1
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
2
|
Peyear TA, Andersen OS. Screening for bilayer-active and likely cytotoxic molecules reveals bilayer-mediated regulation of cell function. J Gen Physiol 2023; 155:e202213247. [PMID: 36763053 PMCID: PMC9948646 DOI: 10.1085/jgp.202213247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/06/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
A perennial problem encountered when using small molecules (drugs) to manipulate cell or protein function is to assess whether observed changes in function result from specific interactions with a desired target or from less specific off-target mechanisms. This is important in laboratory research as well as in drug development, where the goal is to identify molecules that are unlikely to be successful therapeutics early in the process, thereby avoiding costly mistakes. We pursued this challenge from the perspective that many bioactive molecules (drugs) are amphiphiles that alter lipid bilayer elastic properties, which may cause indiscriminate changes in membrane protein (and cell) function and, in turn, cytotoxicity. Such drug-induced changes in bilayer properties can be quantified as changes in the monomer↔dimer equilibrium for bilayer-spanning gramicidin channels. Using this approach, we tested whether molecules in the Pathogen Box (a library of 400 drugs and drug-like molecules with confirmed activity against tropical diseases released by Medicines for Malaria Venture to encourage the development of therapies for neglected tropical diseases) are bilayer modifiers. 32% of the molecules in the Pathogen Box were bilayer modifiers, defined as molecules that at 10 µM shifted the monomer↔dimer equilibrium toward the conducting dimers by at least 50%. Correlation analysis of the molecules' reported HepG2 cell cytotoxicity to bilayer-modifying potency, quantified as the shift in the gramicidin monomer↔dimer equilibrium, revealed that molecules producing <25% change in the equilibrium had significantly lower probability of being cytotoxic than molecules producing >50% change. Neither cytotoxicity nor bilayer-modifying potency (quantified as the shift in the gramicidin monomer↔dimer equilibrium) was well predicted by conventional physico-chemical descriptors (hydrophobicity, polar surface area, etc.). We conclude that drug-induced changes in lipid bilayer properties are robust predictors of the likelihood of membrane-mediated off-target effects, including cytotoxicity.
Collapse
Affiliation(s)
- Thasin A. Peyear
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences. New York, NY, USA
| | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Xiu K, Zhang J, Xu J, Chen YE, Ma PX. Recent progress in polymeric gene vectors: Delivery mechanisms, molecular designs, and applications. BIOPHYSICS REVIEWS 2023; 4:011313. [PMID: 37008888 PMCID: PMC10062053 DOI: 10.1063/5.0123664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Gene therapy and gene delivery have drawn extensive attention in recent years especially when the COVID-19 mRNA vaccines were developed to prevent severe symptoms caused by the corona virus. Delivering genes, such as DNA and RNA into cells, is the crucial step for successful gene therapy and remains a bottleneck. To address this issue, vehicles (vectors) that can load and deliver genes into cells are developed, including viral and non-viral vectors. Although viral gene vectors have considerable transfection efficiency and lipid-based gene vectors become popular since the application of COVID-19 vaccines, their potential issues including immunologic and biological safety concerns limited their applications. Alternatively, polymeric gene vectors are safer, cheaper, and more versatile compared to viral and lipid-based vectors. In recent years, various polymeric gene vectors with well-designed molecules were developed, achieving either high transfection efficiency or showing advantages in certain applications. In this review, we summarize the recent progress in polymeric gene vectors including the transfection mechanisms, molecular designs, and biomedical applications. Commercially available polymeric gene vectors/reagents are also introduced. Researchers in this field have never stopped seeking safe and efficient polymeric gene vectors via rational molecular designs and biomedical evaluations. The achievements in recent years have significantly accelerated the progress of polymeric gene vectors toward clinical applications.
Collapse
Affiliation(s)
- Kemao Xiu
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | - Peter X. Ma
- Author to whom correspondence should be addressed:. Tel.: (734) 764-2209
| |
Collapse
|
4
|
O' Donovan DH, De Fusco C, Kuhnke L, Reichel A. Trends in Molecular Properties, Bioavailability, and Permeability across the Bayer Compound Collection. J Med Chem 2023; 66:2347-2360. [PMID: 36752336 DOI: 10.1021/acs.jmedchem.2c01577] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
For oral drugs, medicinal chemists aim to design compounds with high oral bioavailability, of which permeability is a key determinant. Taking advantage of >2000 compounds tested in rat bioavailability studies and >20,000 compounds tested in Caco2 assays at Bayer, we have examined the molecular properties governing bioavailability and permeability. In addition to classical parameters such as logD and molecular weight, we also investigated the relationship between calculated pKa and permeability. We find that neutral compounds retain permeability up to a molecular weight limit of 700, while stronger acids and bases are restricted to weights of 400-500. We also investigate trends for common properties such as hydrogen bond donors and acceptors, polar surface area, aromatic ring count, and rotatable bonds, including compounds which exceed Lipinski's rule of five (Ro5). These property-structure relationships are combined to provide design guidelines for bioavailable drugs in both traditional and "beyond rule of 5" (bRo5) chemical space.
Collapse
Affiliation(s)
| | | | - Lara Kuhnke
- Drug Discovery Sciences, Bayer AG, 13342 Berlin, Germany
| | | |
Collapse
|
5
|
Hossain M, Mahbub S, Abdul Rub M, Rana S, Anamul Hoque M, Kumar D, Alghamdi YG, Abdullah Khan M. The role of additives on the interaction behavior of levofloxacin hemihydrate with crown ether: UV-visible spectroscopic and DFT techniques. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
Nešić MD, Dučić T, Algarra M, Popović I, Stepić M, Gonçalves M, Petković M. Lipid Status of A2780 Ovarian Cancer Cells after Treatment with Ruthenium Complex Modified with Carbon Dot Nanocarriers: A Multimodal SR-FTIR Spectroscopy and MALDI TOF Mass Spectrometry Study. Cancers (Basel) 2022; 14:cancers14051182. [PMID: 35267490 PMCID: PMC8909423 DOI: 10.3390/cancers14051182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Developing new anticancer medicaments is focused on inducing controlled elimination of tumor tissue without severe side effects. It is essential to enable the medicament to reach the target molecule without provoking the immune response too early. The first cellular changes might occur already at the level of the cell membrane, composed mainly of lipids. Therefore, we used spectroscopic techniques to study the interaction of potential metallodrug [Ru(η5-C5H5)(PPh3)2CN] (RuCN) with lipids of A2780 ovarian cancer cells and investigated if these changes are affected by the presence of drug carriers (carbon dots (CDs) and nitrogen-doped carbon dots (N-CDs)). Our results showed that CDs and N-CDs prevent lysis and moderate oxidative stress of lipids caused by metallodrug, still keeping the antitumor activity and potential to penetrate through the lipid bilayer. Therefore, Ru drug loading to carriers balances the anticancer efficiency and leads to better anticancer outcomes by reducing the oxidative stress that has been linked to cancer progression. Abstract In the last decade, targeting membrane lipids in cancer cells has been a promising approach that deserves attention in the field of anticancer drug development. To get a comprehensive understanding of the effect of the drug [Ru(η5-Cp)(PPh3)2CN] (RuCN) on cell lipidic components, we combine complementary analytical approaches, matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI TOF MS) and synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy. Techniques are used for screening the effect of potential metallodrug, RuCN, without and with drug carriers (carbon dots (CDs) and nitrogen-doped carbon dots (N-CDs)) on the lipids of the human ovarian cancer cell line A2780. MALDI TOF MS results revealed that the lysis of ovarian cancer membrane lipids is promoted by RuCN and not by drug carriers (CDs and N-CDs). Furthermore, SR-FTIR results strongly suggested that the phospholipids of cancer cells undergo oxidative stress after the treatment with RuCN that was accompanied by the disordering of the fatty acid chains. On the other hand, using (N-)CDs as RuCN nanocarriers prevented the oxidative stress caused by RuCN but did not prevent the disordering of the fatty acid chain packing. Finally, we demonstrated that RuCN and RuCN/(N-)CDs alter the hydration of the membrane surface in the membrane–water interface region.
Collapse
Affiliation(s)
- Maja D. Nešić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.P.); (M.S.); (M.P.)
