1
|
Bustamante P, Guillen-Arruebarruena A, Lacoue-Labarthe T, Chouvelon T, Spitz J, Warnau M, Alonso Hernandez CM. Variation of 210-polonium in the cephalopod community from the Bay of Biscay, North-East Atlantic. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 268-269:107265. [PMID: 37562207 DOI: 10.1016/j.jenvrad.2023.107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Among natural radionuclides, 210Po is the major contributor to the radiation dose received by marine organisms. In cephalopods, 210Po is concentrated in the digestive gland, which contains over 90% of the whole-body burden of the nuclide. Although previous studies showed that 210Po was taken up independently of 210Pb, its parent nuclide, very little is known about the factors influencing its levels in cephalopods. To the best of our knowledge, no studies investigated 210Po levels in different species at the same time. In the present study, 210Po was analysed in the digestive gland of 62 individuals from 11 species representing a large range of feeding ecologies and habitats, including squids, cuttlefish and octopus species from coastal to deep-oceanic habitats. Among species, the highest activity was measured in Loligo vulgaris (5720 ± 3606 Bq/kg) and the lowest in T. megalops (188 Bq/kg). However, considering the habitats (benthic vs pelagic and neritic vs oceanic), no significant differences appeared. At the species level, no differences between sexes were found so both sexes were plotted together to test the size effect for species with at least 8 individuals (i.e., Eledone cirrhosa, L. vulgaris, L. forbesi and Sepia officinalis). In the first three species, 210Po levels decreased significantly with increasing size or weight but not in S. officinalis. In squid, this could be related to ontogenetic changes in diet from a high proportion of crustaceans (high Po content) in small individuals to fish (low Po content) in larger individuals, while the high dietary plasticity of S. officinalis at all stages of its life cycle could explain the lack of decrease in 210Po with size. In comparison to the few data from the literature, the levels of 210Po concentrations in the cephalopod community of the Bay of Biscay were overall in the same range than those reported in other cephalopods, varying across 4 orders of magnitude. Further studies are needed to understand the mechanism of retention in the cephalopod digestive gland.
Collapse
Affiliation(s)
- Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France.
| | | | - Thomas Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Tiphaine Chouvelon
- Observatoire Pelagis, UAR 3462 CNRS-La Rochelle Université, 5 allées de l'Océan, 17000, La Rochelle, France; Ifremer, Unité Contamination Chimique des Écosystèmes Marins (CCEM), Centre Atlantique, Rue de l'île d'Yeu, BP 21105, 44311, Nantes, France
| | - Jérôme Spitz
- Observatoire Pelagis, UAR 3462 CNRS-La Rochelle Université, 5 allées de l'Océan, 17000, La Rochelle, France; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Route de Prissé la Charrière, 79360, Villiers-en-Bois, France
| | - Michel Warnau
- International Atomic Energy Agency - Environment Laboratories (IAEA-EL), 4 Quai Antoine 1(er), MC-98000, Monaco
| | - Carlos M Alonso Hernandez
- Centro de Estudios Ambientales de Cienfuegos, AP5, Ciudad Nuclear, Cienfuegos, Cuba; International Atomic Energy Agency - Environment Laboratories (IAEA-EL), 4 Quai Antoine 1(er), MC-98000, Monaco
| |
Collapse
|
2
|
Xavier JC, Golikov AV, Queirós JP, Perales-Raya C, Rosas-Luis R, Abreu J, Bello G, Bustamante P, Capaz JC, Dimkovikj VH, González AF, Guímaro H, Guerra-Marrero A, Gomes-Pereira JN, Hernández-Urcera J, Kubodera T, Laptikhovsky V, Lefkaditou E, Lishchenko F, Luna A, Liu B, Pierce GJ, Pissarra V, Reveillac E, Romanov EV, Rosa R, Roscian M, Rose-Mann L, Rouget I, Sánchez P, Sánchez-Márquez A, Seixas S, Souquet L, Varela J, Vidal EAG, Cherel Y. The significance of cephalopod beaks as a research tool: An update. Front Physiol 2022; 13:1038064. [PMID: 36467695 PMCID: PMC9716703 DOI: 10.3389/fphys.2022.1038064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
The use of cephalopod beaks in ecological and population dynamics studies has allowed major advances of our knowledge on the role of cephalopods in marine ecosystems in the last 60 years. Since the 1960's, with the pioneering research by Malcolm Clarke and colleagues, cephalopod beaks (also named jaws or mandibles) have been described to species level and their measurements have been shown to be related to cephalopod body size and mass, which permitted important information to be obtained on numerous biological and ecological aspects of cephalopods in marine ecosystems. In the last decade, a range of new techniques has been applied to cephalopod beaks, permitting new kinds of insight into cephalopod biology and ecology. The workshop on cephalopod beaks of the Cephalopod International Advisory Council Conference (Sesimbra, Portugal) in 2022 aimed to review the most recent scientific developments in this field and to identify future challenges, particularly in relation to taxonomy, age, growth, chemical composition (i.e., DNA, proteomics, stable isotopes, trace elements) and physical (i.e., structural) analyses. In terms of taxonomy, new techniques (e.g., 3D geometric morphometrics) for identifying cephalopods from their beaks are being developed with promising results, although the need for experts and reference collections of cephalopod beaks will continue. The use of beak microstructure for age and growth studies has been validated. Stable isotope analyses on beaks have proven to be an excellent technique to get valuable information on the ecology of cephalopods (namely habitat and trophic position). Trace element analyses is also possible using beaks, where concentrations are significantly lower than in other tissues (e.g., muscle, digestive gland, gills). Extracting DNA from beaks was only possible in one study so far. Protein analyses can also be made using cephalopod beaks. Future challenges in research using cephalopod beaks are also discussed.
