1
|
Álvarez-Varas R, Ayala E, Lagos R, Peña-Galindo I, Palma-Rojas V, Hereveri N, Campos N, Chiang G, Gaymer CF. Mercury exposure and health challenges in Rapa Nui green turtles: urging conservation and long-term monitoring in the South Pacific. CONSERVATION PHYSIOLOGY 2025; 13:coaf019. [PMID: 40207014 PMCID: PMC11981715 DOI: 10.1093/conphys/coaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
The endangered green sea turtle (Chelonia mydas; hereafter C. mydas) plays a crucial role in maintaining the balance of marine ecosystems. However, its populations are highly vulnerable to various threats, including marine pollution. Rapa Nui (Easter Island), an isolated location in the southeastern Pacific, provides vital foraging habitats for both morphotypes of Pacific C. mydas (black and yellow). In this study, we examined the demographic structure (morphotype, life stage, sex) and health status (based on blood analytes and mercury-Hg concentration) of C. mydas on Rapa Nui during 2018 and 2023. Turtles from various life stages and sexes were observed, with a predominance of yellow morphotype juveniles, likely recently recruited or emerging from brumation. Haematological analyses revealed low levels of several key analytes (e.g. cholesterol, calcium, phosphorus, total protein, globulins), suggesting poor nutritional status, potentially related to the brumation process, limited food availability or poor food quality in the region. Alterations in both red and white blood cell lines, including anaemia and lymphopenia, indicate ongoing inflammatory states and infections, consistent with clinical observations. Rapa Nui turtles exhibited some of the highest blood Hg concentrations globally. Abnormalities in blood profiles, along with correlations between various analytes and blood Hg concentrations, suggest altered immune function and probable renal and liver dysfunction, likely resulting from both natural and anthropogenic sources of this heavy metal. Additionally, a very high body condition index in turtles with carapace lesions suggests a negative impact from human food subsidies in local bays, particularly from high-trophic-level fish, which may also serve as a pathway for Hg accumulation, both for the turtle aggregation and the human population. Our findings underscore the urgent need for long-term mercury monitoring and turtle movement studies to identify pollution sources, inform effective conservation strategies for this endangered species, and address potential public health concerns on this remote Pacific island.
Collapse
Affiliation(s)
- Rocío Álvarez-Varas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Zip code 2373223, Valparaíso, Chile
- Centro de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Zip code 781421, Coquimbo, Chile
- Qarapara Tortugas Marinas Chile NGO, Las Flores Oriente 2725, Zip code 7940560, Santiago, Chile
| | - Eamy Ayala
- Qarapara Tortugas Marinas Chile NGO, Las Flores Oriente 2725, Zip code 7940560, Santiago, Chile
- Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Zip code 7800003, Santiago, Chile
| | - Rocío Lagos
- Laboratorio Clínico Veterinario SpVet, Arturo Prat 705, Zip code 9500037, Región Metropolitana, Santiago, Chile
| | - Irene Peña-Galindo
- Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 440, Zip code 8370251, Santiago, Chile
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Zip code 7820436, Santiago, Chile
| | - Victoria Palma-Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Zip code 2373223, Valparaíso, Chile
| | | | | | - Gustavo Chiang
- Centro para la Resiliencia, Adaptación y Mitigación (CReAM), Universidad Mayor, Zip code 4801043 Temuco, Chile
- Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 440, Zip code 8370251, Santiago, Chile
| | - Carlos F Gaymer
- Centro de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Zip code 781421, Coquimbo, Chile
| |
Collapse
|
2
|
