1
|
Paquet Luzy C, Doppler E, Polasek TM, Giorgino R. First-in-human single-dose study of nizubaglustat, a dual inhibitor of ceramide glucosyltransferase and non-lysosomal glucosylceramidase: Safety, tolerability, pharmacokinetics, and pharmacodynamics of single ascending and multiple doses in healthy adults. Mol Genet Metab 2024; 141:108113. [PMID: 38113551 DOI: 10.1016/j.ymgme.2023.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Nizubaglustat is a novel, orally available, brain penetrant, potent, and selective dual inhibitor of ceramide glucosyltranferase and non-lysosomal neutral glucosylceramidase (NLGase), which is currently under development for the treatment of subjects with neurological manifestations in primary and secondary gangliosidoses. The objectives of this first-in-human study were to evaluate the safety and tolerability, pharmacokinetics, and pharmacodynamics (PD) of single oral doses of nizubaglustat after single (1, 3, and 9 mg) and multiple oral doses (9 mg once per day (QD) over 14 days) in healthy adults. Nizubaglustat was rapidly absorbed and systemic exposure was dose-proportional. Steady-state was achieved after three days of QD multiple dosing with minimal accumulation. Renal clearance accounted for around 15% of nizubaglustat elimination. Following multiple dosing, plasma concentrations of glucosylceramide (GlcCer), lactosylceramide (LacCer), and monosialodihexosylganglioside (GM3) decreased to a nadir at Day 10. PD target engagement of GCS inhibition was shown by a median decrease from baseline of plasma concentrations of GlcCer, LacCer, and GM3 ganglioside by 70%, 50%, and 48%, respectively. NLGase inhibition was also manifested by increased concentrations of GlcCer in cerebrospinal fluid from Day 1 to Day 14. Nizubaglustat was safe and well-tolerated at all doses tested. Consistent with the high selectivity, and the absence of intestinal disaccharidases inhibition, no cases of diarrhea were reported. No decreased appetite or weight loss was noted. Only treatment-emergent adverse events with preferred terms belonging to the system organ class skin and subcutaneous disorders of mild intensity were reported as drug-related in the nizubaglustat arm, in line with the pharmacological mechanism targeting glucosylceramide metabolism. Taken together, these data support QD dosing of nizubaglustat and its ongoing development in patients with primary and secondary forms of gangliosidoses.
Collapse
Affiliation(s)
| | | | - Thomas M Polasek
- Principal Investigator, CMAX Research Phase 1 Unit, Ground Floor 21-24 North Terrace, Adelaide, 5000, SA, Australia; Department of Clinical Pharmacology, Royal Adelaide Hospital, Port Rd, Adelaide, SA 5000, Australia
| | | |
Collapse
|
2
|
LeVine SM. Examining the Role of a Functional Deficiency of Iron in Lysosomal Storage Disorders with Translational Relevance to Alzheimer's Disease. Cells 2023; 12:2641. [PMID: 37998376 PMCID: PMC10670892 DOI: 10.3390/cells12222641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The recently presented Azalea Hypothesis for Alzheimer's disease asserts that iron becomes sequestered, leading to a functional iron deficiency that contributes to neurodegeneration. Iron sequestration can occur by iron being bound to protein aggregates, such as amyloid β and tau, iron-rich structures not undergoing recycling (e.g., due to disrupted ferritinophagy and impaired mitophagy), and diminished delivery of iron from the lysosome to the cytosol. Reduced iron availability for biochemical reactions causes cells to respond to acquire additional iron, resulting in an elevation in the total iron level within affected brain regions. As the amount of unavailable iron increases, the level of available iron decreases until eventually it is unable to meet cellular demands, which leads to a functional iron deficiency. Normally, the lysosome plays an integral role in cellular iron homeostasis by facilitating both the delivery of iron to the cytosol (e.g., after endocytosis of the iron-transferrin-transferrin receptor complex) and the cellular recycling of iron. During a lysosomal storage disorder, an enzyme deficiency causes undigested substrates to accumulate, causing a sequelae of pathogenic events that may include cellular iron dyshomeostasis. Thus, a functional deficiency of iron may be a pathogenic mechanism occurring within several lysosomal storage diseases and Alzheimer's disease.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Rha AK, Maguire AS, Martin DR. GM1 Gangliosidosis: Mechanisms and Management. Appl Clin Genet 2021; 14:209-233. [PMID: 33859490 PMCID: PMC8044076 DOI: 10.2147/tacg.s206076] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023] Open
Abstract
The lysosomal storage disorder, GM1 gangliosidosis (GM1), is a neurodegenerative condition resulting from deficiency of the enzyme β-galactosidase (β-gal). Mutation of the GLB1 gene, which codes for β-gal, prevents cleavage of the terminal β-1,4-linked galactose residue from GM1 ganglioside. Subsequent accumulation of GM1 ganglioside and other substrates in the lysosome impairs cell physiology and precipitates dysfunction of the nervous system. Beyond palliative and supportive care, no FDA-approved treatments exist for GM1 patients. Researchers are critically evaluating the efficacy of substrate reduction therapy, pharmacological chaperones, enzyme replacement therapy, stem cell transplantation, and gene therapy for GM1. A Phase I/II clinical trial for GM1 children is ongoing to evaluate the safety and efficacy of adeno-associated virus-mediated GLB1 delivery by intravenous injection, providing patients and families with hope for the future.