- Correspondence: (M.D.N.); (M.A.); Tel.: +381-113408770 (M.D.N.)
| | - Tanja Dučić
- ALBA-CELLS Synchrotron, MIRAS Beamline, 08290 Cerdanyola del Vallès, Spain;
| | - Manuel Algarra
- INAMAT2—Institute for Advanced Materials and Mathematics, Department of Science, Public University of Navarre, Campus de Arrosadia, 31006 Pamplona, Spain
- Correspondence: (M.D.N.); (M.A.); Tel.: +381-113408770 (M.D.N.)
| | - Iva Popović
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.P.); (M.S.); (M.P.)
| | - Milutin Stepić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.P.); (M.S.); (M.P.)
| | - Mara Gonçalves
- CQM—Centro de Química da Madeira, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Marijana Petković
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.P.); (M.S.); (M.P.)
| |
Collapse
|
7
|
Monnery BD. Polycation-Mediated Transfection: Mechanisms of Internalization and Intracellular Trafficking. Biomacromolecules 2021; 22:4060-4083. [PMID: 34498457 DOI: 10.1021/acs.biomac.1c00697] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyplex-mediated gene transfection is now in its' fourth decade of serious research, but the promise of polyplex-mediated gene therapy has yet to fully materialize. Only approximately one in a million applied plasmids actually expresses. A large part of this is due to an incomplete understanding of the mechanism of polyplex transfection. There is an assumption that internalization must follow a canonical mechanism of receptor mediated endocytosis. Herein, we present arguments that untargeted (and most targeted) polyplexes do not utilize these routes. By incorporating knowledge of syndecan-polyplex interactions, we can show that syndecans are the "target" for polyplexes. Further, it is known that free polycations (which disrupt cell-membranes by acid-catalyzed hydrolysis of phospholipid esters) are necessary for (untargeted) endocytosis. This can be incorporated into the model to produce a novel mechanism of endocytosis, which fits the observed phenomenology. After membrane translocation, polyplex containing vesicles reach the endosome after diffusing through the actin mesh below the cell membrane. From there, they are acidified and trafficked toward the lysosome. Some polyplexes are capable of escaping the endosome and unpacking, while others are not. Herein, it is argued that for some polycations, as acidification proceeds the polyplexes excluding free polycations, which disrupt the endosomal membrane by acid-catalyzed hydrolysis, allowing the polyplex to escape. The polyplex's internal charge ratio is now insufficient for stability and it releases plasmids which diffuse to the nucleus. A small proportion of these plasmids diffuse through the nuclear pore complex (NPC), with aggregation being the major cause of loss. Those plasmids that have diffused through the NPC will also aggregate, and this appears to be the reason such a small proportion of nuclear plasmids express mRNA. Thus, the structural features which promote unpacking in the endosome and allow for endosomal escape can be determined, and better polycations can be designed.
Collapse
Affiliation(s)
- Bryn D Monnery
- Department of Organic and (Bio)Polymer Chemistry, Hasselt University, Building F, Agoralaan 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
8
|
Gkionis L, Aojula H, Harris LK, Tirella A. Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics. Int J Pharm 2021; 604:120711. [PMID: 34015381 DOI: 10.1016/j.ijpharm.2021.120711] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/04/2023]
Abstract
Microfluidic enables precise control over the continuous mixing of fluid phases at the micrometre scale, aiming to optimize the processing parameters and to facilitate scale-up feasibility. The optimization of parameters to obtain monodispersed drug-loaded liposomes however is challenging. In this work, two phosphatidylcholines (PC) differing in acyl chain length were selected, and used to control the release of the chemotherapeutic agent doxorubicin hydrochloride, an effective drug used to treat breast cancer. Microfluidics was used to rapidly screen manufacturing parameters and PC formulations to obtain monodispersed unilamellar liposomal formulations with a reproducible size (i.e. < 200 nm). Cholesterol was included in all liposomal formulations; some formulations also contained DMPC(1,2-dimyristoyl-sn-glycero-3-phosphocholine) and/or DSPC(1,2-distearoyl-sn-glycero-3-phosphocholine). Systematic variations in microfluidics total flow rate (TFR) settings were performed, while keeping a constant flow rate ratio (FRR). A total of six PC-based liposomes were fabricated using the optimal manufacturing parameters (TFR 500 μL/min, FRR 0.1) for the production of reproducible, stable liposome formulations with a narrow size distribution. Liposomes actively encapsulating doxorubicin exhibited high encapsulation efficiencies (>80%) for most of the six formulations, and sustained drug release profiles in vitro over 48 h. Drug release profiles varied as a function of the DMPC/DSPC mol content in the lipid bilayer, with DMPC-based liposomes exhibiting a sustained release of doxorubicin when compared to DSPC liposomes. The PC-based liposomes, with a slower release of doxorubicin, were tested in vitro, as to investigate their cytotoxic activity against three human breast cancer cell lines: the non-metastatic ER+/PR + MCF7 cells, the triple-negative aggressive MDA-MB 231 cells, and the metastatic HER2-overexpressing/PR + BT474 cells. Similar cytotoxicity levels to that of free doxorubicin were reported for DMPC5 and DMPC3 binary liposomes (IC50 ~ 1 μM), whereas liposomes composed of a single PC were less cytotoxic (IC50 ~ 3-4 μM). These results highlight that microfluidics is suitable for the manufacture of monodispersed and size-specific PC-based liposomes in a controlled single-step; furthermore, selected PC-based liposome represent promising nanomedicines for the prolonged release of chemotherapeutics, with the aim of improving outcomes for patients.
Collapse
Affiliation(s)
- Leonidas Gkionis
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Harmesh Aojula
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Lynda K Harris
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, United Kingdom; Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester M13 9WL, UK; St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
9
|
Sharifian Gh M. Recent Experimental Developments in Studying Passive Membrane Transport of Drug Molecules. Mol Pharm 2021; 18:2122-2141. [PMID: 33914545 DOI: 10.1021/acs.molpharmaceut.1c00009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to measure the passive membrane permeation of drug-like molecules is of fundamental biological and pharmaceutical importance. Of significance, passive diffusion across the cellular membranes plays an effective role in the delivery of many pharmaceutical agents to intracellular targets. Hence, approaches for quantitative measurement of membrane permeability have been the topics of research for decades, resulting in sophisticated biomimetic systems coupled with advanced techniques. In this review, recent developments in experimental approaches along with theoretical models for quantitative and real-time analysis of membrane transport of drug-like molecules through mimetic and living cell membranes are discussed. The focus is on time-resolved fluorescence-based, surface plasmon resonance, and second-harmonic light scattering approaches. The current understanding of how properties of the membrane and permeant affect the permeation process is discussed.
Collapse
Affiliation(s)
- Mohammad Sharifian Gh
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
10
|
Puhl AC, Fritch EJ, Lane TR, Tse LV, Yount BL, Sacramento CQ, Fintelman-Rodrigues N, Tavella TA, Maranhão Costa FT, Weston S, Logue J, Frieman M, Premkumar L, Pearce KH, Hurst BL, Andrade CH, Levi JA, Johnson NJ, Kisthardt SC, Scholle F, Souza TML, Moorman NJ, Baric RS, Madrid PB, Ekins S. Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine, and Pyronaridine: In Vitro Activity against SARS-CoV-2 and Potential Mechanisms. ACS OMEGA 2021; 6:7454-7468. [PMID: 33778258 PMCID: PMC7992063 DOI: 10.1021/acsomega.0c05996] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 05/11/2023]
Abstract
Severe acute respiratory coronavirus 2 (SARS-CoV-2) is a newly identified virus that has resulted in over 2.5 million deaths globally and over 116 million cases globally in March, 2021. Small-molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola viruses and demonstrated activity against SARS-CoV-2 in vivo. Most notably, the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small-molecule drugs that are active against Ebola viruses (EBOVs) would appear a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone, and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg viruses in vitro in HeLa cells and mouse-adapted EBOV in mice in vivo. We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7, and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC50 values of 180 nM and IC50 198 nM, respectively. We used microscale thermophoresis to test the binding of these molecules to the spike protein, and tilorone and pyronaridine bind to the spike receptor binding domain protein with K d values of 339 and 647 nM, respectively. Human Cmax for pyronaridine and quinacrine is greater than the IC50 observed in A549-ACE2 cells. We also provide novel insights into the mechanism of these compounds which is likely lysosomotropic.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ethan J. Fritch
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Longping V. Tse
- Department
of Epidemiology, University of North Carolina
School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Boyd L. Yount
- Department
of Epidemiology, University of North Carolina
School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Carolina Q. Sacramento
- Laboratório
de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- Centro
De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de
Janeiro 21040-900, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratório
de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- Centro
De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de
Janeiro 21040-900, Brazil
| | - Tatyana Almeida Tavella
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Stuart Weston
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - James Logue
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Matthew Frieman
- Department
of Microbiology and Immunology, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Lakshmanane Premkumar
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H. Pearce
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- UNC
Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, United States
| | - Brett L. Hurst
- Institute
for Antiviral Research, Utah State University, Logan, Utah 84322, United States
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322, United States
| | - Carolina Horta Andrade
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo 13083-970, Brazil
- LabMol—Laboratory of Molecular Modeling
and Drug Design, Faculdade
de Farmácia, Universidade Federal
de Goiás, Goiânia,
GO 74605-170, Brazil
| | - James A. Levi
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nicole J. Johnson
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Samantha C. Kisthardt
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Frank Scholle
- Department of Biological Sciences, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thiago Moreno L. Souza
- Laboratório
de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
- Centro
De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de
Janeiro 21040-900, Brazil
| | - Nathaniel John Moorman
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Rapidly Emerging Antiviral Drug Discovery
Initiative, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Ralph S. Baric
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
- Department
of Epidemiology, University of North Carolina
