1
|
Shoaib M, Mata J, Didier C, Kuzmenko I, Voelker-Pop LM, Bobicki E. Probing the shear-induced microstructure of a smectite clay aqueous suspensions using rheo-USANS and rheo-SIPLI measurements. J Colloid Interface Sci 2025; 693:137536. [PMID: 40253865 DOI: 10.1016/j.jcis.2025.137536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
HYPOTHESIS The static microstructure of aqueous sodium-montmorillonite (Na-Mt) suspensions at low ionic strengths (where Particle Size/Debye Length ≈1) exhibits both the particle-particle ordering as well as aggregation with repulsive ordered domains having characteristic optical birefringence and attractive aggregated entities larger than 20 µm resulting in ever-increasing yield stresses also known as physical aging-rejuvenation behavior. We hypothesize that the attractive particle-particle aggregation is the underlying cause behind the physical aging-rejuvenation behavior observed in Na-Mt suspensions with no contribution from structural dynamics driven by repulsive particle-particle ordering or jamming. EXPERIMENTS We investigate the shear-induced microstructure of aqueous Na-Mt suspensions in the sol and gel state using rheo-ultra-small angle neutron scattering (rheo-USANS) experiments at shear rates of 1, 50, 500, and 2000 s-1. We also perform rheo-shear-induced polarization light imaging (rheo-SIPLI) experiments to relate ordering with shearing and aging. FINDINGS Shearing the suspensions at low to moderate shear rates induces particle-particle aggregation and shearing at high shear rates induces the breakage of particle-particle aggregation in the sol and gel states, suggesting the microstructural aggregation in the sol and gel state is shear sensitive and a full rejuvenation or breakage of particle-particle aggregation is only achieved at a minimum critical shear rate. The rheo-SIPLI experiments reveal that the sol and gel state exhibited strong Maltese cross patterns at a shear rate of 1000 s-1, indicating particle-particle ordering. Post shearing, the gel exhibited temporal evolution of storage modulus without any noticeable influence on the appearance of the Maltese cross pattern indicating physical aging and particle ordering are distinct length scale phenomena in Na-Mt suspensions and the physical aging-rejuvenation behaviour is a feature of particle-particle aggregation as opposed to ordering.
Collapse
Affiliation(s)
- Mohammad Shoaib
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario M5S 3E5, Canada.
| | - Jitendra Mata
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Sydney, NSW 2232, Australia; School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Christophe Didier
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Sydney, NSW 2232, Australia
| | - Ivan Kuzmenko
- Argonne National Laboratory, 9700 S. Cass Avenue, Bldg. 433A, Argonne, IL 60439, United States
| | | | - Erin Bobicki
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario M5S 3E5, Canada; Department of Chemical and Materials Engineering, University of Alberta, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
2
|
Brazovskaya EY, Sidorenko AY, Khalimonyuk TV, Alikina YA, Belyaeva KA, Omarov SO, Dobrodumov AV, Golubeva OY. Preparation, Acidity, and Catalytic Activity of Synthetic Montmorillonites in α-Pinene Isomerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9631-9644. [PMID: 40204680 DOI: 10.1021/acs.langmuir.4c04825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
A series of montmorillonites with different Mg and Al contents (Na2x(Al2(1-x),Mg2x)Si4O10(OH)2·nH2O, where 0 < x ≤ 1) were prepared by the hydrothermal method and characterized by MAS NMR, XRD, N2 adsorption-desorption, FTIR with pyridine, TPD-NH3, SEM, and thermal analysis techniques. The material obtained without aluminum (x = 1), or with a minimum amount of it (x = 0.9) is a trioctahedral saponite becoming a fully dioctahedral montmorillonite at its highest content (x = 0.1). The introduction of aluminum into the montmorillonite structure during its synthesis leads to the appearance of pronounced Brønsted acidity, the highest concentration of which was in montmorillonite with x = 0.1. In contrast, the Al-free sample is practically a Lewis acid (L/B of 71.3). The studied materials possessed catalytic activity in the isomerization of α-pinene, which correlated with the strength of the acid sites. Al-containing montmorillonites yielded camphene with a selectivity of 50-53%, and the presence of medium and strong Brønsted sites favored its formation. In contrast, Mg-montmorillonite with almost exclusively Lewis acidity demonstrated an unusually high selectivity to limonene (44.5%). To the best of our knowledge, this is the first work describing the catalytic activity of synthetic Al-Mg montmorillonite. However, the ease of varying the nature and strength of acid sites in synthetic materials opens up the prospect of their use in a number of reactions, including those for renewable terpene compounds.