Collapse
Affiliation(s)
- José C. Xavier
- Department of Life Sciences, Marine and Environmental Sciences Centre/ ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | | | - José P. Queirós
- Department of Life Sciences, Marine and Environmental Sciences Centre/ ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | | | | | - José Abreu
- Department of Life Sciences, Marine and Environmental Sciences Centre/ ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | | | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
- Institut Universitaire de France (IUF), Paris, France
| | - Juan C. Capaz
- Center of Marine Sciences, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Valerie H. Dimkovikj
- Department of Marine Science, Coastal Carolina University, Conway, SC, United States
| | | | - Hugo Guímaro
- Department of Life Sciences, Marine and Environmental Sciences Centre/ ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Airam Guerra-Marrero
- IU-ECOAQUA, University of Las Palmas de Gran Canaria, Edf. Ciencias Básicas, Campus de Tafira, Las Palmas de Gran Canaria, Spain
| | | | | | | | - Vladimir Laptikhovsky
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, United Kingdom
| | | | - Fedor Lishchenko
- Laboratory for Ecology and Morphology of Marine Invertebrates, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Amanda Luna
- Department of Ecology and Animal Biology, Faculty of Marine Sciences, University of Vigo, Vigo, Spain
| | - Bilin Liu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | | | - Vasco Pissarra
- MARE—Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Elodie Reveillac
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Evgeny V. Romanov
- Centre Technique de Recherche et de Valorisation des Milieux Aquatiques (CITEB), Le Port, Île de la Réunion, France
| | - Rui Rosa
- MARE—Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Marjorie Roscian
- Centre de Recherche en Paléontologie-Paris (CR2P), CNRS, Sorbonne Université, Paris, France
| | - Lisa Rose-Mann
- University of South Florida, College of Marine Science, St. Petersburg, FL, United States
| | - Isabelle Rouget
- Centre de Recherche en Paléontologie-Paris (CR2P), CNRS, Sorbonne Université, Paris, France
| | - Pilar Sánchez
- Institut de Ciènces del Mar, CSIC, Psg. Marítim de la Barceloneta, Barcelona, Spain
| | | | - Sónia Seixas
- Department of Life Sciences, Marine and Environmental Sciences Centre/ ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
- Universidade Aberta, Rua Escola Politécnica, Lisboa, Portugal
| | - Louise Souquet
- Department of Mechanical Engineering, Faculty of Engineering Science, University College London, London, United Kingdom
| | - Jaquelino Varela
- MARE—Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Erica A. G. Vidal
- Center for Marine Studies—Federal University of Parana (UFPR), Pontal do Paraná, PR, Brazil
| | - Yves Cherel
- Centre d’Etudes Biologiques de Chizé, UMR 7372 du CNRS-La Rochelle Université, Villiers-en-Bois, France
| |
Collapse
|
3
|
Cephalopod diet of juvenile male southern elephant seals Mirounga leonina at Marion Island, South Indian Ocean. Polar Biol 2022. [DOI: 10.1007/s00300-022-03070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Klug C, Schweigert G, Hoffmann R, Weis R, De Baets K. Fossilized leftover falls as sources of palaeoecological data: a 'pabulite' comprising a crustacean, a belemnite and a vertebrate from the Early Jurassic Posidonia Shale. SWISS JOURNAL OF PALAEONTOLOGY 2021; 140:10. [PMID: 34721282 PMCID: PMC8549986 DOI: 10.1186/s13358-021-00225-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/02/2021] [Indexed: 06/13/2023]
Abstract
Especially in Lagerstätten with exceptionally preserved fossils, we can sometimes recognize fossilized remains of meals of animals. We suggest the term leftover fall for the event and the term pabulite for the fossilized meal when it never entered the digestive tract (difference to regurgitalites). Usually, pabulites are incomplete organismal remains and show traces of the predation. Pabulites have a great potential to inform about predation as well as anatomical detail, which is invisible otherwise. Here, we document a pabulite comprising the belemnite Passaloteuthis laevigata from the Toarcian of the Holzmaden region. Most of its soft parts are missing while the arm crown is one of the best preserved that is known. Its arms embrace an exuvia of a crustacean. We suggest that the belemnite represents the remnant of the food of a predatory fish such as the shark Hybodus.
