation of selection, remains poorly understood, especially for traits of climate stress resistance (CSR) and their phenotypic plasticity. The strength of environmental adaptation signals depend on several selection pressures present in the local environment, while trait inertia often occurs when there is a weakening or removal of a source of selection. Here, using Drosophila melanogaster, we asked whether signals of adaptation in CSR traits (critical thermal limits, heat and chill survival and, desiccation and starvation resistance) persist after exposure to laboratory culture for different durations (two vs. ten generations) across four climatically distinct populations. We show that culture duration has large effects on CSR traits and can both amplify or dilute signals of local adaptation. Effects were however dependent upon interactions between the source population, acclimation (adult acclimation at either 18 °C, 23 °C or 28 °C) conditions and the sex of the flies. Trait plasticity is markedly affected by the interaction between the source population, the specific acclimation conditions employed, and the duration in the laboratory. Therefore, a complex matrix of dynamic CSR trait responses is shown in space and time. Given these strong interaction effects, 'snapshot' estimates of environmental adaptation can result in misleading conclusions about the fitness consequences of climate variability.
Collapse
|
10
|
Concerted evolution of metabolic rate, economics of mating, ecology, and pace of life across seed beetles. Proc Natl Acad Sci U S A 2022; 119:e2205564119. [PMID: 35943983 PMCID: PMC9388118 DOI: 10.1073/pnas.2205564119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coevolution between females and males has led to remarkable differences between the sexes but has taken very different routes, even in closely related animal species, for reasons that are not well understood. We studied the physiological processes that convert resources into offspring (metabolism) in males and females of several related beetle species. We found that ecological factors dictate metabolic rate, which, in turn, have predictable direct and indirect effects on male–female coevolution. Our findings suggest that a complete understanding of differences between the sexes requires an understanding of how ecology affects metabolic processes and how these differ in the sexes. Male–female coevolution has taken different paths among closely related species, but our understanding of the factors that govern its direction is limited. While it is clear that ecological factors, life history, and the economics of reproduction are connected, the divergent links are often obscure. We propose that a complete understanding requires the conceptual integration of metabolic phenotypes. Metabolic rate, a nexus of life history evolution, is constrained by ecological factors and may exert important direct and indirect effects on the evolution of sexual dimorphism. We performed standardized experiments in 12 seed beetle species to gain a rich set of sex-specific measures of metabolic phenotypes, life history traits, and the economics of mating and analyzed our multivariate data using phylogenetic comparative methods. Resting metabolic rate (RMR) showed extensive evolution and evolved more rapidly in males than in females. The evolution of RMR was tightly coupled with a suite of life history traits, describing a pace-of-life syndrome (POLS), with indirect effects on the economics of mating. As predicted, high resource competition was associated with a low RMR and a slow POLS. The cost of mating showed sexually antagonistic coevolution, a hallmark of sexual conflict. The sex-specific costs and benefits of mating were predictably related to ecology, primarily through the evolution of male ejaculate size. Overall, our results support the tenet that resource competition affects metabolic processes that, in turn, have predictable effects on both life history evolution and reproduction, such that ecology shows both direct and indirect effects on male–female coevolution.
Collapse
|
11
|
Walter GM, Clark J, Cristaudo A, Terranova D, Nevado B, Catara S, Paunov M, Velikova V, Filatov D, Cozzolino S, Hiscock SJ, Bridle JR. Adaptive divergence generates distinct plastic responses in two closely related Senecio species. Evolution 2022; 76:1229-1245. [PMID: 35344205 PMCID: PMC9322604 DOI: 10.1111/evo.14478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/18/2022] [Indexed: 01/22/2023]
Abstract
The evolution of plastic responses to external cues allows species to maintain fitness in response to the environmental variations they regularly experience. However, it remains unclear how plasticity evolves during adaptation. To test whether distinct patterns of plasticity are associated with adaptive divergence, we quantified plasticity for two closely related but ecologically divergent Sicilian daisy species (Senecio, Asteraceae). We sampled 40 representative genotypes of each species from their native range on Mt. Etna and then reciprocally transplanted multiple clones of each genotype into four field sites along an elevational gradient that included the native elevational range of each species, and two intermediate elevations. At each elevation, we quantified survival and measured leaf traits that included investment (specific leaf area), morphology, chlorophyll fluorescence, pigment content, and gene expression. Traits and differentially expressed genes that changed with elevation in one species often showed little changes in the other species, or changed in the opposite direction. As evidence of adaptive divergence, both species performed better at their native site and better than the species from the other habitat. Adaptive divergence is, therefore, associated with the evolution of distinct plastic responses to environmental variation, despite these two species sharing a recent common ancestor.