School of Medicine, Chapel Hill, North Carolina 27599, United States
- Rapidly Emerging Antiviral Drug Discovery
Initiative, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Peter B. Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
11
|
Puhl AC, Fritch EJ, Lane TR, Tse LV, Yount BL, Sacramento CQ, Tavella TA, Costa FTM, Weston S, Logue J, Frieman M, Premkumar L, Pearce KH, Hurst BL, Andrade CH, Levi JA, Johnson NJ, Kisthardt SC, Scholle F, Souza TML, Moorman NJ, Baric RS, Madrid P, Ekins S. Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine and Pyronaridine: In vitro Activity Against SARS-CoV-2 and Potential Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.01.407361. [PMID: 33299990 PMCID: PMC7724658 DOI: 10.1101/2020.12.01.407361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SARS-CoV-2 is a newly identified virus that has resulted in over 1.3 M deaths globally and over 59 M cases globally to date. Small molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola virus and demonstrated activity against SARS-CoV-2 in vivo . Most notably the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small molecule drugs that are active against Ebola virus would seem a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg virus in vitro in HeLa cells and of mouse adapted Ebola virus in mouse in vivo . We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7 and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC 50 values of 180 nM and IC 50 198 nM, respectively. We have also tested them in a pseudovirus assay and used microscale thermophoresis to test the binding of these molecules to the spike protein. They bind to spike RBD protein with K d values of 339 nM and 647 nM, respectively. Human C max for pyronaridine and quinacrine is greater than the IC 50 hence justifying in vivo evaluation. We also provide novel insights into their mechanism which is likely lysosomotropic.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Ethan James Fritch
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Longping V. Tse
- Department of Epidemiology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Boyd L. Yount
- Department of Epidemiology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Carol Queiroz Sacramento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Centro De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brasil
| | - Tatyana Almeida Tavella
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Stuart Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Kenneth H. Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, USA
| | - Brett L. Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Carolina Horta Andrade
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP, Brazil
- LabMol - Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | - James A. Levi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Nicole J. Johnson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Samantha C. Kisthardt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Thiago Moreno L. Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
- Centro De Desenvolvimento Tecnológico Em Saúde (CDTS), Fiocruz, Rio de Janeiro, Brasil
| | - Nathaniel John Moorman
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Department of Epidemiology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| |
Collapse
|
12
|
Velez-Saboyá CS, Oropeza-Guzman E, Sierra-Valdez FJ, Ruiz-Suárez JC. Ca 2+-mediated enhancement of anesthetic diffusion across phospholipid multilamellar systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183509. [PMID: 33189718 DOI: 10.1016/j.bbamem.2020.183509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 11/28/2022]
Abstract
Although sharing common properties with other divalent cations, calcium ions induce fine-tuned electrostatic effects essential in many biological processes. Not only related with protein structure or ion channels, calcium is also determinant for other biomolecules such as lipids or even drugs. Cellular membranes are the first interaction barriers for drugs. Depending on their hydrophilic, hydrophobic or amphipathic properties, they have to overcome such barriers to permeate and diffuse through inner lipid bilayers, cells or even tissues. In this context, the role of calcium in the permeation of cationic amphiphilic drugs (CADs) through lipid membranes is not well understood. We combine differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR) to investigate the effect of Ca2+ on the interlamellar diffusion kinetics of the local anesthetic tetracaine (TTC) in multilamellar artificial membrane systems. Our DSC results show the interesting phenomenon that TTC diffusion can be modified in two different ways in the presence of Ca2+. Furthermore, TTC diffusion exhibits a thermal-dependent membrane interaction in the presence of Ca2+. The FTIR results suggest the presence of ion-dipole interactions between Ca2+ and the carbonyl group of TTC, leading us to hypothesize that Ca2+ destabilizes the hydration shell of TTC, which in turn diffuses deeper into the multilamellar lipid structures. Our results demonstrate the relevance of the Ca2+ ion in the drug permeation and diffusion through lipid bilayers.
Collapse
Affiliation(s)
- Carol S Velez-Saboyá
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad Monterrey, Apodaca, Nuevo León 66600, Mexico
| | - Eric Oropeza-Guzman
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad Monterrey, Apodaca, Nuevo León 66600, Mexico
| | - Francisco J Sierra-Valdez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Jesús C Ruiz-Suárez
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad Monterrey, Apodaca, Nuevo León 66600, Mexico.
| |
Collapse
|
13
|
Tinworth CP, Young RJ. Facts, Patterns, and Principles in Drug Discovery: Appraising the Rule of 5 with Measured Physicochemical Data. J Med Chem 2020; 63:10091-10108. [PMID: 32324397 DOI: 10.1021/acs.jmedchem.9b01596] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rule of 5 was designed to estimate the likelihood of poor absorption or permeation, noting the impact of poor solubility. This Perspective explores the impact of various physicochemical descriptors and contemporary lipophilicity measurements on permeability and solubility, showing that the distribution coefficient log D7.4 (rather than log P) is the most impactful parameter. Molecular weight, almost invariably the defining characteristic of "beyond the rule of 5" compounds, has little impact on solubility when log D7.4 measurements and aromaticity are considered. Predicting permeation is more complex, given passive and carrier transport mechanisms; however, notable patterns of behavior are apparent, giving insight even "beyond the rule of 5". Recommended best practices should involve using the facts (measurements) and the patterns they reveal to establish informative principles rather than fastidious rules.
Collapse
Affiliation(s)
- Christopher P Tinworth
- Medicinal Sciences and Technology, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Robert J Young
- Medicinal Sciences and Technology, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.,Blue Burgundy Ltd., Bedford, Bedfordshire MK45 2AD, U.K
| |
Collapse
|
14
|
Sanderson JM. Far from Inert: Membrane Lipids Possess Intrinsic Reactivity That Has Consequences for Cell Biology. Bioessays 2020; 42:e1900147. [PMID: 31995246 DOI: 10.1002/bies.201900147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/06/2019] [Indexed: 12/19/2022]
Abstract
In this article, it is hypothesized that a fundamental chemical reactivity exists between some non-lipid constituents of cellular membranes and ester-based lipids, the significance of which is not generally recognized. Many peptides and smaller organic molecules have now been shown to undergo lipidation reactions in model membranes in circumstances where direct reaction with the lipid is the only viable route for acyl transfer. Crucially, drugs like propranolol are lipidated in vivo with product profiles that are comparable to those produced in vitro. Some compounds have also been found to promote lipid hydrolysis. Drugs with high lytic activity in vivo tend to have higher toxicity in vitro. Deacylases and lipases are proposed as key enzymes that protect cells against the effects of intrinsic lipidation. The toxic effects of intrinsic lipidation are hypothesized to include a route by which nucleation can occur during the formation of amyloid fibrils.
Collapse
|
15
|
Salehi B, Selamoglu Z, S. Mileski K, Pezzani R, Redaelli M, C. Cho W, Kobarfard F, Rajabi S, Martorell M, Kumar P, Martins N, Subhra Santra T, Sharifi-Rad J. Liposomal Cytarabine as Cancer Therapy: From Chemistry to Medicine. Biomolecules 2019; 9:773. [PMID: 31771220 PMCID: PMC6995526 DOI: 10.3390/biom9120773] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. The main modality to fight against cancer is surgery, radiotherapy, and chemotherapy, and more recently targeted therapy, gene therapy and immunotherapy, which play important roles in treating cancer patients. In the last decades, chemotherapy has been well developed. Nonetheless, administration of the drug is not always successful, as limited drug dosage can reach the tumor cells.. In this context, the possibility to use an encapsulated anti-cancer drug may potentially solve the problem. Liposomal cytarabine is a formulation with pronounced effectiveness in lymphomatous meningitis and reduced cardiotoxicity if compared to liposomal anthracyclines. Thus, the future liposomal cytarabine use could be extended to other diseases given its reduction in cytotoxic side effects compared to the free formulation. This review summarizes the chemistry and biology of liposomal cytarabine, with exploration of its clinical implications.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran;
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus, 51240 Nigde, Turkey;
| | - Ksenija S. Mileski
- Department of Morphology and Systematic of Plants, Institute of Botany and Botanical Garden “Jevremovac,” Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia;
| | - Raffaele Pezzani
- O.U. Endocrinology, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35128 Padova, Italy;
| | - Marco Redaelli
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35128 Padova, Italy;
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET. Pz Milani, 4 30010 Liettoli di Campolongo Maggiore, VE, Italy
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran;
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 23871, Iran;
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile;
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion 4070386, Chile
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, (Deemed To Be University-MHRD), Nirjuli (Itanagar) 791109, India;
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran
| |
Collapse
|
16
|
Britt HM, García-Herrero CA, Denny PW, Mosely JA, Sanderson JM. Lytic reactions of drugs with lipid membranes. Chem Sci 2019; 10:674-680. [PMID: 30774868 PMCID: PMC6349070 DOI: 10.1039/c8sc04831b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 11/21/2022] Open
Abstract
Propranolol is shown to undergo lipidation reactions in three types of lipid membrane: (1) synthetic single-component glycerophospholipid liposomes; (2) liposomes formed from complex lipid mixtures extracted from E. coli or liver cells; and (3) in cellulo in Hep G2 cells. Fourteen different lipidated propranolol homologues were identified in extracts from Hep G2 cells cultured in a medium supplemented with propranolol. This isolation of lipidated drug molecules from liver cells demonstrates a new drug reactivity in living systems. Acyl transfer from lipids to the alcoholic group of propranolol was favoured over transfer to the secondary amine. Migration of acyl groups from the alcohol to the amine was diminished. Other drugs that were examined did not form detectable levels of lipidation products, but many of these drugs did affect the lysolipid levels in model membranes. The propensity for a compound to induce lysolipid formation in a model system was found to be a predictor for phospholipidosis activity in cellulo.
