1
|
Wang C, Wang T, Ding Y, van Staal CR, Hou Z, Tong Y, Lin S. A database for igneous rocks of the Newfoundland Appalachians. Sci Data 2025; 12:767. [PMID: 40348762 PMCID: PMC12065785 DOI: 10.1038/s41597-025-05090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
Databases are increasingly playing a pivotal role in the field of Earth Sciences. This paper presents a comprehensive database of igneous rocks from the Newfoundland Appalachians. The database comprises a collection of 15,202 datasets with a data analysis platform. Each dataset includes detailed information on geographic location (latitude and longitude), geological background, petrology, geochronology, major and trace elements, isotopes, and references. The data were compiled from published papers, publicly available databases, geological survey reports, and academic dissertations. The database offers several advantages: (1) a systematic and complementary data model aligned with the knowledge systems of igneous rock; (2) a broad range of data collected from diverse sources over a period of more than 50 years; and (3) an efficient platform for searchability and usability. This dataset is helpful to support a wide range of scientific research objectives related to igneous rocks in the Newfoundland Appalachians.
Collapse
Affiliation(s)
- Chaoyang Wang
- State Key Lab. of Deep Earth and Mineral Exploration, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Tao Wang
- State Key Lab. of Deep Earth and Mineral Exploration, Chinese Academy of Geological Sciences, Beijing, 100037, China.
- Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China.
| | - Yi Ding
- Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | | | - Zengqian Hou
- State Key Lab. of Deep Earth and Mineral Exploration, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Ying Tong
- Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Shoufa Lin
- University of Waterloo, Waterloo, N2L3G1, Canada
| |
Collapse
|
2
|
Vezinet A, Chugunov AV, Sobolev AV, Jain C, Sobolev SV, Batanova VG, Asafov EV, Koshlyakova AN, Arndt NT, Danyushevsky LV, Valley JW. Growth of continental crust and lithosphere subduction in the Hadean revealed by geochemistry and geodynamics. Nat Commun 2025; 16:3850. [PMID: 40280901 PMCID: PMC12032353 DOI: 10.1038/s41467-025-59024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
The rates of continental crust growth and recycling on early Earth remain unclear due to the lack of information resulting from the extensive alteration of ancient rocks. Melt inclusions trapped and shielded from alteration in Archean high-Mg olivine crystals offer a solution to this problem. We report an unprecedented unradiogenic Sr mantle source component (87Sr/86Sr = 0.69932 ± 0.00024, 95% confidence interval) of melts included in olivine from 3.27 Ga komatiitic lava flows in the Barberton Greenstone Belt, South Africa. This component indicates a model age of 4.31 ± 0.19 Ga and significant chemical fractionation (Nb/U = 36.9 ± 1.5, Ce/Pb=16.7 ± 1.1), suggesting up to 80% ± 16% of the present-day continental crust's mass was extracted by the late Hadean from the whole mantle. Geodynamic models support this finding, explaining geochemical data by producing 40% to 70% of the present-day continental crust mass during the Hadean in a variable tectonic regime with tens of millions of years-long periods of massive impulsive subduction induced by mantle plumes.
Collapse
Affiliation(s)
- Adrien Vezinet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, Grenoble, France.
| | - Aleksandr V Chugunov
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, Grenoble, France.
| | - Alexander V Sobolev
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, Grenoble, France.
| | - Charitra Jain
- GFZ Helmholtz Centre for Geosciences, Geodynamic Modelling Section, Potsdam, Germany
| | - Stephan V Sobolev
- GFZ Helmholtz Centre for Geosciences, Geodynamic Modelling Section, Potsdam, Germany.
- University of Potsdam, Institute of Geosciences, Potsdam, Germany.
| | - Valentina G Batanova
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, Grenoble, France
| | - Evgeny V Asafov
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alina N Koshlyakova
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nicholas T Arndt
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, Grenoble, France
| | | | - John W Valley
- WiscSIMS Lab, Dept. of Geoscience, Univ. of Wisconsin, Madison, WI, USA
| |
Collapse
|
3
|
Korenaga J. Tectonics and Surface Environments on Early Earth. ASTROBIOLOGY 2025. [PMID: 40138191 DOI: 10.1089/ast.2024.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The mode of tectonics that governed early Earth is controversial. This makes it challenging to infer surface environments relevant to the origin of life. The majority of the literature published in the past two decades was inclined to favor the appearance of plate tectonics sometime around the mid-Archean (∼3 Ga), with the operation of stagnant lid convection (or its variants) dominant in the earlier part of Earth's history. However, the available and increasing geological record from early Earth is actually equivocal, and there is no theoretical basis to prefer stagnant lid convection over plate tectonics. In fact, such a delayed onset of plate tectonics would inhibit the emergence of life in the Archean, let alone in the Hadean. On the contrary, rapid plate tectonics in the early Hadean, enabled by the fractional crystallization of a magma ocean, could quickly transform inclement young Earth into a habitable planet, with formation of multiple surface environments potentially conducive to abiogenesis.
