1
|
Proctor JD, Mackevicius-Dubickaja V, Gottlieb Y, White JA. Warm temperature inhibits cytoplasmic incompatibility induced by endosymbiotic Rickettsiella in spider hosts. Environ Microbiol 2024; 26:e16697. [PMID: 39253751 DOI: 10.1111/1462-2920.16697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Bacterial endosymbionts manipulate reproduction in arthropods to increase their prevalence in the host population. One such manipulation is cytoplasmic incompatibility (CI), wherein the bacteria sabotage sperm in infected males to reduce the hatch rate when mated with uninfected females, but zygotes are 'rescued' when that male mates with an infected female. In the spider Mermessus fradeorum (Linyphiidae), Rickettsiella symbionts cause variable levels of CI. We hypothesised that temperature affects the strength of CI and its rescue in M. fradeorum, potentially mediated by bacterial titre. We reared Rickettsiella-infected spiders in two temperature conditions (26°C vs. 20°C) and tested CI induction in males and rescue in females. In incompatible crosses between infected males and uninfected females, the hatch rate from warm males was doubled (mean ± standard error = 0.687 ± 0.052) relative to cool males (0.348 ± 0.046), indicating that CI induction is weaker in warm males. In rescue crosses between infected females and infected males, female rearing temperature had a marginal effect on CI rescue, but the hatch rate remained high for both warm (0.960 ± 0.023) and cool females (0.994 ± 0.004). Bacterial titre, as measured by quantitative polymerase chain reaction, was lower in warm than cool spiders, particularly in females, suggesting that bacterial titre may play a role in causing the temperature-mediated changes in CI.
Collapse
Affiliation(s)
- Jordyn D Proctor
- S-225 Agriculture Science Center North, Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Virginija Mackevicius-Dubickaja
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Jennifer A White
- S-225 Agriculture Science Center North, Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Castelli M, Nardi T, Giovannini M, Sassera D. Addictive manipulation: a perspective on the role of reproductive parasitism in the evolution of bacteria-eukaryote symbioses. Biol Lett 2024; 20:20240310. [PMID: 39288812 PMCID: PMC11496725 DOI: 10.1098/rsbl.2024.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
Wolbachia bacteria encompass noteworthy reproductive manipulators of their arthropod hosts. which influence host reproduction to favour their own transmission, also exploiting toxin-antitoxin systems. Recently, multiple other bacterial symbionts of arthropods have been shown to display comparable manipulative capabilities. Here, we wonder whether such phenomena are truly restricted to arthropod hosts. We focused on protists, primary models for evolutionary investigations on eukaryotes due to their diversity and antiquity, but still overall under-investigated. After a thorough re-examination of the literature on bacterial-protist interactions with this question in mind, we conclude that such bacterial 'addictive manipulators' of protists do exist, are probably widespread, and have been overlooked until now as a consequence of the fact that investigations are commonly host-centred, thus ineffective to detect such behaviour. Additionally, we posit that toxin-antitoxin systems are crucial in these phenomena of addictive manipulation of protists, as a result of recurrent evolutionary repurposing. This indicates intriguing functional analogy and molecular homology with plasmid-bacterial interplays. Finally, we remark that multiple addictive manipulators are affiliated with specific bacterial lineages with ancient associations with diverse eukaryotes. This suggests a possible role of addictive manipulation of protists in paving the way to the evolution of bacteria associated with multicellular organisms.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michele Giovannini
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Biology, University of Florence, Florence, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
3
|
Hoffmann AA, Cooper BS. Describing endosymbiont-host interactions within the parasitism-mutualism continuum. Ecol Evol 2024; 14:e11705. [PMID: 38975267 PMCID: PMC11224498 DOI: 10.1002/ece3.11705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
Endosymbionts are widespread in arthropods, living in host cells with effects that extend from parasitic to mutualistic. Newly acquired endosymbionts tend to be parasitic, but vertical transmission favors coevolution toward mutualism, with hosts sometimes developing dependency. Endosymbionts negatively affecting host fitness may still spread by impacting host reproductive traits, referred to as reproductive "manipulation," although costs for hosts are often assumed rather than demonstrated. For cytoplasmic incompatibility (CI) that involves endosymbiont-mediated embryo death, theory predicts directional shifts away from "manipulation" toward reduced CI strength; moreover, CI-causing endosymbionts need to increase host fitness to initially spread. In nature, endosymbiont-host interactions and dynamics are complex, often depending on environmental conditions and evolutionary history. We advocate for capturing this complexity through appropriate datasets, rather than relying on terms like "manipulation." Such imprecision can lead to the misclassification of endosymbionts along the parasitism-mutualism continuum.
Collapse
Affiliation(s)
- Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Brandon S. Cooper
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
4
|
Owashi Y, Arai H, Adachi-Hagimori T, Kageyama D. Rickettsia induces strong cytoplasmic incompatibility in a predatory insect. Proc Biol Sci 2024; 291:20240680. [PMID: 39079670 PMCID: PMC11288687 DOI: 10.1098/rspb.2024.0680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/21/2024] [Indexed: 08/03/2024] Open
Abstract
Rickettsia, a group of intracellular bacteria found in eukaryotes, exhibits diverse lifestyles, with some acting as vertebrate pathogens transmitted by arthropod vectors and others serving as maternally transmitted arthropod endosymbionts, some of which manipulate host reproduction for their own benefit. Two phenotypes, namely male-killing and parthenogenesis induction are known as Rickettsia-induced host reproductive manipulations, but it remains unknown whether Rickettsia can induce other types of host manipulation. In this study, we discovered that Rickettsia induced strong cytoplasmic incompatibility (CI), in which uninfected females produce no offspring when mated with infected males, in the predatory insect Nesidiocoris tenuis (Hemiptera: Miridae). Molecular phylogenetic analysis revealed that the Rickettsia strain was related to Rickettsia bellii, a common insect endosymbiont. Notably, this strain carried plasmid-encoded homologues of the CI-inducing factors (namely cifA-like and cifB-like genes), typically found in Wolbachia, which are well-known CI-inducing endosymbionts. Protein domain prediction revealed that the cifB-like gene encodes PD-(D/E)XK nuclease and deubiquitinase domains, which are responsible for Wolbachia-induced CI, as well as ovarian tumour-like (OTU-like) cysteine protease and ankyrin repeat domains. These findings suggest that Rickettsia and Wolbachia endosymbionts share underlying mechanisms of CI and that CI-inducing ability was acquired by microbes through horizontal plasmid transfer.
