1
|
Schuh A, Gunz P, Villa C, Maureille B, Toussaint M, Abrams G, Hublin JJ, Freidline SE. Human midfacial growth pattern differs from that of Neanderthals and chimpanzees. J Hum Evol 2025; 202:103667. [PMID: 40132491 DOI: 10.1016/j.jhevol.2025.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/24/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
Present-day humans have small and retracted midfaces, while Neanderthals possess large and forwardly projected midfaces. To understand the ontogenetic patterns underlying these characteristic morphologies, we compared maxillary growth and development from birth to adulthood in present-day humans (Homo sapiens; n = 128), Neanderthals (Homo neanderthalensis; n = 13), and chimpanzees (Pan troglodytes verus; n = 33) using macroscopic (i.e., geometric morphometrics) and microscopic (i.e., surface histology) approaches. Using geometric morphometrics to quantify macroscopic patterns of growth and development, we found that the midfaces of present-day humans are on average already smaller at birth than those of Neanderthals and grow more slowly after birth. In particular, we find an early cessation of growth around adolescence, which is unique to our species. Microscopically, this is reflected in reduced amounts of bone resorption, indicative of decreased cellular activities linked to bone development. Greater amounts of bone formation in the infraorbital and nasal regions and faster growth rates are responsible for the large Neanderthal midface. These results highlight the importance of postnatal ontogeny (especially in late stages) for explaining facial differences between Neanderthals and present-day humans, as well as part of the gracilization process characteristic of present-day humans.
Collapse
Affiliation(s)
- Alexandra Schuh
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Chiara Villa
- Department of Forensic Medicine, University of Copenhagen, Frederik V's vej 11, DK-2100 Copenhagen, Denmark
| | - Bruno Maureille
- Laboratoire PACEA, UMR 5199, Université de Bordeaux, Bât. B2, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France
| | - Michel Toussaint
- Association Wallonne d'Études Mégalithiques, 4000 Liège, Belgium; Department of Archaeology, Ghent University, 9000 Ghent, Belgium
| | - Grégory Abrams
- Department of Archaeology, Ghent University, 9000 Ghent, Belgium; Scladina Cave Archaeological Centre, Espace muséal d'Andenne, Rue Fond des Vaux 339D, 5300 Andenne, Belgium
| | - Jean-Jacques Hublin
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Sarah E Freidline
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Anthropology, University of Central Florida, 4000 Central Florida Blvd., Orlando, USA.
| |
Collapse
|
2
|
Richards GD, Jabbour RS, Guipert G, Defleur A. Early Neanderthal mandibular remains from Baume Moula-Guercy (Soyons, Ardèche). Anat Rec (Hoboken) 2025; 308:892-929. [PMID: 39132848 PMCID: PMC11791396 DOI: 10.1002/ar.25550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
We provide an ontogenetically-based comparative description of mandibular remains from Last Interglacial deposits (MIS 5e) at Baume Moula-Guercy and examine their affinities to European and Middle Eastern Middle-to-Late Pleistocene (≈MIS 14-MIS 1) Homo. Description of the M-G2-419 right partial mandibular corpus with M1-3 (15-16.0 years ±0.5 years) and mandibular fragments M-F4-77 and M-S-TNN1 is with reference to original fossils, casts, CT scans, literature descriptions, and virtual reconstructions. Our comparative sample is ontogenetically based and divided into a Preneanderthal-Neanderthal group and a Homo sapiens group. These groups are subdivided into (1) Preneanderthals (≈MIS 14-9), Early Neanderthals (MIS 7-5e), and Late Neanderthals (MIS 5d-3), and (2) Middle (MIS 5) and Upper (MIS 3-Pre-MIS 1) Paleolithic and recent H. sapiens. Standard techniques were employed for developmental age and sex determinations and measurements. The M-G2-419 mandible possesses corpus features that link it most closely with the Sima de los Huesos Preneanderthal and Early Neanderthal groups. These include mental foramen position, number, and height on the corpus, anterior marginal tubercle position, and mylohyoid line orientation. Metrically, the M-G2-419 mandibular corpus is small relative to adults in all groups, but the thickness/height relationship is like the adult condition. The thickness of the corpus is more like Neanderthal children than adolescents. Molar crown features suggest affinities with the Preneanderthal-Neanderthal group. The Moula-Guercy mandibles possess a combination of Neanderthal-associated features that provides insights into MIS 7-5e paleodeme variation and the timing of appearance of MIS 5d-3 Neanderthal facial features.