Collapse
Affiliation(s)
- Jun Korenaga
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Lyons TW, Tino CJ, Fournier GP, Anderson RE, Leavitt WD, Konhauser KO, Stüeken EE. Co-evolution of early Earth environments and microbial life. Nat Rev Microbiol 2024; 22:572-586. [PMID: 38811839 DOI: 10.1038/s41579-024-01044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/31/2024]
Abstract
Two records of Earth history capture the evolution of life and its co-evolving ecosystems with interpretable fidelity: the geobiological and geochemical traces preserved in rocks and the evolutionary histories captured within genomes. The earliest vestiges of life are recognized mostly in isotopic fingerprints of specific microbial metabolisms, whereas fossils and organic biomarkers become important later. Molecular biology provides lineages that can be overlayed on geologic and geochemical records of evolving life. All these data lie within a framework of biospheric evolution that is primarily characterized by the transition from an oxygen-poor to an oxygen-rich world. In this Review, we explore the history of microbial life on Earth and the degree to which it shaped, and was shaped by, fundamental transitions in the chemical properties of the oceans, continents and atmosphere. We examine the diversity and evolution of early metabolic processes, their couplings with biogeochemical cycles and their links to the oxygenation of the early biosphere. We discuss the distinction between the beginnings of metabolisms and their subsequent proliferation and their capacity to shape surface environments on a planetary scale. The evolution of microbial life and its ecological impacts directly mirror the Earth's chemical and physical evolution through cause-and-effect relationships.
Collapse
Affiliation(s)
- Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA.
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA.
| | - Christopher J Tino
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA.
| | - Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rika E Anderson
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA
- Biology Department, Carleton College, Northfield, MN, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Eva E Stüeken
- Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
5
|
Lora A, Patron P, Elena AM, Allan NL, Pinilla C. Understanding noble gas incorporation in mantle minerals: an atomistic study. Sci Rep 2024; 14:13493. [PMID: 38866838 PMCID: PMC11637136 DOI: 10.1038/s41598-024-61963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Ab initio calculations in forsterite (Mg2 SiO4 ) are used to gain insight into the formation of point defects and incorporation of noble gases. We calculate the enthalpies of incorporation both at pre-existing vacancies in symmetrically non-equivalent sites, and at interstitial positions. At high pressure, most structural changes affect the MgO6 units and the enthalpies of point defects increase, with those involving Mg and Si vacancies increasing more than those involving O sites. At 15 GPa Si vacancies and Mg interstitials have become the predominant intrinsic defects. We use these calculated enthalpies to estimate the total uptake of noble gases into the bulk crystal as a function of temperature and pressure both in the presence and absence of other heterovalent trace elements. For He and Ne our calculated solubilities point to atoms occupying mainly interstitial sites in agreement with previous experimental work. In contrast, Ar most likely substitutes for Mg due to its larger size and the deformation it causes within the crystal. Incorporation energies, as well as atomic distances suggest that the incorporation mainly depend on the size mismatch between host and guest atoms. Polarization effects arising from the polarizability of the noble gas atom or the presence of charged defects are minimal and do not contribute significantly to the uptake. Finally, the discrepancies between our results and recent experiments suggest that there are other incorporation mechanisms such as adsorption at internal and external interfaces, voids and grain boundaries which must play a major role in noble gas storage and solubility.
Collapse
Affiliation(s)
- Alfredo Lora
- Departamento de Fisica y Geociencias, Universidad del Norte, km 5 Via Puerto Colombia, Barranquilla, Colombia
| | - Paola Patron
- Departamento de Fisica y Geociencias, Universidad del Norte, km 5 Via Puerto Colombia, Barranquilla, Colombia
| | - Alin M Elena
- Computational Chemistry Group, STFC Daresbury Laboratory, Keckwick Lane, Daresbury, WA4 4AD, UK
| | - Neil L Allan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Carlos Pinilla
- Departamento de Fisica y Geociencias, Universidad del Norte, km 5 Via Puerto Colombia, Barranquilla, Colombia.
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
6
|
Puetz SJ, Spencer CJ, Condie KC, Roberts NMW. Enhanced U-Pb detrital zircon, Lu-Hf zircon, δ 18O zircon, and Sm-Nd whole rock global databases. Sci Data 2024; 11:56. [PMID: 38195635 PMCID: PMC10776700 DOI: 10.1038/s41597-023-02902-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
High-quality global isotopic databases provide Earth scientists with robust means for developing and testing a variety of geological hypotheses. Database design establishes the range of questions that can be addressed, and validation techniques can enhance data quality. Here, six validated global isotopic databases provide extensive records of analyses from U-Pb in detrital zircon, Lu-Hf in zircon, Sm-Nd from whole rocks, and δ18O in zircon. The U-Pb detrital zircon records are segregated into three independently sampled databases. Independent samples are critical for testing the replicability of results, a key requisite for gaining confidence in the validity of a hypothesis. An advantage of our updated databases is that a hypothesis developed from one of the global detrital zircon databases can be immediately tested with the other two independent detrital zircon databases to assess the replicability of results. The independent εHf(t) and εNd(t) values provide similar means of testing for replicable results. This contribution discusses database design, data limitations, and validation techniques used to ensure the data are optimal for subsequent geological investigations.