Collapse
Affiliation(s)
- Elena Yu Brazovskaya
- Institute of Silicate Chemistry, Adm.Makarova emb., 2, St.Petersburg 199034, Russia
| | - Alexander Yu Sidorenko
- Instituteof Chemistry of New Materials of the National Academy of Sciences of Belarus, FranciskSkaryny St., 36, Minsk 220141, Belarus
| | - Tatyana V Khalimonyuk
- Instituteof Chemistry of New Materials of the National Academy of Sciences of Belarus, FranciskSkaryny St., 36, Minsk 220141, Belarus
| | - Yulia A Alikina
- Institute of Silicate Chemistry, Adm.Makarova emb., 2, St.Petersburg 199034, Russia
| | - Kristina A Belyaeva
- Institute of Silicate Chemistry, Adm.Makarova emb., 2, St.Petersburg 199034, Russia
| | - Shamil O Omarov
- Saint Petersburg State Institute of Technology (Technical University), Moskovskypr., 24-26/49 lit. A, Saint Petersburg 190013, Russia
| | - Anatoly V Dobrodumov
- Institute of Macromolecular Compounds, V.O. Bolshoy pr. 31, St. Petersburg 199004, Russia
| | - Olga Yu Golubeva
- Institute of Silicate Chemistry, Adm.Makarova emb., 2, St.Petersburg 199034, Russia
| |
Collapse
|
3
|
Kabdushev S, Gabrielyan O, Kopishev E, Suleimenov I. Neural network properties of hydrophilic polymers as a key for development of the general theory of evolution. ROYAL SOCIETY OPEN SCIENCE 2025; 12:242149. [PMID: 40271142 PMCID: PMC12014241 DOI: 10.1098/rsos.242149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/25/2025]
Abstract
The analysis of the existing literature demonstrates that in order to address the fundamental challenges associated with the origin of life, it is essential to consider this problem from a comprehensive perspective, specifically from the vantage point of the general theory of evolution of complex systems. From these positions, life should be regarded as a distinctive instance of an information storage and processing system that emerges naturally. Evolutionary processes should be examined from the vantage point of the coevolution of material and informational components, which has not been sufficiently emphasized hitherto. It is shown that a specific example in this respect is analogues of neural networks spontaneously formed in solutions of some hydrophilic polymers. Such systems lead to the formation of non-trivial information objects. A wide range of other examples is considered, proving that the processes occurring with the participation of hydrophilic polymers should be interpreted, among other things, from the point of view of formation of information objects, which, under certain conditions, influence the processes occurring at the molecular and supramolecular level. It is shown that it is reasonable to use the tools of classical dialectics to solve such fundamental problems as that of the origin of life.
Collapse
Affiliation(s)
- Sherniyaz Kabdushev
- Department of Chemistry and Technology of Organic Materials, Polymers and Natural Compounds, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Oleg Gabrielyan
- VI Vernadsky Crimean Federal University, Simferopol, Ukraine
| | - Eldar Kopishev
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
- Bukhara State University, Bukhara, Uzbekistan
| | - Ibragim Suleimenov
- National Engineering Academy of the Republic of Kazakhstan, Almaty, Kazakhstan
| |
Collapse
|
4
|
Vörös D, Czárán T, Szilágyi A, Könnyű B. The dynamics of prebiotic take-off: the transfer of functional RNA communities from mineral surfaces to vesicles. Commun Biol 2025; 8:484. [PMID: 40122986 PMCID: PMC11930959 DOI: 10.1038/s42003-025-07841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
In this study, we propose a two-phase scenario for the origin of the first protocellular form of life, linking two RNA-world models by an explicit dynamical interface that simulates the transition of a metabolically cooperating RNA-replicator community from a mineral surface into a population of membrane vesicles. The two agent-based models: the Metabolically Coupled Replicator System (MCRS) and the Stochastic Corrector Model (SCM), are built on principles of systems chemistry, molecular biology, ecology and evolutionary biology. We show that the MCRS is easier to initiate from random RNA communities, while the SCM is more efficient at reducing the genetic assortment load during system growth and preadapted to later evolutionary transitions like chromosome formation, suggesting the former as a stepping stone to the later, protocellular stage. The switching between the two scenarios is shown to be dynamically feasible under a wide range of the parameter space of the merged model, allowing for the emergence of complex cooperative behaviours in metabolically coupled communities of RNA enzymes.