Collapse
Affiliation(s)
- Allisandra K Rha
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
| | - Anne S Maguire
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| |
Collapse
|
4
|
Grassi S, Chiricozzi E, Mauri L, Sonnino S, Prinetti A. Sphingolipids and neuronal degeneration in lysosomal storage disorders. J Neurochem 2018; 148:600-611. [PMID: 29959861 DOI: 10.1111/jnc.14540] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/27/2022]
Abstract
Ceramide, sphingomyelin, and glycosphingolipids (both neutral and acidic) are characterized by the presence in the lipid moiety of an aliphatic base known as sphingosine. Altogether, they are called sphingolipids and are particularly abundant in neuronal plasma membranes, where, via interactions with the other membrane lipids and membrane proteins, they play a specific role in modulating the cell signaling processes. The metabolic pathways determining the plasma membrane sphingolipid composition are thus the key point for functional changes of the cell properties. Unnatural changes of the neuronal properties are observed in sphingolipidoses, lysosomal storage diseases occurring when a lysosomal sphingolipid hydrolase is not working, leading to the accumulation of the substrate and to its distribution to all the cell membranes interacting with lysosomes. Moreover, secondary accumulation of sphingolipids is a common trait of other lysosomal storage diseases. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Magrinelli F, Pezzini F, Moro F, Santorelli FM, Simonati A. Diagnostic methods and emerging treatments for adult neuronal ceroid lipofuscinoses (Kufs disease). Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1325359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Francesca Magrinelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesco Pezzini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Moro
- Molecular Medicine and Neurogenetics Unit, IRCCS Stella Maris, Pisa, Italy
| | | | - Alessandro Simonati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Gangliosides of the Vertebrate Nervous System. J Mol Biol 2016; 428:3325-3336. [PMID: 27261254 DOI: 10.1016/j.jmb.2016.05.020] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/11/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022]
Abstract
Gangliosides, sialylated glycosphingolipids, found on all vertebrate cells and tissues, are major molecular determinants on the surfaces of vertebrate nerve cells. Composed of a sialylated glycan attached to a ceramide lipid, the same four structures-GM1, GD1a, GD1b, and GT1b-represent the vast majority (>90%) of gangliosides in the brains of all mammals and birds. Primarily found on the outer surface of the plasma membrane with their glycans facing outward, gangliosides associate laterally with each other, sphingomyelin, cholesterol, and select proteins in lipid rafts-the dynamic functional subdomains of the plasma membrane. The functions of gangliosides in the human nervous system are revealed by congenital mutations in ganglioside biosynthetic genes. Mutations in ST3GAL5, which codes for an enzyme early in brain ganglioside biosynthesis, result in an early-onset seizure disorder with profound motor and cognitive decay, whereas mutations in B4GALNT1, a gene encoding a later step, result in hereditary spastic paraplegia accompanied by intellectual deficits. The molecular functions of brain gangliosides include regulation of receptors in the same membrane via lateral (cis) associations and regulation of cell-cell recognition by trans interaction with ganglioside binding proteins on apposing cells. Gangliosides also affect the aggregation of Aβ (Alzheimer's disease) and α-synuclein (Parkinson's Disease). As analytical, biochemical, and genetic tools advance, research on gangliosides promises to reveal mechanisms of molecular control related to nerve and glial cell differentiation, neuronal excitability, axon outgrowth after nervous system injury, and protein folding in neurodegenerative diseases.
Collapse
|
7
|
Mohammed EEA, Snella EM, Rutz-Mendicino MM, Echevarria FD, Awedikian R, Whitley EM, Ellinwood NM. Accelerated clinical disease and pathology in mucopolysaccharidosis type IIIB and GalNAc transferase double knockout mice. Mol Genet Metab 2012; 107:129-35. [PMID: 22867887 DOI: 10.1016/j.ymgme.2012.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/15/2012] [Accepted: 07/15/2012] [Indexed: 11/29/2022]
Abstract
Mucopolysaccharidosis type IIIB (MPS IIIB) is a neuropathic lysosomal storage disorder (LSD) resulting from an inherited deficiency of N-acetyl-α-D-glucosaminidase (Naglu) activity, an enzyme required to degrade the glycosaminoglycan heparan sulfate (HS). A deficiency in Naglu activity leads to lysosomal accumulation of HS as a primary storage substrate, and the gangliosides GM2 and GM3 as secondary accumulation products. To test the effect on neuropathogenesis of ganglioside accumulation, we bred mice deficient in both Naglu and GalNaAcT activities. The latter is the enzyme required for synthesis of GM2 and other complex gangliosides. Contrary to our expectation and to double knockout (DKO) studies where GalNAcT was knocked out in combination with other LSDs, our DKO mice showed a drastically shortened lifespan (24.5±1.4 weeks, versus 50.5±0.9 weeks (MPS IIIB), and 38.6±1.2 weeks (GalNAcT)). To confirm that HS storage was the primary element resulting in the accelerated disease in our DKO mice, and not a locus tightly linked to the Naglu gene, we replicated our study with MPS IIIA mice, and found a virtually identical result (27.5±1.8 weeks, versus 53.8±1.6 weeks). All DKO mice showed motor signs of hind limb ataxia and hyper-extension, which were not seen in single KO or normal mice. At approximately 5 months of age, the MPS IIIB-DKO showed a unique pattern of vacuolization and nerve fiber degeneration in the corpus callosum, seen only in the DKO mice, as well as the relatively early intracytoplasmic vacuolation of many neurons and glia characteristic of the MPS IIIB mice. We analyzed motor performance on a rocking Rota-Rod beginning at 3 months of age. The MPS IIIA-DKO and MPS IIIB-DKO mice showed impaired performance and were statistically different from all parental lines. In particular, the MPS IIIB-DKO mice were significantly different from the parent MPS IIIB strains at 3, 5, and 6 months (p≤0.0245). In conclusion we identified an accelerated phenotype associated with MPS IIIB within a DKO model system which showed white matter changes, with attendant performance deficits and a drastically shortened lifespan. This was in stark contrast to our expectations of a salutary response to the elimination of GM2. Despite this, the accelerated pathology and clinical signs represent a potentially improved system to study MPS IIIB neuropathogenesis as well as the role of complex gangliosides in normal CNS function.
Collapse
Affiliation(s)
- Eman E A Mohammed
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Hicks DA, Nalivaeva NN, Turner AJ. Lipid rafts and Alzheimer's disease: protein-lipid interactions and perturbation of signaling. Front Physiol 2012; 3:189. [PMID: 22737128 PMCID: PMC3381238 DOI: 10.3389/fphys.2012.00189] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/21/2012] [Indexed: 12/16/2022] Open
Abstract
Lipid rafts are membrane domains, more ordered than the bulk membrane and enriched in cholesterol and sphingolipids. They represent a platform for protein-lipid and protein–protein interactions and for cellular signaling events. In addition to their normal functions, including membrane trafficking, ligand binding (including viruses), axonal development and maintenance of synaptic integrity, rafts have also been implicated in the pathogenesis of several neurodegenerative diseases including Alzheimer’s disease (AD). Lipid rafts promote interaction of the amyloid precursor protein (APP) with the secretase (BACE-1) responsible for generation of the amyloid β peptide, Aβ. Rafts also regulate cholinergic signaling as well as acetylcholinesterase and Aβ interaction. In addition, such major lipid raft components as cholesterol and GM1 ganglioside have been directly implicated in pathogenesis of the disease. Perturbation of lipid raft integrity can also affect various signaling pathways leading to cellular death and AD. In this review, we discuss modulation of APP cleavage by lipid rafts and their components, while also looking at more recent findings on the role of lipid rafts in signaling events.
