1
|
Bathobakae L, Bashir R, Wilkinson T, Phuu P, Koodirile A, Yuridullah R, Balikani L, Amer K, Cavanagh Y, Baddoura W, Suh JS. Non-hepatotropic viral hepatitis: a narrative review. Scand J Gastroenterol 2024; 59:1322-1329. [PMID: 39470191 DOI: 10.1080/00365521.2024.2422947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
Non-hepatotropic viral hepatitis (NHVH) refers to acute hepatitis or acute liver failure caused by viruses that do not primarily target the liver. These viruses include the Epstein-Barr virus (EBV), cytomegalovirus (CMV), herpes simplex virus (HSV)-1 and -2, varicella zoster, parvovirus, adenovirus, adeno-associated virus type 2, measles, and severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). The epidemiology, pathogenesis, and clinical manifestations of hepatitis due to hepatotropic viruses (hepatitis A-E) have been well studied. However, there is a paucity of data on NHVH due to its rarity, self-limiting clinical course, and vague presentation. NHVH can occur as an isolated illness or as part of a disseminated disease, and its clinical features range from self-limiting transaminitis to acute liver failure. This activity reviews the most common non-hepatotropic viruses (NHV), with a focus on their biology, etiopathogenesis, clinical manifestations, and management.
Collapse
Affiliation(s)
- Lefika Bathobakae
- Internal Medicine, St. Joseph's University Medical Center, Paterson, NJ, USA
| | - Rammy Bashir
- Internal Medicine, St. George's University School of Medicine, St. George's, Grenada
| | - Tyler Wilkinson
- Internal Medicine, St. George's University School of Medicine, St. George's, Grenada
| | - Phenyo Phuu
- Internal Medicine, St. George's University School of Medicine, St. George's, Grenada
| | - Atang Koodirile
- American University of Antigua College of Medicine, Coolidge, Antigua
| | - Ruhin Yuridullah
- Gastroenterology & Hepatology, St. Joseph's University Medical Center, Paterson, NJ, USA
| | - Lame Balikani
- Pathology & Lab Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kamal Amer
- Gastroenterology & Hepatology, St. Joseph's University Medical Center, Paterson, NJ, USA
| | - Yana Cavanagh
- Gastroenterology & Hepatology, St. Joseph's University Medical Center, Paterson, NJ, USA
| | - Walid Baddoura
- Gastroenterology & Hepatology, St. Joseph's University Medical Center, Paterson, NJ, USA
| | - Jin S Suh
- Infectious Diseases, St. Joseph's University Medical Center, Paterson, NJ, USA
| |
Collapse
|
2
|
Rahman R, Gopinath D, Buajeeb W, Poomsawat S, Johnson NW. Potential Role of Epstein-Barr Virus in Oral Potentially Malignant Disorders and Oral Squamous Cell Carcinoma: A Scoping Review. Viruses 2022; 14:801. [PMID: 35458531 PMCID: PMC9032208 DOI: 10.3390/v14040801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
Though the oral cavity is anatomically proximate to the nasal cavity and acts as a key reservoir of EBV habitation and transmission, it is still unclear whether EBV plays a significant role in oral carcinogenesis. Many studies have detected EBV DNA in tissues and exfoliated cells from OSCC patients. However, very few studies have investigated the expression of functional EBV proteins implicated in its oncogenicity. The most studied are latent membrane protein 1 (LMP-1), a protein associated with the activation of signalling pathways; EBV determined nuclear antigen (EBNA)-1, a protein involved in the regulation of gene expression; and EBV-encoded small non-polyadenylated RNA (EBER)-2. LMP-1 is considered the major oncoprotein, and overexpression of LMP-1 observed in OSCC indicates that this molecule might play a significant role in oral carcinogenesis. Although numerous studies have detected EBV DNA and proteins from OSCC and oral potentially malignant disorders, heterogeneity in methodologies has led to discrepant results, hindering interpretation. Elucidating the exact functions of EBV and its proteins when expressed is vital in establishing the role of viruses in oral oncogenesis. This review summarises the current evidence on the potential role of EBV in oral oncogenesis and discusses the implications as well as recommendations for future research.
Collapse
Affiliation(s)
- Rifat Rahman
- Menzies Health Institute Queensland, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (R.R.); (N.W.J.)
| | - Divya Gopinath
- Clinical Oral Health Sciences Division, School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Waranun Buajeeb
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
| | - Sopee Poomsawat
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
| | - Newell W. Johnson
- Menzies Health Institute Queensland, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (R.R.); (N.W.J.)
- Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
3
|
Papp B, Launay S, Gélébart P, Arbabian A, Enyedi A, Brouland JP, Carosella ED, Adle-Biassette H. Endoplasmic Reticulum Calcium Pumps and Tumor Cell Differentiation. Int J Mol Sci 2020; 21:ijms21093351. [PMID: 32397400 PMCID: PMC7247589 DOI: 10.3390/ijms21093351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022] Open
Abstract
Endoplasmic reticulum (ER) calcium homeostasis plays an essential role in cellular calcium signaling, intra-ER protein chaperoning and maturation, as well as in the interaction of the ER with other organelles. Calcium is accumulated in the ER by sarco/endoplasmic reticulum calcium ATPases (SERCA enzymes) that generate by active, ATP-dependent transport, a several thousand-fold calcium ion concentration gradient between the cytosol (low nanomolar) and the ER lumen (high micromolar). SERCA enzymes are coded by three genes that by alternative splicing give rise to several isoforms, which can display isoform-specific calcium transport characteristics. SERCA expression levels and isoenzyme composition vary according to cell type, and this constitutes a mechanism whereby ER calcium homeostasis is adapted to the signaling and metabolic needs of the cell, depending on its phenotype, its state of activation and differentiation. As reviewed here, in several normal epithelial cell types including bronchial, mammary, gastric, colonic and choroid plexus epithelium, as well as in mature cells of hematopoietic origin such as pumps are simultaneously expressed, whereas in corresponding tumors and leukemias SERCA3 expression is selectively down-regulated. SERCA3 expression is restored during the pharmacologically induced differentiation of various cancer and leukemia cell types. SERCA3 is a useful marker for the study of cell differentiation, and the loss of SERCA3 expression constitutes a previously unrecognized example of the remodeling of calcium homeostasis in tumors.
Collapse
Affiliation(s)
- Bela Papp
- Institut National de la Santé et de la Recherche Médicale, UMR U976, Institut Saint-Louis, 75010 Paris, France
- Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université de Paris, 75010 Paris, France
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, 75010 Paris, France;
- Correspondence: or
| | - Sophie Launay
- EA481, UFR Santé, Université de Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Pascal Gélébart
- Department of Clinical Science-Hematology Section, Haukeland University Hospital, University of Bergen, 5021 Bergen, Norway;
| | - Atousa Arbabian
- Laboratoire d’Innovation Vaccins, Institut Pasteur de Paris, 75015 Paris, France;
| | - Agnes Enyedi
- Second Department of Pathology, Semmelweis University, 1091 Budapest, Hungary;
| | - Jean-Philippe Brouland
- Institut Universitaire de Pathologie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland;
| | - Edgardo D. Carosella
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, 75010 Paris, France;
| | - Homa Adle-Biassette
- AP-HP, Service d’Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, 75010 Paris, France;
- Université de Paris, NeuroDiderot, Inserm UMR 1141, 75019 Paris, France
| |
Collapse
|
4
|
Weidner-Glunde M, Kruminis-Kaszkiel E, Savanagouder M. Herpesviral Latency-Common Themes. Pathogens 2020; 9:E125. [PMID: 32075270 PMCID: PMC7167855 DOI: 10.3390/pathogens9020125] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Latency establishment is the hallmark feature of herpesviruses, a group of viruses, of which nine are known to infect humans. They have co-evolved alongside their hosts, and mastered manipulation of cellular pathways and tweaking various processes to their advantage. As a result, they are very well adapted to persistence. The members of the three subfamilies belonging to the family Herpesviridae differ with regard to cell tropism, target cells for the latent reservoir, and characteristics of the infection. The mechanisms governing the latent state also seem quite different. Our knowledge about latency is most complete for the gammaherpesviruses due to previously missing adequate latency models for the alpha and beta-herpesviruses. Nevertheless, with advances in cell biology and the availability of appropriate cell-culture and animal models, the common features of the latency in the different subfamilies began to emerge. Three criteria have been set forth to define latency and differentiate it from persistent or abortive infection: 1) persistence of the viral genome, 2) limited viral gene expression with no viral particle production, and 3) the ability to reactivate to a lytic cycle. This review discusses these criteria for each of the subfamilies and highlights the common strategies adopted by herpesviruses to establish latency.
Collapse
Affiliation(s)
- Magdalena Weidner-Glunde
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (E.K.-K.); (M.S.)
| | | | | |
Collapse
|
5
|
Rahman R, Poomsawat S, Juengsomjit R, Buajeeb W. Overexpression of Epstein-Barr virus-encoded latent membrane protein-1 (LMP-1) in oral squamous cell carcinoma. BMC Oral Health 2019; 19:142. [PMID: 31291930 PMCID: PMC6621935 DOI: 10.1186/s12903-019-0832-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Background As oral cavity is the main location of Epstein-Barr virus (EBV) latency and shedding, and as EBV-encoded latent membrane protein-1 (LMP-1) has a crucial role in cell transformation, association between EBV infection, LMP-1 expression and oral malignancy is of interest. Although EBV DNA has been detected in oral squamous cell carcinoma (OSCC), studies on LMP-1 expression in OSCC and oral potentially malignant disorders are scarce and still controversial. This study aimed to evaluate the expression of LMP-1 in OSCC and oral leukoplakia (OL). Methods Biopsy specimens of 36 OSCC, 69 OL with and without dysplasia and 10 normal oral mucosa were assessed for the expression of LMP-1 using immunohistochemistry. In each case, at least 1000 cells were counted. Cells with staining were considered positive, classified by location as nuclear, cytoplasmic and nuclear plus cytoplasmic staining. Percentage of positive cells at different locations and of total positive cells were determined. For statistical analysis, SPSS version 21 was used. Statistical significance was considered at p < 0.05. Results LMP-1 was expressed in all studied specimens. In terms of percentage of total positive cells, LMP-1 expression was higher from normal mucosa (26.36%), OL without dysplasia (28.03%), OL with dysplasia (34.15%), to the significantly highest, (59.67%) in OSCC. In addition, cells with nuclear staining alone, cytoplasmic staining alone and cells with nuclear plus cytoplasmic staining were significantly higher in OSCC compared to those of normal mucosa, OL with and without dysplasia. Conclusions LMP-1 was overexpressed in OSCC. Our analysis on subcellular localization of LMP-1 in OSCC revealed prominent distinguished pattern, cytoplasmic distribution. Further studies in cell lines and animals are required to clarify the association between this EBV-encoded proteins and oral carcinogenesis.