Collapse
Affiliation(s)
- Greg M. Walter
- School of Biological SciencesUniversity of BristolUK
- School of Biological SciencesMonash UniversityMelbourneAustralia
| | - James Clark
- School of Biological SciencesUniversity of BristolUK
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Antonia Cristaudo
- Department of Biological, Geological, and Environmental SciencesUniversity of CataniaCataniaItaly
| | - Delia Terranova
- Department of Biological, Geological, and Environmental SciencesUniversity of CataniaCataniaItaly
| | - Bruno Nevado
- Department of Plant SciencesUniversity of OxfordOxfordUK
- Center of Ecology, Evolution, and Environmental ChangesUniversidade de LisboaLisboaPortugal
| | - Stefania Catara
- Department of Biological, Geological, and Environmental SciencesUniversity of CataniaCataniaItaly
| | - Momchil Paunov
- Faculty of BiologySofia University St. Kliment OhridskiSofiaBulgaria
| | - Violeta Velikova
- Bulgarian Academy of Sciences, Institute of Plant Physiology and GeneticsSofiaBulgaria
| | - Dmitry Filatov
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | | | | | - Jon R. Bridle
- School of Biological SciencesUniversity of BristolUK
- Department of Genetics, Evolution, and EnvironmentUniversity College LondonLondonUK
| |
Collapse
|
12
|
Keosentse O, Mutamiswa R, Nyamukondiwa C. Interaction effects of desiccation and temperature stress resistance across Spodoptera frugiperda (Lepidoptera, Noctuidae) developmental stages. NEOBIOTA 2022. [DOI: 10.3897/neobiota.73.76011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Insects encounter multiple overlapping physiologically challenging environmental stressors in their habitats. As such, the ability of insects to withstand these stressors singly or interactively is fundamental in population persistence. Following its invasion in Africa, Spodoptera frugiperda (Lepidoptera: Noctuidae) has successfully established and spread in most parts of the continent. However, the mechanisms behind its successful survival across arid and semi-arid African environments are relatively unknown. Here, we investigated the water balance of S. frugiperda across its developmental stages. Given the relationships between desiccation stress, temperature stress and other life history traits in arid ecosystems, we also measured interaction effects across metrics of these traits. Specifically, we measured basal body water content (BWC), water loss rates (WLRs) and the effects of desiccation pre-treatment on critical thermal minimum (CTmin), critical thermal maximum (CTmax) and fecundity. Body water content and WLR increased with age across larval instars. However, the effects of desiccation environments on WLRs were more dramatic for 5th and 6th larval instars. The 5th and 6th instars exhibited highest BWC and magnitude of WLRs plastic responses following desiccation treatment. The effects of desiccation pre-treatment on temperature tolerance were less apparent, only significantly improving CTmin in 2nd and 3rd larval instars and reducing CTmax in 5th instars. In addition, desiccation pre-treatment showed no significant effects on fecundity. These results show that water balance traits differ with developmental stage, while the effects of desiccation pre-treatment were more dramatic and inconclusive. The differential desiccation resistance, high proportional BWC and no desiccation pre-treatment effects on fecundity may help the species survive in arid and semi-arid environments. This information provides insights into understanding S. frugiperda survival under desiccating arid and semi-arid tropical environments and is significant in predicting pest outbreaks.
Collapse
|
13
|
O'Brien EK, Walter GM, Bridle J. Environmental variation and biotic interactions limit adaptation at ecological margins: lessons from rainforest Drosophila and European butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210017. [PMID: 35184592 PMCID: PMC8859522 DOI: 10.1098/rstb.2021.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022] Open
Abstract
Models of local adaptation to spatially varying selection predict that maximum rates of evolution are determined by the interaction between increased adaptive potential owing to increased genetic variation, and the cost genetic variation brings by reducing population fitness. We discuss existing and new results from our laboratory assays and field transplants of rainforest Drosophila and UK butterflies along environmental gradients, which try to test these predictions in natural populations. Our data suggest that: (i) local adaptation along ecological gradients is not consistently observed in time and space, especially where biotic and abiotic interactions affect both gradient steepness and genetic variation in fitness; (ii) genetic variation in fitness observed in the laboratory is only sometimes visible to selection in the field, suggesting that demographic costs can remain high without increasing adaptive potential; and (iii) antagonistic interactions between species reduce local productivity, especially at ecological margins. Such antagonistic interactions steepen gradients and may increase the cost of adaptation by increasing its dimensionality. However, where biotic interactions do evolve, rapid range expansion can follow. Future research should test how the environmental sensitivity of genotypes determines their ecological exposure, and its effects on genetic variation in fitness, to predict the probability of evolutionary rescue at ecological margins. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Eleanor K. O'Brien
- School of Biological Sciences, University of Bristol, Bristol, UK
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Greg M. Walter
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
14
|
Hoffmann AA, Bridle J. The dangers of irreversibility in an age of increased uncertainty: revisiting plasticity in invertebrates. OIKOS 2021. [DOI: 10.1111/oik.08715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ary A. Hoffmann
- School of BioSciences, Bio21 Inst., The Univ. of Melbourne Vic Australia
| | - Jon Bridle
- Dept of Genetics, Evolution and Environment, Univ. College London UK
| |
Collapse
|
15
|
Ben-Yosef M, Verykouki E, Altman Y, Nemni-Lavi E, Papadopoulos NT, Nestel D. Effects of Thermal Acclimation on the Tolerance of Bactrocera zonata (Diptera: Tephritidae) to Hydric Stress. Front Physiol 2021; 12:686424. [PMID: 34539427 PMCID: PMC8446596 DOI: 10.3389/fphys.2021.686424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
Insects, similarly to other small terrestrial invertebrates, are particularly susceptible to climatic stress. Physiological adjustments to cope with the environment (i.e., acclimation) together with genetic makeup eventually determine the tolerance of a species to climatic extremes, and constrain its distribution. Temperature and desiccation resistance in insects are both conditioned by acclimation and may be interconnected, particularly for species inhabiting xeric environments. We determined the effect of temperature acclimation on desiccation resistance of the peach fruit fly (Bactrocera zonata, Tephritidae) – an invasive, polyphagous pest, currently spreading through both xeric and mesic environments in Africa and the Eurasian continent. Following acclimation at three constant temperatures (20, 25, and 30°C), the survival of adult flies deprived of food and water was monitored in extreme dry and humid conditions (<10 and >90% relative humidity, respectively). We found that flies acclimated at higher temperatures were significantly heavier, and contained more lipids and protein. Acclimation temperature significantly and similarly affected the survival of males and females at both high and low humidity conditions. In both cases, flies maintained at 30°C survived longer compared to 20 and 25°C – habituated counterparts. Regardless of the effect of acclimation temperature on survival, overall life expectancy was significantly shortened when flies were assayed under desiccating conditions. Additionally, our experiments indicate no significant difference in survival patterns between males and females, and that acclimation temperature had similar effects after both short (5–10 days) and long (11–20 days) acclimation periods. We conclude that acclimation at 30°C prolongs the survival of B. zonata, regardless of ambient humidity levels. Temperature probably affected survival through modulating feeding and metabolism, allowing for accumulation of larger energetic reserves, which in turn, promoted a greater ability to resist starvation, and possibly desiccation as well. Our study set the grounds for understanding the phenotypic plasticity of B. zonata from the hydric perspective, and for further evaluating the invasion potential of this pest.