Collapse
Affiliation(s)
- David A Hicks
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leeds, UK
| | | | | |
Collapse
|
9
|
Campos D, Monaga M. Mucopolysaccharidosis type I: current knowledge on its pathophysiological mechanisms. Metab Brain Dis 2012; 27:121-9. [PMID: 22527994 DOI: 10.1007/s11011-012-9302-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/23/2012] [Indexed: 01/25/2023]
Abstract
Mucopolysaccharidosis type I is one of the most frequent lysosomal storage diseases. It has a high morbidity and mortality, causing in many cases severe neurological and somatic damage in the first years of life. Although the clinical phenotypes have been described for decades, and the enzymatic deficiency and many of the mutations that cause this disease are well known, the underlying pathophysiological mechanisms that lead to its development are not completely understood. In this review we describe and discuss the different pathogenic mechanisms currently proposed for this disease regarding its neurological damage. Deficiency in the lysosomal degradation of heparan sulfate and dermatan sulfate, as well as its primary accumulation, may disrupt a variety of physiological and biochemical processes: the intracellular and extracellular homeostasis of these macromolecules, the pathways related to gangliosides metabolism, mechanisms related to the activation of inflammation, receptor-mediated signaling, oxidative stress and permeability of the lysosomal membrane, as well as alterations in intracellular ionic homeostasis and the endosomal pathway. Many of the pathogenic mechanisms proposed for mucopolysaccharidosis type I are also present in other lysosomal storage diseases with neurological implications. Results from the use of methods that allow the analysis of multiple genes and proteins, in both patients and animal models, will shed light on the role of each of these mechanisms and their combination in the development of different phenotypes due to the same deficiency.
Collapse
Affiliation(s)
- Derbis Campos
- Department of Biochemical Genetics, National Center for Medical Genetics, Campus ICBP Victoria de Girón, Playa, La Habana, Cuba.
| | | |
Collapse
|
10
|
Saito M, Chakraborty G, Shah R, Mao RF, Kumar A, Yang DS, Dobrenis K, Saito M. Elevation of GM2 ganglioside during ethanol-induced apoptotic neurodegeneration in the developing mouse brain. J Neurochem 2012; 121:649-61. [PMID: 22372857 DOI: 10.1111/j.1471-4159.2012.07710.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase 3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase 3 activation in the 7-day-old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration.
Collapse
Affiliation(s)
- Mitsuo Saito
- Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhou S, Davidson C, McGlynn R, Stephney G, Dobrenis K, Vanier MT, Walkley SU. Endosomal/lysosomal processing of gangliosides affects neuronal cholesterol sequestration in Niemann-Pick disease type C. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:890-902. [PMID: 21708114 DOI: 10.1016/j.ajpath.2011.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/25/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
Niemann-Pick disease type C (NPC) is a severe neurovisceral lysosomal storage disorder caused by defects in NPC1 or NPC2 proteins. Although numerous studies support the primacy of cholesterol storage, neurons of double-mutant mice lacking both NPC1 and an enzyme required for synthesis of all complex gangliosides (β1,4GalNAc transferase) have been reported to exhibit dramatically reduced cholesterol sequestration. Here we show that NPC2-deficient mice lacking this enzyme also exhibit reduced cholesterol, but that genetically restricting synthesis to only a-series gangliosides fully restores neuronal cholesterol storage to typical disease levels. Examining the subcellular locations of sequestered compounds in neurons lacking NPC1 or NPC2 by confocal microscopy revealed that cholesterol and the two principal storage gangliosides (GM2 and GM3) were not consistently co-localized within the same intracellular vesicles. To determine whether the lack of GM2 and GM3 co-localization was due to differences in synthetic versus degradative pathway expression, we generated mice lacking both NPC1 and lysosomal β-galactosidase, and therefore unable to generate GM2 and GM3 in lysosomes. Double mutants lacked both gangliosides, indicating that each is the product of endosomal/lysosomal processing. Unexpectedly, GM1 accumulation in double mutants increased compared to single mutants consistent with a direct role for NPC1 in ganglioside salvage. These studies provide further evidence that NPC1 and NPC2 proteins participate in endosomal/lysosomal processing of both sphingolipids and cholesterol.
Collapse
Affiliation(s)
- Sharon Zhou
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Cerebellar alterations and gait defects as therapeutic outcome measures for enzyme replacement therapy in α-mannosidosis. J Neuropathol Exp Neurol 2011; 70:83-94. [PMID: 21157375 DOI: 10.1097/nen.0b013e31820428fa] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
α-Mannosidosis is a rare lysosomal storage disease with accumulation of undegraded mannosyl-linked oligosaccharides in cells throughout the body, most notably in the CNS. This leads to a broad spectrum of neurological manifestations, including progressive intellectual impairment, disturbed motor functions, and cerebellar atrophy. To develop therapeutic outcome measures for enzyme replacement therapy that could be used for human patients, a gene knockout model of α-mannosidosis in mice was analyzed for CNS pathology and motor deficits. In the cerebellar molecular layer, α-mannosidosis mice display clusters of activated Bergman glia, infiltration of phagocytic macrophages, and accumulation of free cholesterol and gangliosides (GM1), notably in regions lacking Purkinje cells. α-Mannosidosis brain lysates also displayed increased expression of Lamp1 and hyperglycosylation of the cholesterol binding protein NPC2. Detailed assessment of motor function revealed age-dependent gait defects in the mice that resemble the disturbed motor function in human patients. Short-term enzyme replacement therapy partially reversed the observed cerebellar pathology with fewer activated macrophages and astrocytes but unchanged levels of hyperglycosylated NPC2, gangliosides, and cholesterol. The present study demonstrates cerebellar alterations in α-mannosidosis mice that relate to the motor deficits and pathological changes seen in human patients and can be used as therapeutic outcome measures.