Collapse
Affiliation(s)
- Stephen J Puetz
- Unaffiliated, 475 Atkinson Drive, Suite 704, Honolulu, HI, 96814, USA.
| | - Christopher J Spencer
- Queen's University, Department of Geological Sciences and Geological Engineering, Kingston, Ontario, K7L 3N6, Canada
| | - Kent C Condie
- New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Nick M W Roberts
- British Geological Survey, Geochronology and Tracers Facility, Keyworth, Nottingham, NG12 5GG, UK
| |
Collapse
|
7
|
Luisier C, Tajčmanová L, Yamato P, Duretz T. Garnet microstructures suggest ultra-fast decompression of ultrahigh-pressure rocks. Nat Commun 2023; 14:6012. [PMID: 37758720 PMCID: PMC10533891 DOI: 10.1038/s41467-023-41310-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Plate tectonics is a key driver of many natural phenomena occurring on Earth, such as mountain building, climate evolution and natural disasters. How plate tectonics has evolved through time is still one of the fundamental questions in Earth sciences. Natural microstructures observed in exhumed ultrahigh-pressure rocks formed during continental collision provide crucial insights into tectonic processes in the Earth's interior. Here, we show that radial cracks around SiO2 inclusions in ultrahigh-pressure garnets are caused by ultrafast decompression. Decompression rates of at least 8 GPa/Myr are inferred independently of current petrochronological estimates by using thermo-mechanical numerical modeling. Our results question the traditional interpretation of fast and significant vertical displacement of ultrahigh-pressure tectonic units during exhumation. Instead, we propose that such substantial decompression rates are related to abrupt changes in the stress state of the lithosphere independently of the spatial displacement.
Collapse
Affiliation(s)
- Cindy Luisier
- Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Lucie Tajčmanová
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
| | - Philippe Yamato
- Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Univ Rennes, CNRS, Géosciences Rennes, Rennes, France
| | - Thibault Duretz
- Institute of Geosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Chowdhury W, Trail D, Miller M, Savage P. Eoarchean and Hadean melts reveal arc-like trace element and isotopic signatures. Nat Commun 2023; 14:1140. [PMID: 36854670 PMCID: PMC9975215 DOI: 10.1038/s41467-023-36538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Constraining the lithological diversity and tectonics of the earliest Earth is critical to understanding our planet's evolution. Here we use detrital Jack Hills zircon (3.7 - 4.2 Ga) analyses coupled with new experimental partitioning data to model the silica content, Si+O isotopic composition, and trace element contents of their parent melts. Comparing our derived Jack Hills zircons' parent melt Si+O isotopic compositions (-1.92 ≤ δ30SiNBS28 ≤ 0.53 ‰; 5.23 ≤ δ18OVSMOW ≤ 9.00 ‰) to younger crustal lithologies, we conclude that the chemistry of the parent melts was influenced by the assimilation of terrigenous sediments, serpentinites, cherts, and silicified basalts, followed by igneous differentiation, leading to the formation of intermediate to felsic melts in the early Earth. Trace element measurements also show that the formational regime had an arc-like chemistry, implying the presence of mobile-lid tectonics in the Hadean. Finally, we propose that these continental-crust forming processes operated uniformly from 4.2 to at least 3.7 Ga.
Collapse
Affiliation(s)
- Wriju Chowdhury
- Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY, 14627, USA.
| | - Dustin Trail
- grid.16416.340000 0004 1936 9174Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY 14627 USA
| | - Martha Miller
- grid.16416.340000 0004 1936 9174Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY 14627 USA
| | - Paul Savage
- grid.11914.3c0000 0001 0721 1626School of Earth and Environmental Sciences, University of St Andrews, Bute Building, St Andrews, Scotland KY16 9TS UK
| |
Collapse
|
9
|
Westall F, Brack A, Fairén AG, Schulte MD. Setting the geological scene for the origin of life and continuing open questions about its emergence. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2023; 9:1095701. [PMID: 38274407 PMCID: PMC7615569 DOI: 10.3389/fspas.2022.1095701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The origin of life is one of the most fundamental questions of humanity. It has been and is still being addressed by a wide range of researchers from different fields, with different approaches and ideas as to how it came about. What is still incomplete is constrained information about the environment and the conditions reigning on the Hadean Earth, particularly on the inorganic ingredients available, and the stability and longevity of the various environments suggested as locations for the emergence of life, as well as on the kinetics and rates of the prebiotic steps leading to life. This contribution reviews our current understanding of the geological scene in which life originated on Earth, zooming in specifically on details regarding the environments and timescales available for prebiotic reactions, with the aim of providing experimenters with more specific constraints. Having set the scene, we evoke the still open questions about the origin of life: did life start organically or in mineralogical form? If organically, what was the origin of the organic constituents of life? What came first, metabolism or replication? What was the time-scale for the emergence of life? We conclude that the way forward for prebiotic chemistry is an approach merging geology and chemistry, i.e., far-from-equilibrium, wet-dry cycling (either subaerial exposure or dehydration through chelation to mineral surfaces) of organic reactions occurring repeatedly and iteratively at mineral surfaces under hydrothermal-like conditions.