Collapse
Affiliation(s)
- Christian Klug
- Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Günter Schweigert
- Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany
| | - René Hoffmann
- Institute of Geology, Mineralogy and Geophysics, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Robert Weis
- Section Paléontologie 25, Musée national d’histoire naturelle, rue Münster, 2160 Luxembourg City, Luxembourg
| | - Kenneth De Baets
- GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Friedrich-Alexander-University Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Machovsky-Capuska GE, Raubenheimer D. The Nutritional Ecology of Marine Apex Predators. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:361-387. [PMID: 31487471 DOI: 10.1146/annurev-marine-010318-095411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Apex predators play pivotal roles in marine ecosystems, mediated principally through diet and nutrition. Yet, compared with terrestrial animals, the nutritional ecology of marine predators is poorly understood. One reason is that the field has adhered to an approach that evaluates diet principally in terms of energy gain. Studies in terrestrial systems, by contrast, increasingly adopt a multidimensional approach, the nutritional geometry framework, that distinguishes specific nutrients and calories. We provide evidence that a nutritional approach is likewise relevant to marine apex predators, then demonstrate how nutritional geometry can characterize the nutrient and energy content of marine prey. Next, we show how this framework can be used to reconceptualize ecological interactions via the ecological niche concept, and close with a consideration of its application to problems in marine predator research.
Collapse
Affiliation(s)
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia;
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
6
|
Isojunno S, Miller PJO. Movement and Biosonar Behavior During Prey Encounters Indicate That Male Sperm Whales Switch Foraging Strategy With Depth. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Lischka A, Lacoue-Labarthe T, Hoving HJT, JavidPour J, Pannell JL, Merten V, Churlaud C, Bustamante P. High cadmium and mercury concentrations in the tissues of the orange-back flying squid, Sthenoteuthis pteropus, from the tropical Eastern Atlantic. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:323-330. [PMID: 30056346 DOI: 10.1016/j.ecoenv.2018.07.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/24/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
The orange-back flying squid, Sthenoteuthis pteropus, plays an important role in the eastern tropical Atlantic Ocean (ETA) pelagic food web, as both predator and prey. Specimens of S. pteropus were caught off the Cape Verde Islands and concentrations of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, and Zn were measured in the digestive gland. Among the analysed elements, Cd showed the highest average concentration with values among the highest ever recorded in cephalopods. In addition to the digestive gland, Hg concentrations were also analysed in the buccal mass and mantle tissue. Among the three tissues, buccal mass showed the highest Hg concentrations. In females, Hg concentrations in the buccal mass were positively correlated with stable isotope ratios (δ13C and δ15N) and mantle length, showing both bioaccumulation with age and bioamplification along the trophic levels. High Cd and Hg concentrations in the digestive gland and muscle respectively would lead to elevated exposure of squid-eating top predators such as yellowfin tuna, swordfish or dolphinfish, which are commercially harvested for human consumption. This study provides a deeper understanding of the trace element contamination in an abundant and ecologically important, but poorly studied pelagic squid in the ETA.
Collapse
Affiliation(s)
- A Lischka
- AUT Institute for Applied Ecology New Zealand, Auckland University of Technology, Private Bag 92006, 1142 Auckland, New Zealand.
| | - T Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - H J T Hoving
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - J JavidPour
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - J L Pannell
- AUT Institute for Applied Ecology New Zealand, Auckland University of Technology, Private Bag 92006, 1142 Auckland, New Zealand
| | - V Merten
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - C Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - P Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
8
|
Golikov AV, Sabirov RM, Blicher ME, Gudmundson G, Zimina OL, Zakharov DV. First record of the whip-lash squid, Mastigoteuthis agassizii Verrill, 1881 (Mollusca: Cephalopoda: Mastigoteuthidae) in the Subarctic Atlantic, with notes on its morphology and biology. J NAT HIST 2018. [DOI: 10.1080/00222933.2018.1536229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | | | - Martin E. Blicher
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Gudmundur Gudmundson
- Collections and Systematics Department, Icelandic Institute of Natural History, Gardabaer, Iceland
| | - Olga L. Zimina
- Laboratory of Zoobenthos, Murmansk Marine Biological Institute, Murmansk, Russia
| | - Denis V. Zakharov
- Laboratory of Coastal Research, Polar Research Institute of Marine Fisheries and Oceanography, Murmansk, Russia
| |
Collapse
|
9
|
Penicaud V, Lacoue-Labarthe T, Bustamante P. Metal bioaccumulation and detoxification processes in cephalopods: A review. ENVIRONMENTAL RESEARCH 2017; 155:123-133. [PMID: 28214715 DOI: 10.1016/j.envres.2017.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/20/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
In recent decades, cephalopods have been shown to have very high capacities to accumulate most trace elements, regardless of whether they are essential (e.g., Cu and Zn) or non-essential (e.g., Ag and Cd). Among the different pathways of exposure to trace elements, the trophic pathway appears to be the major route of assimilation for numerous metals, including Cd, Co, Hg and Zn. Once assimilated, trace elements are distributed in the organism, accumulating in storage organs. The digestive gland is the main organ in which many trace elements accumulate, whichever of the exposure pathway. For example, this organ can present Cd concentrations reaching hundreds to thousands of ppm for some species, even though the digestive gland represents only a small proportion of the total mass of the animal. Such a specific organotropism towards the digestive gland of both essential and non-essential elements, regardless of the exposure pathway, poses the question of the detoxification processes evolved by cephalopods in order to sustain these high concentrations. This paper reviews the current knowledge on the bioaccumulation of trace elements in cephalopods, the differences in pharmaco-dynamics between organs and tissues, and the detoxification processes they use to counteract trace element toxicity. A peculiar focus has been done on the bioaccumulation within the digestive gland by investigating the subcellular locations of trace elements and their protein ligands.