Collapse
Affiliation(s)
- Hannah M Britt
- Chemistry Department , Durham University , South Road , Durham , DH1 3LE , UK .
| | | | - Paul W Denny
- Department of Biosciences , Durham University , Stockton Road , Durham , DH1 3LE , UK
| | - Jackie A Mosely
- Chemistry Department , Durham University , South Road , Durham , DH1 3LE , UK .
| | - John M Sanderson
- Chemistry Department , Durham University , South Road , Durham , DH1 3LE , UK .
| |
Collapse
|
17
|
Wong YC, Ilkova T, van Wijk RC, Hartman R, de Lange ECM. Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in non-anesthetized rat. Eur J Pharm Sci 2017; 111:514-525. [PMID: 29106979 DOI: 10.1016/j.ejps.2017.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/13/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Raclopride is a selective antagonist of the dopamine D2 receptor. It is one of the most frequently used in vivo D2 tracers (at low doses) for assessing drug-induced receptor occupancy (RO) in animals and humans. It is also commonly used as a pharmacological blocker (at high doses) to occupy the available D2 receptors and antagonize the action of dopamine or drugs on D2 in preclinical studies. The aims of this study were to comprehensively evaluate its pharmacokinetic (PK) profiles in different brain compartments and to establish a PK-RO model that could predict the brain distribution and RO of raclopride in the freely moving rat using a LC-MS based approach. METHODS Rats (n=24) received a 10-min IV infusion of non-radiolabeled raclopride (1.61μmol/kg, i.e. 0.56mg/kg). Plasma and the brain tissues of striatum (with high density of D2 receptors) and cerebellum (with negligible amount of D2 receptors) were collected. Additional microdialysis experiments were performed in some rats (n=7) to measure the free drug concentration in the extracellular fluid of the striatum and cerebellum. Raclopride concentrations in all samples were analyzed by LC-MS. A population PK-RO model was constructed in NONMEM to describe the concentration-time profiles in the unbound plasma, brain extracellular fluid and brain tissue compartments and to estimate the RO based on raclopride-D2 receptor binding kinetics. RESULTS In plasma raclopride showed a rapid distribution phase followed by a slower elimination phase. The striatum tissue concentrations were consistently higher than that of cerebellum tissue throughout the whole experimental period (10-h) due to higher non-specific tissue binding and D2 receptor binding in the striatum. Model-based simulations accurately predicted the literature data on rat plasma PK, brain tissue PK and D2 RO at different time points after intravenous or subcutaneous administration of raclopride at tracer dose (RO <10%), sub-pharmacological dose (RO 10%-30%) and pharmacological dose (RO >30%). CONCLUSION For the first time a predictive model that could describe the quantitative in vivo relationship between dose, PK and D2 RO of raclopride in non-anesthetized rat was established. The PK-RO model could facilitate the selection of optimal dose and dosing time when raclopride is used as tracer or as pharmacological blocker in various rat studies. The LC-MS based approach, which doses and quantifies a non-radiolabeled tracer, could be useful in evaluating the systemic disposition and brain kinetics of tracers.
Collapse
Affiliation(s)
- Yin Cheong Wong
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Trayana Ilkova
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rob C van Wijk
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robin Hartman
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Pharmacology, Cluster Systems Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
18
|
Yu H, Hadinoto K. Impacts of dextran sulfate’s chain length on the characteristics of its self-assembled colloidal complex formed with amphiphilic small-molecule drug. Int J Biol Macromol 2017; 103:493-500. [DOI: 10.1016/j.ijbiomac.2017.05.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/04/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
19
|
Roldan N, Pérez-Gil J, Morrow MR, García-Álvarez B. Divide & Conquer: Surfactant Protein SP-C and Cholesterol Modulate Phase Segregation in Lung Surfactant. Biophys J 2017; 113:847-859. [PMID: 28834721 PMCID: PMC5567427 DOI: 10.1016/j.bpj.2017.06.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/15/2017] [Accepted: 06/26/2017] [Indexed: 02/04/2023] Open
Abstract
Lung surfactant (LS) is an essential system supporting the respiratory function. Cholesterol can be deleterious for LS function, a condition that is reversed by the presence of the lipopeptide SP-C. In this work, the structure of LS-mimicking membranes has been analyzed under the combined effect of SP-C and cholesterol by deuterium NMR and phosphorus NMR and by electron spin resonance. Our results show that SP-C induces phase segregation at 37°C, resulting in an ordered phase with spectral features resembling an interdigitated state enriched in dipalmitoylphosphatidylcholine, a liquid-crystalline bilayer phase, and an extremely mobile phase consistent with small vesicles or micelles. In the presence of cholesterol, POPC and POPG motion seem to be more hindered by SP-C than dipalmitoylphosphatidylcholine. The use of deuterated cholesterol did not show signs of specific interactions that could be attributed to SP-C or to the other hydrophobic surfactant protein SP-B. Palmitoylation of SP-C had an indirect effect on the extent of protein-lipid perturbations by stabilizing SP-C structure, and seemed to be important to maximize differences among the lipids participating in each phase. These results shed some light on how SP-C-induced lipid perturbations can alter membrane structure to sustain LS functionality at the air-liquid interface.
Collapse
Affiliation(s)
- Nuria Roldan
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Michael R Morrow
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Begoña García-Álvarez
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain.
| |
Collapse
|
20
|
Siontorou CG, Nikoleli GP, Nikolelis DP, Karapetis SK. Artificial Lipid Membranes: Past, Present, and Future. MEMBRANES 2017; 7:E38. [PMID: 28933723 PMCID: PMC5618123 DOI: 10.3390/membranes7030038] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 07/20/2017] [Indexed: 11/17/2022]
Abstract
The multifaceted role of biological membranes prompted early the development of artificial lipid-based models with a primary view of reconstituting the natural functions in vitro so as to study and exploit chemoreception for sensor engineering. Over the years, a fair amount of knowledge on the artificial lipid membranes, as both, suspended or supported lipid films and liposomes, has been disseminated and has helped to diversify and expand initial scopes. Artificial lipid membranes can be constructed by several methods, stabilized by various means, functionalized in a variety of ways, experimented upon intensively, and broadly utilized in sensor development, drug testing, drug discovery or as molecular tools and research probes for elucidating the mechanics and the mechanisms of biological membranes. This paper reviews the state-of-the-art, discusses the diversity of applications, and presents future perspectives. The newly-introduced field of artificial cells further broadens the applicability of artificial membranes in studying the evolution of life.
Collapse
Affiliation(s)
- Christina G Siontorou
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industry, University of Piraeus, 18534 Piraeus, Greece.
| | - Georgia-Paraskevi Nikoleli
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Department of Chemical Sciences, National Technical University of Athens, 15780 Athens, Greece.
| | - Dimitrios P Nikolelis
- Laboratory of Environmental Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece.
| | - Stefanos K Karapetis
- Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Department of Chemical Sciences, National Technical University of Athens, 15780 Athens, Greece.
| |
Collapse
|
21
|
New insights into the intracellular distribution pattern of cationic amphiphilic drugs. Sci Rep 2017; 7:44277. [PMID: 28281674 PMCID: PMC5345070 DOI: 10.1038/srep44277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/06/2017] [Indexed: 12/28/2022] Open
Abstract
Cationic amphiphilic drugs (CADs) comprise a wide variety of different substance classes such as antidepressants, antipsychotics, and antiarrhythmics. It is well recognized that CADs accumulate in certain intracellular compartments leading to specific morphological changes of cells. So far, no adequate technique exists allowing for ultrastructural analysis of CAD in intact cells. Azidobupramine, a recently described multifunctional antidepressant analogue, allows for the first time to perform high-resolution studies of CADs on distribution pattern and morphological changes in intact cells. We showed here that the intracellular distribution pattern of azidobupramine strongly depends on drug concentration and exposure time. The mitochondrial compartment (mDsRed) and the late endo-lysosomal compartment (CD63-GFP) were the preferred localization sites at low to intermediate concentrations (i.e. 1 μM, 5 μM). In contrast, the autophagosomal compartment (LC3-GFP) can only be reached at high concentrations (10 μM) and long exposure times (72 hrs). At the morphological level, LC3-clustering became only prominent at high concentrations (10 μM), while changes in CD63 pattern already occurred at intermediate concentrations (5 μM). To our knowledge, this is the first study that establishes a link between intracellular CAD distribution pattern and morphological changes. Therewith, our results allow for gaining deeper understanding of intracellular effects of CADs.
Collapse
|
22
|
Monnery BD, Wright M, Cavill R, Hoogenboom R, Shaunak S, Steinke JHG, Thanou M. Cytotoxicity of polycations: Relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity. Int J Pharm 2017; 521:249-258. [PMID: 28232268 DOI: 10.1016/j.ijpharm.2017.02.048] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 12/17/2022]
Abstract
The mechanism of polycation cytotoxicity and the relationship to polymer molecular weight is poorly understood. To gain an insight into this important phenomenon a range of newly synthesised uniform (near monodisperse) linear polyethylenimines, commercially available poly(l-lysine)s and two commonly used PEI-based transfectants (broad 22kDa linear and 25kDa branched) were tested for their cytotoxicity against the A549 human lung carcinoma cell line. Cell membrane damage assays (LDH release) and cell viability assays (MTT) showed a strong relationship to dose and polymer molecular weight, and increasing incubation times revealed that even supposedly "non-toxic" low molecular weight polymers still damage cell membranes. The newly proposed mechanism of cell membrane damage is acid catalysed hydrolysis of lipidic phosphoester bonds, which was supported by observations of the hydrolysis of DOPC liposomes.