Collapse
Affiliation(s)
- Yuta Owashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Hiroshi Arai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Tetsuya Adachi-Hagimori
- Laboratory of Applied Entomology, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| |
Collapse
|
5
|
Mowery MA, Rosenwald LC, Chapman E, Lubin Y, Segoli M, Khoza T, Lyle R, White JA. Endosymbiont diversity across native and invasive brown widow spider populations. Sci Rep 2024; 14:8556. [PMID: 38609398 PMCID: PMC11014918 DOI: 10.1038/s41598-024-58723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The invasive brown widow spider, Latrodectus geometricus (Araneae: Theridiidae), has spread in multiple locations around the world and, along with it, brought associated organisms such as endosymbionts. We investigated endosymbiont diversity and prevalence across putative native and invasive populations of this spider, predicting lower endosymbiont diversity across the invasive range compared to the native range. First, we characterized the microbial community in the putative native (South Africa) and invasive (Israel and the United States) ranges via high throughput 16S sequencing of 103 adult females. All specimens were dominated by reads from only 1-3 amplicon sequence variants (ASV), and most individuals were infected with an apparently uniform strain of Rhabdochlamydia. We also found Rhabdochlamydia in spider eggs, indicating that it is a maternally-inherited endosymbiont. Relatively few other ASV were detected, but included two variant Rhabdochlamydia strains and several Wolbachia, Spiroplasma and Enterobacteriaceae strains. We then diagnostically screened 118 adult female spiders from native and invasive populations specifically for Rhabdochlamydia and Wolbachia. We found Rhabdochlamydia in 86% of individuals and represented in all populations, which suggests that it is a consistent and potentially important associate of L. geometricus. Wolbachia was found at lower overall prevalence (14%) and was represented in all countries, but not all populations. In addition, we found evidence for geographic variation in endosymbiont prevalence: spiders from Israel were more likely to carry Rhabdochlamydia than those from the US and South Africa, and Wolbachia was geographically clustered in both Israel and South Africa. Characterizing endosymbiont prevalence and diversity is a first step in understanding their function inside the host and may shed light on the process of spread and population variability in cosmopolitan invasive species.
Collapse
Affiliation(s)
- Monica A Mowery
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel.
- Department of Biology, York College, The City University of New York, Jamaica, NY, USA.
| | - Laura C Rosenwald
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Eric Chapman
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Yael Lubin
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Michal Segoli
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Thembile Khoza
- South African National Biodiversity Institute, Biosystematics Division, Pretoria, South Africa
| | - Robin Lyle
- Agricultural Research Council-Plant Health and Protection, Biosystematics Division, Queenswood, South Africa
| | - Jennifer A White
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
6
|
Nagamine K, Kanno Y, Sahara K, Fujimoto T, Yoshido A, Ishikawa Y, Terao M, Kageyama D, Shintani Y. Male-killing virus in a noctuid moth Spodoptera litura. Proc Natl Acad Sci U S A 2023; 120:e2312124120. [PMID: 37931114 PMCID: PMC10655585 DOI: 10.1073/pnas.2312124120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023] Open
Abstract
A female-biased sex ratio is considered advantageous for the cytoplasmic elements that inhabit sexually reproducing organisms. There are numerous examples of bacterial symbionts in the arthropod cytoplasm that bias the host sex ratio toward females through various means, including feminization and male killing. Recently, maternally inherited RNA viruses belonging to the family Partitiviridae were found to cause male killing in moths and flies, but it was unknown whether male-killing viruses were restricted to Partitiviridae or could be found in other taxa. Here, we provide compelling evidence that a maternally inherited RNA virus, Spodoptera litura male-killing virus (SlMKV), selectively kills male embryos of the tobacco caterpillar Spodoptera litura, resulting in all-female broods. SlMKV injected into uninfected S. litura can also be inherited maternally and causes male killing. SlMKV has five genomic segments encoding seven open reading frames, has no homolog of known male-killing genes, and belongs to an unclassified group of arthropod-specific viruses closely related to Tolivirales. When transinfected into larvae, both male and female recipients allow SlMKV to proliferate, but only males die at the pupal stage. The viral RNA levels in embryonic and pupal male killing suggest that the mechanism of male killing involves the constitutive expression of viral products that are specifically lethal to males, rather than the male-specific expression of viral products. Our results, together with recent findings on male-killing partiti-like viruses, suggest that diverse viruses in arthropods tend to acquire male killing independently and that such viruses may be important components of intragenomic conflict in arthropods.