Saito A, Sakai K, Kawai M, Lyu L, Kameda K, Kudo H, Sato K, Sakamoto KQ. Development of a non-invasive heart rate measurement method for sea turtles with dense keratinous scutes through effective electrode placement. Front Physiol 2025; 15:1511443. [PMID: 39877661 PMCID: PMC11772307 DOI: 10.3389/fphys.2024.1511443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Measuring the heart rate of sea turtles is important for understanding their physiological adaptations to the environment. Non-invasive methods to measure the electrocardiogram (ECG) of sea turtles have been developed by attaching electrodes to their carapace. However, this method has only been applicable to sea turtles with sparse keratin on their shell surfaces, such as loggerhead turtles, and it is difficult to detect heartbeats in sea turtles with dense keratinous scutes, including green sea turtles. Here, we explored the electrode placements on the plastron that can be applied to ECG measurement in green turtles. ECG signals were checked using a handheld ECG monitor at three sets of electrode placement on the plastron. When ECG signals could be detected, they were measured in the water tanks for several days to confirm the clarity of the ECG signals. Of the 29 green turtles, when the negative electrode was placed near the neck area of the plastron, clear ECG signals were obtained in nine individuals (39.1%), whereas ECG signals were not detected at any placements in four individuals (17.4%). Furthermore, in the water tank experiments, continuous ECG signals were successfully recorded by attaching a negative electrode near the neck: almost noiseless clear ECG signals even during moving in seven out of ten individuals and slightly weak and noisy signals in other individuals. The measured heart rate of ten individuals during resting was 8.6 ± 2.9 (means ± s.d.) beats min-1 and that during moving was 12.2 ± 4.7 beats min-1, similar to those reported in a previous study involving the insertion of electrodes inside the body. Therefore, for measuring the ECG of green turtles, the negative electrode should be placed closer to the neck, and the positive and earth electrodes should be placed to the lower left of the plastron. Although the selection of suitable individuals for measurements is required, this heart rate measurement method will contribute to a better understanding of the physiological status of sea turtles with dense keratinous scutes, including green turtles.
Collapse
Affiliation(s)
- Ayaka Saito
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Kino Sakai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Megumi Kawai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Lyu Lyu
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Kazunari Kameda
- Kuroshima Research Station, Sea Turtle Association of Japan, Taketomi, Japan
| | - Hiromi Kudo
- Center for Research and Education of Wildlife, Kyoto City Zoo, Kyoto, Japan
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Kentaro Q. Sakamoto
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
3
|
Espinoza J, Alfaro-Núñez A, Cedillo-Peláez C, Fernández-Sanz H, Mancini A, Zavala-Norzagaray AA, Ley-Quiñonez CP, López ES, Garcia-Bereguiain MA, Alonso Aguirre A, Reséndiz E. Epidemiology of marine turtle fibropapillomatosis and tumour-associated chelonid alphaherpesvirus 5 (ChHV5; Scutavirus chelonidalpha5) in North-Western Mexico: a scoping review implementing the one health approach. Vet Res Commun 2024; 48:2943-2961. [PMID: 38922387 PMCID: PMC11442556 DOI: 10.1007/s11259-024-10429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Fibropapillomatosis (FP) - tumour-associated chelonid alphaherpesvirus 5 (ChHV5; Scutavirus chelonidalpha5) - is a disease that affect marine turtles around the world, and characterized by the formation of cutaneous tumours that can appear anywhere on the body. We carried out a thorough literature search (from 1990 to 2024) in the feeding sites of North-western Mexico, a region that hosts important habitats for feeding, development, and reproduction for five of the seven existing sea turtle species. We found 18 reports recording a total of 32 cases of FP and/or ChHV5/Scutavirus chelonidalpha5 in coastal and insular areas of North-western Mexico. Baja California Sur resulted with the highest number of cases (75%). While the first case of ChHV5/Scutavirus chelonidalpha5 infection was reported in 2004, the presence of FP tumours was reported in 2014 and became more frequent between 2019 and 2024. The affected species were black, Chelonia mydas (50%), olive ridley, Lepidochelys olivacea (46.8%) and loggerhead turtles, Caretta caretta (3.2%). Tumours occurred mainly in anterior flippers (46.1%) and neck (22.5%), and most had a nodular and verrucous appearance with a rough surface. In the study region, there is a potential sign of the emergence of the ChHV5/Scutavirus chelonidalpha5 infections and FP disease during the last 20 years, with a rapid increase during the last 10 years. As long as infections by ChHV5/Scutavirus chelonidalpha5 and the prevalence of the FP disease may be potentially influenced by anthropogenic activities, a One Health approach is needed to understand and improve sea turtles' health.