Collapse
Affiliation(s)
| | - André Brack
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | - Alberto G. Fairén
- Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain
- Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
10
|
Samuel VO, Santosh M, Jang Y, Kwon S. Acidic fluids in the Earth's lower crust. Sci Rep 2021; 11:21146. [PMID: 34707151 PMCID: PMC8551242 DOI: 10.1038/s41598-021-00719-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022] Open
Abstract
Fluid flux through Earth’s surface and its interior causes geochemical cycling of elements in the Earth. Quantification of such process needs accurate knowledge about the composition and properties of the fluids. Knowledge about the fluids in Earth’s interior is scarce due to limitations in both experimental methods and thermodynamic modeling in high/ultrahigh pressure–temperature conditions. In this study, we present halogen (Cl, F) measurements in apatite grains from the mafic (metagabbro), and felsic (two-pyroxene granulite, charnockite, hornblende-biotite gneiss) rocks preserved in the Nilgiri Block, southern India. Previous experiments show that it is difficult to incorporate Cl in apatite compared to F at high pressure and temperature conditions. Based on regional trends in Cl and F content in apatite (with highest Cl content 2.95 wt%), we suggest the presence of acidic C–O–H fluids in the lower crust (~20–40 km deep) during the high-grade metamorphism of these rocks. These fluids are capable of causing extreme chemical alterations of minerals, especially refractory ones. They also have significant potential for mass transfer, causing extensive geochemical variations on a regional scale and altering the chemical and isotope records of rocks formed in the early Earth. Our findings have important relevance in understanding speciation triggered by acidic fluids in the lower crust, as well as the role of fluids in deep Earth processes.
Collapse
Affiliation(s)
- Vinod O Samuel
- Department of Earth System Sciences, Yonsei University, Seoul, 03722, Republic of Korea
| | - M Santosh
- School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing, 100083, China.,Department of Earth Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Yirang Jang
- Department of Earth and Environmental Science, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sanghoon Kwon
- Department of Earth System Sciences, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions. Nat Commun 2021; 12:6172. [PMID: 34702843 PMCID: PMC8548327 DOI: 10.1038/s41467-021-26474-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
Whether modern-style plate tectonics operated on early Earth is debated due to a paucity of definitive records of large-scale plate convergence, subduction, and collision in the Archean geological record. Archean Alpine-style sub-horizontal fold/thrust nappes in the Precambrian basement of China contain a Mariana-type subduction-initiation sequence of mid-ocean ridge basalt blocks in a 1600-kilometer-long mélange belt, overthrusting picritic-boninitic and island-arc tholeiite bearing nappes, in turn emplaced over a passive margin capping an ancient Archean continental fragment. Picrite-boninite and tholeiite units are 2698 ± 30 million years old marking the age of subduction initiation, with nappes emplaced over the passive margin at 2520 million years ago. Here, we show the life cycle of the subduction zone and ocean spanned circa 178 million years; conservative plate velocities of 2 centimeters per year yield a lateral transport distance of subducted oceanic crust of 3560 kilometers, providing direct positive evidence for horizontal plate tectonics in the Archean. How far back in time plate tectonics operated on Earth is debated because of a paucity of geological evidence for horizontal plate motions. Here the authors show that plates moved laterally by >3500 kilometres 2.7–2.5 billion years ago, demonstrating plate tectonics in the Archean Eon, when life developed on Earth.
Collapse
|
12
|
Was There Land on the Early Earth? Life (Basel) 2021; 11:life11111142. [PMID: 34833018 PMCID: PMC8623345 DOI: 10.3390/life11111142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
The presence of exposed land on the early Earth is a prerequisite for a certain type of prebiotic chemical evolution in which the oscillating activity of water, driven by short-term, day–night, and seasonal cycles, facilitates the synthesis of proto-biopolymers. Exposed land is, however, not guaranteed to exist on the early Earth, which is likely to have been drastically different from the modern Earth. This mini-review attempts to provide an up-to-date account on the possibility of exposed land on the early Earth by integrating recent geological and geophysical findings. Owing to the competing effects of the growing ocean and continents in the Hadean, a substantial expanse of the Earth’s surface (∼20% or more) could have been covered by exposed continents in the mid-Hadean. In contrast, exposed land may have been limited to isolated ocean islands in the late Hadean and early Archean. The importance of exposed land during the origins of life remains an open question.