Collapse
Affiliation(s)
- Michael Ben-Yosef
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| | - Eleni Verykouki
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Yam Altman
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| | - Esther Nemni-Lavi
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - David Nestel
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
16
|
Wenda C, Xing S, Nakamura A, Bonebrake TC. Morphological and behavioural differences facilitate tropical butterfly persistence in variable environments. J Anim Ecol 2021; 90:2888-2900. [PMID: 34529271 DOI: 10.1111/1365-2656.13589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/30/2021] [Indexed: 01/27/2023]
Abstract
The thermal biology of ectotherms largely determines their abundance and distributions. In general, tropical species inhabiting warm and stable thermal environments tend to have low tolerance to cold and variable environments, which may restrict their expansion into temperate climates. However, the distribution of some tropical species does extend into cooler areas such as tropical borders and high elevation tropical mountains. Behavioural and morphological differences may therefore play important roles in facilitating tropical species to cope with cold and variable climates at tropical edges. We used field-validated biophysical models to estimate body temperatures of butterflies across elevational gradients at three sites in southern China and assessed the contribution of behavioural and morphological differences in facilitating their persistence in tropical and temperate climates. We investigated the effects of temperature on the activity of 4,844 individuals of 144 butterfly species along thermal gradients and tested whether species of different climatic affinities-tropical and widespread (distributed in both temperate and tropical regions)-differed in their thermoregulatory strategies (i.e. basking). In addition, we tested whether thermally related morphology or the strength of solar radiation (when butterflies were recorded) was related to such differences. We found that activities of tropical species were restricted (low abundance) at low air temperatures compared to widespread species. Active tropical species were also more likely to bask at cooler body temperatures than widespread species. Heat gain from behavioural thermoregulation was higher for tropical species (when accounting for species abundance), and heat gain correlated with larger thorax widths but not with measured solar radiation. Our results indicate that physiological intolerance to cold temperatures in tropical species may be compensated through behavioural and morphological responses in thermoregulation in variable subtropical environments. Increasing climatic variability with climate change may render tropical species more vulnerable to cold weather extremes compared to widespread species that are more physiologically suited to variable environments.
Collapse
Affiliation(s)
- Cheng Wenda
- Division for Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong S.A.R, China
| | - Shuang Xing
- Division for Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong S.A.R, China.,Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Akihiro Nakamura
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Timothy C Bonebrake
- Division for Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong S.A.R, China
| |
Collapse
|
17
|
Aggarwal DD, Rybnikov S, Sapielkin S, Rashkovetsky E, Frenkel Z, Singh M, Michalak P, Korol AB. Seasonal changes in recombination characteristics in a natural population of Drosophila melanogaster. Heredity (Edinb) 2021; 127:278-287. [PMID: 34163036 PMCID: PMC8405755 DOI: 10.1038/s41437-021-00449-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Environmental seasonality is a potent evolutionary force, capable of maintaining polymorphism, promoting phenotypic plasticity and causing bet-hedging. In Drosophila, environmental seasonality has been reported to affect life-history traits, tolerance to abiotic stressors and immunity. Oscillations in frequencies of alleles underlying fitness-related traits were also documented alongside SNPs across the genome. Here, we test for seasonal changes in two recombination characteristics, crossover rate and crossover interference, in a natural D. melanogaster population from India using morphological markers of the three major chromosomes. We show that winter flies, collected after the dry season, have significantly higher desiccation tolerance than their autumn counterparts. This difference proved to hold also for hybrids with three independent marker stocks, suggesting its genetic rather than plastic nature. Significant between-season changes are documented for crossover rate (in 9 of 13 studied intervals) and crossover interference (in four of eight studied pairs of intervals); both single and double crossovers were usually more frequent in the winter cohort. The winter flies also display weaker plasticity of both recombination characteristics to desiccation. We ascribe the observed differences to indirect selection on recombination caused by directional selection on desiccation tolerance. Our findings suggest that changes in recombination characteristics can arise even after a short period of seasonal adaptation (~8-10 generations).