Collapse
Affiliation(s)
- Rifat Rahman
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | - Sopee Poomsawat
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | - Rachai Juengsomjit
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | - Waranun Buajeeb
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Ollig J, Kloubert V, Taylor KM, Rink L. B cell activation and proliferation increase intracellular zinc levels. J Nutr Biochem 2018; 64:72-79. [PMID: 30448545 PMCID: PMC6372723 DOI: 10.1016/j.jnutbio.2018.10.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
Zinc ions serve as second messengers in major cellular pathways, including the regulation pathways of proliferation and their proper regulation is necessary for homeostasis and a healthy organism. Accordingly, expression of zinc transporters can be altered in various cancer cell lines and is often involved in producing elevated intracellular zinc levels. In this study, human B cells were infected with Epstein–Barr virus (EBV) to generate immortalized cells, which revealed traits of tumor cells, such as high proliferation rates and an extended lifespan. These cells showed differentially altered zinc transporter expression with ZIP7 RNA and protein expression being especially increased as well as a corresponding increased phosphorylation of ZIP7 in EBV-transformed B cells. Accordingly, free zinc levels were elevated within these cells. To prove whether the observed changes resulted from immortalization or rather high proliferation, free zinc levels in in vitro activated B cells and in freshly isolated B cells expressing the activation marker CD69 were determined. Here, comparatively increased zinc levels were found, suggesting that activation and proliferation, but not immortalization, act as crucial factors for the elevation of intracellular free zinc.
Collapse
Affiliation(s)
- Johanna Ollig
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Veronika Kloubert
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Kathryn M Taylor
- Breast Cancer Molecular Pharmacology, Welsh School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, United Kingdom.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
7
|
Antiviral activity of ginsenoside Rg3 isomers against gammaherpesvirus through inhibition of p38- and JNK-associated pathways. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
8
|
Pisano G, Roy A, Ahmed Ansari M, Kumar B, Chikoti L, Chandran B. Interferon-γ-inducible protein 16 (IFI16) is required for the maintenance of Epstein-Barr virus latency. Virol J 2017; 14:221. [PMID: 29132393 PMCID: PMC5683537 DOI: 10.1186/s12985-017-0891-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/02/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) exhibits both lytic and latent (Lat. I, II, and III) phases in an infected individual. It's during the latent phase of EBV that all EBV-associated cancers, including Burkitt's lymphoma, nasopharyngeal carcinoma and lymphoproliferative disease arise. Interferon-γ-inducible protein 16 (IFI16) is a well-established innate immune sensor and viral transcriptional regulator involved in response to invading DNA viruses. During latency, IFI16 remains in the nucleus, in part bound to the EBV genome; however, neither its role in EBV lytic cycle or latency has been established. METHODS Short interfering RNA against IFI16 and IFI16 overexpression were used to identify the role of IFI16 in the maintenance of EBV latency I. We also studied how induction of the lytic cycle affected IFI16 using the EBV positive, latently infected Akata or MUTU-1 cell lines. Akata cells were induced with TPA and MUTU-1 cells with TGF-β up to 96 h and changes in IFI16 protein were analyzed by Western blotting and immunofluorescence microscopy. To assess the mechanism of IFI16 decrease, EBV DNA replication and late lytic transcripts were blocked using the viral DNA polymerase inhibitor phosphonoacetic acid. RESULTS Knockdown of IFI16 mRNA by siRNA resulted in enhanced levels of EBV lytic gene expression from all temporal gene classes, as well as an increase in the total EBV genome abundance, whereas overexpression of exogenous IFI16 reversed these effects. Furthermore, 96 h after induction of the lytic cycle with either TPA (Akata) or TGF-β (MUTU-1), IFI16 protein levels decreased up to 80% as compared to the EBV-negative cell line BJAB. Reduction in IFI16 was observed in cells expressing EBV lytic envelope glycoprotein. The decreased levels of IFI16 protein do not appear to be dependent on late lytic transcripts of EBV but suggest involvement of the immediate early, early, or a combination of both gene classes. CONCLUSIONS Reduction of IFI16 protein levels following lytic cycle induction, as well as reactivation from latency after IFI16 mRNA knockdown suggests that IFI16 is crucial for the maintenance of EBV latency. More importantly, these results identify IFI16 as a unique host factor protein involved in the EBV lifecycle, making it a potential therapeutic target to combat EBV-related malignancies.
Collapse
Affiliation(s)
- Gina Pisano
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA.
| | - Arunava Roy
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Mairaj Ahmed Ansari
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Binod Kumar
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Leela Chikoti
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Bala Chandran
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
9
|
Ayoubian H, Fröhlich T, Pogodski D, Flatley A, Kremmer E, Schepers A, Feederle R, Arnold GJ, Grässer FA. Antibodies against the mono-methylated arginine-glycine repeat (MMA-RG) of the Epstein-Barr virus nuclear antigen 2 (EBNA2) identify potential cellular proteins targeted in viral transformation. J Gen Virol 2017; 98:2128-2142. [PMID: 28758620 DOI: 10.1099/jgv.0.000870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Epstein-Barr virus is a human herpes virus with oncogenic potential. The virus-encoded nuclear antigen 2 (EBNA2) is a key mediator of viral tumorigenesis. EBNA2 features an arginine-glycine (RG) repeat at amino acids (aa)339-354 that is essential for the transformation of lymphocytes and contains symmetrically (SDMA) and asymmetrically (ADMA) di-methylated arginine residues. The SDMA-modified EBNA2 binds the survival motor neuron protein (SMN), thus mimicking SMD3, a cellular SDMA-containing protein that interacts with SMN. Accordingly, a monoclonal antibody (mAb) specific for the SDMA-modified RG repeat of EBNA2 also binds to SMD3. With the novel mAb 19D4 we now show that EBNA2 contains mono-methylated arginine (MMA) residues within the RG repeat. Using 19D4, we immune-precipitated and analysed by mass spectrometry cellular proteins in EBV-transformed B-cells that feature MMA motifs that are similar to the one in EBNA2. Among the cellular proteins identified, we confirmed by immunoprecipitation and/or Western blot analyses Aly/REF, Coilin, DDX5, FXR1, HNRNPK, LSM4, MRE11, NRIP, nucleolin, PRPF8, RBM26, SMD1 (SNRDP1) and THRAP3 proteins that are either known to contain MMA residues or feature RG repeat sequences that probably serve as methylation substrates. The identified proteins are involved in splicing, tumorigenesis, transcriptional activation, DNA stability and RNA processing or export. Furthermore, we found that several proteins involved in energy metabolism are associated with MMA-modified proteins. Interestingly, the viral EBNA1 protein that features methylated RG repeat motifs also reacted with the antibodies. Our results indicate that the region between aa 34-52 of EBNA1 contains ADMA or SDMA residues, while the region between aa 328-377 mainly contains MMA residues.
Collapse
Affiliation(s)
- Hiresh Ayoubian
- Institute of Virology, Saarland University Medical School, Kirrbergerstrasse, Haus 47, D-66421 Homburg/Saar, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Dagmar Pogodski
- Institute of Virology, Saarland University Medical School, Kirrbergerstrasse, Haus 47, D-66421 Homburg/Saar, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - Elisabeth Kremmer
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Friedrich A Grässer
- Institute of Virology, Saarland University Medical School, Kirrbergerstrasse, Haus 47, D-66421 Homburg/Saar, Germany
| |
Collapse
|
10
|
Tao C, Simpson S, Taylor BV, van der Mei I. Association between human herpesvirus & human endogenous retrovirus and MS onset & progression. J Neurol Sci 2016; 372:239-249. [PMID: 28017222 DOI: 10.1016/j.jns.2016.11.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/02/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
This review discusses the role of Epstein-Barr virus (EBV), human herpesvirus 6 (HHV6) and human endogenous retroviruses (HERVs) in the onset and progression of multiple sclerosis (MS). Although EBV has been established as one of the causal factors in MS onset, its role in MS progression is still uncertain. Moreover, interactions between EBV and other risk factor on MS development still need more investment. With less consistent evidence than EBV, HHV6 has also been implicated in the pathogenesis of MS; moreover, it showed a closer connection with the disease activity. Recent studies found that HERVs were associated with the development and progression of MS. Some antiviral treatments have shown promise for clinical interventions in the future. Future studies are yet needed to fully clarify the role of these agents in MS onset and disease course and the modes by which they realise these effects.
Collapse
Affiliation(s)
- Chunrong Tao
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Steve Simpson
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Australia
| | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Australia.
| |
Collapse
|
11
|
Ernberg I, Niller HH, Minarovits J. Epigenetic Alterations of Viral and Cellular Genomes in EBV-Infected Cells. EPIGENETICS AND HUMAN HEALTH 2016:91-122. [DOI: 10.1007/978-3-319-27186-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Possible contributing role of Epstein-Barr virus (EBV) as a cofactor in human papillomavirus (HPV)-associated cervical carcinogenesis. J Clin Virol 2015; 73:70-76. [PMID: 26551071 DOI: 10.1016/j.jcv.2015.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Persistent infection with EBV has been linked to the development of malignancies including HPV-associated cervical carcinoma. However, the role of EBV in HPV-associated cervical cancer is still poorly understood. OBJECTIVE To determine the possible contributing role of EBV in HPV-associated cervical carcinogenesis according to HPV genotypes, HPV genome status and EBV localization. STUDY DESIGN Cervical tissues, including 82 with no squamous intraepithelial lesions (noSILs), 85 low-grade SILs (LSILs), 85 high grade SILs (HSILs) and 40 squamous cell carcinoma samples (SCC) were investigated using PCR and dot blot hybridization for EBV detection and PCR and reverse line blot hybridization for HPV genotyping. The amplification of papillomavirus oncogene transcripts assay and in situ hybridization were used to determine HPV physical status and EBV EBER localization, respectively. RESULTS EBV was detected increasingly from noSIL (13.4%), LSIL (29.4%) to HSIL (49.4%) samples. The prevalence of HPV-EBV co-infection was significantly higher in any grade of lesion than in noSIL samples (p<0.05) including noSIL (1.2%; 95% confidence intervals [CI]=0.0-3.6%, relative risk [RR]=1), LSIL (18.8%, 95% CI=10.5-27.1%, RR=15.4), HSIL (41.2%, 95% CI=30.7-51.6%, RR=33.8) and SCC (30.0%, 95% CI=15.8-44.2%, RR=24.6). Interestingly, HPV-EBV co-infection was more common in cases with episomal forms of high-risk (HR) HPV whereas HPV alone was more common in cases with integrated HR-HPV. In addition, EBER staining demonstrated that EBV was mainly present in infiltrating lymphocytes. CONCLUSION Infiltrating EBV-infected lymphocytes may play a role in cancer progression of cervical lesion containing episomal HR-HPV.