Collapse
|
13
|
Garçon M. Episodic growth of felsic continents in the past 3.7 Ga. SCIENCE ADVANCES 2021; 7:eabj1807. [PMID: 34550745 PMCID: PMC8457669 DOI: 10.1126/sciadv.abj1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Continents form the most accessible parts of Earth, but their complex compositions make their origin difficult to investigate. A novel approach based on a comprehensive compilation of samarium-neodymium isotopic compositions of detrital sedimentary rocks is here used to unravel continental growth through time. This record reveals that continents were as felsic as today in the past 3.7 Ga (billion years) and that their growth was not continuous but episodic. Reworking of preexisting crust was a ubiquitous process during most of Earth history, but at least six periods of continental growth can be identified every 500 to 700 Ma (million years) in the past 3.7 Ga. This recurrence could be accounted for by changes in tectonic plate velocities favoring periods of rapid subduction and enhanced production of juvenile felsic crust.
Collapse
Affiliation(s)
- Marion Garçon
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
- Institut für Geochemie und Petrologie, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, Switzerland
| |
Collapse
|
14
|
Krissansen-Totton J, Kipp MA, Catling DC. Carbon cycle inverse modeling suggests large changes in fractional organic burial are consistent with the carbon isotope record and may have contributed to the rise of oxygen. GEOBIOLOGY 2021; 19:342-363. [PMID: 33764615 PMCID: PMC8359855 DOI: 10.1111/gbi.12440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 05/23/2023]
Abstract
Abundant geologic evidence shows that atmospheric oxygen levels were negligible until the Great Oxidation Event (GOE) at 2.4-2.1 Ga. The burial of organic matter is balanced by the release of oxygen, and if the release rate exceeds efficient oxygen sinks, atmospheric oxygen can accumulate until limited by oxidative weathering. The organic burial rate relative to the total carbon burial rate can be inferred from the carbon isotope record in sedimentary carbonates and organic matter, which provides a proxy for the oxygen source flux through time. Because there are no large secular trends in the carbon isotope record over time, it is commonly assumed that the oxygen source flux changed only modestly. Therefore, declines in oxygen sinks have been used to explain the GOE. However, the average isotopic value of carbon fluxes into the atmosphere-ocean system can evolve due to changing proportions of weathering and outgassing inputs. If so, large secular changes in organic burial would be possible despite unchanging carbon isotope values in sedimentary rocks. Here, we present an inverse analysis using a self-consistent carbon cycle model to determine the maximum change in organic burial since ~4 Ga allowed by the carbon isotope record and other geological proxies. We find that fractional organic burial may have increased by 2-5 times since the Archean. This happens because O2 -dependent continental weathering of 13 C-depleted organics changes carbon isotope inputs to the atmosphere-ocean system. This increase in relative organic burial is consistent with an anoxic-to-oxic atmospheric transition around 2.4 Ga without declining oxygen sinks, although these likely contributed. Moreover, our inverse analysis suggests that the Archean absolute organic burial flux was comparable to modern, implying high organic burial efficiency and ruling out very low Archean primary productivity.
Collapse
Affiliation(s)
- Joshua Krissansen-Totton
- Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, WA, USA
- Virtual Planetary Laboratory, NASA Nexus for Exoplanet System Science, Seattle, WA, USA
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA, USA
| | - Michael A Kipp
- Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, WA, USA
- Virtual Planetary Laboratory, NASA Nexus for Exoplanet System Science, Seattle, WA, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - David C Catling
- Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, WA, USA
- Virtual Planetary Laboratory, NASA Nexus for Exoplanet System Science, Seattle, WA, USA
| |
Collapse
|
15
|
Abstract
Accurately quantifying the composition of continental crust on Hadean and Archean Earth is critical to our understanding of the physiography, tectonics, and climate of our planet at the dawn of life. One longstanding paradigm involves the growth of a relatively mafic planetary crust over the first 1 to 2 billion years of Earth history, implying a lack of modern plate tectonics and a paucity of subaerial crust, and consequently lacking an efficient mechanism to regulate climate. Others have proposed a more uniformitarian view in which Archean and Hadean continents were only slightly more mafic than at present. Apart from complications in assessing early crustal composition introduced by crustal preservation and sampling biases, effects such as the secular cooling of Earth's mantle and the biologically driven oxidation of Earth's atmosphere have not been fully investigated. We find that the former complicates efforts to infer crustal silica from compatible or incompatible element abundances, while the latter undermines estimates of crustal silica content inferred from terrigenous sediments. Accounting for these complications, we find that the data are most parsimoniously explained by a model with nearly constant crustal silica since at least the early Archean.