Collapse
Affiliation(s)
- Dau Dayal Aggarwal
- Department of Zoology, Banaras Hindu University, Varanasi, India.
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.
| | - Sviatoslav Rybnikov
- Institute of Evolution, University of Haifa, Haifa, Israel.
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.
| | - Shaul Sapielkin
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | | | - Zeev Frenkel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Manvender Singh
- Department of Biotechnology, UIET, MD University, Rohtak, India
| | - Pawel Michalak
- Institute of Evolution, University of Haifa, Haifa, Israel
- Edward Via College of Osteopathic Medicine, Monroe, LA, USA
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, Haifa, Israel.
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.
| |
Collapse
|
18
|
Tarusikirwa VL, Cuthbert RN, Mutamiswa R, Gotcha N, Nyamukondiwa C. Water Balance and Desiccation Tolerance of the Invasive South American Tomato Pinworm. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1743-1751. [PMID: 34231839 DOI: 10.1093/jee/toab128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 06/13/2023]
Abstract
Temperature and dehydration stress are two major co-occurring environmental stressors threatening the physiology, biochemistry, and ecology of insects. As such, understanding adaptive responses to desiccation stress is critical for predicting climate change impacts, particularly its influence on insect invasions. Here, we assessed water balance and desiccation resistance of the invasive Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae), and infer how eco-physiology shapes its niche. We measured basal body water and lipid content, water loss rates (WLRs), and desiccation resistance in larvae (second to fourth instars) and adults. Body -water, -lipid, and WLRs significantly varied across life stages. Second instars recorded the lowest while fourth instars exhibited the highest body water and lipid content. Adult body water and lipid content were higher than second and third instars and lower than fourth instars while proportion of body water and lipid contents were highest in adults and second larval instars respectively. Water loss rates were significantly highest in fourth-instar larvae compared to other life stages, but differences among stages were less apparent at longer exposure durations (48 h). Desiccation resistance assays showed that second instars had greatest mortality while fourth-instar larvae and adults were the most desiccation tolerant. Our results show that T. absoluta fourth-instar larvae and adults are the most resilient developmental stages and potentially contribute most to the invasion success of the pest in arid environments. Incorporation of these species-specific eco-physiological traits in predictive models can help refine invasive species potential spread under changing climates.
Collapse
Affiliation(s)
- Vimbai L Tarusikirwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana
| | - Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Reyard Mutamiswa
- Department of Zoology and Entomology, University of the Free State, Bloemfontein 9300, South Africa
| | - Nonofo Gotcha
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P. Bag 16, Palapye, Botswana
| |
Collapse
|
19
|
Parkash R, Lambhod C, Pathak A. Developmental and adult acclimation impact cold and drought survival of invasive tropical Drosophila kikkawai. Biol Open 2021; 10:269022. [PMID: 34100898 PMCID: PMC8214421 DOI: 10.1242/bio.058527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Narrow distribution patterns of tropical Drosophila species are limited by lower resistance to cold or drought. In the invasive tropical Drosophila kikkawai, we tested whether developmental and adult acclimations at cooler temperatures could enhance its stress resistance level. Adult acclimation of winter collected body color morphs revealed a significant increase in the level of cold resistance. For light morph, its abundance during winter is not consistent with thermal-melanism hypothesis. However, higher cold acclimation capacity, as well as storage of energy metabolites could support its winter survival. In the wild-caught light and intermediate morphs, there is a lack of trade-off between cold and heat resistance but not in the case of dark morph. Developmental plasticity (15°C) resulted in the fivefold increase of cold survival at 0°C; and a twofold increase in desiccation resistance but a modest reduction (∼28–35%) in heat resistance as compared to morph strains reared at 25°C. Drought acclimation changes were significantly higher as compared with cold or heat pretreatment. We observed a trade-off between basal resistance and acclimation capacity for cold, heat, or drought resistance. For homeostatic energy balance, adult acclimation responses (cold versus drought; heat versus drought) caused compensatory plastic changes in the levels of proline or trehalose (shared patterns) but different patterns for total body lipids. In contrast, rapid cold or heat hardening-induced changes in energy metabolites were different as compared to acclimation. The ability of D. kikkawai to significantly increase stress tolerance through plasticity is likely to support its invasion potential. Summary: In body color morphs of tropical Drosophila kikkawai, plasticity induced a higher level of resistance to cold and drought as well as three energy metabolites, which are likely to support its invasive potential.