Collapse
Affiliation(s)
- Keisuke Nagamine
- Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki885-0035, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki305-0851, Japan
| | - Yoshiaki Kanno
- Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki885-0035, Japan
| | - Ken Sahara
- Faculty of Agriculture, Iwate University, Morioka, Iwate020-8550, Japan
| | - Toshiaki Fujimoto
- Faculty of Agriculture, Iwate University, Morioka, Iwate020-8550, Japan
| | - Atsuo Yoshido
- Faculty of Agriculture, Iwate University, Morioka, Iwate020-8550, Japan
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice370 05, Czech Republic
| | - Yukio Ishikawa
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka573-0101, Japan
| | - Misato Terao
- Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki885-0035, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki305-0851, Japan
| | - Yoshinori Shintani
- Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki885-0035, Japan
| |
Collapse
|
7
|
Haghshenas-Gorgabi N, Poorjavd N, Khajehali J, Wybouw N. Cardinium symbionts are pervasive in Iranian populations of the spider mite Panonychus ulmi despite inducing an infection cost and no demonstrable reproductive phenotypes when Wolbachia is a symbiotic partner. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:369-380. [PMID: 37819592 DOI: 10.1007/s10493-023-00840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Maternally transmitted symbionts such as Cardinium and Wolbachia are widespread in arthropods. Both Cardinium and Wolbachia can cause cytoplasmic incompatibility, a reproductive phenotype that interferes with the development of uninfected eggs that are fertilized by infected sperm. In haplodiploid hosts, these symbionts can also distort sex allocation to facilitate their spread through host populations. Without other fitness effects, symbionts that induce strong reproductive phenotypes tend to spread to high and stable infection frequencies, whereas variants that induce weak reproductive phenotypes are typically associated with intermediate and variable frequencies. To study the spread of Cardinium in a haplodiploid host, we sampled Iranian populations of the economically important spider mite Panonychus ulmi in apple orchards. Within several field populations, we also studied the Wolbachia infection frequencies. All P. ulmi field populations carried a Cardinium infection and exhibited high infection frequencies. In contrast, Wolbachia frequency ranged between ca. 10% and ca. 70% and was only found in co-infected mites. To test whether Cardinium induce reproductive phenotypes in P. ulmi, a Cardinium-cured derived line was generated by antibiotic treatment from a co-infected field population. Genetic crosses indicated that Cardinium do not induce demonstrable levels of cytoplasmic incompatibility and sex allocation distortion in co-infected P. ulmi. However, Cardinium infection was associated with a longer developmental time and reduced total fecundity for co-infected females. We hypothesize that Cardinium spread through P. ulmi populations via uncharacterized fitness effects and that co-infection with Wolbachia might impact these drive mechanisms.
Collapse
Affiliation(s)
- Nastaran Haghshenas-Gorgabi
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Nafiseh Poorjavd
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Jahangir Khajehali
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Liu Y, Liu J, Zhang X, Yun Y. Diversity of Bacteria Associated with Guts and Gonads in Three Spider Species and Potential Transmission Pathways of Microbes within the Same Spider Host. INSECTS 2023; 14:792. [PMID: 37887804 PMCID: PMC10607309 DOI: 10.3390/insects14100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Microbial symbiosis plays a crucial role in the ecological and evolutionary processes of animals. It is well known that spiders, with their unique and diverse predatory adaptations, assume an indispensable role in maintaining ecological balance and the food chain. However, our current understanding of spider microbiomes remains relatively limited. The gut microbiota and gonad microbiota of spiders can both potentially influence their physiology, ecology, and behavior, including aspects such as digestion, immunity, reproductive health, and reproductive behavior. In the current study, based on high-throughput sequencing of the 16S rRNA V3 and V4 regions, we detected the gut and gonad microbiota communities of three spider species captured from the same habitat, namely, Eriovixia cavaleriei, Larinioides cornutus, and Pardosa pseudoannulata. In these three species, we observed that, at the phylum level classification, the gut and gonad of E. cavaleriei are primarily composed of Proteobacteria, while those of L. cornutus and P. pseudoannulata are primarily composed of Firmicutes. At the genus level of classification, we identified 372 and 360 genera from the gut and gonad bacterial communities. It is noteworthy that the gut and gonad bacterial flora of E. cavaleriei and L. cornutus were dominated by Wolbachia and Spiroplasma. Results show that there were no differences in microbial communities between females and males of the same spider species. Furthermore, there is similarity between the gut and ovary microbial communities of female spiders, implying a potential avenue for microbial transmission between the gut and gonad within female spiders. By comprehensively studying these two microbial communities, we can establish the theoretical foundation for exploring the relationship between gut and gonad microbiota and their host, as well as the mechanisms through which microbes exert their effects.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jia Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaopan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
- Centre for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
9
|
Hochstrasser M. Molecular Biology of Cytoplasmic Incompatibility Caused by Wolbachia Endosymbionts. Annu Rev Microbiol 2023; 77:299-316. [PMID: 37285552 DOI: 10.1146/annurev-micro-041020-024616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Among endosymbiotic bacteria living within eukaryotic cells, Wolbachia is exceptionally widespread, particularly in arthropods. Inherited through the female germline, it has evolved ways to increase the fraction of bacterially infected offspring by inducing parthenogenesis, feminization, male killing, or, most commonly, cytoplasmic incompatibility (CI). In CI, Wolbachia infection of males causes embryonic lethality unless they mate with similarly infected females, creating a relative reproductive advantage for infected females. A set of related Wolbachia bicistronic operons encodes the CI-inducing factors. The downstream gene encodes a deubiquitylase or nuclease and is responsible for CI induction by males, while the upstream product when expressed in females binds its sperm-introduced cognate partner and rescues viability. Both toxin-antidote and host-modification mechanisms have been proposed to explain CI. Interestingly, male killing by either Spiroplasma or Wolbachia endosymbionts involves deubiquitylases as well. Interference with the host ubiquitin system may therefore be a common theme among endosymbiont-mediated reproductive alterations.
Collapse
Affiliation(s)
- Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry and Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
10
|
Pollmann M, Kuhn D, König C, Homolka I, Paschke S, Reinisch R, Schmidt A, Schwabe N, Weber J, Gottlieb Y, Steidle JLM. New species based on the biological species concept within the complex of Lariophagus distinguendus (Hymenoptera, Chalcidoidea, Pteromalidae), a parasitoid of household pests. Ecol Evol 2023; 13:e10524. [PMID: 37720058 PMCID: PMC10500055 DOI: 10.1002/ece3.10524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/07/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
The pteromalid parasitoid Lariophagus distinguendus (Foerster) belongs to the Hymenoptera, a megadiverse insect order with high cryptic diversity. It attacks stored product pest beetles in human storage facilities. Recently, it has been shown to consist of two separate species. To further study its cryptic diversity, strains were collected to compare their relatedness using barcoding and nuclear genes. Nuclear genes identified two clusters which agree with the known two species, whereas the barcode fragment determined an additional third Clade. Total reproductive isolation (RI) according to the biological species concept (BSC) was investigated in crossing experiments within and between clusters using representative strains. Sexual isolation exists between all studied pairs, increasing from slight to strong with genetic distance. Postzygotic barriers mostly affected hybrid males, pointing to Haldane's rule. Hybrid females were only affected by unidirectional Spiroplasma-induced cytoplasmic incompatibility and behavioural sterility, each in one specific strain combination. RI was virtually absent between strains separated by up to 2.8% COI difference, but strong or complete in three pairs from one Clade each, separated by at least 7.2%. Apparently, each of these clusters represents one separate species according to the BSC, highlighting cryptic diversity in direct vicinity to humans. In addition, these results challenge the recent 'turbo-taxonomy' practice of using 2% COI differences to delimitate species, especially within parasitic Hymenoptera. The gradual increase in number and strength of reproductive barriers between strains with increasing genetic distance also sheds light on the emergence of barriers during the speciation process in L. distinguendus.