Collapse
|
16
|
Hawkesworth C, Cawood PA, Dhuime B. The evolution of the continental crust and the onset of plate tectonics. FRONTIERS IN EARTH SCIENCE 2020; 8:326. [PMID: 32944569 PMCID: PMC7116083 DOI: 10.3389/feart.2020.00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Earth is the only known planet where plate tectonics is active, and different studies have concluded that plate tectonics commenced at times from the early Hadean to 700 Ma. Many arguments rely on proxies established on recent examples, such as paired metamorphic belts and magma geochemistry, and it can be difficult to establish the significance of such proxies in a hotter, older Earth. There is the question of scale, and how the results of different case studies are put in a wider global context. We explore approaches that indicate when plate tectonics became the dominant global regime, in part by evaluating when the effects of plate tectonics were established globally, rather than the first sign of its existence regionally. The geological record reflects when the continental crust became rigid enough to facilitate plate tectonics, through the onset of dyke swarms and large sedimentary basins, from relatively high-pressure metamorphism and evidence for crustal thickening. Paired metamorphic belts are a feature of destructive plate margins over the last 700 Myr, but it is difficult to establish whether metamorphic events are associated spatially as well as temporally in older terrains. From 3.8-2.7 Ga, suites of high Th/Nb (subduction-related on the modern Earth) and low Th/Nb (non-subduction-related) magmas were generated at similar times in different locations, and there is a striking link between the geochemistry and the regional tectonic style. Archaean cratons stabilised at different times in different areas from 3.1-2.5 Ga, and the composition of juvenile continental crust changed from mafic to more intermediate compositions. Xenon isotope data indicate that there was little recycling of volatiles before 3 Ga. Evidence for the juxtaposition of continental fragments back to ~2.8 Ga, each with disparate histories highlights that fragments of crust were moving around laterally on the Earth. The reduction in crustal growth at ~ 3 Ga is attributed to an increase in the rates at which differentiated continental crust was destroyed, and that coupled with the other changes at the end of the Archaean are taken to reflect the onset of plate tectonics as the dominant global regime.
Collapse
Affiliation(s)
- Chris Hawkesworth
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Peter A. Cawood
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
| | - Bruno Dhuime
- Géosciences Montpellier, CNRS & Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
17
|
|
18
|
Guo M, Korenaga J. Argon constraints on the early growth of felsic continental crust. SCIENCE ADVANCES 2020; 6:eaaz6234. [PMID: 32671213 PMCID: PMC7314546 DOI: 10.1126/sciadv.aaz6234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/06/2020] [Indexed: 05/31/2023]
Abstract
The continental crust is a major geochemical reservoir, the evolution of which has shaped the surface environment of Earth. In this study, we present a new model of coupled crust-mantle-atmosphere evolution to constrain the growth of continental crust with atmospheric 40Ar/36Ar. Our model is the first to combine argon degassing with the thermal evolution of Earth in a self-consistent manner and to incorporate the effect of crustal recycling and reworking using the distributions of crustal formation and surface ages. Our results suggest that the history of argon degassing favors rapid crustal growth during the early Earth. The mass of continental crust, highly enriched in potassium, is estimated to have already reached >80% of the present-day level during the early Archean. The presence of such potassium-rich, likely felsic, crust has important implications for tectonics, surface environment, and the regime of mantle convection in the early Earth.
Collapse
Affiliation(s)
- Meng Guo
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | | |
Collapse
|
19
|
Brenner AR, Fu RR, Evans DA, Smirnov AV, Trubko R, Rose IR. Paleomagnetic evidence for modern-like plate motion velocities at 3.2 Ga. SCIENCE ADVANCES 2020; 6:eaaz8670. [PMID: 32494654 PMCID: PMC7176424 DOI: 10.1126/sciadv.aaz8670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/30/2020] [Indexed: 06/11/2023]
Abstract
The mode and rates of tectonic processes and lithospheric growth during the Archean [4.0 to 2.5 billion years (Ga) ago] are subjects of considerable debate. Paleomagnetism may contribute to the discussion by quantifying past plate velocities. We report a paleomagnetic pole for the ~3180 million year (Ma) old Honeyeater Basalt of the East Pilbara Craton, Western Australia, supported by a positive fold test and micromagnetic imaging. Comparison of the 44°±15° Honeyeater Basalt paleolatitude with previously reported paleolatitudes requires that the average latitudinal drift rate of the East Pilbara was ≥2.5 cm/year during the ~170 Ma preceding 3180 Ma ago, a velocity comparable with those of modern plates. This result is the earliest unambiguous evidence yet uncovered for long-range lithospheric motion. Assuming this motion is due primarily to plate motion instead of true polar wander, the result is consistent with uniformitarian or episodic tectonic processes in place by 3.2 Ga ago.