Collapse
Affiliation(s)
- Ravi Parkash
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| | | | - Ankita Pathak
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
20
|
Arya H, Toltesi R, Eng M, Garg D, Merritt TJS, Rajpurohit S. No water, no mating: Connecting dots from behaviour to pathways. PLoS One 2021; 16:e0252920. [PMID: 34111165 PMCID: PMC8192009 DOI: 10.1371/journal.pone.0252920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
Insects hold considerable ecological and agricultural importance making it vital to understand the factors impacting their reproductive output. Environmental stressors are examples of such factors which have a substantial and significant influence on insect reproductive fitness. Insects are also ectothermic and small in size which makes them even more susceptible to environmental stresses. The present study assesses the consequence of desiccation on the mating latency and copulations duration in tropical Drosophila melanogaster. We tested flies for these reproductive behavioral parameters at varying body water levels and with whole metabolome analysis in order to gain a further understanding of the physiological response to desiccation. Our results showed that the duration of desiccation is positively correlated with mating latency and mating failure, while having no influence on the copulation duration. The metabolomic analysis revealed three biological pathways highly affected by desiccation: starch and sucrose metabolism, galactose metabolism, and phenylalanine, tyrosine and tryptophan biosynthesis. These results are consistent with carbohydrate metabolism providing an energy source in desiccated flies and also suggests that the phenylalanine biosynthesis pathway plays a role in the reproductive fitness of the flies. Desiccation is a common issue with smaller insects, like Drosophila and other tropical insects, and our findings indicate that this lack of ambient water can immediately and drastically affect the insect reproductive behaviour, which becomes more crucial because of unpredictable and dynamic weather conditions.
Collapse
Affiliation(s)
- Homica Arya
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, India
| | - Regan Toltesi
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Michelle Eng
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Divita Garg
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, India
| | - Thomas J. S. Merritt
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Subhash Rajpurohit
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, India
- * E-mail:
| |
Collapse
|
21
|
Farquharson KA, Hogg CJ, Grueber CE. Offspring survival changes over generations of captive breeding. Nat Commun 2021; 12:3045. [PMID: 34031378 PMCID: PMC8144597 DOI: 10.1038/s41467-021-22631-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/11/2021] [Indexed: 11/28/2022] Open
Abstract
Conservation breeding programs such as zoos play a major role in preventing extinction, but their sustainability may be impeded by neutral and adaptive population genetic change. These changes are difficult to detect for a single species or context, and impact global conservation efforts. We analyse pedigree data from 15 vertebrate species – over 30,000 individuals – to examine offspring survival over generations of captive breeding. Even accounting for inbreeding, we find that the impacts of increasing generations in captivity are highly variable across species, with some showing substantial increases or decreases in offspring survival over generations. We find further differences between dam and sire effects in first- versus multi-generational analysis. Crucially, our multispecies analysis reveals that responses to captivity could not be predicted from species’ evolutionary (phylogenetic) relationships. Even under best-practice captive management, generational fitness changes that cannot be explained by known processes (such as inbreeding depression), are occurring. Captive breeding could prevent species extinctions, but selection for captivity may decrease fitness. Here the authors analyse pedigree data on 15 long-running vertebrate breeding programs and find generational fitness changes that processes such as inbreeding depression cannot explain.
Collapse
Affiliation(s)
- Katherine A Farquharson
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW, Australia
| | - Carolyn J Hogg
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW, Australia
| | - Catherine E Grueber
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Hidalgo-Galiana A, Ribera I, Terblanche JS. Geographic variation in acclimation responses of thermal tolerance in South African diving beetles (Dytiscidae: Coleoptera). Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110955. [PMID: 33839295 DOI: 10.1016/j.cbpa.2021.110955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 12/01/2022]
Abstract
Understanding sources of variation in animal thermal limits is critical to forecasting ecological responses to climate change. Here, we estimated upper and lower thermal limits, and their capacity to respond to thermal acclimation, in several species and populations of diving beetles (Dytiscidae) from diverse geographic regions representative of variable climate within South Africa. We also considered ecoregions and latitudinal ranges as potential predictors of thermal limits and the plasticity thereof. For upper thermal limits, species showed significant variation and limited acclimation-related plasticity. Lower thermal limits responded to acclimation in some cases and showed marked variation among species that could be explained by taxonomic affiliation and ecoregion. Limited acclimation ability in the species included in this study suggest plasticity of thermal limits will not be a likely buffer for coping with climate change. From the present results for the Dytiscidae of the region, it appears the group may be particularly susceptible to heat and/or drought and may thus serve as useful indicator species of ecosystem change. Understanding how these climate-related impacts play out at different spatial and temporal scales will have profound implications for conservation management and functional responses, especially important in a region already showing a trend for warming and drying.
Collapse
Affiliation(s)
- Amparo Hidalgo-Galiana
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, 37-49, 08003 Barcelona, Spain.
| | - Ignacio Ribera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag XI, Matieland 7602, South Africa
| |
Collapse
|
23
|
Ma G, Hoffmann AA, Ma CS. Are extreme high temperatures at low or high latitudes more likely to inhibit the population growth of a globally distributed aphid? J Therm Biol 2021; 98:102936. [PMID: 34016358 DOI: 10.1016/j.jtherbio.2021.102936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/22/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
Although climate warming can increase both mean temperature and its variability, it is often the effects of climate warming on short periods of extreme temperatures that are expected to have particularly large physiological and ecological consequences. Understanding the vulnerability of organisms at various latitudes to climate extremes is thus critical for understanding warming effects on regional biodiversity conservation and ecosystem management. While previous studies have shown that thermal responses depend on temperature regimes that organisms have previously experienced, this issue has not been considered much when comparing the effects of temperature extremes at different latitudes. To fill this gap, here we manipulated different combinations of amplitude and duration of daily high temperature extremes to simulate conditions at different latitudes. We tested the effects of those regimes on life-history traits and fitness of a globally-distributed aphid species, Rhopalosiphum padi. We compared our results with previous studies to better understand the extent to which these regimes affect conclusions based on comparisons under different mean temperatures. As a consequence of asymmetrical thermal performance curves, we hypothesized that the temperature regimes with higher daily maximum temperatures at higher latitudes would cause strong negative effects. Our results showed that these regimes with thermal extremes caused substantial decreases in life-history traits and fitness relative to the predictions from different mean temperatures. Specifically, the regime with higher daily maximum temperature reflecting a higher mid-latitude location had larger impacts on development, reproduction and population fitness than the regime representing a lower mid-latitude location. These findings have implications for understanding the vulnerability of organisms across latitudes to increasingly frequent extreme heat events under ongoing climate warming.
