1
|
Darlim G, Höhna S. The effects of cryptic diversity on diversification dynamics analyses in Crocodylia. Proc Biol Sci 2025; 292:20250091. [PMID: 40101764 PMCID: PMC11919527 DOI: 10.1098/rspb.2025.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Incomplete taxon sampling due to underestimation of present-day biodiversity biases diversification analysis by favouring slowdowns in speciation rates towards the recent time. For instance, in diversification dynamics studies in Crocodylia, long-term low net-diversification rates and slowdowns in speciation rates have been suggested to characterize crocodylian evolution. However, crocodylian cryptic diversity has never been considered. Here, we explore the effects of incorporating cryptic diversity into a diversification dynamics analysis of extant crocodylians. We inferred a time-calibrated cryptic-species-level phylogeny using cytochrome b sequences of 45 lineages compared with the formally recognized 26 crocodylian species. Diversification rate estimates using the cryptic-species-level phylogeny show increasing speciation and net-diversification rates towards the present time, which contrasts with previous findings. Cryptic diversity should be considered in future macroevolutionary analyses; however, the representation of cryptic extinct taxa represents a major challenge. Additionally, further investigation of crocodylian diversification dynamics under different underlying genomic data is encouraged upon advances in population genetics. Our case study adds to the diversification dynamics knowledge of extant taxa and demonstrates that cryptic species and robust taxonomic assessment are essential to study recent biodiversity dynamics with broad implications for evolutionary biology and ecology.
Collapse
Affiliation(s)
- Gustavo Darlim
- GeoBio-Center LMU, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sebastian Höhna
- GeoBio-Center LMU, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
2
|
Haÿ V, Mennesson MI, Carpentier C, Dahruddin H, Sauri S, Limmon G, Wowor D, Hubert N, Keith P, Lord C. Phylogeography of Microphis retzii (Bleeker, 1856) and Microphis brachyurus (Bleeker, 1854) in the Pacific. JOURNAL OF FISH BIOLOGY 2025; 106:602-620. [PMID: 39506330 PMCID: PMC11842185 DOI: 10.1111/jfb.15981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Syngnathidae are a charismatic family of teleost fishes, represented by seahorses, seadragons, and pipefishes. Syngnathidae are mainly composed of marine species, but about 30 species of pipefishes inhabit freshwater insular environments of the Indo-Pacific realm. Recent research has shown that some freshwater pipefish species are amphidromous and exhibit high intraspecific divergences across their distribution range, like Microphis brachyurus (Bleeker, 1854) distributed from Sri Lanka to French Polynesia and Microphis retzii (Bleeker, 1856) distributed from Taiwan to Indonesia. In this study, we used the mitochondrial cytochrome oxidase I (COI) partial gene of 91 specimens of M. brachyurus and 30 specimens of M. retzii from localities representative of their respective distribution area to improve knowledge on the population structure of these two widespread species. Genetic species delimitation and phylogeographic analyses were combined to explore spatial patterns of genetic diversity across the distribution ranges of the two species. We have highlighted deep genetic structuring within the two species and relate these results to various biotic and abiotic factors. For M. brachyurus, the population in Polynesia is distinct from those in the West Pacific, suggesting its distinctiveness and recognition as an evolutionary significant unit (ESU). For M. retzii, three lineages are delimited in its range distribution, suggesting the existence of two distinct species in Southeast Asia (Bali/Java/Lombok and China/Taiwan). Pipefish species are particularly vulnerable to anthropogenic pressures (inherent to Syngnathidae and insular environments). The present results, revising species delimitation and geographic distribution, will help implement effective conservation and management measures.