Collapse
Affiliation(s)
- Bryn D Monnery
- Chemical Biology Section, Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Michael Wright
- Institute of Pharmaceutical Science, King's College London,Franklin-Wilkins Building, London, SE1 9NH, UK
| | - Rachel Cavill
- Department of Data Science and Knowledge Engineering, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
| | - Sunil Shaunak
- Department of Infectious Diseases and Immunity, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, W12 ONN, UK
| | - Joachim H G Steinke
- Chemical Biology Section, Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Maya Thanou
- Institute of Pharmaceutical Science, King's College London,Franklin-Wilkins Building, London, SE1 9NH, UK.
| |
Collapse
|
23
|
N-Heterocyclic choline analogues based on 1,2,3,4-tetrahydro(iso)quinoline scaffold with anticancer and anti-infective dual action. Pharmacol Rep 2017; 69:575-581. [PMID: 31994086 DOI: 10.1016/j.pharep.2017.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/29/2016] [Accepted: 01/27/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Pharmacological effects of biologically active "small molecules" can be improved by their targeted modification, which affects drug delivery and interaction with tumor cells and microorganisms. We aimed to evaluate anticancer and antimicrobial activity of lipid-like choline derivatives modified via simultaneous introduction of tetrahydro(iso)quinoline based pharmacophore system at nitrogen atom and long chain alkyl substituent at oxygen atom. METHODS Target compounds were synthesized under phase-transfer catalysis conditions followed by quaternization, and evaluated for cytotoxicity and NO-generation ability on HT-1080 and MG-22A tumor cell lines and NIH 3T3 normal mouse fibroblasts, and screened for antimicrobial activity against gram-positive (Staphylococcus aureus and Bacillus cereus) and gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Proteus mirabilis) and fungi (Candida albicans and Aspergillus niger). Inhibitory action of active compounds towards E. coli DNA gyrase was investigated. RESULTS Target compounds exhibit high selective cytotoxicity (LC50 < 1 μg/mL) and NO-induction ability, and reveal strong antimicrobial activity with MIC and MBC/MFC values of 0.5-32 μg/mL, predominantly vs. gram-positive bacteria and fungi. Tested substances displayed inhibitory effect towards E. coli DNA gyrase, though less than ciprofloxacin. Tetrahydroisoquinoline derivatives and compounds possessing substituents with chain length of 10 and 11 carbon atoms have highest indices of activities. CONCLUSIONS Lipid-like N-heterocyclic choline analogues based on 1,2,3,4-tetrahydro(iso)quinoline scaffold, possessing very high cytotoxicity with attendant strong antimicrobial activity are the leads for developing effective dual action therapeutics.
Collapse
|
24
|
Pearlstein RA, Dickson CJ, Hornak V. Contributions of the membrane dipole potential to the function of voltage-gated cation channels and modulation by small molecule potentiators. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:177-194. [PMID: 27836643 DOI: 10.1016/j.bbamem.2016.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/28/2016] [Accepted: 11/06/2016] [Indexed: 01/27/2023]
Abstract
The membrane dipole potential (Ψd) constitutes one of three electrical potentials generated by cell membranes. Ψd arises from the unfavorable parallel alignment of phospholipid and water dipoles, and varies in magnitude both longitudinally and laterally across the bilayer according to membrane composition and phospholipid packing density. In this work, we propose that dynamic counter-balancing between Ψd and the transmembrane potential (ΔΨm) governs the conformational state transitions of voltage-gated ion channels. Ψd consists of 1) static outer, and dynamic inner leaflet components (Ψd(extra) and Ψd(intra), respectively); and 2) a transmembrane component (ΔΨd(inner-outer)), ariing from differences in intra- and extracellular leaflet composition. Ψd(intra), which transitions between high and low energy states (Ψd(intra, high) and Ψd(intra, low)) as a function of channel conformation, is transduced by the pore domain. ΔΨd(inner-outer) is transduced by the voltage-sensing (VS) domain in summation with ΔΨm. Potentiation of voltage-gated ion channels is of interest for the treatment of cardiac, neuronal, and other disorders arising from inherited/acquired ion channel dysfunction. Potentiators are widely believed to alter the rates and voltage-dependencies of channel gating transitions by binding to pockets in the membrane-facing and other regions of ion channel targets. Here, we propose that potentiators alter Ψd(intra) and/or Ψd(extra), thereby increasing or decreasing the energy barriers governing channel gating transitions. We used quantum mechanical and molecular dynamics (MD) simulations to predict the overall Ψd-modulating effects of a series of published positive hERG potentiators partitioned into model DOPC bilayers. Our findings suggest a strong correlation between the magnitude of Ψd-lowering and positive hERG potentiation across the series.
Collapse
Affiliation(s)
- Robert A Pearlstein
- Global Discovery Chemistry, Computer-Aided Drug Discovery, Novartis Institutes for BioMedical Research, 181 Mass Ave., Cambridge, MA 02139, USA.
| | - Callum J Dickson
- Global Discovery Chemistry, Computer-Aided Drug Discovery, Novartis Institutes for BioMedical Research, 181 Mass Ave., Cambridge, MA 02139, USA
| | - Viktor Hornak
- Global Discovery Chemistry, Computer-Aided Drug Discovery, Novartis Institutes for BioMedical Research, 181 Mass Ave., Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Micellization phenomena of amphiphilic drug and TX-100 mixtures: Fluorescence, UV-visible and 1H NMR study. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Knobloch J, Suhendro DK, Zieleniecki JL, Shapter JG, Köper I. Membrane-drug interactions studied using model membrane systems. Saudi J Biol Sci 2015; 22:714-8. [PMID: 26586998 PMCID: PMC4625119 DOI: 10.1016/j.sjbs.2015.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 11/04/2022] Open
Abstract
The direct interaction of drugs with the cell membrane is often neglected when drug effects are studied. Systematic investigations are hindered by the complexity of the natural membrane and model membrane systems can offer a useful alternative. Here some examples are reviewed of how model membrane architectures including vesicles, Langmuir monolayers and solid supported membranes can be used to investigate the effects of drug molecules on the membrane structure, and how these interactions can translate into effects on embedded membrane proteins.
Collapse
Affiliation(s)
| | | | | | | | - Ingo Köper
- Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, Australia
| |
Collapse
|
27
|
Godoy CA, Valiente M, Pons R, Montalvo G. Effect of fatty acids on self-assembly of soybean lecithin systems. Colloids Surf B Biointerfaces 2015; 131:21-8. [PMID: 25938851 DOI: 10.1016/j.colsurfb.2015.03.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 11/25/2022]
Abstract
With the increasing interest in natural formulations for drug administration and functional foods, it is desirable a good knowledge of the phase behavior of lecithin/fatty acid formulations. Phase structure and properties of ternary lecithin/fatty acids/water systems are studied at 37°C, making emphasis in regions with relatively low water and fatty acid content. The effect of fatty acid saturation degree on the phase microstructure is studied by comparing a fully saturated (palmitic acid, C16:0), monounsaturated (oleic acid, C18:1), and diunsaturated (linoleic acid, C18:2) fatty acids. Phase determinations are based on a combination of polarized light microscopy and small-angle X-ray scattering measurements. Interestingly, unsaturated (oleic acid and linoleic acid) fatty acid destabilizes the lamellar bilayer. Slight differences are observed between the phase diagrams produced by the unsaturated ones: small lamellar, medium cubic and large hexagonal regions. A narrow isotropic fluid region also appears on the lecithin-fatty acid axis, up to 8wt% water. In contrast, a marked difference in phase microsctructure was observed between unsaturated and saturated systems in which the cubic and isotropic fluid phases are not formed. These differences are, probably, a consequence of the high Krafft point of the C16 saturated chains that imply rather rigid chains. However, unsaturated fatty acids result in more flexible tails. The frequent presence of, at least, one unsaturated chain in phospholipids makes it very likely a better mixing situation than in the case of more rigid chains. This swelling potential favors the formation of reverse hexagonal, cubic, and micellar phases. Both unsaturated fatty acid systems evolve by aging, with a reduction of the extension of reverse hexagonal phase and migration of the cubic phase to lower fatty acid and water contents. The kinetic stability of the systems seems to be controlled by the unsaturation of fatty acids.
Collapse
Affiliation(s)
- C A Godoy
- Departamento de Ingeniería de los procesos Agroalimentarios y Biotecnológicos (GIPAB), Universidad del Valle, A.A. 25360 Cali, Colombia
| | - M Valiente
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Pharmacy, University of Alcalá, Ctra. Madrid-Barcelona Km 33.6, E-28871 Alcalá de Henares, Madrid, Spain
| | - R Pons
- Department de Tecnologia Química i de Tensioactius, Institut de Química Avançada de Catalunya, IQAC-CSIC, E-08034 Barcelona, Spain
| | - G Montalvo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Pharmacy, University of Alcalá, Ctra. Madrid-Barcelona Km 33.6, E-28871 Alcalá de Henares, Madrid, Spain; University Institute of Research in Police Sciences (IUICP), University of Alcalá, Ctra. Madrid-Barcelona Km 33.6, E-28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
28
|
Barriga HMG, Bazin R, Templer RH, Law RV, Ces O. Buffer-induced swelling and vesicle budding in binary lipid mixtures of dioleoylphosphatidylcholine:dioleoylphosphatidylethanolamine and dioleoylphosphatidylcholine:lysophosphatidylcholine using small-angle X-ray scattering and ³¹P static NMR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2979-2987. [PMID: 25738977 DOI: 10.1021/la5047996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A large variety of data exists on lipid phase behavior; however, it is mostly in nonbuffered systems over nonbiological temperature ranges. We present biophysical data on lipid mixtures of dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylethanolamine (DOPE), and lysophosphatidylcholine (LysoPC) examining their behaviors in excess water and buffer systems over the temperature range 4-34 °C. These mixtures are commonly used to investigate the effects of spontaneous curvature on integral membrane proteins. Using small-angle X-ray scattering (SAXS) and (31)P NMR, we observed lamellar and vesicle phases, with the buffer causing an increase in the layer spacing. Increasing amounts of DOPE in a DOPC bilayer decreased the layer spacing of the mesophase, while the opposite trend was observed for increasing amounts of LysoPC. (31)P static NMR was used to analyze the DOPC:LysoPC samples to investigate the vesicle sizes present, with evidence of vesicle budding observed at LysoPC concentrations above 30 mol %. NMR line shapes were fitted using an adapted program accounting for the distortion of the lipids within the magnetic field. The distortion of the vesicle, because of magnetic susceptibility, varied with LysoPC content, and a discontinuity was found in both the water and buffer samples. Generally, the distortion increased with LysoPC content; however, at a ratio of DOPC:LysoPC 60:40, the sample showed a level of distortion of the vesicle similar to that of pure DOPC. This implies an increased flexibility in the membrane at this point. Commonly, the assumption is that for increasing LysoPC concentration there is a reduction in membrane tension, implying that estimations of membrane tension based on spontaneous curvature assumptions may not be accurate.