Collapse
Affiliation(s)
- Virginie Penicaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Thomas Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
10
|
Xavier JC, Ferreira S, Tavares S, Santos N, Mieiro CL, Trathan PN, Lourenço S, Martinho F, Steinke D, Seco J, Pereira E, Pardal M, Cherel Y. The significance of cephalopod beaks in marine ecology studies: Can we use beaks for DNA analyses and mercury contamination assessment? MARINE POLLUTION BULLETIN 2016; 103:220-226. [PMID: 26723473 DOI: 10.1016/j.marpolbul.2015.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/11/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Cephalopod beaks found in the diet of predators have been a major source of scientific information. In this study, we evaluated the usefulness of DNA and contaminants analysis (total mercury - T-Hg) in cephalopod beaks in order to assess their applicability as tools in marine ecology studies. We concluded that, when applying DNA techniques to cephalopod beaks from Antarctic squid species, when using flesh attached to those beaks, it was possible to obtain DNA and to successfully identify cephalopod species; DNA was not found on the beaks themselves. This study also showed that it is possible to obtain information on T-Hg concentrations in beaks: the T-Hg concentrations found in the beaks were 6 to 46 times lower than in the flesh of the same cephalopod species. More research on the relationships of mercury concentrations in cephalopod beaks (and other tissues), intra- and inter-specifically, are needed in the future.
Collapse
Affiliation(s)
- José Carlos Xavier
- MARE - Marine and Environmental Sciences Centre, Departamento das Ciências da Vida, Universidade de Coimbra, 3001-401 Coimbra, Portugal; British Antarctic Survey, NERC, High Cross, Madingley Road, CB3 0ET Cambridge, UK.
| | - Sónia Ferreira
- Department of Health and Education, Institute of Education and Citizenship, 3770-033 Mamarrosa, Portugal
| | - Sílvia Tavares
- Centre for Functional Ecology - CFE, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Nuno Santos
- Department of Health and Education, Institute of Education and Citizenship, 3770-033 Mamarrosa, Portugal
| | - Cláudia Leopoldina Mieiro
- Centre for Functional Ecology - CFE, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; CESAM and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Phil N Trathan
- British Antarctic Survey, NERC, High Cross, Madingley Road, CB3 0ET Cambridge, UK
| | - Sílvia Lourenço
- MARE - Marine and Environmental Sciences Centre, Departamento das Ciências da Vida, Universidade de Coimbra, 3001-401 Coimbra, Portugal
| | - Filipe Martinho
- Centre for Functional Ecology - CFE, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Dirk Steinke
- Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G2W1, Canada
| | - José Seco
- CESAM and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; School of Biology, University of St Andrews, Scotland, UK
| | - Eduarda Pereira
- CESAM and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Pardal
- Centre for Functional Ecology - CFE, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du CNRS-Université de La Rochelle, 79360 Villiers-en-Bois, France
| |
Collapse
|
11
|
Acevedo J, Carreño E, Torres D, Aguayo-Lobo A, Letelier S. Cephalopod remains in scats of Weddell seals (Leptonychotes weddellii) at Cape Shirreff, South Shetland Islands, Antarctica. Polar Biol 2015. [DOI: 10.1007/s00300-015-1713-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Trueblood LA, Seibel BA. Slow swimming, fast strikes: effects of feeding behavior on scaling of anaerobic metabolism in epipelagic squid. J Exp Biol 2014; 217:2710-6. [DOI: 10.1242/jeb.106872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many pelagic fishes engage prey at high speeds supported by high metabolic rates and anaerobic metabolic capacity. Epipelagic squids are reported to have among the highest metabolic rates in the oceans as a result of demanding foraging strategies and the use of jet propulsion, which is inherently inefficient. This study examined enzymatic proxies of anaerobic metabolism in two species of pelagic squid, Dosidicus gigas and Doryteuthis pealeii (Lesueur 1821), over a size range of six orders of magnitude. We hypothesized that activity of the anaerobically poised enzymes would be high and increase with size as in ecologically similar fishes. In contrast, we demonstrate that anaerobic metabolic capacity in these organisms scales negatively with body mass. We explored several cephalopod-specific traits, such as the use of tentacles to capture prey, body morphology and reduced relative prey size of adult squids, that may create a diminished reliance on anaerobically fueled burst activity during prey capture in large animals.