Collapse
|
13
|
Park GB, Kim D, Park SJ, Lee HK, Kim JH, Kim YS, Park SG, Choi IH, Yoon SH, Lee YJ, Paeng S, Hur DY. Pre-stimulation of CD81 expression by resting B cells increases proliferation following EBV infection, but the overexpression of CD81 induces the apoptosis of EBV-transformed B cells. Int J Mol Med 2015; 36:1464-78. [PMID: 26498453 PMCID: PMC4678167 DOI: 10.3892/ijmm.2015.2372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 09/23/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) E2 protein binds to CD81, which is a component of the B cell co-stimulatory complex. The E2-CD81 interaction leads to B cell proliferation, protein tyrosine phosphorylation and to the hypermutation of immunoglobulin genes. Epidemiological studies have reported a high prevalence of B cell non-Hodgkin lymphoma (NHL) in HCV-positive patients, suggesting a potential association between HCV and Epstein-Barr virus (EBV) in the genesis of B lymphocyte proliferative disorders. In the present study, in order to investigate the association between EBV and HCV in B cells, we created an in vitro EBV-induced B cell transformation model. CD81 was gradually overexpressed during transformation by EBV. B cells isolated from HCV-positive patients grew more rapidly and clumped together earlier than B cells isolated from healthy donors following EBV infection. Pre-stimulation of CD81 expressed by resting B cells with anti-CD81 monoclonal antibody (mAb) or HCV E2 accelerated the generation of lymphoblastoid cell lines (LCLs) by EBV infection. These cells proliferated prominently through the early expression of interleukin-10 and intracellular latent membrane protein (LMP)-l. By contrast, the overexpression of CD81 on EBV-transformed B cells by anti-CD81 mAb or HCV E2 protein induced apoptosis through reactive oxygen species (ROS)-mediated mitochondrial dysfunction. These results suggest that the engagement of CD81 expressed by B cells has differential effects on B cell fate (proliferation or apoptosis) according to EBV infection and the expression level of CD81.
Collapse
Affiliation(s)
- Ga Bin Park
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Daejin Kim
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Sung Jae Park
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Hyun-Kyung Lee
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Ji Hyun Kim
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Yeong Seok Kim
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Sae-Gwang Park
- Department of Microbiology, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - In-Hak Choi
- Department of Microbiology, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | - Sung Ho Yoon
- Department of Plastic Surgery, Inje University Haeundae Paik Hospital, Busan 614-735, Republic of Korea
| | - Youn Jae Lee
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Sunghwa Paeng
- Department of Neurosurgery, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Dae Young Hur
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Busan 614-735, Republic of Korea
| |
Collapse
|
14
|
Abstract
While all herpesviruses can switch between lytic and latent life cycle, which are both driven by specific transcription programs, a unique feature of latent EBV infection is the expression of several distinct and well-defined viral latent transcription programs called latency I, II, and III. Growth transformation of B-cells by EBV in vitro is based on the concerted action of Epstein-Barr virus nuclear antigens (EBNAs) and latent membrane proteins(LMPs). EBV growth-transformed B-cells express a viral transcriptional program, termed latency III, which is characterized by the coexpression of EBNA2 and EBNA-LP with EBNA1, EBNA3A, -3B, and -3C as well as LMP1, LMP2A, and LMP2B. The focus of this review will be to discuss the current understanding of how two of these proteins, EBNA2 and EBNA-LP, contribute to EBV-mediated B-cell growth transformation.
Collapse
Affiliation(s)
- Bettina Kempkes
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Marchioninistr. 25, 81377, Munich, Germany.
| | - Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Deng Z, Uehara T, Maeda H, Hasegawa M, Matayoshi S, Kiyuna A, Agena S, Pan X, Zhang C, Yamashita Y, Xie M, Suzuki M. Epstein-Barr virus and human papillomavirus infections and genotype distribution in head and neck cancers. PLoS One 2014; 9:e113702. [PMID: 25405488 PMCID: PMC4236156 DOI: 10.1371/journal.pone.0113702] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/28/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the prevalence, genotypes, and prognostic values of Epstein-Barr virus (EBV) and human papillomavirus (HPV) infections in Japanese patients with different types of head and neck cancer (HNC). METHODS AND MATERIALS HPV and EBV DNA, EBV genotypes and LMP-1 variants, and HPV mRNA expression were detected by PCR from fresh-frozen HNC samples. HPV genotypes were determined by direct sequencing, and EBV encoded RNA (EBER) was examined by in situ hybridization. RESULTS Of the 209 HNC patients, 63 (30.1%) had HPV infection, and HPV-16 was the most common subtype (86.9%). HPV E6/E7 mRNA expression was found in 23 of 60 (38.3%) HPV DNA-positive cases detected. The site of highest prevalence of HPV was the oropharynx (45.9%). Among 146 (69.9%) HNCs in which EBV DNA was identified, 107 (73.3%) and 27 (18.5%) contained types A and B, respectively, and 124 (84.9%) showed the existence of del-LMP-1. However, only 13 (6.2%) HNCs were positive for EBER, 12 (92.3%) of which derived from the nasopharynx. Co-infection of HPV and EBER was found in only 1.0% of HNCs and 10.0% of NPCs. Kaplan-Meier survival analysis showed significantly better disease-specific and overall survival in the HPV DNA+/mRNA+ oropharyngeal squamous cell carcinoma (OPC) patients than in the other OPC patients (P = 0.027 and 0.017, respectively). Multivariate analysis showed that stage T1-3 (P = 0.002) and HPV mRNA-positive status (P = 0.061) independently predicted better disease-specific survival. No significant difference in disease-specific survival was found between the EBER-positive and -negative NPC patients (P = 0.155). CONCLUSIONS Our findings indicate that co-infection with HPV and EBV is rare in HNC. Oropharyngeal SCC with active HPV infection was related to a highly favorable outcome, while EBV status was not prognostic in the NPC cohort.
Collapse
Affiliation(s)
- Zeyi Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- * E-mail: (ZD); (MX)
| | - Takayuki Uehara
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroyuki Maeda
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masahiro Hasegawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Sen Matayoshi
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Asanori Kiyuna
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shinya Agena
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Xiaoli Pan
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chunlin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yukashi Yamashita
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Minqiang Xie
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- * E-mail: (ZD); (MX)
| | - Mikio Suzuki
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
16
|
Santos L, Azevedo K, Silva L, Oliveira L. Epstein-Barr virus in oral mucosa from human immunodeficiency virus positive patients. Rev Assoc Med Bras (1992) 2014; 60:262-9. [DOI: 10.1590/1806-9282.60.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/06/2013] [Indexed: 11/22/2022] Open
Abstract
Objective: the detection rate of Epstein-Barr virus (EBV) is higher in people living with human immunodeficiency virus (HIV). In an attempt to contribute to our epidemiological understanding of this coinfection and to investigate the activity of EBV in normal oral mucosa, we performed a cross-sectional study with HIV-positive patients. Methods: oral smears from 145 HIV-positive patients were collected between March 2010 and March 2011. Nested polymerase chain reaction (PCR) and reverse transcriptase-PCR (RT-PCR) were used to genotype EBV and to detect EBNA-2 expression, respectively. Results: EBV DNA was detected in 48.3% of the study participants, of whom 32.85% were EBV-1 and 45.71% were EBV-2 carriers. Additionally, 14.28% were coinfected with both types. EBNA-2 mRNA was expressed in 45.7% of the EBV -positive samples, including 20.0% with EBV-1 only, 20.0% with EBV-2 only and 1.4% with both genotypes. Immune status affected the overall EBV infection, and EBV-2 positivity was significantly correlated with sexual lifestyle of the participants. EBV co-infection with both viral types was dependent upon HIV viral load and the activity of the EBNA-2 gene. Conclusion: we report a high prevalence of active EBV in the oral mucosa of asymptomatic HIV-seropositive individuals. This study addresses the need for monitoring and treatment of HIV-infected patients with EBV reactivation.
Collapse
|
17
|
Epstein-Barr virus down-regulates tumor suppressor DOK1 expression. PLoS Pathog 2014; 10:e1004125. [PMID: 24809689 PMCID: PMC4014463 DOI: 10.1371/journal.ppat.1004125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/01/2014] [Indexed: 12/29/2022] Open
Abstract
The DOK1 tumor suppressor gene encodes an adapter protein that acts as a negative regulator of several signaling pathways. We have previously reported that DOK1 expression is up-regulated upon cellular stress, via the transcription factor E2F1, and down-regulated in a variety of human malignancies due to aberrant hypermethylation of its promoter. Here we show that Epstein Barr virus (EBV) infection of primary human B-cells leads to the down-regulation of DOK1 gene expression via the viral oncoprotein LMP1. LMP1 alone induces recruitment to the DOK1 promoter of at least two independent inhibitory complexes, one containing E2F1/pRB/DNMT1 and another containing at least EZH2. These events result in tri-methylation of histone H3 at lysine 27 (H3K27me3) of the DOK1 promoter and gene expression silencing. We also present evidence that the presence of additional EBV proteins leads to further repression of DOK1 expression with an additional mechanism. Indeed, EBV infection of B-cells induces DNA methylation at the DOK1 promoter region including the E2F1 responsive elements that, in turn, lose the ability to interact with E2F complexes. Treatment of EBV-infected B-cell-lines with the methyl-transferase inhibitor 5-aza-2′-deoxycytidine rescues DOK1 expression. In summary, our data show the deregulation of DOK1 gene expression by EBV and provide novel insights into the regulation of the DOK1 tumor suppressor in viral-related carcinogenesis. Many oncogenic viruses exhibit cellular transforming properties, often involving oncogenes activation and tumor suppressor genes inactivation. The DOK1 gene is a newly identified tumor suppressor gene with altered expression via hypermethylation of its promoter in a variety of human cancers, including head and neck, lung, gastric and others. In addition, a correlation has been reported between DOK1 aberrant hypermethylation and the presence of oncogenic viruses such as hepatitis B virus (HBV) in hepatocellular carcinoma (HCC) and Epstein-Barr virus (EBV) in Burkitt's lymphoma-derived cell lines. Here we demonstrate for the first time that EBV is directly involved in the inhibition of DOK1 expression in B-cells. We show that EBV leads to epigenetic repression of DOK1 through increased DNA methylation of its promoter and H3K27 tri-methylation. The LMP1 oncoprotein plays a key role in the repression of DOK1 expression. It promotes the formation and the recruitment to the DOK1 promoter of transcriptionally inhibitory complexes composed of E2F1/pRB/DNMT1 and of EZH2 which is part of the polycomb repressive complex 2. Interestingly, one or more additional EBV protein(s) cooperate(s) with LMP1 in inducing massive DNA methylation at the DOK1 promoter, leading to the loss of E2F1 complexes recruitment and even stronger repression of DOK1 expression.
Collapse
|
18
|
Maurer M, Müller AC, Parapatics K, Pickl WF, Wagner C, Rudashevskaya EL, Breitwieser FP, Colinge J, Garg K, Griss J, Bennett KL, Wagner SN. Comprehensive comparative and semiquantitative proteome of a very low number of native and matched epstein-barr-virus-transformed B lymphocytes infiltrating human melanoma. J Proteome Res 2014; 13:2830-45. [PMID: 24803318 DOI: 10.1021/pr401270y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melanoma, the deadliest form of skin cancer, is highly immunogenic and frequently infiltrated with immune cells including B cells. The role of tumor-infiltrating B cells (TIBCs) in melanoma is as yet unresolved, possibly due to technical challenges in obtaining TIBCs in sufficient quantity for extensive studies and due to the limited life span of B cells in vitro. A comprehensive workflow has thus been developed for successful isolation and proteomic analysis of a low number of TIBCs from fresh, human melanoma tissue. In addition, we generated in vitro-proliferating TIBC cultures using simultaneous stimulation with Epstein-Barr virus (EBV) and the TLR9 ligand CpG-oligodesoxynucleotide (CpG ODN). The FASP method and iTRAQ labeling were utilized to obtain a comparative, semiquantitative proteome to assess EBV-induced changes in TIBCs. By using as few as 100 000 B cells (∼5 μg protein)/sample for our proteomic study, a total number of 6507 proteins were identified. EBV-induced changes in TIBCs are similar to those already reported for peripheral B cells and largely involve changes in cell cycle proliferation, apoptosis, and interferon response, while most of the proteins were not significantly altered. This study provides an essential, further step toward detailed characterization of TIBCs including functional in vitro analysis.