Collapse
Affiliation(s)
- Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria, Australia.
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
24
|
Cuticle Hydrocarbons Show Plastic Variation under Desiccation in Saline Aquatic Beetles. INSECTS 2021; 12:insects12040285. [PMID: 33806018 PMCID: PMC8064485 DOI: 10.3390/insects12040285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/27/2022]
Abstract
In the context of aridification in Mediterranean regions, desiccation resistance and physiological plasticity will be key traits for the persistence of aquatic insects exposed to increasing desiccation stress. Control of cuticular transpiration through changes in the quantity and composition of epicuticular hydrocarbons (CHCs) is one of the main mechanisms of desiccation resistance in insects, but it remains largely unexplored in aquatic ones. We studied acclimation responses to desiccation in adults of two endemic water beetles from distant lineages living in Mediterranean intermittent saline streams: Enochrus jesusarribasi (Hydrophilidae) and Nebrioporus baeticus (Dytiscidae). Cuticular water loss and CHC composition were measured in specimens exposed to a prior non-lethal desiccation stress, allowed to recover and exposed to a subsequent desiccation treatment. E. jesusarribasi showed a beneficial acclimation response to desiccation: pre-desiccated individuals reduced cuticular water loss rate in a subsequent exposure by increasing the relative abundance of cuticular methyl-branched compounds, longer chain alkanes and branched alkanes. In contrast, N. baeticus lacked acclimation capacity for controlling water loss and therefore may have a lower physiological capacity to cope with increasing aridity. These results are relevant to understanding biochemical adaptations to drought stress in inland waters in an evolutionary and ecological context.
Collapse
|
25
|
da Silva CRB, Beaman JE, Dorey JB, Barker SJ, Congedi NC, Elmer MC, Galvin S, Tuiwawa M, Stevens MI, Alton LA, Schwarz MP, Kellermann V. Climate change and invasive species: a physiological performance comparison of invasive and endemic bees in Fiji. J Exp Biol 2021; 224:jeb230326. [PMID: 33257439 DOI: 10.1242/jeb.230326] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/17/2020] [Indexed: 11/20/2022]
Abstract
Anthropogenic climate change and invasive species are two of the greatest threats to biodiversity, affecting the survival, fitness and distribution of many species around the globe. Invasive species are often expected to have broad thermal tolerance, be highly plastic, or have high adaptive potential when faced with novel environments. Tropical island ectotherms are expected to be vulnerable to climate change as they often have narrow thermal tolerance and limited plasticity. In Fiji, only one species of endemic bee, Homalictus fijiensis, is commonly found in the lowland regions, but two invasive bee species, Braunsapis puangensis and Ceratina dentipes, have recently been introduced into Fiji. These introduced species pollinate invasive plants and might compete with H. fijiensis and other native pollinators for resources. To test whether certain performance traits promote invasiveness of some species, and to determine which species are the most vulnerable to climate change, we compared the thermal tolerance, desiccation resistance, metabolic rate and seasonal performance adjustments of endemic and invasive bees in Fiji. The two invasive species tended to be more resistant to thermal and desiccation stress than H. fijiensis, while H. fijiensis had greater capacity to adjust their CTmax with season, and H. fijiensis females tended to have higher metabolic rates than B. puangensis females. These findings provide mixed support for current hypotheses for the functional basis of the success of invasive species; however, we expect the invasive bees in Fiji to be more resilient to climate change because of their increased thermal tolerance and desiccation resistance.
