1
|
Carroll G, Abrahms B, Brodie S, Cimino MA. Spatial match-mismatch between predators and prey under climate change. Nat Ecol Evol 2024; 8:1593-1601. [PMID: 38914712 DOI: 10.1038/s41559-024-02454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/30/2024] [Indexed: 06/26/2024]
Abstract
Climate change is driving a rapid redistribution of life on Earth. Variability in the rates, magnitudes and directions of species' shifts can alter spatial overlap between predators and prey, with the potential to decouple trophic interactions. Although phenological mismatches between predator requirements and prey availability under climate change are well-established, 'spatial match-mismatch' dynamics remain poorly understood. We synthesize global evidence for climate-driven changes in spatial predator-prey overlap resulting from species redistribution across marine and terrestrial domains. We show that spatial mismatches can have vastly different outcomes for predator populations depending on their diet specialization and role within the wider ecosystem. We illustrate ecosystem-level consequences of climate-driven changes in spatial predator-prey overlap, from restructuring food webs to altering socio-ecological interactions. It remains unclear how predator-prey overlap at the landscape scale relates to prey encounter and consumption rates at local scales, or how the spatial reorganization of food webs affects ecosystem function. We identify key research directions necessary to resolve the scale of ecological impacts caused by species redistribution under climate change.
Collapse
Affiliation(s)
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA, USA
| | - Stephanie Brodie
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Brisbane, Queensland, Australia
| | - Megan A Cimino
- Institute of Marine Science, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
2
|
Logan RK, Vaudo JJ, Wetherbee BM, Shivji MS. Seasonally mediated niche partitioning in a vertically compressed pelagic predator guild. Proc Biol Sci 2023; 290:20232291. [PMID: 38052444 PMCID: PMC10697796 DOI: 10.1098/rspb.2023.2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Niche partitioning among closely related, sympatric species is a fundamental concept in ecology, and its mechanisms are of broad interest for understanding ecosystem functioning and predicting the impacts of human-driven environmental change. However, identifying mechanisms by which top marine predators partition available resources has been especially challenging given the difficulty of quantifying resource use of large pelagic animals. In the eastern tropical Pacific (ETP), three large, highly mobile and ecologically similar pelagic predators (blue marlin (Makaira nigricans), black marlin (Istiompax indica) and sailfish (Istiophorus platypterus)) coexist in a vertically compressed habitat. To evaluate each species' ecological niche, we leveraged a decade of recreational fisheries data, multi-year satellite tracking with high-resolution dive data, and stable isotope analysis. Fishery interaction and telemetry-based three-dimensional seasonal utilization distributions suggested high spatial and temporal overlap among species; however, seasonal and diel variability in diving behaviour produced spatial partitioning, leading to low trophic overlap among species. Expanding oxygen minimum zones will reduce the available vertical habitat within predator guilds, likely leading to increases in interspecific competition. Thus, understanding the mechanisms of habitat partitioning among predators in the vertically compressed ETP can provide insight into how predators in other ocean regions may respond to vertically limited habitats.
Collapse
Affiliation(s)
- Ryan K. Logan
- Guy Harvey Research Institute, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, 33004, USA
| | - Jeremy J. Vaudo
- Guy Harvey Research Institute, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, 33004, USA
| | - Bradley M. Wetherbee
- Guy Harvey Research Institute, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, 33004, USA
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Mahmood S. Shivji
- Guy Harvey Research Institute, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, 33004, USA
| |
Collapse
|
3
|
Welch H, Savoca MS, Brodie S, Jacox MG, Muhling BA, Clay TA, Cimino MA, Benson SR, Block BA, Conners MG, Costa DP, Jordan FD, Leising AW, Mikles CS, Palacios DM, Shaffer SA, Thorne LH, Watson JT, Holser RR, Dewitt L, Bograd SJ, Hazen EL. Impacts of marine heatwaves on top predator distributions are variable but predictable. Nat Commun 2023; 14:5188. [PMID: 37669922 PMCID: PMC10480173 DOI: 10.1038/s41467-023-40849-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
Marine heatwaves cause widespread environmental, biological, and socio-economic impacts, placing them at the forefront of 21st-century management challenges. However, heatwaves vary in intensity and evolution, and a paucity of information on how this variability impacts marine species limits our ability to proactively manage for these extreme events. Here, we model the effects of four recent heatwaves (2014, 2015, 2019, 2020) in the Northeastern Pacific on the distributions of 14 top predator species of ecological, cultural, and commercial importance. Predicted responses were highly variable across species and heatwaves, ranging from near total loss of habitat to a two-fold increase. Heatwaves rapidly altered political bio-geographies, with up to 10% of predicted habitat across all species shifting jurisdictions during individual heatwaves. The variability in predicted responses across species and heatwaves portends the need for novel management solutions that can rapidly respond to extreme climate events. As proof-of-concept, we developed an operational dynamic ocean management tool that predicts predator distributions and responses to extreme conditions in near real-time.