Collapse
Affiliation(s)
- Joelly Espinoza
- Posgrado en Ciencias Marinas y Costeras (CIMACO), Universidad Autónoma de Baja California Sur (UABCS), Carretera al Sur Km 5.5., Apartado Postal 19-B, 23080, La Paz, Baja California Sur, Mexico
- Health assessments in sea turtles from B.C.S, La Paz, 23085, Baja California Sur, México
| | - Alonzo Alfaro-Núñez
- Department of Clinical Biochemistry, Naestved Hospital, Ringstedgade 57a, Naestved, 4700, Denmark.
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, Copenhagen K, 1353, Denmark.
| | - Carlos Cedillo-Peláez
- Laboratorio de Inmunología experimental, Instituto Nacional de Pediatría, Insurgentes Cuicuilco, Av. Insurgentes Sur 3700, Coyoacán, Ciudad de México, 04530, Mexico
| | - Helena Fernández-Sanz
- Posgrado en Ciencias Marinas y Costeras (CIMACO), Universidad Autónoma de Baja California Sur (UABCS), Carretera al Sur Km 5.5., Apartado Postal 19-B, 23080, La Paz, Baja California Sur, Mexico
- Health assessments in sea turtles from B.C.S, La Paz, 23085, Baja California Sur, México
| | - Agnese Mancini
- Grupo Tortuguero de las Californias A.C, La Paz, 23098, Baja California Sur, Mexico
| | - Alan A Zavala-Norzagaray
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (IPN-CIIDIR), Mexico City, Mexico
| | - Cesar Paul Ley-Quiñonez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (IPN-CIIDIR), Mexico City, Mexico
| | - Erika Santacruz López
- Grupo tortuguero de Bahía de los Ángeles, Bahía de los ángeles, 22980, Baja California, Mexico
| | | | - A Alonso Aguirre
- Department of Fish, Wildlife, and Conservation Biology, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, USA
| | - Eduardo Reséndiz
- Departamento académico de Ciencia Animal y Conservación del Hábitat, Universidad Autónoma de Baja California Sur (UABCS), Carretera al Sur KM 5.5., Apartado Postal 19-B, La Paz, 23080, Baja California Sur, México
- Asociación Mexicana de Veterinarios de Tortugas A.C, Xalapa, 91050, Veracruz, México
| |
Collapse
|
4
|
Fernández-Sanz H, Perrault JR, Stacy NI, Mancini A, Reyes-Bonilla H, Reséndiz E. Blood analyte reference intervals and correlations with trace elements of immature and adult Eastern Pacific green turtles (Chelonia mydas) in coastal lagoons of Baja California Sur, México. MARINE POLLUTION BULLETIN 2023; 195:115547. [PMID: 37717495 DOI: 10.1016/j.marpolbul.2023.115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Sea turtles can bioaccumulate high concentrations of potentially toxic contaminants. To better understand trace element effects on sea turtles' health, we established reference intervals for hematological and plasma biochemical analytes in 40 in-water, foraging immature and adult Eastern Pacific green turtles (Chelonia mydas) from two coastal lagoons in Baja California Sur, quantified whole blood concentrations of eight trace elements, and assessed their correlations. Rank-order trace element concentrations in both immature and adult turtles was zinc > selenium > nickel > arsenic > copper > cadmium > lead > manganese. Immature turtles had significantly higher copper and lower nickel and zinc concentrations. Additionally, a number of relationships between trace elements and blood analytes were identified. These data provide baseline information useful for future investigations into this population, or in other geographic regions and various life-stage classes.