Collapse
Affiliation(s)
- Vincent Haÿ
- UMR 8067, Biologie des organismes et écosystèmes aquatiques (BOREA), Sorbonne Université, Muséum national d'Histoire naturelle, Université de Caen NormandieUniversité des AntillesParisFrance
| | - Marion I. Mennesson
- UMR 8067, Biologie des organismes et écosystèmes aquatiques (BOREA), Sorbonne Université, Muséum national d'Histoire naturelle, Université de Caen NormandieUniversité des AntillesParisFrance
| | - Camille Carpentier
- UMR 8067, Biologie des organismes et écosystèmes aquatiques (BOREA), Sorbonne Université, Muséum national d'Histoire naturelle, Université de Caen NormandieUniversité des AntillesParisFrance
| | - Hadi Dahruddin
- Research Center for Biosystematics and Evolution, National Research and Innovation AgencyCibinong Science CenterCibinongIndonesia
| | - Sopian Sauri
- Research Center for Biosystematics and Evolution, National Research and Innovation AgencyCibinong Science CenterCibinongIndonesia
| | - Gino Limmon
- Maritime and Marine Science Center of ExcellenceUniversitas PattimuraAmbonIndonesia
| | - Daisy Wowor
- Research Center for Biosystematics and Evolution, National Research and Innovation AgencyCibinong Science CenterCibinongIndonesia
| | - Nicolas Hubert
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE)Université de MontpellierMontpellierFrance
| | - Philippe Keith
- UMR 8067, Biologie des organismes et écosystèmes aquatiques (BOREA), Sorbonne Université, Muséum national d'Histoire naturelle, Université de Caen NormandieUniversité des AntillesParisFrance
| | - Clara Lord
- UMR 8067, Biologie des organismes et écosystèmes aquatiques (BOREA), Sorbonne Université, Muséum national d'Histoire naturelle, Université de Caen NormandieUniversité des AntillesParisFrance
| |
Collapse
|
3
|
Chen W, Hubert N, Li Y, Zhu S, Wang J, Xiang D, Gao S, Kou C, Wang J, Wang T, Liang Z, Wu J, Li X, Li J. Mitogenomic phylogeny, biogeography, and cryptic divergence of the genus Silurus (Siluriformes: Siluridae). Zool Res 2024; 45:711-723. [PMID: 38766761 PMCID: PMC11298680 DOI: 10.24272/j.issn.2095-8137.2023.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/25/2023] [Indexed: 05/22/2024] Open
Abstract
The genus Silurus, an important group of catfish, exhibits heterogeneous distribution in Eurasian freshwater systems. This group includes economically important and endangered species, thereby attracting considerable scientific interest. Despite this interest, the lack of a comprehensive phylogenetic framework impedes our understanding of the mechanisms underlying the extensive diversity found within this genus. Herein, we analyzed 89 newly sequenced and 20 previously published mitochondrial genomes (mitogenomes) from 13 morphological species to reconstruct the phylogenetic relationships, biogeographic history, and species diversity of Silurus. Our phylogenetic reconstructions identified eight clades, supported by both maximum-likelihood and Bayesian inference. Sequence-based species delimitation analyses yielded multiple molecular operational taxonomic units (MOTUs) in several taxa, including the Silurus asotus complex (four MOTUs) and Silurus microdorsalis (two MOTUs), suggesting that species diversity is underestimated in the genus. A reconstructed time-calibrated tree of Silurus species provided an age estimate of the most recent common ancestor of approximately 37.61 million years ago (Ma), with divergences among clades within the genus occurring between 11.56 Ma and 29.44 Ma, and divergences among MOTUs within species occurring between 3.71 Ma and 11.56 Ma. Biogeographic reconstructions suggested that the ancestral area for the genus likely encompassed China and the Korean Peninsula, with multiple inferred dispersal events to Europe and Central and Western Asia between 21.78 Ma and 26.67 Ma and to Japan between 2.51 Ma and 18.42 Ma. Key factors such as the Eocene-Oligocene extinction event, onset and intensification of the monsoon system, and glacial cycles associated with sea-level fluctuations have likely played significant roles in shaping the evolutionary history of the genus Silurus.