Collapse
Affiliation(s)
- Marie Pollmann
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Denise Kuhn
- Department of Entomology 360c, Institute of PhytomedicineUniversity of HohenheimStuttgartGermany
| | - Christian König
- Akademie für Natur‐ und Umweltschutz Baden‐WürttembergStuttgartGermany
| | - Irmela Homolka
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Sina Paschke
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Ronja Reinisch
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Anna Schmidt
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Noa Schwabe
- Plant Evolutionary Biology 190b, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Justus Weber
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Yuval Gottlieb
- Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary MedicineHebrew University of JerusalemRehovotIsrael
| | - Johannes Luitpold Maria Steidle
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
- KomBioTa – Center of Biodiversity and Integrative TaxonomyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
11
|
Gu X, Ross PA, Gill A, Yang Q, Ansermin E, Sharma S, Soleimannejad S, Sharma K, Callahan A, Brown C, Umina PA, Kristensen TN, Hoffmann AA. A rapidly spreading deleterious aphid endosymbiont that uses horizontal as well as vertical transmission. Proc Natl Acad Sci U S A 2023; 120:e2217278120. [PMID: 37094148 PMCID: PMC10161079 DOI: 10.1073/pnas.2217278120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/23/2023] [Indexed: 04/26/2023] Open
Abstract
Endosymbiotic bacteria that live inside the cells of insects are typically only transmitted maternally and can spread by increasing host fitness and/or modifying reproduction in sexual hosts. Transinfections of Wolbachia endosymbionts are now being used to introduce useful phenotypes into sexual host populations, but there has been limited progress on applications using other endosymbionts and in asexual populations. Here, we develop a unique pathway to application in aphids by transferring the endosymbiont Rickettsiella viridis to the major crop pest Myzus persicae. Rickettsiella infection greatly reduced aphid fecundity, decreased heat tolerance, and modified aphid body color, from light to dark green. Despite inducing host fitness costs, Rickettsiella spread rapidly through caged aphid populations via plant-mediated horizontal transmission. The phenotypic effects of Rickettsiella were sensitive to temperature, with spread only occurring at 19 °C and not 25 °C. Body color modification was also lost at high temperatures despite Rickettsiella maintaining a high density. Rickettsiella shows the potential to spread through natural M. persicae populations by horizontal transmission and subsequent vertical transmission. Establishment of Rickettsiella in natural populations could reduce crop damage by modifying population age structure, reducing population growth and providing context-dependent effects on host fitness. Our results highlight the importance of plant-mediated horizontal transmission and interactions with temperature as drivers of endosymbiont spread in asexual insect populations.
Collapse
Affiliation(s)
- Xinyue Gu
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg9220, Denmark
| | - Alex Gill
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Eloïse Ansermin
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Sonia Sharma
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Safieh Soleimannejad
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kanav Sharma
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ashley Callahan
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Courtney Brown
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul A. Umina
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Cesar Australia, Brunswick, VIC 3052, Australia
| | - Torsten N. Kristensen
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg9220, Denmark
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg9220, Denmark
| |
Collapse
|
12
|
Řezáč M, Řezáčová V, Gloríková N, Némethová E, Heneberg P. Food provisioning to Pardosa spiders decreases the levels of tissue-resident endosymbiotic bacteria. Sci Rep 2023; 13:6943. [PMID: 37117271 PMCID: PMC10147729 DOI: 10.1038/s41598-023-34229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/26/2023] [Indexed: 04/30/2023] Open
Abstract
The diversity, host specificity, and physiological effects of endosymbiotic bacteria in spiders (Araneae) are poorly characterized. We used 16S rDNA sequencing to evaluate endosymbionts in the cephalothorax and legs of a wolf spider Pardosa agrestis. We tested the effects of feeding once or twice daily with fruit flies, aphids, or starved and compared them to those of syntopically occurring Pardosa palustris. The feeding increased traveled distance up to five times in some of the groups provisioned with food relative to the starved control. The Shannon diversity t-test revealed significant differences between these component communities of the two spider species. The increased frequency of feeding with fruit flies, but not aphids, increased the dominance and decreased the alpha diversity of OTUs. The obligate or facultative endosymbionts were present in all analyzed spider individuals and were represented mostly by Rickettsiella, Rhabdochlamydia, Spiroplasma, and the facultative intracellular parasite Legionella. Vertically transmitted endosymbionts were less common, represented by Wolbachia pipientis and Rickettsia sp. H820. The relative abundance of Mycoplasma spp. was negatively correlated with provisioned or killed aphids. In conclusion, the tissues of Pardosa spiders host tremendously diverse assemblages of bacteria, including obligate or facultative endosymbionts, with yet unknown phenotypic effects.
Collapse
Affiliation(s)
- Milan Řezáč
- Crop Research Institute, Drnovská 507, 160 00, Prague, Czech Republic
| | - Veronika Řezáčová
- Crop Research Institute, Drnovská 507, 160 00, Prague, Czech Republic.
| | - Nela Gloríková
- Crop Research Institute, Drnovská 507, 160 00, Prague, Czech Republic
| | - Ema Némethová
- Crop Research Institute, Drnovská 507, 160 00, Prague, Czech Republic
| | - Petr Heneberg
- Crop Research Institute, Drnovská 507, 160 00, Prague, Czech Republic.