Collapse
Affiliation(s)
- Margarita Maurer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna , Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mikirova NA, Hunninghake R. Effect of high dose vitamin C on Epstein-Barr viral infection. Med Sci Monit 2014; 20:725-32. [PMID: 24793092 PMCID: PMC4015650 DOI: 10.12659/msm.890423] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/10/2014] [Indexed: 01/13/2023] Open
Abstract
Background Many natural compounds were tested for the ability to suppress viral replication. The present manuscript details an analysis of high dose vitamin C therapy on patients with EBV infection. Material and Methods The data were obtained from the patient history database at the Riordan Clinic. Among people in our database who were treated with intravenous vitamin C (7.5 g to 50 g infusions) between 1997 and 2006, 178 patients showed elevated levels of EBV EA IgG (range 25 to 211 AU) and 40 showed elevated levels of EBV VCA IgM (range 25 to 140 AU). Most of these patients had a diagnosis of chronic fatigue syndrome, with the rest being diagnosed as having mononucleosis, fatigue, or EBV infection. Results Our data provide evidence that high dose intravenous vitamin C therapy has a positive effect on disease duration and reduction of viral antibody levels. Plasma levels of ascorbic acid and vitamin D were correlated with levels of antibodies to EBV. We found an inverse correlation between EBV VCA IgM and vitamin C in plasma in patients with mononucleosis and CFS meaning that patients with high levels of vitamin C tended to have lower levels of antigens in the acute state of disease. In addition, a relation was found between vitamin D levels and EBV EA IgG with lower levels of EBV early antigen IgG for higher levels of vitamin D. Conclusions The clinical study of ascorbic acid and EBV infection showed the reduction in EBV EA IgG and EBV VCA IgM antibody levels over time during IVC therapy that is consistent with observations from the literature that millimolar levels of ascorbate hinder viral infection and replication in vitro.
Collapse
|
20
|
Farhat M, Poissonnier A, Hamze A, Ouk-Martin C, Brion JD, Alami M, Feuillard J, Jayat-Vignoles C. Reversion of apoptotic resistance of TP53-mutated Burkitt lymphoma B-cells to spindle poisons by exogenous activation of JNK and p38 MAP kinases. Cell Death Dis 2014; 5:e1201. [PMID: 24787013 PMCID: PMC4047855 DOI: 10.1038/cddis.2014.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 01/10/2023]
Abstract
Defects in apoptosis are frequently the cause of cancer emergence, as well as cellular resistance to chemotherapy. These phenotypes may be due to mutations of the tumor suppressor TP53 gene. In this study, we examined the effect of various mitotic spindle poisons, including the new isocombretastatin derivative isoNH2CA-4 (a tubulin-destabilizing molecule, considered to bind to the colchicine site by analogy with combretastatin A-4), on BL (Burkitt lymphoma) cells. We found that resistance to spindle poison-induced apoptosis could be reverted in tumor protein p53 (TP53)-mutated cells by EBV (Epstein Barr virus) infection. This reversion was due to restoration of the intrinsic apoptotic pathway, as assessed by relocation of the pro-apoptotic molecule Bax to mitochondria, loss of mitochondrial integrity and activation of the caspase cascade with PARP (poly ADP ribose polymerase) cleavage. EBV sensitized TP53-mutated BL cells to all spindle poisons tested, including vincristine and taxol, an effect that was systematically downmodulated by pretreatment of cells with inhibitors of p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases. Exogenous activation of p38 and JNK pathways by dihydrosphingosine reverted resistance of TP53-mutated BL cells to spindle poisons. Dihydrosphingosine treatment of TP53-deficient Jurkat and K562 cell lines was also able to induce cell death. We conclude that activation of p38 and JNK pathways may revert resistance of TP53-mutated cells to spindle poisons. This opens new perspectives for developing alternative therapeutic strategies when the TP53 gene is inactivated.
Collapse
Affiliation(s)
- M Farhat
- Univ Limoges, Faculté de Médecine, CNRS UMR 7276, Laboratoire CRIBL, Limoges, France
| | - A Poissonnier
- Univ Limoges, Faculté de Médecine, CNRS UMR 7276, Laboratoire CRIBL, Limoges, France
| | - A Hamze
- Univ Paris Sud, Faculté de Pharmacie, CNRS UMR 8076, Laboratoire BioCIS, Châtenay Malabry, France
| | - C Ouk-Martin
- Univ Limoges, Faculté de Médecine, CNRS UMR 7276, Laboratoire CRIBL, Limoges, France
| | - J-D Brion
- Univ Paris Sud, Faculté de Pharmacie, CNRS UMR 8076, Laboratoire BioCIS, Châtenay Malabry, France
| | - M Alami
- Univ Paris Sud, Faculté de Pharmacie, CNRS UMR 8076, Laboratoire BioCIS, Châtenay Malabry, France
| | - J Feuillard
- 1] Univ Limoges, Faculté de Médecine, CNRS UMR 7276, Laboratoire CRIBL, Limoges, France [2] CHU Limoges, Hôpital Dupuytren, Service d'hématologie, Limoges, France
| | - C Jayat-Vignoles
- Univ Limoges, Faculté de Médecine, CNRS UMR 7276, Laboratoire CRIBL, Limoges, France
| |
Collapse
|
21
|
Aligo J, Walker M, Bugelski P, Weinstock D. Is murine gammaherpesvirus-68 (MHV-68) a suitable immunotoxicological model for examining immunomodulatory drug-associated viral recrudescence? J Immunotoxicol 2014; 12:1-15. [PMID: 24512328 DOI: 10.3109/1547691x.2014.882996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Immunosuppressive agents are used for treatment of a variety of autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosis (SLE), and psoriasis, as well as for prevention of tissue rejection after organ transplantation. Recrudescence of herpesvirus infections, and increased risk of carcinogenesis from herpesvirus-associated tumors are related with immunosuppressive therapy in humans. Post-transplant lymphoproliferative disorder (PTLD), a condition characterized by development of Epstein Barr Virus (EBV)-associated B-lymphocyte lymphoma, and Kaposi's Sarcoma (KS), a dermal tumor associated with Kaposi Sarcoma-associated virus (KSHV), may develop in solid organ transplant patients. KS also occurs in immunosuppressed Acquired Immunodeficiency (AIDS) patients. Kaposi Sarcoma-associated virus (KSHV) is a herpes virus genetically related to EBV. Murine gammaherpes-virus-68 (MHV-68) is proposed as a mouse model of gammaherpesvirus infection and recrudescence and may potentially have relevance for herpesvirus-associated neoplasia. The pathogenesis of MHV-68 infection in mice mimics EBV/KSHV infection in humans with acute lytic viral replication followed by dissemination and establishment of persistent latency. MHV-68-infected mice may develop lymphoproliferative disease that is accelerated by disruption of the immune system. This manuscript first presents an overview of gammaherpesvirus pathogenesis and immunology as well as factors involved in viral recrudescence. A description of different types of immunodeficiency then follows, with particular focus on viral association with lymphomagenesis after immunosuppression. Finally, this review discusses different gammaherpesvirus animal models and describes a proposed MHV-68 model to further examine the interplay of immunomodulatory agents and gammaherpesvirus-associated neoplasia.
Collapse
Affiliation(s)
- Jason Aligo
- Biologics Toxicology, Janssen Research and Development, LLC , Spring House, PA , USA
| | | | | | | |
Collapse
|
22
|
Liu X, Tang J, Wang M, Ma Q, Wang Y. Visual detection and evaluation of latent and lytic gene expression during Epstein-Barr virus infection using one-step reverse transcription loop-mediated isothermal amplification. Int J Mol Sci 2013; 14:23922-40. [PMID: 24351866 PMCID: PMC3876086 DOI: 10.3390/ijms141223922] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/01/2013] [Accepted: 12/02/2013] [Indexed: 12/31/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated disease exhibits distinct gene expression patterns characterized by the transcription of EBV nuclear antigen (EBNA) 1, EBNA2, latent membrane protein (LMP) 1, LMP2A, and BZLF1 (Zebra). A series of visual reverse transcript loop-mediated isothermal amplification (RT-LAMP) assays were performed to examine the expression of EBNA1, EBNA2, LMP1, LMP2A and BZLF1. The sensitivity of RT-LAMP for these transcripts was approximately equivalent to real-time RT-PCR (RT-qPCR), which was developed to quantify relative levels of EBV transcripts, and 10 to 100-fold more sensitive than conventional RT-PCR. Cross-reactions to other viruses were not observed upon examination of cell lines infected with herpes simplex viruses-1 and -2 (HSV-1 and -2), varicella zoster virus (VZV), human cytomegalovirus (HCMV) or Kaposi's sarcoma-associated herpesvirus. When applied to 146 specimens, RT-LAMP exhibited high clinical sensitivity and specificity, with an excellent agreement (κ > 0.92) compared to RT-qPCR. These assays are convenient for rapid early diagnosis and for surveillance of EBV-infected individuals by evaluating the EBV transcriptional profile, because the results can be visualized with the naked eye. These assays may be employed in further investigations because they can aid the design of improved therapeutic regimens and can be used specifically in resource-poor settings.
Collapse
Affiliation(s)
- Xiaoying Liu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China; E-Mails: (X.L.); (J.T.); (M.W.)
| | - Jingfeng Tang
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China; E-Mails: (X.L.); (J.T.); (M.W.)
| | - Man Wang
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China; E-Mails: (X.L.); (J.T.); (M.W.)
| | - Qiang Ma
- The State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China; E-Mail:
| | - Yefu Wang
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China; E-Mails: (X.L.); (J.T.); (M.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-27-6875-4627; Fax: +86-27-6875-4592
| |
Collapse
|
23
|
Allday MJ. EBV finds a polycomb-mediated, epigenetic solution to the problem of oncogenic stress responses triggered by infection. Front Genet 2013; 4:212. [PMID: 24167519 PMCID: PMC3807040 DOI: 10.3389/fgene.2013.00212] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/01/2013] [Indexed: 12/22/2022] Open
Abstract
Viruses that establish a persistent infection, involving intracellular latency, commonly stimulate cellular DNA synthesis and sometimes cell division early after infection. However, most cells of metazoans have evolved "fail-safe" responses that normally monitor unscheduled DNA synthesis and prevent cell proliferation when, for instance, cell proto-oncogenes are "activated" by mutation, amplification, or chromosomal rearrangements. These cell intrinsic defense mechanisms that reduce the risk of neoplasia and cancer are collectively called oncogenic stress responses (OSRs). Mechanisms include the activation of tumor suppressor genes and the so-called DNA damage response that together trigger pathways leading to cell cycle arrest (e.g., cell senescence) or complete elimination of cells (e.g., apoptosis). It is not surprising that viruses that can induce cellular DNA synthesis and cell division have the capacity to trigger OSR, nor is it surprising that these viruses have evolved countermeasures for inactivating or bypassing OSR. The main focus of this review is how the human tumor-associated Epstein-Barr virus manipulates the host polycomb group protein system to control - by epigenetic repression of transcription - key components of the OSR during the transformation of normal human B cells into permanent cell lines.