Collapse
Affiliation(s)
- Dániel Vörös
- HUN-REN Centre for Ecological Research, Institute of Evolution, Budapest, Hungary
- ELTE Eötvös Loránd University, Institute of Biology, Budapest, Hungary
- Parmenides Foundation, Pöcking, Germany
| | - Tamás Czárán
- HUN-REN Centre for Ecological Research, Institute of Evolution, Budapest, Hungary.
| | - András Szilágyi
- HUN-REN Centre for Ecological Research, Institute of Evolution, Budapest, Hungary
- Parmenides Foundation, Pöcking, Germany
| | - Balázs Könnyű
- HUN-REN Centre for Ecological Research, Institute of Evolution, Budapest, Hungary
- Parmenides Foundation, Pöcking, Germany
| |
Collapse
|
5
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
6
|
Stockert JC, Horobin RW. Prebiotic RNA self-assembling and the origin of life: Mechanistic and molecular modeling rationale for explaining the prebiotic origin and replication of RNA. Acta Histochem 2025; 127:152226. [PMID: 39788859 DOI: 10.1016/j.acthis.2024.152226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
In recent years, a great interest has been focused on the prebiotic origin of nucleic acids and life on Earth. An attractive idea is that life was initially based on an autocatalytic and autoreplicative RNA (the RNA-world). RNA duplexes are right-handed helical chains with antiparallel orientation, but the rationale for these features is not yet known. An antiparallel (inverted) stacking of purine nucleosides was reported in crystallographic studies. Molecular modeling also supports the inverted orientation of nucleosides. This preferential stacking can also appear when nucleosides are included in a montmorillonite clay matrix. Free-energy values and geometrical parameters show that D-ribose chirality is preferred for the formation of right-handed RNA molecules. Thus, a "zipper" model with antiparallel and auto-intercalated nucleosides linked by phosphate groups can be proposed to form single RNA chains. Unstacking with strand separation and base pairing by H-bonding, results in shortening and inclination of ribose-phosphate chains, leading to right-handed helicity and antiparallel duplexes. Incorporation of complementary precursors on the major groove template by a self-assembly mechanism provides a prebiotic (non-enzymatic) "tetris" replication model by formation of a transient RNA tetrad and tetraplex. Original hairpin motifs appear as simple building units that form typical RNA structures such as hammerheads, cloverleaves and dumbbells. They occur today in the circular viroids and virusoids, as well as in highly branched and complex rRNA molecules.
Collapse
Affiliation(s)
- Juan C Stockert
- Institute of Health and Environmental Sciences, Prosama Foundation, Paysandú 752, Buenos Aires, CABA CP1405, Argentina; Integrative Center of Biology and Applied Chemistry, University Bernardo O'Higgins, General Gana 1702, Santiago 8370854, Chile.