- Charles University, Third Faculty of Medicine, Ruská 87, 100 00, Prague, Czech Republic.
| |
Collapse
|
13
|
Halter T, Köstlbacher S, Rattei T, Hendrickx F, Manzano-Marín A, Horn M. One to host them all: genomics of the diverse bacterial endosymbionts of the spider Oedothorax gibbosus. Microb Genom 2023; 9:mgen000943. [PMID: 36757767 PMCID: PMC9997750 DOI: 10.1099/mgen.0.000943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/04/2022] [Indexed: 02/10/2023] Open
Abstract
Bacterial endosymbionts of the groups Wolbachia, Cardinium and Rickettsiaceae are well known for their diverse effects on their arthropod hosts, ranging from mutualistic relationships to reproductive phenotypes. Here, we analysed a unique system in which the dwarf spider Oedothorax gibbosus is co-infected with up to five different endosymbionts affiliated with Wolbachia, 'Candidatus Tisiphia' (formerly Torix group Rickettsia), Cardinium and Rhabdochlamydia. Using short-read genome sequencing data, we show that the endosymbionts are heterogeneously distributed among O. gibbosus populations and are frequently found co-infecting spider individuals. To study this intricate host-endosymbiont system on a genome-resolved level, we used long-read sequencing to reconstruct closed genomes of the Wolbachia, 'Ca. Tisiphia' and Cardinium endosymbionts. We provide insights into the ecology and evolution of the endosymbionts and shed light on the interactions with their spider host. We detected high quantities of transposable elements in all endosymbiont genomes and provide evidence that ancestors of the Cardinium, 'Ca. Tisiphia' and Wolbachia endosymbionts have co-infected the same hosts in the past. Our findings contribute to broadening our knowledge about endosymbionts infecting one of the largest animal phyla on Earth and show the usefulness of transposable elements as an evolutionary 'contact-tracing' tool.
Collapse
Affiliation(s)
- Tamara Halter
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna. Universitätsring 1, 1010 Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna. Universitätsring 1, 1010 Vienna, Austria
- Current address: Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6700 EH Wageningen, The Netherlands
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
| | - Frederik Hendrickx
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences. Rue Vautier/Vautierstraat 29,, 1000 Brussels, Belgium
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
14
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
15
|
Ishigami K, Jang S, Itoh H, Kikuchi Y. Obligate Gut Symbiotic Association with Caballeronia in the Mulberry Seed Bug Paradieuches dissimilis (Lygaeoidea: Rhyparochromidae). MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02117-2. [PMID: 36178538 DOI: 10.1007/s00248-022-02117-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Many insects possess symbiotic bacteria in their bodies, and microbial symbionts play pivotal metabolic roles for their hosts. Members of the heteropteran superfamilies Coreoidea and Lygaeoidea stinkbugs harbor symbionts of the genus Caballeronia in their intestinal tracts. Compared with symbiotic associations in Coreoidea, those in Lygaeoidea insects are still less understood. Here, we investigated a symbiotic relationship involving the mulberry seed bug Paradieuches dissimilis (Lygaeoidea: Rhyparochromidae) using histological observations, cultivation of the symbiont, 16S rRNA gene amplicon sequencing, and infection testing of cultured symbionts. Histological observations and cultivation revealed that P. dissimilis harbors Caballeronia symbionts in the crypts of its posterior midgut. 16S rRNA gene amplicon sequencing of field-collected P. dissimilis confirmed that the genus Caballeronia is dominant in the midgut of natural populations of P. dissimilis. In addition, PCR diagnostics showed that the eggs were free of symbiotic bacteria, and hatchlings horizontally acquired the symbionts from ambient soil. Infection and rearing experiments revealed that symbiont-free aposymbiotic individuals had abnormal body color, small body size, and, strikingly, a low survival rate, wherein no individuals reached adulthood, indicating an obligate cooperative mutualism between the mulberry seed bug and Caballeronia symbionts.
Collapse
Affiliation(s)
- Kota Ishigami
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan
| | - Seonghan Jang
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan.
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan
| | - Yoshitomo Kikuchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, 062-8517, Japan
| |
Collapse
|
16
|
Garcia-Vozmediano A, Tomassone L, Fonville M, Bertolotti L, Heylen D, Fabri ND, Medlock JM, Nijhof AM, Hansford KM, Sprong H, Krawczyk AI. The Genetic Diversity of Rickettsiella Symbionts in Ixodes ricinus Throughout Europe. MICROBIAL ECOLOGY 2022; 84:613-626. [PMID: 34580739 PMCID: PMC9436858 DOI: 10.1007/s00248-021-01869-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/10/2021] [Indexed: 05/11/2023]
Abstract
Rickettsiella species are bacterial symbionts that are present in a great variety of arthropod species, including ixodid ticks. However, little is known about their genetic diversity and distribution in Ixodes ricinus, as well as their relationship with other tick-associated bacteria. In this study, we investigated the occurrence and the genetic diversity of Rickettsiella spp. in I. ricinus throughout Europe and evaluated any preferential and antagonistic associations with Candidatus Midichloria mitochondrii and the pathogens Borrelia burgdorferi sensu lato and Borrelia miyamotoi. Rickettsiella spp. were detected in most I. ricinus populations investigated, encompassing a wide array of climate types and environments. The infection prevalence significantly differed between geographic locations and was significantly higher in adults than in immature life stages. Phylogenetic investigations and protein characterization disclosed four Rickettsiella clades (I-IV). Close phylogenetic relations were observed between Rickettsiella strains of I. ricinus and other arthropod species. Isolation patterns were detected for Clades II and IV, which were restricted to specific geographic areas. Lastly, although coinfections occurred, we did not detect significant associations between Rickettsiella spp. and the other tick-associated bacteria investigated. Our results suggest that Rickettsiella spp. are a genetically and biologically diverse facultative symbiont of I. ricinus and that their distribution among tick populations could be influenced by environmental components.