Collapse
Affiliation(s)
- Lloyd A. Trueblood
- Department of Biological Sciences, La Sierra University, Riverside, CA 92505, USA
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Brad A. Seibel
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
13
|
Allen JJ, Bell GRR, Kuzirian AM, Velankar SS, Hanlon RT. Comparative morphology of changeable skin papillae in octopus and cuttlefish. J Morphol 2014; 275:371-90. [PMID: 24741712 DOI: 10.1002/jmor.20221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A major component of cephalopod adaptive camouflage behavior has rarely been studied: their ability to change the three-dimensionality of their skin by morphing their malleable dermal papillae. Recent work has established that simple, conical papillae in cuttlefish (Sepia officinalis) function as muscular hydrostats; that is, the muscles that extend a papilla also provide its structural support. We used brightfield and scanning electron microscopy to investigate and compare the functional morphology of nine types of papillae of different shapes, sizes and complexity in six species: S. officinalis small dorsal papillae, Octopus vulgaris small dorsal and ventral eye papillae, Macrotritopus defilippi dorsal eye papillae, Abdopus aculeatus major mantle papillae, O. bimaculoides arm, minor mantle, and dorsal eye papillae, and S. apama face ridge papillae. Most papillae have two sets of muscles responsible for extension: circular dermal erector muscles arranged in a concentric pattern to lift the papilla away from the body surface and horizontal dermal erector muscles to pull the papilla's perimeter toward its core and determine shape. A third set of muscles, retractors, appears to be responsible for pulling a papilla's apex down toward the body surface while stretching out its base. Connective tissue infiltrated with mucopolysaccharides assists with structural support. S. apama face ridge papillae are different: the contraction of erector muscles perpendicular to the ridge causes overlying tissues to buckle. In this case, mucopolysaccharide-rich connective tissue provides structural support. These six species possess changeable papillae that are diverse in size and shape, yet with one exception they share somewhat similar functional morphologies. Future research on papilla morphology, biomechanics and neural control in the many unexamined species of octopus and cuttlefish may uncover new principles of actuation in soft, flexible tissue.
Collapse
|
14
|
Hoving HJT, Perez JAA, Bolstad KSR, Braid HE, Evans AB, Fuchs D, Judkins H, Kelly JT, Marian JEAR, Nakajima R, Piatkowski U, Reid A, Vecchione M, Xavier JCC. The study of deep-sea cephalopods. ADVANCES IN MARINE BIOLOGY 2014; 67:235-359. [PMID: 24880796 DOI: 10.1016/b978-0-12-800287-2.00003-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
"Deep-sea" cephalopods are here defined as cephalopods that spend a significant part of their life cycles outside the euphotic zone. In this chapter, the state of knowledge in several aspects of deep-sea cephalopod research are summarized, including information sources for these animals, diversity and general biogeography and life cycles, including reproduction. Recommendations are made for addressing some of the remaining knowledge deficiencies using a variety of traditional and more recently developed methods. The types of oceanic gear that are suitable for collecting cephalopod specimens and images are reviewed. Many groups of deep-sea cephalopods require taxonomic reviews, ideally based on both morphological and molecular characters. Museum collections play a vital role in these revisions, and novel (molecular) techniques may facilitate new use of old museum specimens. Fundamental life-cycle parameters remain unknown for many species; techniques developed for neritic species that could potentially be applied to deep-sea cephalopods are discussed. Reproductive tactics and strategies in deep-sea cephalopods are very diverse and call for comparative evolutionary and experimental studies, but even in the twenty-first century, mature individuals are still unknown for many species. New insights into diet and trophic position have begun to reveal a more diverse range of feeding strategies than the typically voracious predatory lifestyle known for many cephalopods. Regular standardized deep-sea cephalopod surveys are necessary to provide insight into temporal changes in oceanic cephalopod populations and to forecast, verify and monitor the impacts of global marine changes and human impacts on these populations.
Collapse
Affiliation(s)
| | - Jose Angel A Perez
- Centro de Ciências Tecnológicas da Terra e do Mar Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Kathrin S R Bolstad
- Institute for Applied Ecology New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Heather E Braid
- Institute for Applied Ecology New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Aaron B Evans
- Institute for Applied Ecology New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Dirk Fuchs
- Freie Universität Berlin, Institute of Geological Sciences, Branch Paleontology, Berlin, Germany
| | - Heather Judkins
- Department of Biological Sciences, University of South Florida St. Petersburg, St. Petersburg, Florida, USA
| | - Jesse T Kelly
- Institute for Applied Ecology New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - José E A R Marian
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | - Ryuta Nakajima
- Department of Art and Design, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Uwe Piatkowski
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Amanda Reid
- Australian Museum Research Institute, Sydney, New South Wales, Australia
| | - Michael Vecchione
- NMFS National Systematics Laboratory, National Museum of Natural History, Washington, DC, USA
| | - José C C Xavier
- Institute of Marine Research, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; British Antarctic Survey, NERC, Cambridge, United Kingdom
| |
Collapse
|
15
|
Rodhouse PGK, Pierce GJ, Nichols OC, Sauer WHH, Arkhipkin AI, Laptikhovsky VV, Lipiński MR, Ramos JE, Gras M, Kidokoro H, Sadayasu K, Pereira J, Lefkaditou E, Pita C, Gasalla M, Haimovici M, Sakai M, Downey N. Environmental effects on cephalopod population dynamics: implications for management of fisheries. ADVANCES IN MARINE BIOLOGY 2014; 67:99-233. [PMID: 24880795 DOI: 10.1016/b978-0-12-800287-2.00002-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cephalopods are a relatively small class of molluscs (~800 species), but they support some large industrial scale fisheries and numerous small-scale, local, artisanal fisheries. For several decades, landings of cephalopods globally have grown against a background of total finfish landings levelling off and then declining. There is now evidence that in recent years, growth in cephalopod landings has declined. The commercially exploited cephalopod species are fast-growing, short-lived ecological opportunists. Annual variability in abundance is strongly influenced by environmental variability, but the underlying causes of the links between environment and population dynamics are poorly understood. Stock assessment models have recently been developed that incorporate environmental processes that drive variability in recruitment, distribution and migration patterns. These models can be expected to improve as more, and better, data are obtained on environmental effects and as techniques for stock identification improve. A key element of future progress will be improved understanding of trophic dynamics at all phases in the cephalopod life cycle. In the meantime, there is no routine stock assessment in many targeted fisheries or in the numerous by-catch fisheries for cephalopods. There is a particular need for a precautionary approach in these cases. Assessment in many fisheries is complicated because cephalopods are ecological opportunists and stocks appear to have benefited from the reduction of key predator by overexploitation. Because of the complexities involved, ecosystem-based fisheries management integrating social, economic and ecological considerations is desirable for cephalopod fisheries. An ecological approach to management is routine in many fisheries, but to be effective, good scientific understanding of the relationships between the environment, trophic dynamics and population dynamics is essential. Fisheries and the ecosystems they depend on can only be managed by regulating the activities of the fishing industry, and this requires understanding the dynamics of the stocks they exploit.