| | | |
Collapse
|
7
|
Wipf S, Mabey P, Urso RG, Wolf S, Stok A, Ricco AJ, Quinn RC, Mattioda AL, Jones NC, Hoffmann SV, Cottin H, Chaput D, Ehrenfreund P, Elsaesser A. Photochemical Evolution of Alanine in Association with the Martian Soil Analog Montmorillonite: Insights Derived from Experiments Conducted on the International Space Station. ASTROBIOLOGY 2025; 25:97-114. [PMID: 39869065 DOI: 10.1089/ast.2024.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Photochemistry on the Space Station (PSS) experiment was part of the European Space Agency's EXPOSE-R2 mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers. We tested pure alanine thin films, alanine thin films protected from direct UV exposure by a thin cover layer of montmorillonite, and an intimate combination of the two substances forming an organoclay. The samples were exposed to space conditions for 15.5 months and then returned to Earth for detailed analysis. Concurrent ground-control experiments subjected identical samples to simulated solar light irradiation. Fourier-transform infrared (FTIR) spectroscopy quantified molecular changes by comparing spectra obtained before and after exposure for both the space and ground-control samples. To more deeply understand the photochemical processes influencing the stability of irradiated alanine molecules, we performed an additional experiment using time-resolved FTIR spectroscopy for a second set of ground samples exposed to simulated solar light. Our collective experiments reveal that montmorillonite clay exhibits a dual, configuration-dependent effect on the stability of alanine: while a thin cover layer of the clay provides UV shielding that slows degradation, an intimate mixture of clay and amino acid hastens the photochemical decomposition of alanine by promoting certain chemical reactions. This observation is important to understand the preservation of amino acids in specific extraterrestrial environments, such as Mars: cover mineral layer depths of several millimeters are required to effectively shield organics from the harmful effects of UV radiation. We also explored the role of carbon dioxide (CO2), a byproduct of alanine photolysis, as a tracer of the amino acid. CO2 can be trapped within clay interlayers, particularly in clays with small interlayer ions such as sodium. Our studies emphasize the multifaceted interactions between montmorillonite clay and alanine under nonterrestrial conditions; thus, they contribute valuable insights to broader astrobiological research questions.
Collapse
Affiliation(s)
- Severin Wipf
- Experimental Biophysics and Space Sciences, Department of Physics, Freie Universitaet Berlin, Berlin, Germany
| | - Paul Mabey
- Experimental Biophysics and Space Sciences, Department of Physics, Freie Universitaet Berlin, Berlin, Germany
| | | | - Sebastian Wolf
- Experimental Biophysics and Space Sciences, Department of Physics, Freie Universitaet Berlin, Berlin, Germany
| | - Arthur Stok
- Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Nykola C Jones
- Department of Physics and Astronomy, ISA, Aarhus University, Aarhus, Denmark
| | - Søren V Hoffmann
- Department of Physics and Astronomy, ISA, Aarhus University, Aarhus, Denmark
| | - Hervé Cottin
- Univ Paris Est Creteil and Université Paris Cité, France
| | - Didier Chaput
- Centre Spatial de Toulouse, Centre National d'Etudes Spatiales (CNES), Toulouse cedex 9, France
| | - Pascale Ehrenfreund
- Space Policy Institute, George Washington University, Washington, District of Columbia, USA
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| | - Andreas Elsaesser
- Experimental Biophysics and Space Sciences, Department of Physics, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
8
|
Ma L, Liang Z, Hou Y, Zhang R, Fan K, Yan X. Nanozymes and Their Potential Roles in the Origin of Life. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412211. [PMID: 39723709 DOI: 10.1002/adma.202412211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/09/2024] [Indexed: 12/28/2024]
Abstract
The origin of life has long been a central scientific challenge, with various hypotheses proposed. The chemical evolution, which supposes that inorganic molecules can transform into organic molecules and subsequent primitive cells, laid the foundation for modern theories. Inorganic minerals are believed to play crucial catalytic roles in the process. However, the harsh reaction conditions of inorganic minerals hinder the accumulation of organic molecules, preventing the efficient transition from inorganic molecules to biomacromolecules. Given the inherent physicochemical properties and enzyme-like activities, this study proposes that nanozymes, nanomaterials with enzyme-like activities, act as efficient prebiotic catalysts in the origin of life. This hypothesis is based on the following: First, unlike traditional minerals, nanominerals can catalyze organic synthesis under milder conditions. Second, nanominerals can not only protect biomolecules from radiation damage but also catalyze polymerization reactions to form functional biomacromolecules and further lipid vesicles. More importantly, nanominerals are abundant in terrestrial and extraterrestrial environments. This perspective will systematically discuss the potential roles of nanozymes in the emergence of life based on the functions of minerals and the characteristics of nanozymes. We hope the research on nanozymes and the origin of life will bridge the gap between inorganic precursors and biomolecules under primitive environments.