Collapse
Affiliation(s)
- Hanna M G Barriga
- †Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Richard Bazin
- ‡Pfizer Global Research and Development, Sandwich, Kent CT13 9NJ, United Kingdom
| | - Richard H Templer
- †Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Robert V Law
- †Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Oscar Ces
- †Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
29
|
Deleu M, Crowet JM, Nasir MN, Lins L. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3171-3190. [DOI: 10.1016/j.bbamem.2014.08.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/05/2014] [Accepted: 08/21/2014] [Indexed: 02/08/2023]
|
30
|
Minguez L, Farcy E, Ballandonne C, Lepailleur A, Serpentini A, Lebel JM, Bureau R, Halm-Lemeille MP. Acute toxicity of 8 antidepressants: what are their modes of action? CHEMOSPHERE 2014; 108:314-319. [PMID: 24534154 DOI: 10.1016/j.chemosphere.2014.01.057] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/08/2013] [Accepted: 01/05/2014] [Indexed: 06/03/2023]
Abstract
Currently, the hazard posed by pharmaceutical residues is a major concern of ecotoxicology. Most of the antidepressants belong to a family named the Cationic Amphipathic Drugs known to have specific interactions with cell membranes. The present study assessed the impact of eight antidepressants belonging to selective serotonin reuptake inhibitors or serotonin norepinephrine reuptake inhibitors by the combination of multi-approaches (in vivo, in vitro, in silico) and gives some insights on the mode of action for these molecules. Antidepressants were from the most to the least toxic compound for Daphnia magna: Sertraline (EC50=1.15 mg L(-1))>Clomipramine (2.74 mg L(-1))>Amitriptyline (4.82 mg L(-1))>Fluoxetine (5.91 mg L(-1))>Paroxetine (6.24 mg L(-1))>Mianserine (7.81 mg L(-1))>Citalopram (30.14 mg L(-1)) and Venlafaxine (141.28 mg L(-1)). These acute toxicities were found correlated to Log Kow coefficients (R=0.93, p<0.001) and to cytotoxicity assessed on abalone hemocytes through the neutral red uptake assay (R=0.96, p<0.001). If narcosis as mode of action is typically expected during acute ecotoxicity bioassays, we showed by molecular modeling that particular interactions can exist between antidepressants and phosphatidylcholine, a major component of cell membranes, leading to a more specific mode of action corresponding to a potential acidic hydrolysis of ester functions.
Collapse
Affiliation(s)
- Laetitia Minguez
- UMR BOREA (Biologie des ORganismes et Ecosystèmes Aquatiques), CNRS-7208/MNHN/UPMC/IRD-207/UCBN, Esplanade de la Paix, 14032 Caen Cedex, France; CERMN, UFR des Sciences Pharmaceutiques, UPRES EA4258 - FR CNRS INC3M - SF 4206 ICORE, Université de Caen Basse-Normandie, Bd Becquerel, 14032 Caen Cedex, France.
| | - Emilie Farcy
- UMR BOREA (Biologie des ORganismes et Ecosystèmes Aquatiques), CNRS-7208/MNHN/UPMC/IRD-207/UCBN, Esplanade de la Paix, 14032 Caen Cedex, France; CERMN, UFR des Sciences Pharmaceutiques, UPRES EA4258 - FR CNRS INC3M - SF 4206 ICORE, Université de Caen Basse-Normandie, Bd Becquerel, 14032 Caen Cedex, France
| | - Céline Ballandonne
- CERMN, UFR des Sciences Pharmaceutiques, UPRES EA4258 - FR CNRS INC3M - SF 4206 ICORE, Université de Caen Basse-Normandie, Bd Becquerel, 14032 Caen Cedex, France
| | - Alban Lepailleur
- CERMN, UFR des Sciences Pharmaceutiques, UPRES EA4258 - FR CNRS INC3M - SF 4206 ICORE, Université de Caen Basse-Normandie, Bd Becquerel, 14032 Caen Cedex, France
| | - Antoine Serpentini
- UMR BOREA (Biologie des ORganismes et Ecosystèmes Aquatiques), CNRS-7208/MNHN/UPMC/IRD-207/UCBN, Esplanade de la Paix, 14032 Caen Cedex, France
| | - Jean-Marc Lebel
- UMR BOREA (Biologie des ORganismes et Ecosystèmes Aquatiques), CNRS-7208/MNHN/UPMC/IRD-207/UCBN, Esplanade de la Paix, 14032 Caen Cedex, France
| | - Ronan Bureau
- CERMN, UFR des Sciences Pharmaceutiques, UPRES EA4258 - FR CNRS INC3M - SF 4206 ICORE, Université de Caen Basse-Normandie, Bd Becquerel, 14032 Caen Cedex, France
| | - Marie-Pierre Halm-Lemeille
- CERMN, UFR des Sciences Pharmaceutiques, UPRES EA4258 - FR CNRS INC3M - SF 4206 ICORE, Université de Caen Basse-Normandie, Bd Becquerel, 14032 Caen Cedex, France
| |
Collapse
|
31
|
Casey D, Charalambous K, Gee A, Law RV, Ces O. Amphiphilic drug interactions with model cellular membranes are influenced by lipid chain-melting temperature. J R Soc Interface 2014; 11:20131062. [PMID: 24621813 PMCID: PMC3973356 DOI: 10.1098/rsif.2013.1062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Small-molecule amphiphilic species such as many drug molecules frequently exhibit low-to-negligible aqueous solubility, and generally have no identified transport proteins assisting their distribution, yet are able to rapidly penetrate significant distances into patient tissue and even cross the blood–brain barrier. Previous work has identified a mechanism of translocation driven by acid-catalysed lipid hydrolysis of biological membranes, a process which is catalysed by the presence of cationic amphiphilic drug molecules. In this study, the interactions of raclopride, a model amphiphilic drug, were investigated with mixtures of biologically relevant lipids across a range of compositions, revealing the influence of the chain-melting temperature of the lipids upon the rate of acyl hydrolysis.
Collapse
Affiliation(s)
- Duncan Casey
- Institute of Chemical Biology, Imperial College, , Exhibition Road, London, UK
| | | | | | | | | |
Collapse
|
32
|
Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther 2014; 143:225-45. [PMID: 24631273 DOI: 10.1016/j.pharmthera.2014.03.003] [Citation(s) in RCA: 406] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 01/02/2023]
Abstract
Azithromycin is a macrolide antibiotic which inhibits bacterial protein synthesis, quorum-sensing and reduces the formation of biofilm. Accumulating effectively in cells, particularly phagocytes, it is delivered in high concentrations to sites of infection, as reflected in rapid plasma clearance and extensive tissue distribution. Azithromycin is indicated for respiratory, urogenital, dermal and other bacterial infections, and exerts immunomodulatory effects in chronic inflammatory disorders, including diffuse panbronchiolitis, post-transplant bronchiolitis and rosacea. Modulation of host responses facilitates its long-term therapeutic benefit in cystic fibrosis, non-cystic fibrosis bronchiectasis, exacerbations of chronic obstructive pulmonary disease (COPD) and non-eosinophilic asthma. Initial, stimulatory effects of azithromycin on immune and epithelial cells, involving interactions with phospholipids and Erk1/2, are followed by later modulation of transcription factors AP-1, NFκB, inflammatory cytokine and mucin release. Delayed inhibitory effects on cell function and high lysosomal accumulation accompany disruption of protein and intracellular lipid transport, regulation of surface receptor expression, of macrophage phenotype and autophagy. These later changes underlie many immunomodulatory effects of azithromycin, contributing to resolution of acute infections and reduction of exacerbations in chronic airway diseases. A sub-group of post-transplant bronchiolitis patients appears to be sensitive to azithromycin, as may be patients with severe sepsis. Other promising indications include chronic prostatitis and periodontitis, but weak activity in malaria is unlikely to prove crucial. Long-term administration of azithromycin must be balanced against the potential for increased bacterial resistance. Azithromycin has a very good record of safety, but recent reports indicate rare cases of cardiac torsades des pointes in patients at risk.