Collapse
Affiliation(s)
| | - Graham J Pierce
- Oceanlab, University of Aberdeen, Newburgh, Aberdeenshire, United Kingdom; CESAM & Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Owen C Nichols
- School for Marine Science and Technology, University of Massachusetts - Dartmouth, Fairhaven, Massachusetts, USA; Center for Coastal Studies, Provincetown, Massachusetts, USA
| | - Warwick H H Sauer
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa
| | | | | | - Marek R Lipiński
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa
| | - Jorge E Ramos
- Institute for Marine and Antarctic Studies, Marine Research Laboratories Taroona, Nubeena Crescent, Taroona, Tasmania, Australia
| | - Michaël Gras
- Université de Caen Basse-Normandie, Institut de Biologie Fondamentale et Appliquée Department, UMR BOREA: Biologie des ORganismes et des Ecosystèmes Aquatiques, Esplanade de la paix, CS 14032, Caen, France; BOREA, UMR CNRS7208, IRD207, UPMC, MNHN, UCBN, Caen, France
| | - Hideaki Kidokoro
- Japan Sea National Fisheries Research, Institute, Fisheries Research Agency, Suido-cho, Niigata, Japan
| | - Kazuhiro Sadayasu
- Marine Fisheries Research and Development Center, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - João Pereira
- Instituto de Investigação das Pescas e do Mar (IPIMAR), Lisboa, Portugal
| | - Evgenia Lefkaditou
- Helenic Centre for Marine Research, Aghios Kosmas, Hellinikon, Athens, Greece
| | - Cristina Pita
- Oceanlab, University of Aberdeen, Newburgh, Aberdeenshire, United Kingdom; CESAM & Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Maria Gasalla
- Fisheries Ecosystems Laboratory, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Manuel Haimovici
- Institute of Oceanography, Federal University of Rio Grande, CEP, Rio Grande, Brazil
| | - Mitsuo Sakai
- National Research Institute of Far Seas Fisheries, Shizuoka, Japan
| | - Nicola Downey
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
16
|
Bush SL, Robison BH, Caldwell RL. Behaving in the dark: locomotor, chromatic, postural, and bioluminescent behaviors of the deep-sea squid Octopoteuthis deletron young 1972. THE BIOLOGICAL BULLETIN 2009; 216:7-22. [PMID: 19218488 DOI: 10.1086/bblv216n1p7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Visual behaviors are prominent components of intra- and interspecific communication in shallow-water cephalopods. Meso- and bathypelagic cephalopods were believed to have limited visual communication, other than bioluminescence, due to the reduced illumination at depth. To explore potential visual behaviors in mesopelagic squid, we used undersea vehicles to observe 76 individuals of Octopoteuthis deletron. In contrast to predictions, we found this species capable of a variety of visually linked behaviors not previously reported for a deep-ocean cephalopod. The resultant ethogram describes numerous chromatic, postural, locomotor, and bioluminescent behavioral components. A few common body patterns-the whole appearance of the individual involving multiple components-are characterized. The behaviors observed from individual squid were compared using a Non-metric Multi-Dimensional Scaling (NMDS) ordination, onto which hydrographic and observation parameters were mapped. Observation length, specimen collection, and contact with the vehicle affected which behaviors were performed. A separate NMDS, analyzing the body patterns, indicated that these sets of behavioral components could be visualized as groups within the NMDS ordination. While the functional roles of the behaviors described are not yet known, our findings of numerous behaviors in O. deletron clearly indicate that bioluminescence is not the sole method of visual communication by deep-sea squid.