Collapse
Affiliation(s)
- Gary D. Richards
- Department of Biomedical Sciences, A. A. Dugoni School of DentistryUniversity of the PacificSan FranciscoCaliforniaUSA
| | - Rebecca S. Jabbour
- Department of BiologySaint Mary's College of CaliforniaMoragaCaliforniaUSA
| | - Gaspard Guipert
- Institut de Paléontologie HumaineFondation Albert Ier Prince de MonacoParisFrance
| | - Alban Defleur
- IPHES Institut Català de Paleoecologia Humana I Evolució SocialTarragonaSpain
| |
Collapse
|
3
|
Nava A, Lugli F, Lemmers S, Cerrito P, Mahoney P, Bondioli L, Müller W. Reading children's teeth to reconstruct life history and the evolution of human cooperation and cognition: The role of dental enamel microstructure and chemistry. Neurosci Biobehav Rev 2024; 163:105745. [PMID: 38825260 DOI: 10.1016/j.neubiorev.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Studying infants in the past is crucial for understanding the evolution of human life history and the evolution of cooperation, cognition, and communication. An infant's growth, health, and mortality can provide information about the dynamics and structure of a population, their cultural practices, and the adaptive capacity of a community. Skeletal remains provide one way of accessing this information for humans recovered prior to the historical periods. Teeth in particular, are retrospective archives of information that can be accessed through morphological, micromorphological, and biogeochemical methods. This review discusses how the microanatomy and formation of teeth, and particularly enamel, serve as archives of somatic growth, stress, and the environment. Examining their role in the broader context of human evolution, we discuss dental biogeochemistry and emphasize how the incremental growth of tooth microstructure facilitates the reconstruction of temporal data related to health, diet, mobility, and stress in past societies. The review concludes by considering tooth microstructure as a biomarker and the potential clinical applications.
Collapse
Affiliation(s)
- Alessia Nava
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, via Caserta 6, Rome 00161, Italy.
| | - Federico Lugli
- Institut of Geosciences, Goethe University Frankfurt, 60438, Frankfurt, Frankfurt am Main, Germany; Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt am Main, Germany; Department of Chemical and Geological Science, University of Modena and Reggio Emilia, via Giuseppe Campi, 103, Modena 41125, Italy
| | - Simone Lemmers
- Elettra Sincrotrone Trieste S.C.p.A., AREA Science Park, s.s. 14 km 163,500, Basovizza, Trieste, Italy; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, USA
| | - Paola Cerrito
- Department of Evolutionary Anthropology, University of Zürich, Zürich, Switzerland
| | - Patrick Mahoney
- School of Anthropology and Conservation, University of Kent, Giles Ln, Giles Ln, Canterbury CT2 7NZ, UK
| | - Luca Bondioli
- Department of Cultural Heritage, University of Padua, Piazza Capitaniato, 7, Padua 35139, Italy
| | - Wolfgang Müller
- Institut of Geosciences, Goethe University Frankfurt, 60438, Frankfurt, Frankfurt am Main, Germany; Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Mahoney P, McFarlane G, Taurozzi AJ, Madupe PP, O'Hara MC, Molopyane K, Cappellini E, Hawks J, Skinner MM, Berger L. Human-like enamel growth in Homo naledi. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24893. [PMID: 38180115 DOI: 10.1002/ajpa.24893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVES A modern pattern (rate and duration) of dental development occurs relatively recently during human evolution. Given the temporal overlap of Homo naledi with the first appearance of fossil Homo sapiens in Africa, this small-bodied and small-brained hominin presents an opportunity to elucidate the evolution of enamel growth in the hominin clade. Here we conduct the first histological study of two permanent mandibular canines and one permanent maxillary first molar, representing three individuals attributed to H. naledi. We reconstruct the rate and duration of enamel growth and compare these findings to those reported for other fossil hominins and recent humans. MATERIALS AND METHODS Thin sections of each tooth were produced using standard histological methods. Daily and longer period incremental markings were measured to reconstruct enamel secretion and extension rates, Retzius periodicity, canine crown and molar cusp formation time. RESULTS Daily enamel secretion rates overlapped with those from recent hominins. Canine crown formation time is similar to that observed in recent Europeans but is longer than canine formation times reported for most other hominins including Australopithecus and H. neanderthalensis. The extended period of canine formation appears to be due to a relatively tall enamel crown and a sustained slow rate of enamel extension in the cervical portion of the crown. A Retzius periodicity of 11 days for the canines, and nine days for the molar, in H. naledi parallel results found in recent humans. An 11-day periodicity has not been reported for Late Pleistocene Homo (H. erectus, H. neanderthalensis) and is rarely found in Australopithecus and Paranthropus species. DISCUSSION Enamel growth of H. naledi is most similar to recent humans though comparative data are limited for most fossil hominin species. The high Retzius periodicity values do not follow expectations for a small-brained hominin.