Collapse
Affiliation(s)
- Alec R. Brenner
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Roger R. Fu
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - David A.D. Evans
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - Aleksey V. Smirnov
- Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI, USA
| | - Raisa Trubko
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Ian R. Rose
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
- Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
20
|
Benner SA, Bell EA, Biondi E, Brasser R, Carell T, Kim H, Mojzsis SJ, Omran A, Pasek MA, Trail D. When Did Life Likely Emerge on Earth in an RNA‐First Process? CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.201900035] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Steven A. Benner
- Foundation for Applied Molecular Evolution Alachua FL USA
- Firebird Biomolecular Sciences LLC Alachua FL USA
| | - Elizabeth A. Bell
- Department of Earth, Planetary, and Space SciencesUniversity of California Los Angeles USA
| | - Elisa Biondi
- Foundation for Applied Molecular Evolution Alachua FL USA
| | - Ramon Brasser
- Earth Life Science InstituteTokyo Institute of Technology Tokyo Japan
| | - Thomas Carell
- Fakultät für Chemie und PharmazieLudwig-Maximilians-Universität München Germany
| | | | - Stephen J. Mojzsis
- Department of Geological SciencesUniversity of Colorado Boulder CO USA
- Hungarian Academy of Sciences Budapest Hungary
| | - Arthur Omran
- School of GeosciencesUniversity of South Florida Tampa, FL USA
| | | | - Dustin Trail
- Department of Earth and Environmental SciencesUniversity of Rochester Rochester NY USA
| |
Collapse
|
21
|
Galili N, Shemesh A, Yam R, Brailovsky I, Sela-Adler M, Schuster EM, Collom C, Bekker A, Planavsky N, Macdonald FA, Préat A, Rudmin M, Trela W, Sturesson U, Heikoop JM, Aurell M, Ramajo J, Halevy I. The geologic history of seawater oxygen isotopes from marine iron oxides. Science 2020; 365:469-473. [PMID: 31371609 DOI: 10.1126/science.aaw9247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/02/2019] [Indexed: 11/02/2022]
Abstract
The oxygen isotope composition (δ18O) of marine sedimentary rocks has increased by 10 to 15 per mil since Archean time. Interpretation of this trend is hindered by the dual control of temperature and fluid δ18O on the rocks' isotopic composition. A new δ18O record in marine iron oxides covering the past ~2000 million years shows a similar secular rise. Iron oxide precipitation experiments reveal a weakly temperature-dependent iron oxide-water oxygen isotope fractionation, suggesting that increasing seawater δ18O over time was the primary cause of the long-term rise in δ18O values of marine precipitates. The 18O enrichment may have been driven by an increase in terrestrial sediment cover, a change in the proportion of high- and low-temperature crustal alteration, or a combination of these and other factors.
Collapse
Affiliation(s)
- Nir Galili
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Aldo Shemesh
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Yam
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Irena Brailovsky
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sela-Adler
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Elaine M Schuster
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Andrey Bekker
- Department of Earth Sciences, University of California, Riverside, CA, USA
| | - Noah Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - Francis A Macdonald
- Department of Earth Science, University of California, Santa Barbara, CA, USA
| | - Alain Préat
- Department of Biogeochemistry and Modeling of the Earth System, University of Brussels, Brussels, Belgium
| | - Maxim Rudmin
- Division for Geology, Tomsk Polytechnic University, Tomsk, Russia
| | | | - Ulf Sturesson
- The Institute of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Jeffrey M Heikoop
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Marcos Aurell
- Department of Earth Sciences, University of Zaragoza, Zaragoza, Spain
| | - Javier Ramajo
- Department of Earth Sciences, University of Zaragoza, Zaragoza, Spain
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
22
|
Benner SA, Kim HJ, Biondi E. Prebiotic Chemistry that Could Not Not Have Happened. Life (Basel) 2019; 9:life9040084. [PMID: 31739415 PMCID: PMC6958414 DOI: 10.3390/life9040084] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/01/2019] [Accepted: 11/08/2019] [Indexed: 11/23/2022] Open
Abstract
We present a direct route by which RNA might have emerged in the Hadean from a fayalite–magnetite mantle, volcanic SO2 gas, and well-accepted processes that must have created substantial amounts of HCHO and catalytic amounts of glycolaldehyde in the Hadean atmosphere. In chemistry that could not not have happened, these would have generated stable bisulfite addition products that must have rained to the surface, where they unavoidably would have slowly released reactive species that generated higher carbohydrates. The formation of higher carbohydrates is self-limited by bisulfite formation, while borate minerals may have controlled aldol reactions that occurred on any semi-arid surface to capture that precipitation. All of these processes have well-studied laboratory correlates. Further, any semi-arid land with phosphate should have had phosphate anhydrides that, with NH3, gave carbohydrate derivatives that directly react with nucleobases to form the canonical nucleosides. These are phosphorylated by magnesium borophosphate minerals (e.g., lüneburgite) and/or trimetaphosphate-borate with Ni2+ catalysis to give nucleoside 5′-diphosphates, which oligomerize to RNA via a variety of mechanisms. The reduced precursors that are required to form the nucleobases came, in this path-hypothesis, from one or more mid-sized (1023–1020 kg) impactors that almost certainly arrived after the Moon-forming event. Their iron metal content almost certainly generated ammonia, nucleobase precursors, and other reduced species in the Hadean atmosphere after it transiently placed the atmosphere out of redox equilibrium with the mantle. In addition to the inevitability of steps in this path-hypothesis on a Hadean Earth if it had semi-arid land, these processes may also have occurred on Mars. Adapted from a lecture by the Corresponding Author at the All-Russia Science Festival at the Lomonosov Moscow State University on 12 October 2019, and is an outcome of a three year project supported by the John Templeton Foundation and the NASA Astrobiology program. Dedicated to David Deamer, on the occasion of his 80th Birthday.