Collapse
Affiliation(s)
- Stephanie L Bush
- University of California, Berkeley, Department of Integrative Biology, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
17
|
Bustamante P, González AF, Rocha F, Miramand P, Guerra A. Metal and metalloid concentrations in the giant squid Architeuthis dux from Iberian waters. MARINE ENVIRONMENTAL RESEARCH 2008; 66:278-287. [PMID: 18514304 DOI: 10.1016/j.marenvres.2008.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 05/26/2023]
Abstract
This study investigated 14 trace elements (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V and Zn) in the tissues of the giant squid Architeuthis dux from the Mediterranean and Atlantic Spanish waters. As for other families of cephalopods, the digestive gland and the branchial hearts of Architeuthis showed the highest concentrations of Ag, Cd, Co, Cu, Fe, Ni, Se, V and Zn, highlighting their major role in the bioaccumulation and detoxification processes. With the exception of Hg, the muscles showed relatively low trace element concentrations. Nevertheless, this tissue contained the main proportion of the total As, Cr, Hg, Mn, Ni, and Zn body burden because muscles represent the main proportion of the squid mass. These findings suggest that the metal metabolism is overall the same as other cephalopod families from neritic waters. In females, Zn concentrations increased in the digestive gland with the squid's weight likely reflecting physiological changes during sexual maturation. Comparing the trace element concentrations in the tissues of Architeuthis, higher Ag, Cu, Hg and Zn concentrations in the squid from the Mediterranean reflected different exposure conditions. In comparison to other meso-pelagic squids from the Bay of Biscay, Cd concentrations recorded in the digestive gland suggest that Architeuthis might feed on more contaminated prey or that it displays a longer life span that other cephalopods.
Collapse
Affiliation(s)
- P Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 6250, CNRS-Université de La Rochelle, 2 Rue Olympe de Gouges, F-17042 La Rochelle cedex 01, France.
| | | | | | | | | |
Collapse
|
18
|
Hanlon RT, Naud MJ, Forsythe JW, Hall K, Watson AC, McKechnie J. Adaptable Night Camouflage by Cuttlefish. Am Nat 2007; 169:543-51. [PMID: 17427123 DOI: 10.1086/512106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 11/22/2006] [Indexed: 11/03/2022]
Abstract
Cephalopods are well known for their diverse, quick-changing camouflage in a wide range of shallow habitats worldwide. However, there is no documentation that cephalopods use their diverse camouflage repertoire at night. We used a remotely operated vehicle equipped with a video camera and a red light to conduct 16 transects on the communal spawning grounds of the giant Australian cuttlefish Sepia apama situated on a temperate rock reef in southern Australia. Cuttlefish ceased sexual signaling and reproductive behavior at dusk and then settled to the bottom and quickly adapted their body patterns to produce camouflage that was tailored to different backgrounds. During the day, only 3% of cuttlefish were camouflaged on the spawning ground, but at night 86% (71 of 83 cuttlefish) were camouflaged in variations of three body pattern types: uniform (n=5), mottled (n=33), or disruptive (n=34) coloration. The implication is that nocturnal visual predators provide the selective pressure for rapid, changeable camouflage patterning tuned to different visual backgrounds at night.
Collapse
Affiliation(s)
- Roger T Hanlon
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Bustamante P, Lahaye V, Durnez C, Churlaud C, Caurant F. Total and organic Hg concentrations in cephalopods from the North Eastern Atlantic waters: influence of geographical origin and feeding ecology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2006; 368:585-96. [PMID: 16600335 DOI: 10.1016/j.scitotenv.2006.01.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 01/10/2006] [Accepted: 01/16/2006] [Indexed: 05/08/2023]
Abstract
Total (T-Hg) and organic (O-Hg) mercury concentrations and tissue distribution were examined in 20 species of cephalopods (n=278) from the north eastern Atlantic waters, i.e. from the Bay of Biscay to the Faroe Islands. Concentrations of T-Hg in whole cephalopods showed elevated variations among species, i.e. from 40 to 3560ng g(-1) dwt, but a low variability within each species (mean CV%=39%). With the exception of oceanic squids, the digestive gland globally displayed higher T-Hg concentrations than the remaining tissues. In contrast, O-Hg concentrations determined in selected species were generally higher in the remaining tissues. Despite higher T-Hg concentrations, the digestive gland weakly contributed to the total body burden of both T-Hg and O-Hg (<25% and <15%, respectively). In fact, from 75% to 95% of the T-Hg and O-Hg were contained in the muscular remaining tissues. Therefore, O-Hg may have a strong affinity to proteins in cephalopods. Sex and size only significantly influenced the bioaccumulation of Hg for the Loliginidae family. T-Hg and O-Hg concentrations were also influenced by geographical origin: Celtic Sea>Bay of Biscay>Faroe Islands, corresponding to the seawater Hg concentrations in these areas. In the Faroe Islands and the Celtic Sea, benthic cephalopods contained significant higher Hg concentrations compared to pelagic ones. This suggests that diet is not the main pathway of Hg uptake in cephalopods as pelagic species were expected to be more exposed to O-Hg through fish consumption than benthic ones.