Collapse
|
13
|
Jardim LB, Villanueva MM, de Souza CFM, Netto CBO. Clinical aspects of neuropathic lysosomal storage disorders. J Inherit Metab Dis 2010; 33:315-29. [PMID: 20490930 DOI: 10.1007/s10545-010-9079-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 03/06/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
The purpose of this review is to describe neurological phenotypes associated with lysosomal storage diseases (LSDs), focusing on features arising from primary neuronal involvement. Clinical presentation, progression and genetic data, are discussed in detail in Part 2, the electronic material. Main features are summarized in Part 1. Insights gained from several observational studies are discussed. Prospective studies of the natural history of most neuronopathic LSDs have been hampered by the rarity of these conditions and the short survival of affected patients. Increasingly, longitudinal observations relating to neurological manifestations are being reported. Better clinical studies are necessary, including repeated measurements of disease progression to facilitate the development of sensitive scoring systems and appropriate counseling of affected individuals and their families. Ideally, clinical studies should involve a large cohort. As treatment becomes available, knowledge of disease expression and factors that influence the phenotype may enable critical assessment of therapeutic outcomes. It is hoped that increased familiarity with the clinical expression of individual LSDs will allow early diagnosis, so families at risk are given options to consider during future pregnancies. Early diagnosis also permits the introduction of timely intervention, to favoring improved outcome in cases that are potentially treatable.
Collapse
Affiliation(s)
- Laura Bannach Jardim
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, 90035-903, Porto Alegre, Brazil.
| | | | | | | |
Collapse
|
14
|
Wang X, Yin Z, Peng Y, Shen Y, Wei D. Highly efficient conversion of polysialoganglioside to GM1 withBrevibacterium caseias a microbial biocatalyst. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500043846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Kandelbauer A, Erlacher A, Cavaco-Paulo A, Guebitz GM. Laccase-catalyzed decolorization of the synthetic azo-dye diamond black PV 200 and of some structurally related derivatives. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420400024573] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Torday JS, Rehan VK. Cell-cell signaling drives the evolution of complex traits: introduction-lung evo-devo. Integr Comp Biol 2009; 49:142-54. [PMID: 20607136 PMCID: PMC2895351 DOI: 10.1093/icb/icp017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been “deconvoluted” (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, homeostasis, and regeneration based on evolutionary principles. This cell–cell communication model predicts other aspects of vertebrate physiology as adaptational responses. For example, the oxygen-induced differentiation of alveolar myocytes into alveolar adipocytes was critical for the evolution of the lung in land dwelling animals adapting to fluctuating Phanarezoic oxygen levels over the past 500 million years. Adipocytes prevent lung injury due to oxygen radicals and facilitate the rise of endothermy. In addition, they produce the class I cytokine leptin, which augments pulmonary surfactant activity and alveolar surface area, increasing selection pressure for both respiratory oxygenation and metabolic demand initially constrained by high-systemic vascular pressure, but subsequently compensated by the evolution of the adrenomedullary beta-adrenergic receptor mechanism. Conserted positive selection for the lung and adrenals created further selection pressure for the heart, which becomes progressively more complex phylogenetically in tandem with the lung. Developmentally, increasing heart complexity and size impinges precociously on the gut mesoderm to induce the liver. That evolutionary-developmental interaction is significant because the liver provides regulated sources of glucose and glycogen to the evolving physiologic system, which is necessary for the evolution of the neocortex. Evolution of neocortical control furthers integration of physiologic systems. Such an evolutionary vertical integration of cell-to-tissue-to-organ-to-physiology of intrinsic cell–cell signaling and extrinsic factors is the reverse of the “top-down” conventional way in which physiologic systems are usually regarded. This novel mechanistic approach, incorporating a “middle-out” cell–cell signaling component, will lead to a readily available algorithm for integrating genes and phenotypes. This symposium surveyed the phylogenetic origins of such vertically integrated mechanisms for the evolution of cell–cell communication as the basis for complex physiologic traits, from sponges to man.
Collapse
Affiliation(s)
- John S Torday
- Laboratory for Evolutionary Preventive Medicine, Department of Pediatrics, David Geffen School of Medicine at UCLA, Laboratory for Evolutionary Preventive Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | | |
Collapse
|
17
|
Walkley SU, Vanier MT. Secondary lipid accumulation in lysosomal disease. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:726-36. [PMID: 19111580 PMCID: PMC4382014 DOI: 10.1016/j.bbamcr.2008.11.014] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/11/2008] [Accepted: 11/28/2008] [Indexed: 01/22/2023]
Abstract
Lysosomal diseases are inherited metabolic disorders caused by defects in a wide spectrum of lysosomal and a few non-lysosomal proteins. In most cases a single type of primary storage material is identified, which has been used to name and classify the disorders: hence the terms sphingolipidoses, gangliosidoses, mucopolysaccharidoses, glycoproteinoses, and so forth. In addition to this primary storage, however, a host of secondary storage products can also be identified, more often than not having no direct link to the primary protein defect. Lipids - glycosphingolipids and phospholipids, as well as cholesterol - are the most ubiquitous and best studied of these secondary storage materials. While in the past typically considered nonspecific and nonconsequential features of these diseases, newer studies suggest direct links between secondary storage and disease pathogenesis and support the view that understanding all aspects of this sequestration process will provide important insights into the cell biology and treatment of lysosomal disease.
Collapse
Affiliation(s)
- Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY, USA.
| | | |
Collapse
|
18
|
Walkley SU. Pathogenic cascades in lysosomal disease-Why so complex? J Inherit Metab Dis 2009; 32:181-9. [PMID: 19130290 PMCID: PMC2682782 DOI: 10.1007/s10545-008-1040-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/21/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
Lysosomal disease represents a large group of more than 50 clinically recognized conditions resulting from inborn errors of metabolism affecting the organelle known as the lysosome. The lysosome is an integral part of the larger endosomal/lysosomal system, and is closely allied with the ubiquitin-proteosomal and autophagosomal systems, which together comprise essential cell machinery for substrate degradation and recycling, homeostatic control, and signalling. More than two-thirds of lysosomal diseases affect the brain, with neurons appearing particularly vulnerable to lysosomal compromise and showing diverse consequences ranging from specific axonal and dendritic abnormalities to neuron death. While failure of lysosomal function characteristically leads to lysosomal storage, new studies argue that lysosomal diseases may also be appropriately viewed as 'states of deficiency' rather than simply overabundance (storage). Interference with signalling events and salvage processing normally controlled by the endosomal/lysosomal system may represent key mechanisms accounting for the inherent complexity of lysosomal disorders. Analysis of lysosomal disease pathogenesis provides a unique window through which to observe the importance of the greater lysosomal system for normal cell health.