Collapse
Affiliation(s)
- Carmen R B da Silva
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - Julian E Beaman
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - James B Dorey
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
- Biological and Earth Sciences, South Australian Museum, Adelaide, SA 5000, Australia
| | - Sarah J Barker
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - Nicholas C Congedi
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - Matt C Elmer
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - Stephen Galvin
- School of Geography, Earth Science and Environment, The University of the South Pacific, Laucala Campus, Suva, Fiji
| | - Marika Tuiwawa
- South Pacific Regional Herbarium and Biodiversity Centre, The University of the South Pacific, Laucala Campus, Suva, Fiji
| | - Mark I Stevens
- Biological and Earth Sciences, South Australian Museum, Adelaide, SA 5000, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Michael P Schwarz
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - Vanessa Kellermann
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
26
|
Terblanche JS, Hoffmann AA. Validating measurements of acclimation for climate change adaptation. CURRENT OPINION IN INSECT SCIENCE 2020; 41:7-16. [PMID: 32570175 DOI: 10.1016/j.cois.2020.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Acclimation and other forms of plasticity that can increase stress resistance feature strongly in discussions surrounding climate change impacts or vulnerability projections of insects and other ectotherms. There is interest in compiling databases for assessing the adequacy of acclimation for dealing with climate change. Here, we argue that the nature of acclimation is context dependent and therefore that estimates summarised across studies, especially those that have assayed stress using diverse methods, are limited in their utility when applied as a standardized metric or to a single general context such as average climate warming. Moreover, the dynamic nature of tolerances and acclimation drives important variation that is quickly obscured through many summary statistics or even in effect size analyses; retaining a strong focus on the temporal-level, population-level and treatment-level variance in forecasting climate change impacts on insects is essential. We summarise recent developments within the context of climate change and propose how future studies might validate the role of acclimation by integration across field studies and mechanistic modelling. Despite arguments to the contrary, to date no studies have convincingly demonstrated an important role for acclimation in recent climate change adaptation of insects. Paramount to these discussions is i) developing a strong conceptual framework for acclimation in the focal trait(s), ii) obtaining novel empirical data dissecting the fitness benefits and consequences of acclimation across diverse contexts and timescales, with iii) better coverage of under-represented geographic regions and taxa.
Collapse
Affiliation(s)
- John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, South Africa.
| | - Ary A Hoffmann
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, South Africa; Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
27
|
van Heerwaarden B, Kellermann V. Does Plasticity Trade Off With Basal Heat Tolerance? Trends Ecol Evol 2020; 35:874-885. [DOI: 10.1016/j.tree.2020.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/28/2022]
|
28
|
Yang Y, Liu D, Liu X, Wang B, Shi X. Divergence of Desiccation-Related Traits in Sitobion avenae from Northwestern China. INSECTS 2020; 11:insects11090626. [PMID: 32932880 PMCID: PMC7565472 DOI: 10.3390/insects11090626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The impact of drought on insects has become increasingly evident in the context of global climate change, but the physiological mechanisms of aphids' responses to desiccating environments are still not well understood. We sampled the wheat aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) from arid areas of northwestern China. Both desiccation-resistant and -nonresistant genotypes were identified, providing direct evidence of genetic divergence in desiccation resistance of S. avenae. Resistant genotypes of wingless S. avenae showed longer survival time and LT50 under the desiccation stress (i.e., 10% relative humidity) than nonresistant genotypes, and wingless individuals tended to have higher desiccation resistance than winged ones. Both absolute and relative water contents did not differ between the two kinds of genotypes. Resistant genotypes had lower water loss rates than nonresistant genotypes for both winged and wingless individuals, suggesting that modulation of water loss rates could be the primary strategy in resistance of this aphid against desiccation stress. Contents of cuticular hydrocarbons (CHC) (especially methyl-branched alkanes) showed significant increase for both resistant and nonresistant genotypes after exposure to the desiccation stress for 24 h. Under desiccation stress, survival time was positively correlated with contents of methyl-branched alkanes for resistant genotypes. Thus, the content of methyl-branched alkanes and their high plasticity could be closely linked to water loss rate and desiccation resistance in S. avenae. Our results provide insights into fundamental aspects and underlying mechanisms of desiccation resistance in aphids, and have significant implications for the evolution of aphid populations in the context of global warming.
Collapse
Affiliation(s)
- Yujing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiaoming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Biyao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xiaoqin Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China; (Y.Y.); (X.L.); (B.W.); (X.S.)
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
29
|
Leeson SA, Kennington WJ, Evans TA, Simmons LW. Phenotypic plasticity but no adaptive divergence in cuticular hydrocarbons and desiccation resistance among translocated populations of dung beetles. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10074-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Kellermann V, McEvey SF, Sgrò CM, Hoffmann AA. Phenotypic Plasticity for Desiccation Resistance, Climate Change, and Future Species Distributions: Will Plasticity Have Much Impact? Am Nat 2020; 196:306-315. [PMID: 32814000 DOI: 10.1086/710006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWhile species distribution models (SDMs) are widely used to predict the vulnerability of species to climate change, they do not explicitly indicate the extent to which plastic responses ameliorate climate change impacts. Here we use data on plastic responses of 32 species of Drosophila to desiccation stress to suggest that basal resistance, rather than adult hardening, is relatively more important in determining species differences in desiccation resistance and sensitivity to climate change. We go on to show, using the semimechanistic SDM CLIMEX, that the inclusion of plasticity has some impact on current species distributions and future vulnerability for widespread species but has little impact on the distribution of arguably more vulnerable tropically restricted species.