Collapse
Affiliation(s)
- Martin J. Allday
- Section of Virology, Department of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|
24
|
Fu Q, He C, Mao ZR. Epstein-Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells. J Zhejiang Univ Sci B 2013; 14:8-24. [PMID: 23303627 DOI: 10.1631/jzus.b1200189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epstein-Barr virus (EBV), a human gammaherpesvirus carried by more than 90% of the world's population, is associated with malignant tumors such as Burkitt's lymphoma (BL), Hodgkin lymphoma, post-transplant lymphoma, extra-nodal natural killer/T cell lymphoma, and nasopharyngeal and gastric carcinomas in immune-compromised patients. In the process of infection, EBV faces challenges: the host cell environment is harsh, and the survival and apoptosis of host cells are precisely regulated. Only when host cells receive sufficient survival signals may they immortalize. To establish efficiently a lytic or long-term latent infection, EBV must escape the host cell immunologic mechanism and resist host cell apoptosis by interfering with multiple signaling pathways. This review details the apoptotic pathway disrupted by EBV in EBV-infected cells and describes the interactions of EBV gene products with host cellular factors as well as the function of these factors, which decide the fate of the host cell. The relationships between other EBV-encoded genes and proteins of the B-cell leukemia/lymphoma (Bcl) family are unknown. Still, EBV seems to contribute to establishing its own latency and the formation of tumors by modifying events that impact cell survival and proliferation as well as the immune response of the infected host. We discuss potential therapeutic drugs to provide a foundation for further studies of tumor pathogenesis aimed at exploiting novel therapeutic strategies for EBV-associated diseases.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | | | | |
Collapse
|
25
|
PARK GABIN, KIM YEONGSEOK, LEE HYUNKYUNG, CHO DAEHO, KIM DAEJIN, HUR DAEYOUNG. CD80 (B7.1) and CD86 (B7.2) induce EBV-transformed B cell apoptosis through the Fas/FasL pathway. Int J Oncol 2013; 43:1531-40. [DOI: 10.3892/ijo.2013.2091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 08/16/2013] [Indexed: 11/06/2022] Open
|
26
|
Skalska L, White RE, Parker GA, Sinclair AJ, Paschos K, Allday MJ. Induction of p16(INK4a) is the major barrier to proliferation when Epstein-Barr virus (EBV) transforms primary B cells into lymphoblastoid cell lines. PLoS Pathog 2013; 9:e1003187. [PMID: 23436997 PMCID: PMC3578823 DOI: 10.1371/journal.ppat.1003187] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/22/2012] [Indexed: 12/27/2022] Open
Abstract
To explore the role of p16INK4a as an intrinsic barrier to B cell transformation by EBV, we transformed primary B cells from an individual homozygous for a deletion in the CDKN2A locus encoding p16INK4a and p14ARF. Using recombinant EBV-BAC viruses expressing conditional EBNA3C (3CHT), we developed a system that allows inactivation of EBNA3C in lymphoblastoid cell lines (LCLs) lacking active p16INK4a protein but expressing a functional 14ARF-fusion protein (p14/p16). The INK4a locus is epigenetically repressed by EBNA3C – in cooperation with EBNA3A – despite the absence of functional p16INK4a. Although inactivation of EBNA3C in LCLs from normal B cells leads to an increase in p16INK4a and growth arrest, EBNA3C inactivation in the p16INK4a-null LCLs has no impact on the rate of proliferation, establishing that the repression of INK4a is a major function of EBNA3C in EBV-driven LCL proliferation. This conditional LCL system allowed us to use microarray analysis to identify and confirm genes regulated specifically by EBNA3C, independently of proliferation changes modulated by the p16INK4a-Rb-E2F axis. Infections of normal primary B cells with recombinant EBV-BAC virus from which EBNA3C is deleted or with 3CHT EBV in the absence of activating ligand 4-hydroxytamoxifen, revealed that EBNA3C is necessary to overcome an EBV-driven increase in p16INK4a expression and concomitant block to proliferation 2–4 weeks post-infection. If cells are p16INK4a-null, functional EBNA3C is dispensable for the outgrowth of LCLs. Epstein-Barr virus (EBV) is a causative agent of several types of B cell lymphoma. In human B cells, EBV reduces protein levels of at least two tumour suppressors that would otherwise be activated in response to over-expressed oncogenes. These proteins are BIM, which induces cell death and p16INK4a, which prevents cell proliferation. Repression of both is via epigenetic methylation of histones and is dependent on expression of both EBNA3A and EBNA3C – two EBV proteins required for the transformation of normal B cells into lymphoblastoid cell lines (LCLs). In this report we have used EBV with a conditionally active EBNA3C – active only in the presence of 4-hydroxytamoxifen – together with B cells from an individual carrying a homozygous deletion of p16INK4a to confirm that regulation of p16INK4a expression is a major function of EBNA3C and demonstrate that if B cells lack p16INK4a, then EBNA3C is no longer required for EBV-driven proliferation of LCLs. Furthermore we show that early after the infection of normal B cells, EBV induces p16INK4a accumulation that – if unchecked by EBNA3C (and EBNA3A) – prevents LCL outgrowth. Formal proof that p16INK4a is the main target of EBNA3C comes with the production of p16-null LCLs that have never expressed functional EBNA3C.
Collapse
Affiliation(s)
- Lenka Skalska
- Section of Virology, Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Robert E. White
- Section of Virology, Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Gillian A. Parker
- Section of Virology, Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Alison J. Sinclair
- Department of Biochemistry, University of Sussex, Brighton, United Kingdom
| | - Kostas Paschos
- Section of Virology, Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
| | - Martin J. Allday
- Section of Virology, Department of Medicine, Imperial College London, St Mary's Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Binding of the heterogeneous ribonucleoprotein K (hnRNP K) to the Epstein-Barr virus nuclear antigen 2 (EBNA2) enhances viral LMP2A expression. PLoS One 2012; 7:e42106. [PMID: 22879910 PMCID: PMC3411732 DOI: 10.1371/journal.pone.0042106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/02/2012] [Indexed: 12/31/2022] Open
Abstract
The Epstein-Barr Virus (EBV) -encoded EBNA2 protein, which is essential for the in vitro transformation of B-lymphocytes, interferes with cellular processes by binding to proteins via conserved sequence motifs. Its Arginine-Glycine (RG) repeat element contains either symmetrically or asymmetrically di-methylated arginine residues (SDMA and ADMA, respectively). EBNA2 binds via its SDMA-modified RG-repeat to the survival motor neurons protein (SMN) and via the ADMA-RG-repeat to the NP9 protein of the human endogenous retrovirus K (HERV-K (HML-2) Type 1). The hypothesis of this work was that the methylated RG-repeat mimics an epitope shared with cellular proteins that is used for interaction with target structures. With monoclonal antibodies against the modified RG-repeat, we indeed identified cellular homologues that apparently have the same surface structure as methylated EBNA2. With the SDMA-specific antibodies, we precipitated the Sm protein D3 (SmD3) which, like EBNA2, binds via its SDMA-modified RG-repeat to SMN. With the ADMA-specific antibodies, we precipitated the heterogeneous ribonucleoprotein K (hnRNP K). Specific binding of the ADMA- antibody to hnRNP K was demonstrated using E. coli expressed/ADMA-methylated hnRNP K. In addition, we show that EBNA2 and hnRNP K form a complex in EBV- infected B-cells. Finally, hnRNP K, when co-expressed with EBNA2, strongly enhances viral latent membrane protein 2A (LMP2A) expression by an unknown mechanism as we did not detect a direct association of hnRNP K with DNA-bound EBNA2 in gel shift experiments. Our data support the notion that the methylated surface of EBNA2 mimics the surface structure of cellular proteins to interfere with or co-opt their functional properties.
Collapse
|
28
|
Gammaherpesvirus latency accentuates EAE pathogenesis: relevance to Epstein-Barr virus and multiple sclerosis. PLoS Pathog 2012; 8:e1002715. [PMID: 22615572 PMCID: PMC3355105 DOI: 10.1371/journal.ppat.1002715] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/06/2012] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV) has been identified as a putative environmental trigger of multiple sclerosis (MS), yet EBV's role in MS remains elusive. We utilized murine gamma herpesvirus 68 (γHV-68), the murine homolog to EBV, to examine how infection by a virus like EBV could enhance CNS autoimmunity. Mice latently infected with γHV-68 developed more severe EAE including heightened paralysis and mortality. Similar to MS, γHV-68EAE mice developed lesions composed of CD4 and CD8 T cells, macrophages and loss of myelin in the brain and spinal cord. Further, T cells from the CNS of γHV-68 EAE mice were primarily Th1, producing heightened levels of IFN-γ and T-bet accompanied by IL-17 suppression, whereas a Th17 response was observed in uninfected EAE mice. Clearly, γHV-68 latency polarizes the adaptive immune response, directs a heightened CNS pathology following EAE induction reminiscent of human MS and portrays a novel mechanism by which EBV likely influences MS and other autoimmune diseases.
Collapse
|
29
|
Paschos K, Parker GA, Watanatanasup E, White RE, Allday MJ. BIM promoter directly targeted by EBNA3C in polycomb-mediated repression by EBV. Nucleic Acids Res 2012; 40:7233-46. [PMID: 22584624 PMCID: PMC3424555 DOI: 10.1093/nar/gks391] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Detailed analyses of the chromatin around the BIM promoter has revealed that latent Epstein–Barr virus (EBV) triggers the recruitment of polycomb repressive complex 2 (PRC2) core subunits and the trimethylation of histone H3 lysine 27 (H3K27me3) at this locus. The recruitment is absolutely dependent on nuclear proteins EBNA3A and EBNA3C; what is more, epitope-tagged EBNA3C could be shown bound near the transcription start site (TSS). EBV induces no consistent changes in the steady-state expression of PRC2 components, but lentivirus delivery of shRNAs against PRC2 and PRC1 subunits disrupted EBV repression of BIM. The activation mark H3K4me3 is largely unaltered at this locus irrespective of H3K27me3 status, suggesting the establishment of a ‘bivalent’ chromatin domain. Consistent with the ‘poised’ nature of these domains, RNA polymerase II (Pol II) occupancy was not altered by EBV at the BIM TSS, but analysis of phospho-serine 5 on Pol II indicated that EBNA3A and EBNA3C together inhibit initiation of BIM transcripts. B cell lines carrying EBV encoding a conditional EBNA3C-oestrogen receptor-fusion revealed that this epigenetic repression of BIM was reversible, but took more than 3 weeks from when EBNA3C was inactivated.