Collapse
Affiliation(s)
- Steven A. Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd. Box 7, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd. Box 17, Alachua, FL 32615, USA
- Correspondence:
| | - Hyo-Joong Kim
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd. Box 7, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd. Box 17, Alachua, FL 32615, USA
| | - Elisa Biondi
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd. Box 7, Alachua, FL 32615, USA
| |
Collapse
|
23
|
Holder RM, Viete DR, Brown M, Johnson TE. Metamorphism and the evolution of plate tectonics. Nature 2019; 572:378-381. [PMID: 31391583 DOI: 10.1038/s41586-019-1462-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/30/2019] [Indexed: 11/09/2022]
Abstract
Earth's mantle convection, which facilitates planetary heat loss, is manifested at the surface as present-day plate tectonics1. When plate tectonics emerged and how it has evolved through time are two of the most fundamental and challenging questions in Earth science1-4. Metamorphic rocks-rocks that have experienced solid-state mineral transformations due to changes in pressure (P) and temperature (T)-record periods of burial, heating, exhumation and cooling that reflect the tectonic environments in which they formed5,6. Changes in the global distribution of metamorphic (P, T) conditions in the continental crust through time might therefore reflect the secular evolution of Earth's tectonic processes. On modern Earth, convergent plate margins are characterized by metamorphic rocks that show a bimodal distribution of apparent thermal gradients (temperature change with depth; parameterized here as metamorphic T/P) in the form of paired metamorphic belts5, which is attributed to metamorphism near (low T/P) and away from (high T/P) subduction zones5,6. Here we show that Earth's modern plate tectonic regime has developed gradually with secular cooling of the mantle since the Neoarchaean era, 2.5 billion years ago. We evaluate the emergence of bimodal metamorphism (as a proxy for secular change in plate tectonics) using a statistical evaluation of the distributions of metamorphic T/P through time. We find that the distribution of metamorphic T/P has gradually become wider and more distinctly bimodal from the Neoarchaean era to the present day, and the average metamorphic T/P has decreased since the Palaeoproterozoic era. Our results contrast with studies that inferred an abrupt transition in tectonic style in the Neoproterozoic era (about 0.7 billion years ago1,7,8) or that suggested that modern plate tectonics has operated since the Palaeoproterozoic era (about two billion years ago9-12) at the latest.
Collapse
Affiliation(s)
- Robert M Holder
- Morton K. Blaustein Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA. .,Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Daniel R Viete
- Morton K. Blaustein Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Brown
- Laboratory for Crustal Petrology, Department of Geology, University of Maryland, College Park, MD, USA
| | - Tim E Johnson
- School of Earth and Planetary Sciences, The Institute for Geoscience Research (TIGeR), Space Science and Technology Centre, Curtin University, Perth, Western Australia, Australia.,State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China
| |
Collapse
|
24
|
Exposed Areas Above Sea Level on Earth >3.5 Gyr Ago: Implications for Prebiotic and Primitive Biotic Chemistry. Life (Basel) 2018; 8:life8040055. [PMID: 30400350 PMCID: PMC6316429 DOI: 10.3390/life8040055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 01/19/2023] Open
Abstract
How life began on Earth is still largely shrouded in mystery. One of the central ideas for various origins of life scenarios is Darwin’s “warm little pond”. In these small bodies of water, simple prebiotic compounds such as amino acids, nucleobases, and so on, were produced from reagents such as hydrogen cyanide and aldehydes/ketones. These simple prebiotic compounds underwent further reactions, producing more complex molecules. The process of chemical evolution would have produced increasingly complex molecules, eventually yielding a molecule with the properties of information storage and replication prone to random mutations, the hallmark of both the origin of life and evolution. However, there is one problematic issue with this scenario: On the Earth >3.5 Gyr ago there would have likely been no exposed continental crust above sea level. The only land areas that protruded out of the oceans would have been associated with hotspot volcanic islands, such as the Hawaiian island chain today. On these long-lived islands, in association with reduced gas-rich eruptions accompanied by intense volcanic lightning, prebiotic reagents would have been produced that accumulated in warm or cool little ponds and lakes on the volcano flanks. During seasonal wet–dry cycles, molecules with increasing complexity could have been produced. These islands would have thus been the most likely places for chemical evolution and the processes associated with the origin of life. The islands would eventually be eroded away and their chemical evolution products would have been released into the oceans where Darwinian evolution ultimately produced the biochemistry associated with all life on Earth today.
Collapse
|
25
|
Hawkesworth CJ, Brown M. Earth dynamics and the development of plate tectonics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2018.0228. [PMID: 30275168 PMCID: PMC6189552 DOI: 10.1098/rsta.2018.0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2018] [Indexed: 05/08/2023]
Affiliation(s)
- Chris J Hawkesworth
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Michael Brown
- Department of Geology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|