Collapse
Affiliation(s)
- S U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY, 10461, USA.
| |
Collapse
|
19
|
Karten B, Peake KB, Vance JE. Mechanisms and consequences of impaired lipid trafficking in Niemann-Pick type C1-deficient mammalian cells. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:659-70. [PMID: 19416638 DOI: 10.1016/j.bbalip.2009.01.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 01/20/2009] [Indexed: 11/18/2022]
Abstract
Niemann-Pick C disease is a fatal progressive neurodegenerative disorder caused in 95% of cases by mutations in the NPC1 gene; the remaining 5% of cases result from mutations in the NPC2 gene. The major biochemical manifestation of NPC1 deficiency is an abnormal sequestration of lipids, including cholesterol and glycosphingolipids, in late endosomes/lysosomes (LE/L) of all cells. In this review, we summarize the current knowledge of the NPC1 protein in mammalian cells with particular focus on how defects in NPC1 alter lipid trafficking and neuronal functions. NPC1 is a protein of LE/L and is predicted to contain thirteen transmembrane domains, five of which constitute a sterol-sensing domain. The precise function of NPC1, and the mechanism by which NPC1 and NPC2 (both cholesterol binding proteins) act together to promote the movement of cholesterol and other lipids out of the LE/L, have not yet been established. Recent evidence suggests that the sequestration of cholesterol in LE/L of cells of the brain (neurons and glial cells) contributes to the widespread death and dysfunction of neurons in the brain. Potential therapies include treatments that promote the removal of cholesterol and glycosphingolipids from LE/L. Currently, the most promising approach for extending life-span and improving the quality of life for NPC patients is a combination of several treatments each of which individually modestly slows disease progression.
Collapse
Affiliation(s)
- Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
20
|
Enzyme replacement improves ataxic gait and central nervous system histopathology in a mouse model of metachromatic leukodystrophy. Mol Ther 2009; 17:600-6. [PMID: 19174759 DOI: 10.1038/mt.2008.305] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inherited deficiencies of lysosomal hydrolases cause lysosomal storage diseases (LSDs) that are characterized by a progressive multisystemic pathology and premature death. Repeated intravenous injection of the active counterpart of the deficient enzyme, a treatment strategy called enzyme replacement therapy (ERT), evolved as a clinical option for several LSDs without central nervous system (CNS) involvement. To assess the efficacy of long-term ERT in metachromatic leukodystrophy (MLD), an LSD with prevailing nervous system disease, we treated immunotolerant arylsulfatase A (ASA) knockout mice with 52 doses of either 4 or 50 mg/kg recombinant human ASA (rhASA). ERT was tolerated without side effects and improved disease manifestations in a dose-dependent manner. Dosing of 4 mg/kg diminished sulfatide storage in kidney and peripheral nervous system (PNS) but not the CNS, whereas treatment with 50 mg/kg was also effective in the CNS in reducing storage in brain and spinal cord by 34 and 45%, respectively. Histological analyses revealed regional differences in sulfatide clearance. While 70% less storage profiles were detectable, for example, in the hippocampal fimbria, the histopathology of the brain stem was unchanged. Both enzyme doses normalized the ataxic gait of ASA knockout mice, demonstrating prevention of nervous system dysfunctions that dominate early stages of MLD.
Collapse
|
21
|
Glavan G. Intermittent l-DOPA treatment differentially alters synaptotagmin 4 and 7 gene expression in the striatum of hemiparkinsonian rats. Brain Res 2008; 1236:216-24. [DOI: 10.1016/j.brainres.2008.07.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/18/2008] [Accepted: 07/20/2008] [Indexed: 11/28/2022]
|
22
|
Crawley AC, Walkley SU. Developmental Analysis of CNS Pathology in the Lysosomal Storage Disease α-Mannosidosis. J Neuropathol Exp Neurol 2007; 66:687-97. [PMID: 17882013 DOI: 10.1097/nen.0b013e31812503b6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The lysosomal storage disease alpha-mannosidosis is due to absence or defective function of lysosomal alpha-mannosidase, resulting in primary storage of undegraded mannose-rich oligosaccharides. Disease has been described in humans, cattle, cats, mice, and guinea pigs and is characterized in all species by progressive neurologic deterioration and premature death. We analyzed the neurodegenerative processes relative to clinical disease in alpha-mannosidosis guinea pigs as a human disease model, from birth to end-stage disease. Before the onset of obvious neurologic abnormalities at 2 months, we observed widespread neuronal lysosomal vacuolation including secondary accumulation of GM3 ganglioside, widespread axonal spheroids, and reduced myelination of white matter. Histopathologic changes subsequently showed rapid progression in severity in a pattern common to a number of different lysosomal storage disorders, with additional abnormalities including accumulation of GM2 ganglioside and cholesterol, astrogliosis, neuron loss particularly in the cerebellum, and activation and infiltration of the CNS with microglia/macrophages. End-stage clinical disease was seen at 10 to 14 months of age. Our findings show that complex neuropathologic changes in alpha-mannosidosis guinea pigs are already present at birth, before clinical changes are evident, and similar events are likely to occur in patients with this disorder.
Collapse
Affiliation(s)
- Allison C Crawley
- Lysosomal Diseases Research Unit, Department of Genetic Medicine, Children, Youth and Women's Health Service, North Adelaide, SA, Australia.
| | | |
Collapse
|
23
|
Peng YF, Wang XD, Wei DZ. Development of a large scale process for the conversion of polysialogangliosides to monosialotetrahexosylganglioside with a novel strain of Brevibacterium casei producing sialidase. Biotechnol Lett 2007; 29:885-9. [PMID: 17415532 DOI: 10.1007/s10529-007-9339-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 02/02/2007] [Accepted: 02/12/2007] [Indexed: 11/30/2022]
Abstract
A bioconversion process of producing GM1 (monosialotetrahexosylganglioside) on an industrial scale was developed with a novel sialidase-producing strain Brevibacterium casei. The sialidase hydrolyzed polysialogangliosides to produce GM1 but did not act on GM1. When Brevibacterium casei was cultured in a synthetic medium containing crude pig brain gangliosides (10% w/v) at 30 degrees C for 24 h in a 50 l fermenter, most of the polysialogangliosides were converted to GM1. The content of GM1 was increased from 9% in crude gangliosides to 45% with 70% (w/w) yield.