Collapse
Affiliation(s)
- Weitao Chen
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
- China Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, Guangdong 510380, China
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong 510380, China
- Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, Guangdong 510380, China
| | - Nicolas Hubert
- Institut de Recherche pour le Développement, Montpellier, UMR 226 ISEM (UM-CNRS-IRD), France. E-mail:
| | - Yuefei Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
- China Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, Guangdong 510380, China
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong 510380, China
- Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, Guangdong 510380, China
| | - Shuli Zhu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
- China Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, Guangdong 510380, China
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong 510380, China
- Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, Guangdong 510380, China
| | - Jun Wang
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Denggao Xiang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| | - Shang Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| | - Chunni Kou
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| | - Jilong Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, Heilongjiang 150076, China
| | - Tai Wang
- Gansu Fisheries Research Institute, Lanzhou, Gansu 730030, China
| | - Zhiqiang Liang
- Hunan Fisheries Science Institute, Changsha, Hunan 410153, China
| | - Junjie Wu
- Yunnan Institute of Fishery Sciences Research, Kunming, Yunnan 650111, China
| | - Xinhui Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| | - Jie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
- China Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, Guangdong 510380, China
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong 510380, China
- Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, Guangdong 510380, China. E-mail:
| |
Collapse
|
4
|
Cahill AE, Meglécz E, Chenuil A. Scientific history, biogeography, and biological traits predict presence of cryptic or overlooked species. Biol Rev Camb Philos Soc 2024; 99:546-561. [PMID: 38049930 DOI: 10.1111/brv.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023]
Abstract
Genetic data show that many nominal species are composed of more than one biological species, and thus contain cryptic species in the broad sense (including overlooked species). When ignored, cryptic species generate confusion which, beyond biodiversity or vulnerability underestimation, blurs our understanding of ecological and evolutionary processes and may impact the soundness of decisions in conservation or medicine. However, very few hypotheses have been tested about factors that predispose a taxon to contain cryptic or overlooked species. To fill this gap, we surveyed the literature on free-living marine metazoans and built two data sets, one of 187,603 nominal species and another of 83 classes or phyla, to test several hypotheses, correcting for sequence data availability, taxon size and phylogenetic relatedness. We found a strong effect of scientific history: the probability of a taxon containing cryptic species was highest for the earliest described species and varied among time periods potentially consistently with an influence of prevailing scientific theories. The probability of cryptic species being present was also increased for species with large distribution ranges. They were more frequent in the north polar and south polar zones, contradicting previous predictions of more cryptic species in the tropics, and supporting the hypothesis that many cryptic species diverged recently. The number of cryptic species varied among classes, with an excess in hydrozoans and polychaetes, and a deficit in actinopterygians, for example, but precise class ranking was relatively sensitive to the statistical model used. For all models, biological traits, rather than phylum, appeared responsible for the variation among classes: there were fewer cryptic species than expected in classes with hard skeletons (perhaps because they provide good characters for taxonomy) and image-forming vision (in which selection against heterospecific mating may enhance morphological divergence), and more in classes with internal fertilisation. We estimate that among marine free-living metazoans, several thousand additional cryptic species complexes could be identified as more sequence data become available. The factors identified as important for marine animal cryptic species are likely important for other biomes and taxa and should aid many areas in biology that rely on accurate species identification.