Collapse
Affiliation(s)
- Patrick Mahoney
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Gina McFarlane
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Alberto J Taurozzi
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Palesa P Madupe
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Human Evolution Research Institute, University of Cape Town, Rondebosch, South Africa
| | - Mackie C O'Hara
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Keneiloe Molopyane
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- The National Geographic Society, Washington, District of Columbia, USA
| | - Enrico Cappellini
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, University of Wisconsin-Madison, USA
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Lee Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
- The National Geographic Society, Washington, District of Columbia, USA
- The Carnegie Institution for Science, Washington, District of Columbia, USA
| |
Collapse
|
5
|
Fiorenza L, Habashi W, Moggi-Cecchi J, Benazzi S, Sarig R. Relationship between interproximal and occlusal wear in Australopithecus africanus and Neanderthal molars. J Hum Evol 2023; 183:103423. [PMID: 37659139 DOI: 10.1016/j.jhevol.2023.103423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/05/2023] [Accepted: 08/05/2023] [Indexed: 09/04/2023]
Affiliation(s)
- Luca Fiorenza
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, 3800 Melbourne, VIC, Australia.
| | - Waseem Habashi
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, 39040 Tel Aviv, Israel
| | | | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, 48121 Ravenna, Italy
| | - Rachel Sarig
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, 39040 Tel Aviv, Israel; Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel-Aviv University, 39040 Tel Aviv, Israel
| |
Collapse
|
6
|
Towle I, Salem AS, Veneziano A, Loch C. Variation in enamel and dentine mineral concentration and density in primate molars. Arch Oral Biol 2023; 153:105752. [PMID: 37385050 DOI: 10.1016/j.archoralbio.2023.105752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
OBJECTIVE Variation in enamel and dentine mineral concentration and total effective density can be reliably collected using Micro-CT scans. Both variables are suggested to reflect mechanical properties such as hardness and elastic modulus in dental tissues, meaning Micro-CT methods allow relative composition and mechanical properties to be collected non-destructively. DESIGN 16 lower molars from 16 Catarrhine primates were Micro-CT scanned alongside hydroxyapatite phantoms using standardized settings and methods to calculate mineral concentration and total effective density. Mineral concentration, total effective density and thickness of dentine and enamel were calculated for four cusps, representing each 'corner' of the tooth and four lateral crown positions (i.e., mesial, buccal, lingual and distal). RESULTS The results show mean mineral concentration and total effective density values were higher in areas of thicker enamel, while the opposite was observed for dentine. Buccal positions had significantly higher mineral concentration and total effective density values than lingual areas. Cuspal positions had higher mean values than lateral enamel, for both dentine (mineral concentration cuspal: 1.26 g/cm3; lateral: 1.20 g/cm3) and enamel (mineral concentration cuspal: 2.31 g/cm3; lateral: 2.25 g/cm3). Mesial enamel had significantly lower values than other locations. CONCLUSIONS These common patterns across Catarrhine taxa may be linked to functional adaptations related to optimization of mastication and tooth protection. Variation in mineral concentration and total effective density may also be associated with wear and fracture patterns, and can be used as baseline information to investigate the effect of diet, pathological changes and aging on teeth through time.
Collapse
Affiliation(s)
- Ian Towle
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9054, New Zealand.
| | - Amira Samir Salem
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9054, New Zealand
| | - Alessio Veneziano
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Carolina Loch
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
7
|
Besnard C, Marie A, Sasidharan S, Harper RA, Shelton RM, Landini G, Korsunsky AM. Synchrotron X-ray Studies of the Structural and Functional Hierarchies in Mineralised Human Dental Enamel: A State-of-the-Art Review. Dent J (Basel) 2023; 11:98. [PMID: 37185477 PMCID: PMC10137518 DOI: 10.3390/dj11040098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Hard dental tissues possess a complex hierarchical structure that is particularly evident in enamel, the most mineralised substance in the human body. Its complex and interlinked organisation at the Ångstrom (crystal lattice), nano-, micro-, and macro-scales is the result of evolutionary optimisation for mechanical and functional performance: hardness and stiffness, fracture toughness, thermal, and chemical resistance. Understanding the physical-chemical-structural relationships at each scale requires the application of appropriately sensitive and resolving probes. Synchrotron X-ray techniques offer the possibility to progress significantly beyond the capabilities of conventional laboratory instruments, i.e., X-ray diffractometers, and electron and atomic force microscopes. The last few decades have witnessed the accumulation of results obtained from X-ray scattering (diffraction), spectroscopy (including polarisation analysis), and imaging (including ptychography and tomography). The current article presents a multi-disciplinary review of nearly 40 years of discoveries and advancements, primarily pertaining to the study of enamel and its demineralisation (caries), but also linked to the investigations of other mineralised tissues such as dentine, bone, etc. The modelling approaches informed by these observations are also overviewed. The strategic aim of the present review was to identify and evaluate prospective avenues for analysing dental tissues and developing treatments and prophylaxis for improved dental health.