Collapse
|
31
|
Hitsman HW, Simons AM. Latitudinal variation in norms of reaction of phenology in the greater duckweed Spirodela polyrhiza. J Evol Biol 2020; 33:1405-1416. [PMID: 32656868 DOI: 10.1111/jeb.13678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022]
Abstract
Variable environments may result in the evolution of adaptive phenotypic plasticity when cues reliably indicate an appropriate phenotype-environment match. Although adaptive plasticity is well established for phenological traits expressed across environments, local differentiation in norms of reaction is less well studied. The switch from the production of regular fronds to overwintering 'turions' in the greater duckweed Spirodela polyrhiza is vital to fitness and is expressed as a norm of reaction induced by falling temperatures associated with the onset of winter. However, the optimal norm of reaction to temperature is expected to differ across latitudes. Here, we test the hypothesis that a gradient in the length and predictability of growing seasons across latitudes results in the evolution of reaction norms characterized by earlier turion production at higher latitudes. We test this by collecting S. polyrhiza from replicate populations across seven latitudes from Ontario to Florida and then assessing differentiation in thermal reaction norms of turion production along a common temperature gradient. As predicted, northern populations produce turions at a lower birth order and earlier; a significant latitude-by-temperature interaction suggests that reaction norm differentiation has occurred. Our results provide evidence of differentiation in reaction norms across latitudes in a phenological trait, and we discuss how the adaptive significance of this plasticity might be further tested.
Collapse
Affiliation(s)
- Harry W Hitsman
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Andrew M Simons
- Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
32
|
Exploring thermal flight responses as predictors of flight ability and geographic range size in Drosophila. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110532. [PMID: 31351148 DOI: 10.1016/j.cbpa.2019.110532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022]
Abstract
Thermal flight performance curves (TFPCs) may be a useful proxy for determining dispersal on daily timescales in winged insect species. Few studies have assessed TFPCs across a range of species under standard conditions despite that they may be useful in predicting variation in performance, abundance or geographic range shifts with forecast climate variability. Indeed, the factors determining realized dispersal within and among flying insect species are generally poorly understood. To better understand how flight performance may be correlated with geographic range extent and potential latitudinal climate variability, we estimated the thermal performance curves of flight ability in 11 Drosophilidae species (in 4 °C increments across 16-28 °C) after standard laboratory rearing for two generations. We tested if key morphological, evolutionary or ecological factors (e.g. species identity, sex, body mass, wing loading, geographic range size) predicted traits of TFPCs (including optimum temperature, maximum performance, thermal breadth of performance) or flight ability (success/failure to fly). Although several parameters of TFPCs varied among species these were typically not statistically significant probably owing to the relatively small pool of species assessed and the limited trait variation detected. The best explanatory model of these flight responses across species included significant positive effects of test temperature and wing area. However, the rank of geographic distribution breadth and phylogeny failed to explain significant variation in most of the traits, except for thermal performance breadth, of thermal flight performance curves among these 11 species. Future studies that employ a wider range of Drosophilidae species, especially if coupled with fine-scale estimates of species' environmental niches, would be useful.
Collapse
|
33
|
Angilletta MJ, Condon C, Youngblood JP. Thermal acclimation of flies from three populations of Drosophila melanogaster fails to support the seasonality hypothesis. J Therm Biol 2019; 81:25-32. [DOI: 10.1016/j.jtherbio.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/03/2019] [Accepted: 02/03/2019] [Indexed: 12/29/2022]
|
34
|
Kellermann V, Hoffmann AA, Overgaard J, Loeschcke V, Sgrò CM. Plasticity for desiccation tolerance across Drosophila species is affected by phylogeny and climate in complex ways. Proc Biol Sci 2019. [PMID: 29540521 DOI: 10.1098/rspb.2018.0048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Comparative analyses of ectotherm susceptibility to climate change often focus on thermal extremes, yet responses to aridity may be equally important. Here we focus on plasticity in desiccation resistance, a key trait shaping distributions of Drosophila species and other small ectotherms. We examined the extent to which 32 Drosophila species, varying in their distribution, could increase their desiccation resistance via phenotypic plasticity involving hardening, linking these responses to environment, phylogeny and basal resistance. We found no evidence to support the seasonality hypothesis; species with higher hardening plasticity did not occupy environments with higher and more seasonal precipitation. As basal resistance increased, the capacity of species to respond via phenotypic plasticity decreased, suggesting plastic responses involving hardening may be constrained by basal resistance. Trade-offs between basal desiccation resistance and plasticity were not universal across the phylogeny and tended to occur within specific clades. Phylogeny, environment and trade-offs all helped to explain variation in plasticity for desiccation resistance but in complex ways. These findings suggest some species have the ability to counter dry periods through plastic responses, whereas others do not; and this ability will depend to some extent on a species' placement within a phylogeny, along with its basal level of resistance.
Collapse
Affiliation(s)
- Vanessa Kellermann
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Ary A Hoffmann
- School of BioSciences, The University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | | | - Volker Loeschcke
- Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
35
|
Life-stage related responses to combined effects of acclimation temperature and humidity on the thermal tolerance of Chilo partellus (Swinhoe) (Lepidoptera: Crambidae). J Therm Biol 2019; 79:85-94. [DOI: 10.1016/j.jtherbio.2018.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/08/2018] [Accepted: 12/09/2018] [Indexed: 11/23/2022]
|
36
|
Ørsted IV, Ørsted M. Species distribution models of the Spotted Wing
Drosophila
(
Drosophila suzukii
, Diptera: Drosophilidae) in its native and invasive range reveal an ecological niche shift. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13285] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Iben Vejrum Ørsted
- Section of Biology and Environmental ScienceDepartment of Chemistry and BioscienceAalborg University Aalborg E Denmark
| | - Michael Ørsted
- Section of Biology and Environmental ScienceDepartment of Chemistry and BioscienceAalborg University Aalborg E Denmark
| |
Collapse
|