Collapse
Affiliation(s)
- Kostas Paschos
- Section of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK
| | | | | | | | | |
Collapse
|
30
|
Papp B, Brouland JP, Arbabian A, Gélébart P, Kovács T, Bobe R, Enouf J, Varin-Blank N, Apáti A. Endoplasmic reticulum calcium pumps and cancer cell differentiation. Biomolecules 2012; 2:165-86. [PMID: 24970132 PMCID: PMC4030869 DOI: 10.3390/biom2010165] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 02/14/2012] [Accepted: 02/17/2012] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is a major intracellular calcium storage pool and a multifunctional organelle that accomplishes several calcium-dependent functions involved in many homeostatic and signaling mechanisms. Calcium is accumulated in the ER by Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA)-type calcium pumps. SERCA activity can determine ER calcium content available for intra-ER functions and for calcium release into the cytosol, and can shape the spatiotemporal characteristics of calcium signals. SERCA function therefore constitutes an important nodal point in the regulation of cellular calcium homeostasis and signaling, and can exert important effects on cell growth, differentiation and survival. In several cell types such as cells of hematopoietic origin, mammary, gastric and colonic epithelium, SERCA2 and SERCA3-type calcium pumps are simultaneously expressed, and SERCA3 expression levels undergo significant changes during cell differentiation, activation or immortalization. In addition, SERCA3 expression is decreased or lost in several tumor types when compared to the corresponding normal tissue. These observations indicate that ER calcium homeostasis is remodeled during cell differentiation, and may present defects due to decreased SERCA3 expression in tumors. Modulation of the state of differentiation of the ER reflected by SERCA3 expression constitutes an interesting new aspect of cell differentiation and tumor biology.
Collapse
Affiliation(s)
- Béla Papp
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR U978, UFR SMBH Université Paris 13-Paris Nord, 74, rue Marcel Cachin 93000 Bobigny, France.
| | - Jean-Philippe Brouland
- Service d'Anatomie et Cytologie Pathologique, Hôpital Lariboisière, 1, rue Ambroise Paré, 75010 Paris, France.
| | - Atousa Arbabian
- Inserm UMR U 940, IUH Université Paris 7-Paris Diderot, 16, rue de la Grange aux Belles, 75010 Paris, France.
| | - Pascal Gélébart
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute and University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| | - Tünde Kovács
- Semmelweis University, Department of Medical Biochemistry, Tűzoltó u. 37-47, H-1094-Budapest, Hungary.
| | - Régis Bobe
- Inserm UMR U770, Université Paris-Sud 11. 80, rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France.
| | - Jocelyne Enouf
- Inserm UMR U689, Université Paris 7-Paris Diderot, Hôpital Lariboisière, 1, rue Ambroise Paré, 75010 Paris, France.
| | - Nadine Varin-Blank
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR U978, UFR SMBH Université Paris 13-Paris Nord, 74, rue Marcel Cachin 93000 Bobigny, France.
| | - Agota Apáti
- Membrane Research Group of the Hungarian Academy of Sciences, Diószegi út 64, H-1113-Budapest, Hungary.
| |
Collapse
|
31
|
Borkosky SS, Whitley C, Kopp-Schneider A, zur Hausen H, deVilliers EM. Epstein-Barr virus stimulates torque teno virus replication: a possible relationship to multiple sclerosis. PLoS One 2012; 7:e32160. [PMID: 22384166 PMCID: PMC3285200 DOI: 10.1371/journal.pone.0032160] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 01/24/2012] [Indexed: 11/20/2022] Open
Abstract
Viral infections have been implicated in the pathogenesis of multiple sclerosis. Epstein-Barr virus (EBV) has frequently been investigated as a possible candidate and torque teno virus (TTV) has also been discussed in this context. Nevertheless, mechanistic aspects remain unresolved. We report viral replication, as measured by genome amplification, as well as quantitative PCR of two TTV-HD14 isolates isolated from multiple sclerosis brain in a series of EBV-positive and -negative lymphoblastoid and Burkitt's lymphoma cell lines. Our results demonstrate the replication of both transfected TTV genomes up to day 21 post transfection in all the evaluated cell lines. Quantitative amplification indicates statistically significant enhanced TTV replication in the EBV-positive cell lines, including the EBV-converted BJAB line, in comparison to the EBV-negative Burkitt's lymphoma cell line BJAB. This suggests a helper effect of EBV infections in the replication of TTV. The present study provides information on a possible interaction of EBV and TTV in the etiology and progression of multiple sclerosis.
Collapse
Affiliation(s)
- Silvia S. Borkosky
- Division for the Characterization of Tumorviruses, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Corinna Whitley
- Division for the Characterization of Tumorviruses, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | - Harald zur Hausen
- Division for the Characterization of Tumorviruses, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Ethel-Michele deVilliers
- Division for the Characterization of Tumorviruses, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
32
|
Epstein-Barr virus downregulates microRNA 203 through the oncoprotein latent membrane protein 1: a contribution to increased tumor incidence in epithelial cells. J Virol 2011; 86:3088-99. [PMID: 22205737 DOI: 10.1128/jvi.05901-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Epstein-Barr virus (EBV) is highly associated with nasopharyngeal carcinoma (NPC), and it regulates some microRNAs (miRNAs) that are involved in the development of cancer. The role of EBV in the deregulation of cellular miRNAs and how this affects the progression of NPC remain to be investigated. An analysis of the miRNA profile in an EBV-infected cell line revealed that miRNA 203 (miR-203) was downregulated. miR-203 is expressed specifically in epithelial cells. This downregulation of miR-203 was further verified and functionally analyzed. miR-203 was downregulated substantially in epithelial cells and NPC tissues that were latently infected with EBV. Downregulation of miR-203 also occurred during the early stage of EBV infection. Furthermore, the viral oncoprotein, latent membrane protein 1 (LMP1), was responsible for downregulation of miR-203. Removal of the latent EBV genome or suppression of LMP1 resulted in restoration of miR-203 expression. EBV-LMP1 mediated the downregulation of miR-203 at the primary transcript level. E2F3 and CCNG1 were identified as target genes of miR-203. Ectopic expression of miR-203 inhibited EBV-induced S-phase entry and transformation in vivo. Overexpression of the targets overcame the effects of miR-203 mimics on the cell cycle, and the expression of target genes in tumor models was inhibited by miR-203. Inhibitors of Jun N-terminal protein kinase (JNK) and NF-κB blocked miR-203 downregulation. These results imply that EBV promotes malignancy by downregulating cellular miR-203, which contributes to the etiology of NPC.
Collapse
|
33
|
Yee J, White RE, Anderton E, Allday MJ. Latent Epstein-Barr virus can inhibit apoptosis in B cells by blocking the induction of NOXA expression. PLoS One 2011; 6:e28506. [PMID: 22174825 PMCID: PMC3235132 DOI: 10.1371/journal.pone.0028506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/25/2011] [Indexed: 02/04/2023] Open
Abstract
Latent Epstein-Barr virus (EBV) has been shown to protect Burkitt's lymphoma-derived B cells from apoptosis induced by agents that cause damage to DNA, in the context of mutant p53. This protection requires expression of the latency-associated nuclear proteins EBNA3A and EBNA3C and correlates with their ability to cooperate in the repression of the gene encoding the pro-apoptotic, BH3-only protein BIM. Here we confirm that latent EBV in B cells also inhibits apoptosis induced by two other agents--ionomycin and staurosporine--and show that these act by a distinct pathway that involves a p53-independent increase in expression of another pro-apoptotic, BH3-only protein, NOXA. Analyses employing a variety of B cells infected with naturally occurring EBV or B95.8 EBV-BAC recombinant mutants indicated that the block to NOXA induction does not depend on the well-characterized viral latency-associated genes (EBNAs 1, 2, 3A, 3B, 3C, the LMPs or the EBERs) or expression of BIM. Regulation of NOXA was shown to be at least partly at the level of mRNA and the requirement for NOXA to induce cell death in this context was demonstrated by NOXA-specific shRNA-mediated depletion experiments. Although recombinant EBV with a deletion removing the BHRF1 locus--that encodes the BCL2-homologue BHRF1 and three microRNAs--partially abrogates protection against ionomycin and staurosporine, the deletion has no effect on the EBV-mediated block to NOXA accumulation.
Collapse
Affiliation(s)
- Jade Yee
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Robert E. White
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Emma Anderton
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Martin J. Allday
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Abstract
In the past 25 years revelations on the genesis of human cancer have come at an increasing pace. Research on oncogenic infectious agents, especially viruses, has helped us to understand the process of malignant transformation of cells because the cellular events in viral-driven transformation mirror, often brilliantly, basic cellular processes that culminate in cancer, even those not associated with viruses. Infectious agents, especially viruses, account for several of the most common malignancies-up to 20% of all cancers. Some of these cancers are endemic, with a high incidence in certain geographic locations, but sporadic/lower incidence in other parts of the world. Lymphomas arise frequently in association with infectious agents such as Epstein-Barr virus, human immunodeficiency virus, human herpes virus 8, Helicobacter pylori, and hepatitis C virus. In this review, we will focus on the association between infectious agents and lymphomas, with a look at the molecular mechanisms they use to disturb cell regulation and eventually result in cancer.
Collapse
Affiliation(s)
- Giulia De Falco
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | | | | |
Collapse
|
35
|
Shin HJ, Kim DN, Lee SK. Association between Epstein-Barr virus infection and chemoresistance to docetaxel in gastric carcinoma. Mol Cells 2011; 32:173-9. [PMID: 21626300 PMCID: PMC3887666 DOI: 10.1007/s10059-011-0066-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with human cancers such as nasopharyngeal carcinoma, Burkitt's lymphoma, Hodgkin's disease, and gastric carcinoma (GC). EBV is associated with about 10% of all GC cases globally. EBV-associated GC has distinct features from EBV-negative GC. However, it is still unclear if EBV infection has any effect on GC chemoresistance. Cell proliferation assay, cell cycle analysis, and active caspase Western blot revealed that the EBV-positive GC cell line (AGS-EBV) showed chemoresistance to docetaxel compared to the EBV-negative GC cell line (AGS). Docetaxel treatment increased expression of Bax similarly in AGS and AGS-EBV cell lines. However, Bcl-2 induction was markedly higher in AGS-EBV cells, after docetaxel treatment. Although docetaxel increased the expression of p53 to a similar extent in both cell lines, induction of p21 in AGS-EBV cells was lower than in AGS cells. Furthermore, expression of survivin was higher in AGS-EBV cells than in AGS cells following docetaxel treatment as well as at basal state. EBVlytic gene expression was induced by docetaxel treatment in AGS-EBV cells. The results suggest that EBV infection and lytic induction confers chemoresistance to GC, possibly by regulating cellular and EBV latent and lytic gene expression.