Collapse
Affiliation(s)
- Abigail E Cahill
- Biology Department, Albion College, 611 East Porter St., Albion, MI, 49224, USA
| | - Emese Meglécz
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Station Marine d'Endoume, Chemin de la Batterie des Lions, Marseille, 13007, France
| | - Anne Chenuil
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Station Marine d'Endoume, Chemin de la Batterie des Lions, Marseille, 13007, France
| |
Collapse
|
5
|
Hubert N, Phillips JD, Hanner RH. Delimiting Species with Single-Locus DNA Sequences. Methods Mol Biol 2024; 2744:53-76. [PMID: 38683311 DOI: 10.1007/978-1-0716-3581-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
DNA sequences are increasingly used for large-scale biodiversity inventories. Because these genetic data avoid the time-consuming initial sorting of specimens based on their phenotypic attributes, they have been recently incorporated into taxonomic workflows for overlooked and diverse taxa. Major statistical developments have accompanied this new practice, and several models have been proposed to delimit species with single-locus DNA sequences. However, proposed approaches to date make different assumptions regarding taxon lineage history, leading to strong discordance whenever comparisons are made among methods. Distance-based methods, such as Automatic Barcode Gap Discovery (ABGD) and Assemble Species by Automatic Partitioning (ASAP), rely on the detection of a barcode gap (i.e., the lack of overlap in the distributions of intraspecific and interspecific genetic distances) and the associated threshold in genetic distances. Network-based methods, as exemplified by the REfined Single Linkage (RESL) algorithm for the generation of Barcode Index Numbers (BINs), use connectivity statistics to hierarchically cluster-related haplotypes into molecular operational taxonomic units (MOTUs) which serve as species proxies. Tree-based methods, including Poisson Tree Processes (PTP) and the General Mixed Yule Coalescent (GMYC), fit statistical models to phylogenetic trees by maximum likelihood or Bayesian frameworks.Multiple webservers and stand-alone versions of these methods are now available, complicating decision-making regarding the most appropriate approach to use for a given taxon of interest. For instance, tree-based methods require an initial phylogenetic reconstruction, and multiple options are now available for this purpose such as RAxML and BEAST. Across all examined species delimitation methods, judicious parameter setting is paramount, as different model parameterizations can lead to differing conclusions. The objective of this chapter is to guide users step-by-step through all the procedures involved for each of these methods, while aggregating all necessary information required to conduct these analyses. The "Materials" section details how to prepare and format input files, including options to align sequences and conduct tree reconstruction with Maximum Likelihood and Bayesian inference. The Methods section presents the procedure and options available to conduct species delimitation analyses, including distance-, network-, and tree-based models. Finally, limits and future developments are discussed in the Notes section. Most importantly, species delimitation methods discussed herein are categorized based on five indicators: reliability, availability, scalability, understandability, and usability, all of which are fundamental properties needed for any approach to gain unanimous adoption within the DNA barcoding community moving forward.
Collapse
Affiliation(s)
- Nicolas Hubert
- UMR ISEM (IRD, UM, CNRS), Université de Montpellier, Montpellier, France.
| | - Jarrett D Phillips
- School of Computer Science, University of Guelph, Guelph, ON, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Robert H Hanner
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Utami CY, Sholihah A, Condamine FL, Thébaud C, Hubert N. Cryptic diversity impacts model selection and macroevolutionary inferences in diversification analyses. Proc Biol Sci 2022; 289:20221335. [PMID: 36382998 PMCID: PMC9667750 DOI: 10.1098/rspb.2022.1335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2023] Open
Abstract
Species persist in landscapes through ecological dynamics but proliferate at wider spatial scales through evolutionary mechanisms. Disentangling the contribution of each dynamic is challenging, but the increasing use of dated molecular phylogenies opened new perspectives. First, the increasing use of DNA sequences in biodiversity inventory shed light on a substantial amount of cryptic diversity in species-rich ecosystems. Second, explicit diversification models accounting for various eco-evolutionary models are now available. Integrating both advances, we explored diversification trajectories among 10 lineages of freshwater fishes in Sundaland, for which time-calibrated and taxonomically rich phylogenies are available. By fitting diversification models to dated phylogenies and incorporating DNA-based species delimitation methods, the impact of cryptic diversity on diversification model selection and related inferences is explored. Eight clades display constant speciation rate model as the most likely if cryptic diversity is accounted, but nine display a signature of diversification slowdowns when cryptic diversity is ignored. Cryptic diversification occurs during the last 5 Myr for most groups, and palaeoecological models received little support. Most cryptic lineages display restricted range distribution, supporting geographical isolation across homogeneous landscapes as the main driver of diversification. These patterns question the persistence of cryptic diversity and its role during species proliferation.
Collapse
Affiliation(s)
- C. Y. Utami
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
- UMR 5174 EDB (CNRS, Université Paul Sabatier, IRD), 31062 Toulouse Cedex 9, France
| | - A. Sholihah
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - F. L. Condamine
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - C. Thébaud
- UMR 5174 EDB (CNRS, Université Paul Sabatier, IRD), 31062 Toulouse Cedex 9, France
| | - N. Hubert
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|