Collapse
Affiliation(s)
- Aitor Garcia-Vozmediano
- Department of Veterinary Sciences, University of Turin, L.go Braccini, 2, 10095 Grugliasco, TO Italy
| | - Laura Tomassone
- Department of Veterinary Sciences, University of Turin, L.go Braccini, 2, 10095 Grugliasco, TO Italy
| | - Manoj Fonville
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands
| | - Luigi Bertolotti
- Department of Veterinary Sciences, University of Turin, L.go Braccini, 2, 10095 Grugliasco, TO Italy
| | - Dieter Heylen
- Eco-Epidemiology Group, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - Nannet D. Fabri
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
| | - Jolyon M. Medlock
- Infections Medical Entomology & Zoonoses Ecology, Public Health England, Porton Down, UK
| | - Ard M. Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Kayleigh M. Hansford
- Infections Medical Entomology & Zoonoses Ecology, Public Health England, Porton Down, UK
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands
| | - Aleksandra I. Krawczyk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
17
|
Camus MF, Alexander-Lawrie B, Sharbrough J, Hurst GDD. Inheritance through the cytoplasm. Heredity (Edinb) 2022; 129:31-43. [PMID: 35525886 PMCID: PMC9273588 DOI: 10.1038/s41437-022-00540-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Most heritable information in eukaryotic cells is encoded in the nuclear genome, with inheritance patterns following classic Mendelian segregation. Genomes residing in the cytoplasm, however, prove to be a peculiar exception to this rule. Cytoplasmic genetic elements are generally maternally inherited, although there are several exceptions where these are paternally, biparentally or doubly-uniparentally inherited. In this review, we examine the diversity and peculiarities of cytoplasmically inherited genomes, and the broad evolutionary consequences that non-Mendelian inheritance brings. We first explore the origins of vertical transmission and uniparental inheritance, before detailing the vast diversity of cytoplasmic inheritance systems across Eukaryota. We then describe the evolution of genomic organisation across lineages, how this process has been shaped by interactions with the nuclear genome and population genetics dynamics. Finally, we discuss how both nuclear and cytoplasmic genomes have evolved to co-inhabit the same host cell via one of the longest symbiotic processes, and all the opportunities for intergenomic conflict that arise due to divergence in inheritance patterns. In sum, we cannot understand the evolution of eukaryotes without understanding hereditary symbiosis.
Collapse
Affiliation(s)
- M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England
| |
Collapse
|
18
|
Pollmann M, Moore LD, Krimmer E, D'Alvise P, Hasselmann M, Perlman SJ, Ballinger MJ, Steidle JL, Gottlieb Y. Highly transmissible cytoplasmic incompatibility by the extracellular insect symbiont Spiroplasma. iScience 2022; 25:104335. [PMID: 35602967 PMCID: PMC9118660 DOI: 10.1016/j.isci.2022.104335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is a form of reproductive manipulation caused by maternally inherited endosymbionts infecting arthropods, like Wolbachia, whereby matings between infected males and uninfected females produce few or no offspring. We report the discovery of a new CI symbiont, a strain of Spiroplasma causing CI in the parasitoid wasp Lariophagus distinguendus. Its extracellular occurrence enabled us to establish CI in uninfected adult insects by transferring Spiroplasma-infected hemolymph. We sequenced the CI-Spiroplasma genome and did not find any homologues of any of the cif genes discovered to cause CI in Wolbachia, suggesting independent evolution of CI. Instead, the genome contains other potential CI-causing candidate genes, such as homologues of high-mobility group (HMG) box proteins that are crucial in eukaryotic development but rare in bacterial genomes. Spiroplasma's extracellular nature and broad host range encompassing medically and agriculturally important arthropods make it a promising tool to study CI and its applications.
Collapse
Affiliation(s)
- Marie Pollmann
- Department of Chemical Ecology 190t, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Logan D. Moore
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Elena Krimmer
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Paul D'Alvise
- Institute of Medical Microbiology and Hygiene, University Hospital of Tuebingen, 72016 Tuebingen, Germany
| | - Martin Hasselmann
- Department of Livestock Population Genomics 460h, Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Steve J. Perlman
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Matthew J. Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Johannes L.M. Steidle
- Department of Chemical Ecology 190t, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
- KomBioTa - Center of Biodiversity and Integrative Taxonomy, University of Hohenheim, 70599 Stuttgart, Germany
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, POB 12, Rehovot 76100, Israel
| |
Collapse
|
19
|
Doremus MR, Stouthamer CM, Kelly SE, Schmitz-Esser S, Hunter MS. Quality over quantity: unraveling the contributions to cytoplasmic incompatibility caused by two coinfecting Cardinium symbionts. Heredity (Edinb) 2022; 128:187-195. [PMID: 35124699 PMCID: PMC8897438 DOI: 10.1038/s41437-022-00507-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/25/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is a common form of reproductive sabotage caused by maternally inherited bacterial symbionts of arthropods. CI is a two-step manipulation: first, the symbiont modifies sperm in male hosts which results in the death of fertilized, uninfected embryos. Second, when females are infected with a compatible strain, the symbiont reverses sperm modification in the fertilized egg, allowing offspring of infected females to survive and spread the symbiont to high frequencies in a population. Although CI plays a role in arthropod evolution, the mechanism of CI is unknown for many symbionts. Cardinium hertigii is a common CI-inducing symbiont of arthropods, including parasitoid wasps like Encarsia partenopea. This wasp harbors two Cardinium strains, cEina2 and cEina3, and exhibits strong CI. The strains infect wasps at different densities, with the cEina3 present at a lower density than cEina2, and it was previously not known which strain caused CI. By differentially curing wasps of cEina3, we found that this low-density symbiont is responsible for CI and modifies males during their pupal stage. cEina2 does not modify host reproduction and may spread by 'hitchhiking' with cEina3 CI or by conferring an unknown benefit. The cEina3 strain also shows a unique localization pattern in male reproductive tissues. Instead of infecting sperm like other CI-inducing symbionts, cEina3 cells are found in somatic cells at the testis base and around the seminal vesicle. This may allow the low-density cEina3 to efficiently modify host males and suggests that cEina3 uses a different modification strategy than sperm-infecting CI symbionts.