Collapse
Affiliation(s)
- Cyril Besnard
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Ali Marie
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Sisini Sasidharan
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Robert A. Harper
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Gabriel Landini
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Alexander M. Korsunsky
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| |
Collapse
|
8
|
Cerrito P, Hu B, Goldstein JZ, Kalisher R, Bailey SE, Bromage TG. Elemental composition of primary lamellar bone differs between parous and nulliparous rhesus macaque females. PLoS One 2022; 17:e0276866. [PMID: 36318529 PMCID: PMC9624403 DOI: 10.1371/journal.pone.0276866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/16/2022] [Indexed: 11/24/2022] Open
Abstract
Extracting life history information from mineralized hard tissues of extant and extinct species is an ongoing challenge in evolutionary and conservation studies. Primary lamellar bone is a mineralized tissue with multidien periodicity that begins deposition prenatally and continues until adulthood albeit with concurrent resorption, thus maintaining a record spanning several years of an individual's life. Here, we use field-emission scanning electron microscopy and energy-dispersive X-ray analysis to measure the relative concentrations of calcium, phosphorous, oxygen, magnesium and sodium in the femora of seven rhesus macaque with known medical and life-history information. We find that the concentration of these elements distinguishes parous from nulliparous females; that in females calcium and phosphorus are lower in bone formed during reproductive events; and that significant differences in relative magnesium concentration correlate with breastfeeding in infants.
Collapse
Affiliation(s)
- Paola Cerrito
- Department of Anthropology, New York University, New York, New York, United States of America
- New York Consortium in Evolutionary Primatology, New York, New York, United States of America
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, United States of America
- Collegium Helveticum, ETH, Zürich, Switzerland
- * E-mail:
| | - Bin Hu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, United States of America
| | - Justin Z. Goldstein
- Department of Anthropology, Texas State University, San Marcos, Texas, United States of America
| | - Rachel Kalisher
- Joukowsky Institute for Archaeology and the Ancient World, Brown University, Providence, Rhode Island, United States of America
| | - Shara E. Bailey
- Department of Anthropology, New York University, New York, New York, United States of America
- New York Consortium in Evolutionary Primatology, New York, New York, United States of America
| | - Timothy G. Bromage
- Department of Anthropology, New York University, New York, New York, United States of America
- New York Consortium in Evolutionary Primatology, New York, New York, United States of America
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, United States of America
| |
Collapse
|
9
|
Cerrito P, Nava A, Radovčić D, Borić D, Cerrito L, Basdeo T, Ruggiero G, Frayer DW, Kao AP, Bondioli L, Mancini L, Bromage TG. Dental cementum virtual histology of Neanderthal teeth from Krapina (Croatia, 130-120 kyr): an informed estimate of age, sex and adult stressors. J R Soc Interface 2022; 19:20210820. [PMID: 35193386 PMCID: PMC8864341 DOI: 10.1098/rsif.2021.0820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/27/2022] [Indexed: 11/12/2022] Open
Abstract
The evolution of modern human reproductive scheduling is an aspect of our life history that remains vastly uncomprehended. The present work aims to address this gap by validating a non-destructive cutting-edge methodology to infer adult life-history events on modern teeth with known life history and then applying it to fossil specimens. We use phase-contrast synchrotron X-ray microtomography to visualize the dental cementum of 21 specimens: nine contemporary humans; 10 Neanderthals from Krapina (Croatia, 130-120 kyr); one Neolithic Homo sapiens from Ajmana (Serbia); and one Mesolithic H. sapiens from Vlasac (Serbia). We were able to correctly detect and time (root mean square error = 2.1 years; R2 = 0.98) all reproductive (menarche, parturition, menopause) and other physiologically impactful events in the modern sample. Nonetheless, we could not distinguish between the causes of the events detected. For the fossil specimens, we estimated age at death and age at occurrence of biologically significant events. Finally, we performed an exploratory analysis regarding possible sexual dimorphism in dental cementum microstructure, which allowed us to correctly infer the sex of the Neolithic specimen, for which the true value was known via DNA analysis.
Collapse
Affiliation(s)
- Paola Cerrito
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - Alessia Nava
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Davorka Radovčić
- Department of Geology and Paleontology, Croatian Natural History Museum, Zagreb, Croatia
| | - Dušan Borić
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | | | - Tricia Basdeo
- Department of Anthropology, Adelphi University, New York, NY, USA
| | - Guido Ruggiero
- Ruggiero-Piscopo Dental Practice, Naples, Italy
- Molise Regional Health Authority, Venafro, Italy
| | - David W. Frayer
- Department of Anthropology, University of Kansas, Lawrence, KS, USA
| | - Alexander P. Kao
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Luca Bondioli
- Department of Cultural Heritage, University of Padua, Padua, Italy
| | - Lucia Mancini
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Timothy G. Bromage
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|