Collapse
Affiliation(s)
- Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Frankfurt am Main, Germany; Institute of Pharmacology for Life Scientists, Goethe University Frankfurt, Frankfurt am Main, Germany; Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | | | - Evangelos J Giamarellos-Bourboulis
- 4th Department of Internal Medicine, University of Athens, Medical School, Athens, Greece; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.
| | - Gianpaolo Perletti
- Biomedical Research Division, Department of Theoretical and Applied Sciences, University of Insubria, Busto A., Varese, Italy; Department of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | - Geert M Verleden
- Respiratory Division, Lung Transplantation Unit, University Hospitals Leuven and Department of Clinical and Experimental Medicine, KU Leuven, Belgium.
| | - Robin Vos
- Respiratory Division, Lung Transplantation Unit, University Hospitals Leuven and Department of Clinical and Experimental Medicine, KU Leuven, Belgium.
| |
Collapse
|
33
|
Iglesias GR, Pirolt F, Sadeghpour A, Tomšič M, Glatter O. Lipid transfer in oil-in-water isasome emulsions: influence of arrested dynamics of the emulsion droplets entrapped in a hydrogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15496-15502. [PMID: 24274164 DOI: 10.1021/la4032255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The transfer kinetics of lipids between internally self-assembled droplets of O/W emulsions is studied. The droplets (isasomes) consist of various liquid-crystalline phases or W/O microemulsions stabilized by a polymeric stabilizer F127. The various internal phases were identified by the relative peak positions in the small-angle X-ray scattering (SAXS) curves. An arrested system composed of isasomes embedded in a gel matrix actually provides an additional possibility to control these systems in terms of the release of various host molecules. These experiments have been applied to examine the kinetics of the internal phase reorganization imposed by the lipids' release and uptake by the droplets embedded in a κ-carrageenan (KC) hydrogel network. Increasing the concentration of the gelling agent slows down the transfer from one droplet to the other through the aqueous phase. We examined the region where the free diffusion is stopped. i.e., the point where the system changes from the ergodic to the nonergodic state and the kinetics is essentially slowed down. This effect can be balanced by the addition of small amounts of free polymeric stabilizer, which speeds up the kinetics. This is even possible in the case of highly arrested dynamics of the emulsion droplets, as found for the highest KC hydrogel concentrations forming nonergodic systems.
Collapse
|
34
|
Montalvo G, Pons R, Zhang G, Díaz M, Valiente M. Structure and phase equilibria of the soybean lecithin/PEG 40 monostearate/water system. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14369-79. [PMID: 24205925 DOI: 10.1021/la402764w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PEG stearates are extensively used as emulsifiers in many lipid-based formulations. However, the scheme of the principles of the lipid-surfactant polymer interactions are still poorly understood and need more studies. A new phase diagram of a lecithin/PEG 40 monostearate/water system at 30 °C is reported. First, we have characterized the binary PEG 40 monostearate/water system by the determination of the critical micelle concentration value and the viscous properties. Then, the ternary phase behavior and the influence of phase structure on their macroscopic properties are studied by a combination of different techniques, namely, optical microscopy, small-angle X-ray scattering, differential scanning calorimetry, and rheology. The phase behavior is complex, and some samples evolve even at long times. The single monophasic regions correspond to micellar, swollen lamellar, and lamellar gel phases. The existence of extended areas of phase coexistence (hexagonal, cubic, and lamellar liquid crystalline phases) may be a consequence of the low miscibility of S40P in the lecithin bilayer as well as of the segregation of the phospholipid polydisperse hydrophobic chains. The presence of the PEG 40 monostearate has less effect in the transformation to the cubic phase for lecithin than that found in other systems with simple glycerol-based lipids.
Collapse
Affiliation(s)
- G Montalvo
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá , E28871 Alcalá de Henares (Madrid), Spain
| | | | | | | | | |
Collapse
|
35
|
Great application prospect in vivo: Efficient electroformation of giant vesicles on novel carbon fiber microelectrode. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2012.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Abstract
The early developments of brain positron emission tomography (PET), including the methodological advances that have driven progress, are outlined. The considerable past achievements of brain PET have been summarized in collaboration with contributing experts in specific clinical applications including cerebrovascular disease, movement disorders, dementia, epilepsy, schizophrenia, addiction, depression and anxiety, brain tumors, drug development, and the normal healthy brain. Despite a history of improving methodology and considerable achievements, brain PET research activity is not growing and appears to have diminished. Assessments of the reasons for decline are presented and strategies proposed for reinvigorating brain PET research. Central to this is widening the access to advanced PET procedures through the introduction of lower cost cyclotron and radiochemistry technologies. The support and expertize of the existing major PET centers, and the recruitment of new biologists, bio-mathematicians and chemists to the field would be important for such a revival. New future applications need to be identified, the scope of targets imaged broadened, and the developed expertize exploited in other areas of medical research. Such reinvigoration of the field would enable PET to continue making significant contributions to advance the understanding of the normal and diseased brain and support the development of advanced treatments.
Collapse
Affiliation(s)
- Terry Jones
- PET Research Advisory Company, 8 Prestbury Road, Wilmslow, Cheshire SK9 2LJ, UK.
| | | | | |
Collapse
|
37
|
Matthews PM, Rabiner EA, Passchier J, Gunn RN. Positron emission tomography molecular imaging for drug development. Br J Clin Pharmacol 2012; 73:175-86. [PMID: 21838787 DOI: 10.1111/j.1365-2125.2011.04085.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Human in vivo molecular imaging with positron emission tomography (PET) enables a new kind of 'precision pharmacology', able to address questions central to drug development. Biodistribution studies with drug molecules carrying positron-emitting radioisotopes can test whether a new chemical entity reaches a target tissue compartment (such as the brain) in sufficient amounts to be pharmacologically active. Competition studies, using a radioligand that binds to the target of therapeutic interest with adequate specificity, enable direct assessment of the relationship between drug plasma concentration and target occupancy. Tailored radiotracers can be used to measure relative rates of biological processes, while radioligands specific for tissue markers expected to change with treatment can provide specific pharmacodynamic information. Integrated application of PET and magnetic resonance imaging (MRI) methods allows molecular interactions to be related directly to anatomical or physiological changes in a tissue. Applications of imaging in early drug development can suggest approaches to patient stratification for a personalized medicine able to deliver higher value from a drug after approval. Although imaging experimental medicine adds complexity to early drug development and costs per patient are high, appropriate use can increase returns on R and D investment by improving early decision making to reduce new drug attrition in later stages. We urge that the potential value of a translational molecular imaging strategy be considered routinely and at the earliest stages of new drug development.
Collapse
Affiliation(s)
- Paul M Matthews
- GSK Clinical Imaging Centre, GlaxoSmithKline Research and Development Ltd, Hammersmith Hospital, London, UK.
| | | | | | | |
Collapse
|
38
|
Dickson CJ, Gee AD, Bennacef I, Gould IR, Rosso L. Further evaluation of quantum chemical methods for the prediction of non-specific binding of positron emission tomography tracers. Phys Chem Chem Phys 2011; 13:21552-7. [PMID: 22052158 DOI: 10.1039/c1cp22739d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The non-specific binding of candidate positron emission tomography (PET) radiotracers causes resulting PET images to have poor contrast and is a key determinant for the success or failure of imaging drugs. Non-specific binding is thought to arise when radiotracers bind to cell membranes and moieties other than their intended target. Our previous preliminary work has proposed the use of the drug-lipid interaction energy descriptor to predict the level of non-specific binding in vivo using a limited set of ten well known PET radiotracers with kinetic modelling data taken from the literature. This work validates and extends the use of the drug-lipid interaction energy descriptor using a new set of twenty-two candidate PET radiotracers with non-specific binding data recently collected at the same imaging centre with consistent methodology. As with the previous set of radiotracers, a significant correlation is found between the quantum chemical drug-lipid interaction energy and in vivo non-specific binding experimental values. In an effort to speed up the calculation process, several semi-empirical quantum chemical methods were assessed for their ability to reproduce the ab initio results. However no single semi-empirical method was found to consistently reproduce the level of correlation achieved with ab initio quantum chemical methods.
Collapse
Affiliation(s)
- Callum J Dickson
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, South Kensington, SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
39
|
Cholo MC, Steel HC, Fourie PB, Germishuizen WA, Anderson R. Clofazimine: current status and future prospects. J Antimicrob Chemother 2011; 67:290-8. [PMID: 22020137 DOI: 10.1093/jac/dkr444] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clofazimine, a lipophilic riminophenazine antibiotic, possesses both antimycobacterial and anti-inflammatory activities. However, its efficacy has been demonstrated only in the treatment of leprosy, not in human tuberculosis, despite the fact that this agent is impressively active in vitro against multidrug-resistant strains of Mycobacterium tuberculosis. Recent insights into novel targets and mechanisms of antimicrobial and anti-inflammatory activity coupled with the acquisition of innovative drug delivery technologies have, however, rekindled interest in clofazimine as a potential therapy for multidrug- and extensively multidrug-resistant tuberculosis in particular, as well as several autoimmune diseases. The primary objective of this review is to critically evaluate these recent developments and to assess their potential impact on improving the therapeutic efficacy and versatility of clofazimine.