Collapse
Affiliation(s)
- Heather Welch
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA.
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA.
| | - Matthew S Savoca
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Stephanie Brodie
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
| | - Michael G Jacox
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
- NOAA, Physical Sciences Laboratory, Boulder, CO, USA
| | - Barbara A Muhling
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
- NOAA Southwest Fisheries Science Center, Fisheries Resources Division, San Diego, CA, USA
| | - Thomas A Clay
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
- People and Nature, Environmental Defense Fund, Monterey, CA, USA
| | - Megan A Cimino
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
| | - Scott R Benson
- NOAA, Southwest Fisheries Science Center, Marine Mammal and Turtle Division, Moss Landing, CA, USA
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, USA
| | - Barbara A Block
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Melinda G Conners
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Daniel P Costa
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
- Department of Ecology and Evolutionary Biology, UC Santa Cruz, Santa Cruz, CA, USA
| | - Fredrick D Jordan
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Andrew W Leising
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
| | - Chloe S Mikles
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Daniel M Palacios
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, USA
| | - Scott A Shaffer
- Department of Biological Sciences, San Jose State University, San Jose, CA, USA
| | - Lesley H Thorne
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Jordan T Watson
- NOAA, Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, AK, USA
- Pacific Islands Ocean Observing System, University of Hawai'i Mānoa, Honolulu, HI, USA
| | - Rachel R Holser
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
| | - Lynn Dewitt
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
| | - Steven J Bograd
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
| | - Elliott L Hazen
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
4
|
Dale JJ, Brodie S, Carlisle AB, Castleton M, Hazen EL, Bograd SJ, Block BA. Global habitat loss of a highly migratory predator, the blue marlin (
Makaira nigricans
). DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jonathan J. Dale
- Department of Biology Hopkins Marine Station of Stanford University Pacific Grove California USA
| | - Stephanie Brodie
- Institute of Marine Science, Fisheries Collaborative Program University of California Santa Cruz Monterey California USA
- Environmental Research Division Southwest Fisheries Science Centre, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Monterey California USA
| | - Aaron B. Carlisle
- School of Marine Science and Policy University of Delaware Lewes Delaware USA
| | - Michael Castleton
- Department of Biology Hopkins Marine Station of Stanford University Pacific Grove California USA
| | - Elliott L. Hazen
- Department of Biology Hopkins Marine Station of Stanford University Pacific Grove California USA
- Institute of Marine Science, Fisheries Collaborative Program University of California Santa Cruz Monterey California USA
- Environmental Research Division Southwest Fisheries Science Centre, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Monterey California USA
| | - Steven J. Bograd
- Institute of Marine Science, Fisheries Collaborative Program University of California Santa Cruz Monterey California USA
- Environmental Research Division Southwest Fisheries Science Centre, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Monterey California USA
| | - Barbara A. Block
- Department of Biology Hopkins Marine Station of Stanford University Pacific Grove California USA
| |
Collapse
|
5
|
Brownscombe JW, Raby GD, Murchie KJ, Danylchuk AJ, Cooke SJ. An energetics-performance framework for wild fishes. JOURNAL OF FISH BIOLOGY 2022; 101:4-12. [PMID: 35439327 DOI: 10.1111/jfb.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
There is growing evidence that bioenergetics can explain relationships between environmental conditions and fish behaviour, distribution and fitness. Fish energetic needs increase predictably with water temperature, but metabolic performance (i.e., aerobic scope) exhibits varied relationships, and there is debate about its role in shaping fish ecology. Here we present an energetics-performance framework, which posits that ecological context determines whether energy expenditure or metabolic performance influence fish behaviour and fitness. From this framework, we present testable predictions about how temperature-driven variability in energetic demands and metabolic performance interact with ecological conditions to influence fish behaviour, distribution and fitness. Specifically, factors such as prey availability and the spatial distributions of prey and predators may alter fish temperature selection relative to metabolic and energetic optima. Furthermore, metabolic flexibility is a key determinant of how fish will respond to changing conditions, such as those predicted with climate change. With few exceptions, these predictions have rarely been tested in the wild due partly to difficulties in remotely measuring aspects of fish energetics. However, with recent advances in technology and measurement techniques, we now have a better capacity to measure bioenergetics parameters in the wild. Testing these predictions will provide a more mechanistic understanding of how ecological factors affect fish fitness and population dynamics, advancing our knowledge of how species and ecosystems will respond to rapidly changing environments.
Collapse
Affiliation(s)
- Jacob W Brownscombe
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Karen J Murchie
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, Illinois, USA
| | - Andy J Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|