Collapse
Affiliation(s)
- P Bustamante
- Centre de Recherche sur les Ecosystèmes Littoraux Anthropisés, UMR 6217 CNRS-IFREMER-Université La Rochelle, 22 Avenue Michel Crépeau, F-17042 La Rochelle Cedex, France.
| | | | | | | | | |
Collapse
|
20
|
Danis B, Bustamante P, Cotret O, Teyssié JL, Fowler SW, Warnau M. Bioaccumulation of PCBs in the cuttlefish Sepia officinalis from seawater, sediment and food pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2005; 134:113-122. [PMID: 15572229 DOI: 10.1016/j.envpol.2004.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 07/02/2004] [Indexed: 05/24/2023]
Abstract
The cuttlefish Sepia officinalis was selected as a model cephalopod to study PCB bioaccumulation via seawater, sediments and food. Newly hatched, juvenile cuttlefish were exposed for 17 days to environmentally realistic concentrations of (14)C-labeled 2,2',4,4',5,5'-hexachlorobiphenyl (PCB#153) (18 ng PCB l(-1) seawater; 30 ng PCB g(-1) dry wt sediments; Artemia salina exposed to 18 ng PCB l(-1) seawater). Accumulation of PCB#153 was followed in three body compartments: digestive gland, cuttlebone and the combined remaining tissues. Results showed that (1) uptake kinetics were source- and body compartment-dependent, (2) for each body compartment, the accumulation was far greater when S. officinalis was exposed via seawater, (3) the cuttlebone accumulated little of the contaminant regardless of the source, and (4) the PCB congener showed a similar distribution pattern among the different body compartments following exposure to contaminated seawater, sediment or food with the lowest concentrations in the cuttlebone and the highest in the remaining tissues. The use of radiotracer techniques allowed delineating PCB kinetics in small whole organisms as well as in their separate tissues. The results underscore the enhanced ability of cephalopods to concentrate organic pollutants such as PCBs, and raise the question of potential risk to their predators in contaminated areas.
Collapse
Affiliation(s)
- B Danis
- Laboratoire de Biologie Marine (CP 160-15), Université Libre de Bruxelles, 50 Av. F.D. Roosevelt, B-1050 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
21
|
Bustamante P, Cosson RP, Gallien I, Caurant F, Miramand P. Cadmium detoxification processes in the digestive gland of cephalopods in relation to accumulated cadmium concentrations. MARINE ENVIRONMENTAL RESEARCH 2002; 53:227-241. [PMID: 11939291 DOI: 10.1016/s0141-1136(01)00108-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The high concentrations of cadmium recorded in the digestive gland of cephalopods from various temperate and subpolar waters suggest that these molluscs have developed efficient cadmium detoxification mechanisms. The subcellular distribution of cadmium in the digestive gland cells was investigated in seven cephalopod species from the Bay of Biscay (France) and the Faroe Islands. In most species, cadmium was mainly found in the cytosolic fraction of the digestive gland cells, reaching up to 86% of the total cadmium for the squid Loligo vulgaris from the Bay of Biscay. But species with the highest total level of cadmium showed a higher percentage of cadmium associated to insoluble compounds. The quantification of metallothioneins (MTs) by the polarographic method was performed in order to evaluate the involvement of these proteins in the detoxification of the high amounts of bioaccumulated cadmium. Metallothionein levels in cephalopods ranged form 742 +/- 270 to 3478 +/- 1572 microg/g wet weight. No relationship could be established between total cadmium, cytosolic cadmium and MT levels suggesting the occurrence of other Cd-binding ligands. Although these proteins have not been characterised, as cadmium in the digestive gland of cephalopods is mainly associated with soluble ligands, a high potential transfer to predators can be predicted.
Collapse
Affiliation(s)
- P Bustamante
- Laboratoire de Biologie et d'Environnement Marins, UPRES-EA 3168, Université de La Rochelle, France.
| | | | | | | | | |
Collapse
|
22
|
Bustamante P, Caurant F, Fowler SW, Miramand P. Cephalopods as a vector for the transfer of cadmium to top marine predators in the north-east Atlantic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 1998; 220:71-80. [PMID: 9800386 DOI: 10.1016/s0048-9697(98)00250-2] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Three hundred and fifty individuals of 12 species of cephalopods which differed in their feeding habitats were sampled from the French Atlantic coast to the sub-Arctic region (Bay of Biscay, English Channel, west Irish coast and Faroe Islands) and analysed for their cadmium contents. Comparison of the Cd levels of the cephalopods showed that those from the sub-Arctic area contained very high Cd concentrations compared to those from lower latitudes such as along the French Atlantic coast. High Cd levels in cephalopods from the sub-Arctic zone correspond closely to the reported high Cd concentrations in the tissues of top vertebrate predators from the same area. Comparison of the weekly Cd intakes for the Faroe Island pilot whales with the 'Provisional Tolerable Weekly Intake' for humans recommended by the World Health Organisation, showed that top vertebrate predators are often subjected to Cd doses far in excess of those recommended for humans. Our limited survey results suggest that cephalopods constitute an important source of Cd for cephalopod predators, and that this bioaccumulation effect is most evident at high latitudes.
Collapse
Affiliation(s)
- P Bustamante
- Laboratoire de Biologie et Biochimie Marines, Université de La Rochelle, France.
| | | | | | | |
Collapse
|