Collapse
Affiliation(s)
- Moloko C Cholo
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
| | | | | | | | | |
Collapse
|
40
|
Bonicelli MG, Giansanti L, Ierino M, Mancini G. Interaction of cationic liposomes with cell membrane models. J Colloid Interface Sci 2011; 355:1-8. [DOI: 10.1016/j.jcis.2010.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
|
41
|
Song M, Kim YJ, Ryu JC. Phospholipidosis Induced by PPARγ Signaling in Human Bronchial Epithelial (BEAS-2B) Cells Exposed to Amiodarone. Toxicol Sci 2010; 120:98-108. [DOI: 10.1093/toxsci/kfq361] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
42
|
Peetla C, Stine A, Labhasetwar V. Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol Pharm 2009; 6:1264-76. [PMID: 19432455 DOI: 10.1021/mp9000662] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The transport of drugs or drug delivery systems across the cell membrane is a complex biological process, often difficult to understand because of its dynamic nature. In this regard, model lipid membranes, which mimic many aspects of cell-membrane lipids, have been very useful in helping investigators to discern the roles of lipids in cellular interactions. One can use drug-lipid interactions to predict pharmacokinetic properties of drugs, such as their transport, biodistribution, accumulation, and hence efficacy. These interactions can also be used to study the mechanisms of transport, based on the structure and hydrophilicity/hydrophobicity of drug molecules. In recent years, model lipid membranes have also been explored to understand their mechanisms of interactions with peptides, polymers, and nanocarriers. These interaction studies can be used to design and develop efficient drug delivery systems. Changes in the lipid composition of cells and tissue in certain disease conditions may alter biophysical interactions, which could be explored to develop target-specific drugs and drug delivery systems. In this review, we discuss different model membranes, drug-lipid interactions and their significance, studies of model membrane interactions with nanocarriers, and how biophysical interaction studies with lipid model membranes could play an important role in drug discovery and drug delivery.
Collapse
Affiliation(s)
- Chiranjeevi Peetla
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
43
|
Seddon AM, Casey D, Law RV, Gee A, Templer RH, Ces O. Drug interactions with lipid membranes. Chem Soc Rev 2009; 38:2509-19. [PMID: 19690732 DOI: 10.1039/b813853m] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of drug-membrane interactions is one that spans a wide range of scientific disciplines, from synthetic chemistry, through biophysics to pharmacology. Cell membranes are complex dynamic systems whose structures can be affected by drug molecules and in turn can affect the pharmacological properties of the drugs being administered. In this tutorial review we aim to provide a guide for those new to the area of drug-membrane interactions and present an introduction to areas of this topic which need to be considered. We address the lipid composition and structure of the cell membrane and comment on the physical forces present in the membrane which may impact on drug interactions. We outline methods by which drugs may cross or bind to this membrane, including the well understood passive and active transport pathways. We present a range of techniques which may be used to study the interactions of drugs with membranes both in vitro and in vivo and discuss the advantages and disadvantages of these techniques and highlight new methods being developed to further this field.
Collapse
Affiliation(s)
- Annela M Seddon
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington Campus, London, UK SW7 2AZ.
| | | | | | | | | | | |
Collapse
|
44
|
Nussio MR, Sykes MJ, Miners JO, Shapter JG. Kinetics membrane disruption due to drug interactions of chlorpromazine hydrochloride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:1086-1090. [PMID: 19093750 DOI: 10.1021/la803288s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Drug-membrane interactions assume considerable importance in pharmacokinetics and drug metabolism. Here, we present the interaction of chlorpromazine hydrochloride (CPZ) with supported phospholipid bilayers. It was demonstrated that CPZ binds rapidly to phospholipid bilayers, disturbing the molecular ordering of the phospholipids. These interactions were observed to follow first order kinetics, with an activation energy of approximately 420 kJ mol(-1). Time-dependent membrane disruption was also observed for the interaction with CPZ, such that holes appeared in the phospholipid bilayer after the interaction of CPZ. For this process of membrane disruption, "lag-burst" kinetics was demonstrated.
Collapse
Affiliation(s)
- Matthew R Nussio
- School of Chemistry, Physics and Earth Sciences, and Department of Clinical Pharmacology, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5001, Australia
| | | | | | | |
Collapse
|
45
|
Jennings LE, Long NJ. ‘Two is better than one’—probes for dual-modality molecular imaging. Chem Commun (Camb) 2009:3511-24. [DOI: 10.1039/b821903f] [Citation(s) in RCA: 344] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Rosso L, Gee AD, Gould IR. Ab initiocomputational study of positron emission tomography ligands interacting with lipid molecule for the prediction of nonspecific binding. J Comput Chem 2008; 29:2397-405. [DOI: 10.1002/jcc.20972] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Yaliraki SN, Barahona M. Chemistry across scales: from molecules to cells. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2007; 365:2921-34. [PMID: 17855216 DOI: 10.1098/rsta.2007.0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Many important biological functions are strongly dependent on specific chemical interactions. Modelling how the physicochemical molecular details emerge at much larger scales is an active area of research, currently pursued with a variety of methods. We describe a series of theoretical and computational approaches that aim to derive bottom-up descriptions that capture the specificity that ensues from atomistic detail by extracting relevant features at the different scales. The multiscale models integrate the descriptions at different length and time scales by exploiting the idea of mechanical responses. The methodologies bring together concepts and tools developed in seemingly unrelated areas of mathematics such as algebraic geometry, model reduction, structural graph theory and non-convex optimization. We showcase the applicability of the framework with examples from protein engineering and enzyme catalysis, protein assembly, and with the description of lipid bilayers at different scales. Many challenges remain as it is clear that no single methodology will answer all questions in such multidimensional complex problems.
Collapse
Affiliation(s)
- Sophia N Yaliraki
- Institute for Mathematical Sciences, Imperial College London, London SW7 2PG, UK Department of Chemistry, Imperial College London, London SW7 2AY, UK.
| | | |
Collapse
|
48
|
Tribet C, Vial F. Flexible macromolecules attached to lipid bilayers: impact on fluidity, curvature, permeability and stability of the membranes. SOFT MATTER 2007; 4:68-81. [PMID: 32907085 DOI: 10.1039/b708431p] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This review summarizes recent investigations on the association of macromolecules on lipid bilayers. Hydrophilic and flexible polymers can form soft coronae tenuously adsorbed or anchored on the lipid membrane. Other synthetic macromolecules are embedded in the apolar region of the membrane. Recent experimental and theoretical works focus on the perturbation of lipid properties achieved depending on the nature and strength of binding. Of importance to biomimicry, to tethered model membranes, and drug carriers, the effects achievable include modulation of the lateral diffusivity of lipids, shape distortions, lateral segregations, formation of well-defined nanopores and ultimately the stimuli responsive disruption of the membrane.
Collapse
Affiliation(s)
- Christophe Tribet
- Physico-chimie des Polymères et Milieux Dispersés, CNRS UMR 7615 and Université Paris 6, ESPCI, 10 rue Vauquelin, F-75005 Paris, France
| | - Florent Vial
- Physico-chimie des Polymères et Milieux Dispersés, CNRS UMR 7615 and Université Paris 6, ESPCI, 10 rue Vauquelin, F-75005 Paris, France
| |
Collapse
|
49
|
Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 2007; 6:881-90. [PMID: 17971784 DOI: 10.1038/nrd2445] [Citation(s) in RCA: 1719] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The application of guidelines linked to the concept of drug-likeness, such as the 'rule of five', has gained wide acceptance as an approach to reduce attrition in drug discovery and development. However, despite this acceptance, analysis of recent trends reveals that the physical properties of molecules that are currently being synthesized in leading drug discovery companies differ significantly from those of recently discovered oral drugs and compounds in clinical development. The consequences of the marked increase in lipophilicity--the most important drug-like physical property--include a greater likelihood of lack of selectivity and attrition in drug development. Tackling the threat of compound-related toxicological attrition needs to move to the mainstream of medicinal chemistry decision-making.
Collapse
Affiliation(s)
- Paul D Leeson
- AstraZeneca R&D Charnwood, Bakewell Road, Loughborough LE15 5RH, UK.
| | | |
Collapse
|
50
|
Shearman GC, Attard GS, Hunt AN, Jackowski S, Baciu M, Sebai SC, Mulet X, Clarke JA, Law RV, Plisson C, Parker CA, Gee A, Ces O, Templer RH. Using membrane stress to our advantage. Biochem Soc Trans 2007; 35:498-501. [PMID: 17511638 DOI: 10.1042/bst0350498] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The nature of the bilayer motif coupled with the ability of lipids and proteins to diffuse freely through this structure is crucial to the viability of cells and their ability to compartmentalize domains contained therein. It seems surprising to find then that biological as well as model membranes exist in a dynamic state of mechanical stress. The stresses within such membranes are surprisingly large, typically reaching up to 50 atm (1 atm=101.325 kPa) at the core of the membrane and vary as a function of depth. The uneven distribution of lateral pressures within monolayer leaflets causes them to bend away from or towards the water interface. This can result in the formation of complex, self-assembled mesophases, many of which occur in vivo. Our knowledge of the principles underlying membrane mechanics has reached the point where we are now able to manipulate them and create nano-structures with reasonable predictability. In addition, they can be used both to explain and control the partitioning of amphipathic proteins on to membranes. The dependence of the dynamics of membrane-bound proteins and the chemical reactivity of amphipathic drug molecules on membrane stresses suggests that Nature itself takes advantage of this. Understanding and manipulating these internal forces will be a key element in creating self-assembled, biocompatible, nanoscale cell-like systems.
Collapse
Affiliation(s)
- G C Shearman
- Chemical Biology Centre, Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|