Collapse
Affiliation(s)
| | | | - Suk Kyeong Lee
- Research Institute of Immunobiology, Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| |
Collapse
|
36
|
Barton E, Mandal P, Speck SH. Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 2011; 29:351-97. [PMID: 21219186 DOI: 10.1146/annurev-immunol-072710-081639] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gammaherpesviruses are lymphotropic viruses that are associated with the development of lymphoproliferative diseases, lymphomas, as well as other nonlymphoid cancers. Most known gammaherpesviruses establish latency in B lymphocytes. Research on Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68/γHV68/MHV4) has revealed a complex relationship between virus latency and the stage of B cell differentiation. Available data support a model in which gammaherpesvirus infection drives B cell proliferation and differentiation. In general, the characterized gammaherpesviruses exhibit a very narrow host tropism, which has severely limited studies on the human gammaherpesviruses EBV and Kaposi's sarcoma-associated herpesvirus. As such, there has been significant interest in developing animal models in which the pathogenesis of gammaherpesviruses can be characterized. MHV68 represents a unique model to define the effects of chronic viral infection on the antiviral immune response.
Collapse
Affiliation(s)
- Erik Barton
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
37
|
Nam HY, Shim SM, Han BG, Jeon JP. Human lymphoblastoid cell lines: a goldmine for the biobankomics era. Pharmacogenomics 2011; 12:907-17. [DOI: 10.2217/pgs.11.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biobanking became a necessity for translating genetic discoveries into clinical practice. Approaches to personalized medicine require a new model system for functional and pharmacogenomic studies of a variety of accumulating genetic variations, as well as new research environments such as biobankomics. Human lymphoblastoid cell lines (LCLs) will provide a valuable tool to meet such new demands in the biobankomics era. The National Biobank of Korea (NBK), which is leading the Korea Biobank Project, has a large collection of LCLs derived mostly from population-based cohort samples. Using a special long-term subculture collection of NBK LCLs, biological characteristics of early passage LCLs and terminally immortalized LCLs have been investigated to promote the utilization of LCLs and provide well quality-controlled LCLs for genetic and pharmacogenomic studies. As LCLs have been successfully phenotyped for cytotoxicity in response to various stimulators, including chemotherapeutic agents, environmental chemicals and irradiation, the utility of LCLs will increase in the future. Here, we discuss current and future applications of NBK LCLs for the biobankomics era.
Collapse
Affiliation(s)
- Hye-Young Nam
- National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control & Prevention, Osong Health Technology Administration Complex (OHTAC), Chungbuk-do, Korea
| | - Sung-Mi Shim
- National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control & Prevention, Osong Health Technology Administration Complex (OHTAC), Chungbuk-do, Korea
| | - Bok-Ghee Han
- National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control & Prevention, Osong Health Technology Administration Complex (OHTAC), Chungbuk-do, Korea
| | | |
Collapse
|
38
|
Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev 2011; 24:193-209. [PMID: 21233512 DOI: 10.1128/cmr.00044-10] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is a gammaherpesvirus that infects a large fraction of the human population. Primary infection is often asymptomatic but results in lifelong infection, which is kept in check by the host immune system. In some cases, primary infection can result in infectious mononucleosis. Furthermore, when host-virus balance is not achieved, the virus can drive potentially lethal lymphoproliferation and lymphomagenesis. In this review, we describe the biology of EBV and the host immune response. We review the diagnosis of EBV infection and discuss the characteristics and pathogenesis of infectious mononucleosis. These topics are approached in the context of developing therapeutic and preventative strategies.
Collapse
|
39
|
Penkert RR, Kalejta RF. Tegument protein control of latent herpesvirus establishment and animation. HERPESVIRIDAE 2011; 2:3. [PMID: 21429246 PMCID: PMC3063196 DOI: 10.1186/2042-4280-2-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/08/2011] [Indexed: 12/18/2022]
Abstract
Herpesviruses are successful pathogens that infect most vertebrates as well as at least one invertebrate species. Six of the eight human herpesviruses are widely distributed in the population. Herpesviral infections persist for the life of the infected host due in large part to the ability of these viruses to enter a non-productive, latent state in which viral gene expression is limited and immune detection and clearance is avoided. Periodically, the virus will reactivate and enter the lytic cycle, producing progeny virus that can spread within or to new hosts. Latency has been classically divided into establishment, maintenance, and reactivation phases. Here we focus on demonstrated and postulated molecular mechanisms leading to the establishment of latency for representative members of each human herpesvirus family. Maintenance and reactivation are also briefly discussed. In particular, the roles that tegument proteins may play during latency are highlighted. Finally, we introduce the term animation to describe the initiation of lytic phase gene expression from a latent herpesvirus genome, and discuss why this step should be separated, both molecularly and theoretically, from reactivation.
Collapse
Affiliation(s)
- Rhiannon R Penkert
- Institute for Molecular Virology, McArdle Laboratory for Cancer Research, and Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | | |
Collapse
|
40
|
Gross H, Barth S, Pfuhl T, Willnecker V, Spurk A, Gurtsevitch V, Sauter M, Hu B, Noessner E, Mueller-Lantzsch N, Kremmer E, Grässer FA. The NP9 protein encoded by the human endogenous retrovirus HERV-K(HML-2) negatively regulates gene activation of the Epstein-Barr virus nuclear antigen 2 (EBNA2). Int J Cancer 2011; 129:1105-15. [PMID: 21710493 DOI: 10.1002/ijc.25760] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/25/2010] [Indexed: 11/06/2022]
Abstract
Epstein-Barr virus (EBV) is a human tumour virus that efficiently growth-transforms primary human B-lymphocytes in vitro. The viral nuclear antigen 2 (EBNA2) is essential for immortalisation of B-cells and stimulates viral and cellular gene expression through interaction with DNA-bound transcription factors. Like its cellular homologue Notch, it associates with the DNA-bound repressor RBPJκ (CSL/CBF1) thereby converting RBPJκ into the active state. For instance, both EBNA2 and Notch activate the cellular HES1 promoter. In EBV-transformed lymphocytes, the RNA of the NP9 protein encoded by human endogenous retrovirus HERV-K(HML-2) Type 1 is strongly up-regulated. The NP9 protein is detectable both in EBV-positive Raji cells, a Burkitt's lymphoma cell line, and in IB4, an EBV-transformed human lymphoblastoid cell line. NP9 binds to LNX that forms a complex with the Notch regulator Numb. Therefore, the function of NP9 vis-à-vis Notch and EBNA2 was analysed. Here, we show that NP9 binds to EBNA2 and negatively affects the EBNA2-mediated activation of the viral C- and LMP2A promoters. In contrast, NP9 did neither interfere in the activation of the HES1 promoter by Notch nor the induction of the viral LMP1 promoter by EBNA2. In an electrophoretic mobility shift analysis, NP9 reduced the binding of EBNA2 to DNA-bound RBPJκ by about 50%. The down-regulation of EBNA2-activity by NP9 might represent a cellular defence mechanism against viral infection or could, alternatively, represent an adaptation of the virus to prevent excessive viral protein production that might otherwise be harmful for the infected cell.
Collapse
Affiliation(s)
- Henrik Gross
- Institut für Virologie, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Paschos K, Allday MJ. Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol 2010; 18:439-47. [PMID: 20724161 PMCID: PMC3089700 DOI: 10.1016/j.tim.2010.07.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/12/2010] [Accepted: 07/14/2010] [Indexed: 12/12/2022]
Abstract
One of the key questions in the study of mammalian gene regulation is how epigenetic methylation patterns on histones and DNA are initiated and established. These stable, heritable, covalent modifications are largely associated with the repression or silencing of gene transcription, and when deregulated can be involved in the development of human diseases such as cancer. This article reviews examples of viruses and bacteria known or thought to induce epigenetic changes in host cells, and how this might contribute to disease. The heritable nature of these processes in gene regulation suggests that they could play important roles in chronic diseases associated with microbial persistence; they might also explain so-called ‘hit-and-run’ phenomena in infectious disease pathogenesis.
Collapse
|
42
|
Abstract
Latency is a state of cryptic viral infection associated with genomic persistence and highly restricted gene expression. Its hallmark is reversibility: under appropriate circumstances, expression of the entire viral genome can be induced, resulting in the production of infectious progeny. Among the small number of virus families capable of authentic latency, the herpesviruses stand out for their ability to produce such infections in every infected individual and for being completely dependent upon latency as a mode of persistence. Here, we review the molecular basis of latency, with special attention to the gamma-herpesviruses, in which the understanding of this process is most advanced.
Collapse
Affiliation(s)
- Samuel H Speck
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
43
|
Skalska L, White RE, Franz M, Ruhmann M, Allday MJ. Epigenetic repression of p16(INK4A) by latent Epstein-Barr virus requires the interaction of EBNA3A and EBNA3C with CtBP. PLoS Pathog 2010; 6:e1000951. [PMID: 20548956 PMCID: PMC2883600 DOI: 10.1371/journal.ppat.1000951] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 05/12/2010] [Indexed: 12/14/2022] Open
Abstract
As an inhibitor of cyclin-dependent kinases, p16INK4A is an important tumour suppressor and inducer of cellular senescence that is often inactivated during the development of cancer by promoter DNA methylation. Using newly established lymphoblastoid cell lines (LCLs) expressing a conditional EBNA3C from recombinant EBV, we demonstrate that EBNA3C inactivation initiates chromatin remodelling that resets the epigenetic status of p16INK4A to permit transcriptional activation: the polycomb-associated repressive H3K27me3 histone modification is substantially reduced, while the activation-related mark H3K4me3 is modestly increased. Activation of EBNA3C reverses the distribution of these epigenetic marks, represses p16INK4A transcription and allows proliferation. LCLs lacking EBNA3A express relatively high levels of p16INK4A and have a similar pattern of histone modifications on p16INK4A as produced by the inactivation of EBNA3C. Since binding to the co-repressor of transcription CtBP has been linked to the oncogenic activity of EBNA3A and EBNA3C, we established LCLs with recombinant viruses encoding EBNA3A- and/or EBNA3C-mutants that no longer bind CtBP. These novel LCLs have revealed that the chromatin remodelling and epigenetic repression of p16INK4A requires the interaction of both EBNA3A and EBNA3C with CtBP. The repression of p16INK4A by latent EBV will not only overcome senescence in infected B cells, but may also pave the way for p16INK4A DNA methylation during B cell lymphomagenesis. We previously showed that two Epstein-Barr virus latency-associated proteins—EBNA3A and EBNA3C—contribute to enhanced B cell survival by inhibiting the expression of the death-inducing protein BIM. This repression involves remodelling of the BIM gene promoter by polycomb proteins and DNA methylation within an unusually large CpG-island that flanks the transcription initiation site. Here we show that the same two proteins, EBNA3A and EBNA3C, functionally cooperate in the polycomb-mediated chromatin remodelling of another tumour suppressor gene, p16INK4A, that encodes a cyclin-dependent kinase inhibitor capable of blocking cell proliferation. Both EBV proteins can bind the highly conserved co-repressor of transcription CtBP, and these interactions appear to be required for the efficient repression of p16INK4A. Thus by utilising the polycomb system to induce the heritable repression of two major tumour suppressor genes—one that induces cell death (BIM) and one that induces growth arrest (p16INK4A)—EBV profoundly alters latently infected B cells and their progeny, making them significantly more prone to malignant transformation.