Collapse
Affiliation(s)
- Helena Fernández-Sanz
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, El Mezquitito 19-B, 23080 La Paz, Baja California Sur, Mexico; Health Assessments in Sea Turtles From Baja California Sur, Villa Ballena 330, Villas del Encanto, 23085 La Paz, Baja California Sur, Mexico.
| | - Justin R Perrault
- Loggerhead Marinelife Center, 14200 US Highway 1, Juno Beach, FL 33408, USA.
| | - Nicole I Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL 32610, USA.
| | - Agnese Mancini
- Grupo Tortuguero de las Californias A.C., Calle Seis 141, Azaleas, 23098 La Paz, Baja California Sur, Mexico.
| | - Héctor Reyes-Bonilla
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, El Mezquitito 19-B, 23080 La Paz, Baja California Sur, Mexico.
| | - Eduardo Reséndiz
- Health Assessments in Sea Turtles From Baja California Sur, Villa Ballena 330, Villas del Encanto, 23085 La Paz, Baja California Sur, Mexico; Laboratorio de Investigación y Medicina de Organismos Acuáticos, Departamento Académico de Ciencia Animal y Conservación del Hábitat, Universidad Autónoma de Baja California Sur, Carretera al Sur km 5.5, El Mezquitito 19-B, 23080 La Paz, Baja California Sur, Mexico.
| |
Collapse
|
5
|
Álvarez-Varas R, Medrano C, Benítez HA, Guerrero F, León Miranda F, Vianna JA, González C, Véliz D. Genetics, Morphometrics and Health Characterization of Green Turtle Foraging Grounds in Mainland and Insular Chile. Animals (Basel) 2022; 12:1473. [PMID: 35739811 PMCID: PMC9219523 DOI: 10.3390/ani12121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Two divergent genetic lineages have been described for the endangered green turtle in the Pacific Ocean, occurring sympatrically in some foraging grounds. Chile has seven known green turtle foraging grounds, hosting mainly juveniles of different lineages. Unfortunately, anthropic factors have led to the decline or disappearance of most foraging aggregations. We investigated age-class/sex structure, morphological variation, genetic diversity and structure, and health status of turtles from two mainland (Bahia Salado and Playa Chinchorro) and one insular (Easter Island) Chilean foraging grounds. Bahia Salado is composed of juveniles, and with Playa Chinchorro, exclusively harbors individuals of the north-central/eastern Pacific lineage, with Galapagos as the major genetic contributor. Conversely, Easter Island hosts juveniles and adults from both the eastern Pacific and French Polynesia. Morphological variation was found between lineages and foraging grounds, suggesting an underlying genetic component but also an environmental influence. Turtles from Easter Island, unlike Bahia Salado, exhibited injuries/alterations probably related to anthropic threats. Our findings point to establishing legal protection for mainland Chile's foraging grounds, and to ensure that the administrative plan for Easter Island's marine protected area maintains ecosystem health, turtle population viability, and related cultural and touristic activities.
Collapse
Affiliation(s)
- Rocío Álvarez-Varas
- Center for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo 1780000, Chile;
- Qarapara Tortugas Marinas Chile NGO, Santiago 7750000, Chile; (C.M.); (F.G.)
| | - Carol Medrano
- Qarapara Tortugas Marinas Chile NGO, Santiago 7750000, Chile; (C.M.); (F.G.)
| | - Hugo A. Benítez
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca 3466706, Chile;
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Felipe Guerrero
- Qarapara Tortugas Marinas Chile NGO, Santiago 7750000, Chile; (C.M.); (F.G.)
| | - Fabiola León Miranda
- Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 8940000, Chile; (F.L.M.); (J.A.V.)
| | - Juliana A. Vianna
- Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 8940000, Chile; (F.L.M.); (J.A.V.)
- Millennium Institute Center for Genomic Regulation (CRG), Santiago 7800003, Chile
| | - Camila González
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1780000, Chile;
| | - David Véliz
- Center for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo 1780000, Chile;
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| |
Collapse
|