Collapse
Affiliation(s)
- Yan-Feng Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | | | | |
Collapse
|
24
|
Vukelić Z, Zarei M, Peter-Katalinić J, Zamfir AD. Analysis of human hippocampus gangliosides by fully-automated chip-based nanoelectrospray tandem mass spectrometry. J Chromatogr A 2006; 1130:238-45. [PMID: 16797567 DOI: 10.1016/j.chroma.2006.05.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 05/02/2006] [Accepted: 05/15/2006] [Indexed: 01/06/2023]
Abstract
Modern microfluidic devices are currently introduced in electrospray (ESI) mass spectrometry (MS), tending to substitute the classical capillary-based ESI infusion. Automated systems using the combination of robotized sample handling and chip-based ESI are significantly increasing the analysis reproducibility, precision, throughput, and efficiency. In the last couple of years our group developed the chip-based ESI-MS approach for glycomics in biomedical research and applied it for oligosaccharide, glycopeptide and ganglioside investigation. Here we report upon the optimization and application of this modern technique for the analysis of differential ganglioside expression patterns in human fetal and adult hippocampus. By this methodology, ganglioside species exhibiting high degree of heterogeneity in the ceramide motifs and biologically-relevant modifications could be identified in human hippocampus. The ultra-high reproducibility of the experiments uniquely provided by the chip-ESI approach allowed for a reliable MS-based ganglioside comparative assay. Moreover, the particular feature of chip ESI-tandem MS to provide structural information at high sensitivity was useful for detailed characterization of hippocampus-associated species. The experimental data presented in this study indicate the benefits of microfluidic/MS for determination of the topospecific brain ganglioside composition and development-related changes in their expression, which might be of high value in clinical investigation and for studies related to ganglioside-based therapy of central nervous system diseases.
Collapse
Affiliation(s)
- Zeljka Vukelić
- Department of Chemistry and Biochemistry, Faculty of Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | | |
Collapse
|
25
|
Aerts JMFG, Hollak CEM, Boot RG, Groener JEM, Maas M. Substrate reduction therapy of glycosphingolipid storage disorders. J Inherit Metab Dis 2006; 29:449-56. [PMID: 16763917 DOI: 10.1007/s10545-006-0272-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 02/21/2006] [Indexed: 01/28/2023]
Abstract
In the last 15 years enormous progress has been made regarding therapy of type I Gaucher disease, a severely disabling disorder characterized by intralysosomal storage of glucosylceramide in tissue macrophages. Effective enzyme replacement therapy of type I Gaucher disease, based on chronic intravenous administration of mannose-terminated recombinant human glucocerebrosidase, has been available since 1990 and has been applied in several thousand patients without serious adverse effects. An alternative therapeutic approach, so-called substrate reduction therapy, is based on partial reduction of the synthesis of glucosylceramide and hence of subsequent metabolites. Oral administration of an inhibitor of glucosylceramide synthesis (N-butyldeoxynojirimycin, registered in Europe since 2002 as miglustat (Zavesca)), is effective in reversing clinical symptoms in type I Gaucher patients with mild to moderate disease manifestations. The growing long-term experience with substrate reduction therapy indicates that this treatment is also without major adverse effects. Substrate reduction therapy, in conjunction with enzyme replacement therapy, may play an important role in the future clinical management of patients suffering from type I Gaucher disease. Clinical trials are under way that should reveal the value of substrate reduction for maintenance therapy of type I Gaucher disease and for treatment of neuronopathic variants of Gaucher disease, Niemann-Pick disease type C, late-onset Tay-Sachs disease and Sandhoff disease.
Collapse
Affiliation(s)
- Johannes M F G Aerts
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
Inglese M, Nusbaum AO, Pastores GM, Gianutsos J, Kolodny EH, Gonen O. MR imaging and proton spectroscopy of neuronal injury in late-onset GM2 gangliosidosis. AJNR Am J Neuroradiol 2005; 26:2037-42. [PMID: 16155156 PMCID: PMC8148816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND PURPOSE Despite the ubiquity of G(M2) gangliosides accumulation in patients with late-onset G(M2) gangliosidosis (G(M2)G), the only clinical MR imaging-apparent brain abnormality is profound cerebellar atrophy. The goal of this study was to detect the presence and assess the extent of neuroaxonal injury in the normal-appearing gray and white matter (NAGM and NAWM) of these patients. METHODS During a single imaging session, 9 patients with late-onset G(M2)G and 8 age-matched normal volunteers underwent the following protocol: (1) T1- and T2-weighted and fluid-attenuated inversion recovery MR images, as well as (2) multivoxel proton MR spectroscopy (1H-MR spectroscopy) to quantify the distribution of the n-acetylaspartate (NAA), creatine (Cr), and choline (Cho), were obtained. RESULTS The patients' NAA levels in the thalamus (6.5 +/- 1.9 mmol/L) and NAWM (5.8 +/- 2.1 mmol/L) were approximately 40% lower than the controls' (P = .003 and P = .005), whereas the Cr and Cho reductions ( approximately 30% and approximately 26%) did not reach significance (P values of .06-.1). All cerebellar metabolites, especially NAA and Cr, were much (30%-90%) lower in the patients, which reflects the atrophy. CONCLUSION In late-onset G(M2)G, NAA decreases are detectable in NAGM and NAWM even absent morphologic (MR imaging) abnormalities. Because the accumulation of G(M2) gangliosides can be reduced pharmacologically, 1H-MR spectroscopy might be a sensitive and specific for detecting and quantifying neuroaxonal injury and monitoring response to emerging treatments.
Collapse
Affiliation(s)
- Matilde Inglese
- Department of Radiology, New York University, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
27
|
Lachmann RH. Miglustat: substrate reduction therapy for glycosphingolipid storage disorders. ACTA ACUST UNITED AC 2005. [DOI: 10.2217/14750708.2.4.569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Yochem J, Hall DH, Bell LR, Hedgecock EM, Herman RK. Isopentenyl-diphosphate isomerase is essential for viability of Caenorhabditis elegans. Mol Genet Genomics 2005; 273:158-66. [PMID: 15765206 DOI: 10.1007/s00438-004-1101-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2004] [Accepted: 12/07/2004] [Indexed: 12/26/2022]
Abstract
Homozygosity for a mutation in the idi-1 gene of Caenorhabditis elegans results in paralysis during the first larval stage, followed by an arrest of growth and development late in the first larval stage. Apoptotic corpses, which are apparently the result of normal programmed cell death, persist in the arrested larvae. In genetic mosaics, an additional defect becomes evident upon examination with Nomarski optics: cells that are genotypically mutant enlarge, and their cytoplasm becomes dimpled. Electron microscopy indicates that the dimpling reflects an accumulation of many enlarged lysosomes and autophagosomes. The mosaics demonstrate that the lethal mutation acts cell autonomously with respect to this vesicular abnormality and that there is a maternal effect with respect to the time of developmental arrest of mutant progeny. Cloning of the gene reveals that it is the only gene in C. elegans for isopentenyl-diphosphate isomerase, an enzyme that is important for the synthesis of lipophilic molecules, including farnesyl and geranyl diphosphates.