Collapse
Affiliation(s)
- Lenka Skalska
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Robert E. White
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Melanie Franz
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Michaela Ruhmann
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Martin J. Allday
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Lu JH, Tang YL, Yu HB, Zhou JH, Fu CY, Zeng X, Yu ZY, Yin HL, Wu MH, Zhang JY, Li XL, Li GY. Epstein-Barr virus facilitates the malignant potential of immortalized epithelial cells: from latent genome to viral production and maintenance. J Transl Med 2010; 90:196-209. [PMID: 19997065 DOI: 10.1038/labinvest.2009.130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Epstein-Barr virus (EBV) is closely associated with several malignancies, including nasopharyngeal carcinoma. To investigate the EBV activity in tumor development, we tried to establish a malignant model of EBV-infected cells in nude mice. On the basis of the Maxi-EBV system, a human embryonic kidney epithelial cell line (293) with a low malignant potential was used for a stable EBV genome infection. The derived cell line, termed 293-EBV, exhibited obvious morphological transformation and significantly increased growth ability, with the cell cycle redistributed. The clonability and tumorigenicity were also substantially accelerated. In 293-EBV cells, the expression level of the transcription factor NF-kappaB and JNK2 were upregulated. The result suggested that latent membrane protein 1 (LMP1) was an important viral protein responsible for the enhanced malignant potential. Matured and budding virus particles were observed in tumor tissues, confirming the spontaneous reactivation of EBV from latent genome to lytic cycle at the site of tumor development. Primary culture of tumor tissues showed two patterns about the EBV maintenance or not in newly grown cells, and this was dependent on the thickness of the planted tissues. Moreover, the tumor cells lost EBV genome easily when subcultured at low density. Our findings revealed the cell-to-cell contact mechanism, which was required for the EBV maintenance in the tumor cells during the expansion of EBV-infected cells. This mechanism might give an explanation to the phenomenon that EBV genome in epithelial tumor cells becomes easily lost during subculture in vitro. Our results provided further evidence of a function for EBV in the etiology of tumor development.
Collapse
Affiliation(s)
- Jian-Hong Lu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan 410078, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kis A, Fehér E, Gáll T, Tar I, Boda R, Tóth ED, Méhes G, Gergely L, Szarka K. Epstein-Barr virus prevalence in oral squamous cell cancer and in potentially malignant oral disorders in an eastern Hungarian population. Eur J Oral Sci 2009; 117:536-40. [PMID: 19758249 DOI: 10.1111/j.1600-0722.2009.00660.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We tested 65, 44, and 116 patients with oral squamous cell cancer (OSCC), oral leukoplakia (OL), and oral lichen planus (OLP) against 68 age-matched controls for the presence of Epstein-Barr virus (EBV). Apparently healthy mucosa was simultaneously sampled and examined in all patients. Paraffin-embedded tissue sections of all EBV-positive patients with OSCC were examined for latent membrane protein-1 (LMP-1) expression (demonstrable in most EBV-associated malignancies) using immunohistochemistry. The prevalence of EBV in the controls and in OSCC, OL, and OLP lesions was 19.1%, 73.8%, 29.5%, and 46.6%, respectively, and 66.2%, 22.7%, and 31.9% in the healthy mucosa of patients, respectively. The prevalence of EBV in OSCC patients was significantly higher than in controls or in respective samples of the other two patient groups both in the lesion and in the healthy mucosa. Comparisons including only patients with EBV-negative lesions yielded similar results. Lesions of patients with OLP, but not of patients with OL, differed significantly from controls in EBV prevalence. In OSCC, LMP-1 expression was not detected, and EBV carriage was not significantly associated with any risk factors and did not influence the outcome. Although a high prevalence of EBV was found in OSCC, comparable carriage rates on healthy mucosa of patients indicated that an aetiological role of EBV is unlikely.
Collapse
Affiliation(s)
- Andrea Kis
- Department of Medical Microbiology, Medical and Health Science Centre, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gross H, Barth S, Palermo RD, Mamiani A, Hennard C, Zimber-Strobl U, West MJ, Kremmer E, Grässer FA. Asymmetric Arginine dimethylation of Epstein-Barr virus nuclear antigen 2 promotes DNA targeting. Virology 2009; 397:299-310. [PMID: 19969318 DOI: 10.1016/j.virol.2009.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/01/2009] [Accepted: 11/10/2009] [Indexed: 11/16/2022]
Abstract
The Epstein-Barr virus (EBV) growth-transforms B-lymphocytes. The virus-encoded nuclear antigen 2 (EBNA2) is essential for transformation and activates gene expression by association with DNA-bound transcription factors such as RBPJkappa (CSL/CBF1). We have previously shown that EBNA2 contains symmetrically dimethylated Arginine (sDMA) residues. Deletion of the RG-repeat results in a reduced ability of the virus to immortalise B-cells. We now show that the RG repeat also contains asymmetrically dimethylated Arginines (aDMA) but neither non-methylated (NMA) Arginines nor citrulline residues. We demonstrate that only aDMA-containing EBNA2 is found in a complex with DNA-bound RBPJkappa in vitro and preferentially associates with the EBNA2-responsive EBV C, LMP1 and LMP2A promoters in vivo. Inhibition of methylation in EBV-infected cells results in reduced expression of the EBNA2-regulated viral gene LMP1, providing additional evidence that methylation is a prerequisite for DNA-binding by EBNA2 via association with the transcription factor RBPJkappa.
Collapse
Affiliation(s)
- Henrik Gross
- Institut für Virologie, Haus 47, Universitätsklinikum, 66421 Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Schlee M, Schuhmacher M, Hölzel M, Laux G, Bornkamm GW. c-MYC impairs immunogenicity of human B cells. Adv Cancer Res 2009; 97:167-88. [PMID: 17419945 DOI: 10.1016/s0065-230x(06)97007-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deregulation of c-myc expression through chromosomal translocation is essential in the pathogenesis of Burkitt's lymphoma (BL). A characteristic feature of BL cells, compared to Epstein-Barr Virus (EBV)-immortalized B cells, is their lack of immunogenicity. To study the contribution of EBV genes and of the c-MYC protein to this phenotype, we have generated a conditional B cell system in which the viral proliferation program and expression of c-myc can be regulated independently of each other. In cells proliferating due to exogenous c-myc overexpression, the cell surface phenotype, the pattern of proliferation in single cell suspension, and the immunological characteristics of BL cells could be completely recapitulated. Yet, it had remained open whether nonimmunogenicity is the default phenotype when EBNA2 and LMP1 are switched off, or whether c-MYC actively contributes to immunosuppression. We provide evidence also for the latter by showing that c-MYC down-regulates genes of the NF-kappaB and interferon pathway in a dose-dependent fashion. c-MYC acts at at least two different levels, the level of interferon induction as well as at the level of action of type I and type II interferons on their respective target promoters. c-MYC does not block the interferon pathway completely, it shifts the balance and increases the threshold of interferon induction and action.
Collapse
Affiliation(s)
- Martin Schlee
- Institute of Clinical Molecular Biology and Tumor Genetics, GSF-National Research Center for Environment and Health, D-81377 München, Germany
| | | | | | | | | |
Collapse
|
48
|
Yenamandra SP, Sompallae R, Klein G, Kashuba E. Comparative analysis of the Epstein-Barr virus encoded nuclear proteins of EBNA-3 family. Comput Biol Med 2009; 39:1036-42. [PMID: 19762010 DOI: 10.1016/j.compbiomed.2009.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 08/12/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
It is known that the EBNA-3 family proteins (EBNA-3, -4 and -6, alternative nomenclature EBNA-3A, B and C correspondingly) show a limited sequence similarity. We have analyzed EBNA-3 proteins both at the primary sequence and secondary structure levels. EBNA-3 and EBNA-4 were structurally more similar compared to other combinations with EBNA-6. We found "Stonin Homology Domain" profile in EBNA-4 and "Proline Rich Domain" in all EBNA-3 family of proteins. We have also found positive and negative charge clusters in all three proteins and mixed charge clusters in EBNA-3. Charged clusters are believed to play an important role in interactions with DNA or signaling proteins. Additionally, unique primary sequence repeats were found in all three proteins.
Collapse
Affiliation(s)
- Surya Pavan Yenamandra
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
49
|
Murakami M, Kaul R, Kumar P, Robertson ES. Nucleoside diphosphate kinase/Nm23 and Epstein-Barr virus. Mol Cell Biochem 2009; 329:131-9. [PMID: 19412732 PMCID: PMC5958352 DOI: 10.1007/s11010-009-0123-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/16/2009] [Indexed: 12/19/2022]
Abstract
Nm23-H1 was discovered as the first metastasis suppressor gene about 20 years ago. Since then, extensive work has contributed to understanding its role in various cellular signaling pathways. Its association with a range of human cancers as well as its ability to regulate cell cycle and suppress metastasis has been explored. We have determined that the EBV-encoded nuclear antigens, EBNA3C and EBNA1, required for EBV-mediated lymphoproliferation and for maintenance EBV genome extrachromosomally in dividing mammalian cells, respectively, target and disrupt the physiological role of Nm23-H1 in the context of cell proliferation and cell migration. This review will focus on the interaction of Nm23-H1 with the Epstein-Barr virus nuclear antigens, EBNA3C and EBNA1 and the functional significance of this interaction as it relates to EBV pathogenesis.
Collapse
Affiliation(s)
- Masanao Murakami
- Department of Microbiology and Tumor Virology Program of Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
50
|
Allday MJ. How does Epstein-Barr virus (EBV) complement the activation of Myc in the pathogenesis of Burkitt's lymphoma? Semin Cancer Biol 2009; 19:366-76. [PMID: 19635566 PMCID: PMC3770905 DOI: 10.1016/j.semcancer.2009.07.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 07/10/2009] [Indexed: 12/12/2022]
Abstract
A defining characteristic of the aggressive B cell tumour Burkitt's lymphoma (BL) is a reciprocal chromosomal translocation that activates the Myc oncogene by juxtaposing it to one of the immunoglobulin gene loci. The consequences of activating Myc include cell growth and proliferation that can lead to lymphomagenesis; however, as part of a fail-safe mechanism that has evolved in metazoans to reduce the likelihood of neoplastic disease, activated oncogenes such as Myc may also induce cell death by apoptosis and/or an irreversible block to proliferation called senescence. For lymphoma to develop it is necessary that these latter processes are repressed. More than 95% of a subset of BL – known as endemic (e)BL because they are largely restricted to regions of equatorial Africa and similar geographical regions – carry latent Epstein–Barr virus (EBV) in the form of nuclear extra-chromosomal episomes. Although EBV is not generally regarded as a driving force of BL cell proliferation, it plays an important role in the pathogenesis of eBL. Latency-associated EBV gene products can inhibit a variety of pathways that lead to apoptosis and senescence; therefore EBV probably counteracts the proliferation-restricting activities of deregulated Myc and so facilitates the development of BL.
Collapse
Affiliation(s)
- Martin J Allday
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|