Collapse
Affiliation(s)
- Matthew R. Doremus
- grid.134563.60000 0001 2168 186XGraduate Interdisciplinary Program in Entomology & Insect Science, The University of Arizona, Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XDepartment of Entomology, The University of Arizona, Tucson, AZ 85721 USA
| | - Corinne M. Stouthamer
- grid.213876.90000 0004 1936 738XDepartment of Entomology, The University of Georgia, Athens, GA 30602 USA
| | - Suzanne E. Kelly
- grid.134563.60000 0001 2168 186XDepartment of Entomology, The University of Arizona, Tucson, AZ 85721 USA
| | - Stephan Schmitz-Esser
- grid.34421.300000 0004 1936 7312Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Martha S. Hunter
- grid.134563.60000 0001 2168 186XDepartment of Entomology, The University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
20
|
Male Age and Wolbachia Dynamics: Investigating How Fast and Why Bacterial Densities and Cytoplasmic Incompatibility Strengths Vary. mBio 2021; 12:e0299821. [PMID: 34903056 PMCID: PMC8686834 DOI: 10.1128/mbio.02998-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Endosymbionts can influence host reproduction and fitness to favor their maternal transmission. For example, endosymbiotic Wolbachia bacteria often cause cytoplasmic incompatibility (CI) that kills uninfected embryos fertilized by Wolbachia-modified sperm. Infected females can rescue CI, providing them a relative fitness advantage. Wolbachia-induced CI strength varies widely and tends to decrease as host males age. Since strong CI drives Wolbachia to high equilibrium frequencies, understanding how fast and why CI strength declines with male age is crucial to explaining age-dependent CI’s influence on Wolbachia prevalence. Here, we investigate if Wolbachia densities and/or CI gene (cif) expression covary with CI-strength variation and explore covariates of age-dependent Wolbachia-density variation in two classic CI systems. wRi CI strength decreases slowly with Drosophila simulans male age (6%/day), but wMel CI strength decreases very rapidly (19%/day), yielding statistically insignificant CI after only 3 days of Drosophila melanogaster adult emergence. Wolbachia densities and cif expression in testes decrease as wRi-infected males age, but both surprisingly increase as wMel-infected males age, and CI strength declines. We then tested if phage lysis, Octomom copy number (which impacts wMel density), or host immune expression covary with age-dependent wMel densities. Only host immune expression correlated with density. Together, our results identify how fast CI strength declines with male age in two model systems and reveal unique relationships between male age, Wolbachia densities, cif expression, and host immunity. We discuss new hypotheses about the basis of age-dependent CI strength and its contributions to Wolbachia prevalence.
Collapse
|
21
|
Malec P, Weber J, Böhmer R, Fiebig M, Meinert D, Rein C, Reinisch R, Henrich M, Polyvas V, Pollmann M, von Berg L, König C, Steidle JLM. The emergence of ecotypes in a parasitoid wasp: a case of incipient sympatric speciation in Hymenoptera? BMC Ecol Evol 2021; 21:204. [PMID: 34781897 PMCID: PMC8591844 DOI: 10.1186/s12862-021-01938-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background To understand which reproductive barriers initiate speciation is a major question in evolutionary research. Despite their high species numbers and specific biology, there are only few studies on speciation in Hymenoptera. This study aims to identify very early reproductive barriers in a local, sympatric population of Nasonia vitripennis (Walker 1836), a hymenopterous parasitoid of fly pupae. We studied ecological barriers, sexual barriers, and the reduction in F1-female offspring as a postmating barrier, as well as the population structure using microsatellites. Results We found considerable inbreeding within female strains and a population structure with either three or five subpopulation clusters defined by microsatellites. In addition, there are two ecotypes, one parasitizing fly pupae in bird nests and the other on carrion. The nest ecotype is mainly formed from one of the microsatellite clusters, the two or four remaining microsatellite clusters form the carrion ecotype. There was slight sexual isolation and a reduction in F1-female offspring between inbreeding strains from the same microsatellite clusters and the same ecotypes. Strains from different microsatellite clusters are separated by a reduction in F1-female offspring. Ecotypes are separated only by ecological barriers. Conclusions This is the first demonstration of very early reproductive barriers within a sympatric population of Hymenoptera. It demonstrates that sexual and premating barriers can precede ecological separation. This indicates the complexity of ecotype formation and highlights the general need for more studies within homogenous populations for the identification of the earliest barriers in the speciation process. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01938-y.
Collapse
Affiliation(s)
- Pawel Malec
- Naturpark Steigerwald E.V., 91443, Scheinfeld, Germany
| | - Justus Weber
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Robin Böhmer
- Natural History Museum Bern, 3005, Bern, Switzerland
| | - Marc Fiebig
- Untere Naturschutzbehörde, Landratsamt Kitzingen, 97318, Kitzingen, Germany
| | | | - Carolin Rein
- Apicultural State Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Ronja Reinisch
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Maik Henrich
- Wildlife Ecology and Management, University of Freiburg, 79106, Freiburg, Germany
| | - Viktoria Polyvas
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Marie Pollmann
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Lea von Berg
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Christian König
- Akademie für Natur- und Umweltschutz Baden-Württemberg beim Ministerium für Umwelt, Klima und Energiewirtschaft, 70192, Stuttgart, Germany
| | - Johannes L M Steidle
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
22
|
Beckmann JF, Van Vaerenberghe K, Akwa DE, Cooper BS. A single mutation weakens symbiont-induced reproductive manipulation through reductions in deubiquitylation efficiency. Proc Natl Acad Sci U S A 2021; 118:e2113271118. [PMID: 34548405 PMCID: PMC8488622 DOI: 10.1073/pnas.2113271118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Animals interact with microbes that affect their performance and fitness, including endosymbionts that reside inside their cells. Maternally transmitted Wolbachia bacteria are the most common known endosymbionts, in large part because of their manipulation of host reproduction. For example, many Wolbachia cause cytoplasmic incompatibility (CI) that reduces host embryonic viability when Wolbachia-modified sperm fertilize uninfected eggs. Operons termed cifs control CI, and a single factor (cifA) rescues it, providing Wolbachia-infected females a fitness advantage. Despite CI's prevalence in nature, theory indicates that natural selection does not act to maintain CI, which varies widely in strength. Here, we investigate the genetic and functional basis of CI-strength variation observed among sister Wolbachia that infect Drosophila melanogaster subgroup hosts. We cloned, Sanger sequenced, and expressed cif repertoires from weak CI-causing wYak in Drosophila yakuba, revealing mutations suspected to weaken CI relative to model wMel in D. melanogaster A single valine-to-leucine mutation within the deubiquitylating (DUB) domain of the wYak cifB homolog (cidB) ablates a CI-like phenotype in yeast. The same mutation reduces both DUB efficiency in vitro and transgenic CI strength in the fly, each by about twofold. Our results map hypomorphic transgenic CI to reduced DUB activity and indicate that deubiquitylation is central to CI induction in cid systems. We also characterize effects of other genetic variation distinguishing wMel-like cifs Importantly, CI strength determines Wolbachia prevalence in natural systems and directly influences the efficacy of Wolbachia biocontrol strategies in transinfected mosquito systems. These approaches rely on strong CI to reduce human disease.