Collapse
Affiliation(s)
- John Yochem
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
29
|
Abstract
UNLABELLED The treatment of disordered lipoprotein metabolism with the statin class of drugs is one of the most striking successes in the field of applied medical science: here the use of selective inhibitors of the first committed step of cholesterol biosynthesis, in a complex and highly regulated pathway, leads to improved outcome from a common lipid storage disease that is a blight on whole populations--atherosclerosis. By the same token, substrate reduction is an emerging therapeutic strategy for the arcane field of the lysosomal storage diseases (LSDs). Reduced biosynthesis of glucosylceramide is postulated to allow correction of the imbalance between formation and breakdown of glycosphingolipids; the therapeutic effect of substrate reduction depends upon the presence of residual hydrolytic activity towards those accumulated glycosphingolipid substrates derived from glucosylceramide. First pioneered in the laboratory by Norman Radin, this approach has now been introduced into the clinic: based on the ability to inhibit uridine diphosphate glucosylceramide transferase, the semi-selective iminosugar, N-butyldeoxynojirimycin, is licensed for the treatment of type 1 Gaucher disease. CONCLUSION Inhibition of substrate formation has wide application in the treatment of LSDs. Decreased glucosylceramide biosynthesis has therapeutic potential in glycosphingolipidoses other than Gaucher disease, and offers promise in several neurodegenerative storage disorders that are currently beyond the reach of other procedures. The results of ongoing clinical trials of miglustat in type 3 Gaucher disease, Niemann-Pick disease type C and GM2 gangliosidosis are eagerly awaited.
Collapse
Affiliation(s)
- T M Cox
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
30
|
McGlynn R, Dobrenis K, Walkley SU. Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders. J Comp Neurol 2005; 480:415-26. [PMID: 15558784 DOI: 10.1002/cne.20355] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mucopolysaccharidoses (MPSs) are a complex family of lysosomal storage disorders characterized by failure to degrade heparan sulfate (HS) and/or other types of glycosaminoglycans (GAGs) secondary to the absence of specific lysosomal enzymes. An accompanying storage of glycosphingolipids (GSLs), most notably GM2 and GM3 gangliosides, has also been documented to occur in many types of MPS disease and is believed to be caused by secondary inhibition of GSL-degradative enzymes by intracellular GAG accumulation. We have documented the presence of secondary ganglioside accumulation in mouse models of several MPS disorders (types I, IIIA, IIIB, and VII) and report that this storage is accompanied by sequestration of free cholesterol in a manner similar to that observed in primary gangliosidoses. Using confocal microscopy, we evaluated the cellular distribution of cholesterol, GM2 and GM3 gangliosides, and HS in brains of mice with MPS IIIA disease. Unexpectedly, we found that although both gangliosides often accumulated in the same neurons, they were consistently located in separate populations of cytoplasmic vesicles. Additionally, GM3 ganglioside only partially co-localized with the primary storage material (HS), and cholesterol likewise only partially co-localized with the GM2 and GM3 gangliosides. These findings raise significant questions about the mechanism(s) responsible for secondary accumulation of storage materials in MPS disease. Furthermore, given that GSLs and cholesterol are constituents of membrane rafts believed critical in signal transduction events in neurons, their co-sequestration in individual neurons suggests the presence of defects in the composition, trafficking, and/or recycling of raft components and thus possible new mechanisms to explain neuronal dysfunction in MPS disorders.
Collapse
Affiliation(s)
- Robert McGlynn
- Sidney Weisner Laboratory of Genetic Neurological Disease, Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
31
|
Salazar BC, Castaño S, Sánchez JC, Romero M, Recio-Pinto E. Ganglioside GD1a increases the excitability of voltage-dependent sodium channels. Brain Res 2004; 1021:151-8. [PMID: 15342262 DOI: 10.1016/j.brainres.2004.06.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2004] [Indexed: 11/30/2022]
Abstract
The effect of the negatively charged ganglioside GD1a, one of the major brain gangliosides [H. Beitinger, W. Probst, R. Hilbig, H. Rahmann, Seasonal variability of sialo-glycoconjugates in the brain of the Djungarian hamster (Phodopus sungorus). Comp. Biochem. Physiol., B 86 (1987) 377-384] on the function of brain derived BTX-modified voltage-dependent sodium channel was studied using the planar lipid bilayer system. Bilayers were formed either with a mixture of neutral phospholipids (4 phosphoethanolamine (PE):1 phosphocholine (PC)) alone or with one containing 6% of the disialoganglioside GD1a. The permeation and activation properties of the channels were measured in the presence of symmetrical 200 mM NaCl. We found that the single channel conductance was not affected by GD1a, whereas the steady-state activation curve displayed a hyperpolarizing shift in the presence of GD1a. Since the lipid distribution in these membranes is symmetrical, then the GD1a effect on sodium channels may result either from an induction of channel conformational changes or from an asymmetrical interaction between the channel (extracellular vs. intracellular channel aspect) and GD1a. Regardless of the mechanism, the data indicate that differences in ganglioside content in neuronal cells may contribute to the previously observed sodium channel functional variability within (soma, dentritic, axon hillock) and between neuronal cells as well as to excitability changes in those physiological and pathological conditions where changes in the neuronal ganglioside content occur.
Collapse
Affiliation(s)
- Blanca C Salazar
- Centro de Estudios Cerebrales, Universidad del Valle, Calle 4B No.36-00, Barrio San Fernando, Cali, Colombia.
| | | | | | | | | |
Collapse
|
32
|
Walkley SU, Suzuki K. Consequences of NPC1 and NPC2 loss of function in mammalian neurons. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1685:48-62. [PMID: 15465426 DOI: 10.1016/j.bbalip.2004.08.011] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genetic deficiency of NPC1 or NPC2 results in a devastating cholesterol-glycosphingolipidosis of brain and other organs known as Niemann-Pick type C (NPC) disease. While NPC1 is a transmembrane protein believed involved in retroendocytic shuttling of substrate(s) to the Golgi and possibly elsewhere in cells as part of an essential recycling/homeostatic control mechanism, NPC2 is a soluble lysosomal protein known to bind cholesterol. The precise role(s) of NPC1 and NPC2 in endosomal-lysosomal function remain unclear, nor is it known whether the two proteins directly interact as part of this function. The pathologic features of NPC disease, however, are well documented. Brain cells undergo massive intracellular accumulation of glycosphingolipids (lactosylceramide, glucosylceramide, GM2 and GM3 gangliosides) and cholesterol and concomitant distortion of neuron shape (meganeurite formation). In neurons from humans with NPC disease the metabolic defects and storage often lead to extensive growth of new, ectopic dendrites (possibly linked to ganglioside sequestration) as well as formation of neurofibrillary tangles (NFTs) (possibly linked to dysregulation of cholesterol metabolism). Other features of cellular pathology in NPC disease include fragmentation of the Golgi apparatus and neuroaxonal dystrophy, though reasons for these changes remain largely unknown. As the disease progresses, neurodegeneration is also apparent for neurons in some brain regions, particularly Purkinje cells of the cerebellum, but the basis of this selective neuronal vulnerability is unknown. The NPC1 protein is evolutionarily conserved with homologues reported in yeast to humans; NPC2 is reported in C. elegans to humans. While neurons in mammalian models of NPC1 and NPC2 diseases exhibit many changes that are remarkably similar to those in humans (e.g., endosomal/lysosomal storage, Golgi fragmentation, neuroaxonal dystrophy, neurodegeneration), a reduced degree of ectopic dendritogenesis and an absence of NFTs in these species suggest important differences in the way lower mammalian neurons respond to NPC1/NPC2 loss of function.
Collapse
Affiliation(s)
- Steven U Walkley
- Sidney Weisner Laboratory of Genetic Neurological Disease Department of Neuroscience, Rose F Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
33
|
Abstract
Medical interest in glycolipids has been mainly directed to the rare and complex glycosphingolipid storage disorders that are principally caused by unitary deficiencies of lysosomal acid hydrolases. However, glycolipids are critical components of cell membranes and occur within newly described membrane domains known as lipid rafts. Glycolipids are components of important antigen systems and membrane receptors; they participate in intracellular signalling mechanisms and may be presented to the immune system in the context of the novel CD1 molecules present on T lymphocytes. A knowledge of their mechanism of action in the control of cell growth and survival as well as developmental pathways is likely to shed light on the pathogenesis of the glycosphingolipid storage disorders as well as the role of lipid second messengers in controlling cell mobility and in the mobilization of intracellular calcium stores (a biological role widely postulated particularly for the lysosphingolipid metabolite sphingosine 1-phosphate). Other sphingolipid metabolites such as ceramide 1-phosphate may be involved in apoptotic responses and in phagocytosis and synaptic vesicle formation. The extraordinary pharmaceutical success of enzymatic complementation for Gaucher's disease using macrophage-targeted human glucocerebrosidase has focused further commercial interest in other glycolipid storage diseases: the cost of targeted enzyme therapy and its failure to restore lysosomal enzymatic deficiencies in the brain has also stimulated interest in the concept of substrate reduction therapy using diffusible inhibitory molecules. Successful clinical trials of the iminosugar N-butyldeoxynojirimycin in type 1 Gaucher's disease prove the principle of substrate reduction therapy and have attracted attention to this therapeutic method. They will also foster important further experiments into the use of glycolipid synthesis inhibitors for the severe neuronopathic glycosphingolipidoses, for which no definitive treatment is otherwise available. Future glycolipid research in medicine will be directed to experiments that shed light on the role of sphingolipids in signalling pathways, and in the comprehensive characterization and their secretory products in relation to the molecular pathogenesis of the storage disorders; experiments of use to improve the efficiency of complementing enzymatic delivery to the lysosomal compartment of storage cells are also needed. Further systematic screening for inhibitory compounds with specific actions in the pathways of glycosphingolipid biosynthesis will undoubtedly lead to clinical trials in the neuronopathic storage disorders and to wider applications in the fields of immunity and cancer biology.
Collapse
Affiliation(s)
- Timothy M Cox
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
34
|
Watts RWE. A historical perspective of the glycosphingolipids and sphingolipidoses. Philos Trans R Soc Lond B Biol Sci 2003; 358:975-83. [PMID: 12803932 PMCID: PMC1693177 DOI: 10.1098/rstb.2003.1280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glycosphingolipids are a polysaccharide chain between 1 and 40 carbohydrate residues long glycosidically linked to ceramide (a long-chain aliphatic amino-alcohol or sphingoid) that is embedded in the cell plasma membrane with the carbohydrate moiety on the outside. The sphingoid imparts rigidity to the membrane and the carbohydrate tails protect the cell surface and have functions in relation to cell adhesion, growth, regulation, differentiation, cell interaction, recognition and signalling. They provide adhesion sites for pathogens and change during oncogenic transformation. Ceramide is also a component of sphingomyelin. Glycosphingolipids are degraded by lysosomal hydrolysis. The sphingolipidoses are a series of diseases in which mutations affecting the enzymes catalysing the last 11 steps of this process causing abnormal compounds proximal to the metabolic block to accumulate intralysosomally. Thus, they are a sub-group of the lysosomal storage diseases. The degradation of sphingolipids containing three or less carbohydrate residues requires a sphingolipid activator protein and mutations affecting these proteins also cause abnormal glycosphingolipid storage. With one exception (Fabry disease, which is X linked) the sphingolipidoses are inherited autosomally. The phenotypic manifestations of the individual sphingolipidoses are variable although the more severe variants are usually the better known. They have generally been regarded as untreatable but notable therapeutic advances are being made by enzyme replacement therapy and regulating the rate of glycosphingolipid synthesis by inhibiting UDP-glucose-N-acylsphingosine D-glucosyl transferase (CerGlcT), which is the first reaction on the pathway of glycosphingolipid synthesis. The compounds used are N-alkylated iminosugars whose glucose and galactose stereochemistries inhibit CerGlcT. Prenatal and carrier state diagnosis, genetic counselling and the abortion of affected foetuses are reducing the incidence of some of the most severe sphingolipidoses in certain high-incidence populations.
Collapse
Affiliation(s)
- Richard W E Watts
- Department of Medicine, Imperial College of Science, Technology and Medicine (Hammersmith Campus), Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| |
Collapse
|