Collapse
Affiliation(s)
- John F Beckmann
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849;
| | | | - Daniel E Akwa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT 59801
| |
Collapse
|
23
|
Thongprem P, Evison SEF, Hurst GDD, Otti O. Transmission, Tropism, and Biological Impacts of Torix Rickettsia in the Common Bed Bug Cimex lectularius (Hemiptera: Cimicidae). Front Microbiol 2020; 11:608763. [PMID: 33424811 PMCID: PMC7785988 DOI: 10.3389/fmicb.2020.608763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
The torix group of Rickettsia have been recorded from a wide assemblage of invertebrates, but details of transmission and biological impacts on the host have rarely been established. The common bed bug (Cimex lectularius) is a hemipteran insect which lives as an obligatory hematophagous pest of humans and is host to a primary Wolbachia symbiont and two facultative symbionts, a BEV-like symbiont, and a torix group Rickettsia. In this study, we first note the presence of a single Rickettsia strain in multiple laboratory bed bug isolates derived from Europe and Africa. Importantly, we discovered that the Rickettsia has segregated in two laboratory strains, providing infected and uninfected isogenic lines for study. Crosses with these lines established transmission was purely maternal. Fluorescence in-situ hybridization analysis indicates Rickettsia infection in oocytes, bacteriomes, and other somatic tissues. We found no evidence that Rickettsia infection was associated with sex ratio distortion activity, but Rickettsia infected individuals developed from first instar to adult more slowly. The impact of Rickettsia on fecundity and fertility resulted in infected females producing fewer fertile eggs. However, we could not find any evidence for cytoplasmic incompatibility associated with Rickettsia presence. These data imply the existence of an unknown benefit to C. lectularius carrying Rickettsia that awaits further research.
Collapse
Affiliation(s)
- Panupong Thongprem
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sophie E. F. Evison
- Faculty of Medicine & Health Sciences, University Park, Nottingham, United Kingdom
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Oliver Otti
- Animal Population Ecology, Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
24
|
Doremus MR, Stouthamer CM, Kelly SE, Schmitz-Esser S, Hunter MS. Cardinium Localization During Its Parasitoid Wasp Host's Development Provides Insights Into Cytoplasmic Incompatibility. Front Microbiol 2020; 11:606399. [PMID: 33424808 PMCID: PMC7793848 DOI: 10.3389/fmicb.2020.606399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 11/23/2022] Open
Abstract
Arthropods harbor heritable intracellular symbionts that may manipulate host reproduction to favor symbiont transmission. In cytoplasmic incompatibility (CI), the symbiont sabotages the reproduction of infected males such that high levels of offspring mortality result when they mate with uninfected females. In crosses with infected males and infected females, however (the “rescue” cross), normal numbers of offspring are produced. A common CI-inducing symbiont, Cardinium hertigii, causes variable levels of CI mortality in the parasitoid wasp, Encarsia suzannae. Previous work correlated CI-induced mortality with male development time in this system, although the timing of Cardinium CI-induction and the relationship between development time and CI mortality was not well understood. Here, using a combination of crosses, manipulation of development time, and fluorescence microscopy, we identify the localization and the timing of the CI-induction step in the Cardinium-E. suzannae system. Antibiotic treatment of adult Cardinium-infected males did not reduce the mortality associated with the CI phenotype, suggesting that CI-alteration occurs prior to adulthood. Our results suggest that the alteration step occurs during the pupal period, and is limited by the duration of pupal development: 1) Encarsia produces most sperm prior to adulthood, 2) FISH localization of Cardinium in testes showed an association with sperm nuclei throughout spermatogenesis but not with mature sperm, and 3) two methods of prolonging the pupal period (cool temperatures and the juvenile hormone analog methoprene) both caused greater CI mortality, suggesting the degree of alteration is limited by the duration of the pupal stage. Based on these results, we compare two models for potential mechanisms of Cardinium sperm modification in the context of what is known about analogous mechanisms of Wolbachia, a more extensively studied CI-inducing symbiont.
Collapse
Affiliation(s)
- Matthew R Doremus
- Graduate Interdisciplinary Program in Entomology and Insect Science, University of Arizona, Tucson, AZ, United States
| | | | - Suzanne E Kelly
- Department of Entomology, University of Arizona, Tucson, AZ, United States
| | | | - Martha S Hunter
- Department of Entomology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
25
|
Shropshire JD, Leigh B, Bordenstein SR. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife 2020; 9:61989. [PMID: 32975515 PMCID: PMC7518888 DOI: 10.7554/elife.61989] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is the most common symbiont-induced reproductive manipulation. Specifically, symbiont-induced sperm modifications cause catastrophic mitotic defects in the fertilized embryo and ensuing lethality in crosses between symbiotic males and either aposymbiotic females or females harboring a different symbiont strain. However, if the female carries the same symbiont strain, then embryos develop properly, thereby imparting a relative fitness benefit to symbiont-transmitting mothers. Thus, CI drives maternally-transmitted bacteria to high frequencies in arthropods worldwide. In the past two decades, CI experienced a boom in interest due to its (i) deployment in worldwide efforts to curb mosquito-borne diseases, (ii) causation by bacteriophage genes, cifA and cifB, that modify sexual reproduction, and (iii) important impacts on arthropod speciation. This review serves as a gateway to experimental, conceptual, and quantitative themes of CI and outlines significant gaps in understanding CI’s mechanism that are ripe for investigation from diverse subdisciplines in the life sciences.
Collapse
Affiliation(s)
- J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, United States.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, United States
| |
Collapse
|