Collapse
Affiliation(s)
- Long Ma
- Country CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Zimo Liang
- Country CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yinyin Hou
- Country CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruofei Zhang
- Country CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Kelong Fan
- Country CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Xiyun Yan
- Country CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| |
Collapse
|
9
|
Whitaker D, Powner MW. On the aqueous origins of the condensation polymers of life. Nat Rev Chem 2024; 8:817-832. [PMID: 39333736 DOI: 10.1038/s41570-024-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/30/2024]
Abstract
Water is essential for life as we know it, but it has paradoxically been considered inimical to the emergence of life. Proteins and nucleic acids have sustained evolution and life for billions of years, but both are condensation polymers, suggesting that their formation requires the elimination of water. This presents intrinsic challenges at the origins of life, including how condensation polymer synthesis can overcome the thermodynamic pressure of hydrolysis in water and how nucleophiles can kinetically outcompete water to yield condensation products. The answers to these questions lie in balancing thermodynamic activation and kinetic stability. For peptides, an effective strategy is to directly harness the energy trapped in prebiotic molecules, such as nitriles, and avoid the formation of fully hydrolysed monomers. In this Review, we discuss how chemical energy can be built into precursors, retained, and released selectively for polymer synthesis. Looking to the future, the outstanding goals include how nucleic acids can be synthesized, avoiding the formation of fully hydrolysed monomers and what caused information to flow from nucleic acids to proteins.
Collapse
Affiliation(s)
- Daniel Whitaker
- Department of Chemistry, University College London, London, UK.
| | | |
Collapse
|
10
|
Könnyű B, Szathmáry E, Czárán T, Szilágyi A. Kinetics and coexistence of autocatalytic reaction cycles. Sci Rep 2024; 14:18441. [PMID: 39117739 PMCID: PMC11310475 DOI: 10.1038/s41598-024-69267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Biological reproduction rests ultimately on chemical autocatalysis. Autocatalytic chemical cycles are thought to have played an important role in the chemical complexification en route to life. There are two, related issues: what chemical transformations allow such cycles to form, and at what speed they are operating. Here we investigate the latter question for solitary as well as competitive autocatalytic cycles in resource-unlimited batch and resource-limited chemostat systems. The speed of growth tends to decrease with the length of a cycle. Reversibility of the reproductive step results in parabolic growth that is conducive to competitive coexistence. Reversibility of resource uptake also slows down growth. Unilateral help by a cycle of its competitor tends to favour the competitor (in effect a parasite on the helper), rendering coexistence unlikely. We also show that deep learning is able to predict the outcome of competition just from the topology and the kinetic rate constants, provided the training set is large enough. These investigations pave the way for studying autocatalytic cycles with more complicated coupling, such as mutual catalysis.
Collapse
Affiliation(s)
- Balázs Könnyű
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary
- Center for Conceptual Foundations of Science, Parmenides Foundation, Hindenburgstr. 15., 82343, Pöcking, Germany
| | - Eörs Szathmáry
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary
- Center for Conceptual Foundations of Science, Parmenides Foundation, Hindenburgstr. 15., 82343, Pöcking, Germany
| | - Tamás Czárán
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary.
| | - András Szilágyi
- Institute of Evolution, HUN-REN Centre for Ecological Research, Konkoly-Thege Miklós út 29-33, Budapest, 1121, Hungary
- Center for Conceptual Foundations of Science, Parmenides Foundation, Hindenburgstr. 15., 82343, Pöcking, Germany
| |
Collapse
|
11
|
Moreno A, Bonduelle C. New Insights on the Chemical Origin of Life: The Role of Aqueous Polymerization of N-carboxyanhydrides (NCA). Chempluschem 2024; 89:e202300492. [PMID: 38264807 DOI: 10.1002/cplu.202300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Indexed: 01/25/2024]
Abstract
At the origin, the emergence of proteins was based on crucial prebiotic stages in which simple amino acids-based building blocks spontaneously evolved from the prebiotic soup into random proto-polymers called protoproteins. Despite advances in modern peptide synthesis, these prebiotic chemical routes to protoproteins remain puzzling. We discuss in this perspective how polymer science and systems chemistry are reaching a point of convergence in which simple monomers called N-carboxyanhydrides would be able to form such protoproteins via the emergence of a protometabolic cycle involving aqueous polymerization and featuring macromolecular Darwinism behavior.
Collapse
Affiliation(s)
- Abel Moreno
- Instituto de Quimica, UNAM, Ciudad Universitaria, Coyoacan, 04510, Mexico DF
| | - Colin Bonduelle
- CNRS, Bordeaux INP, LCPO UMR5629, Univ. Bordeaux, 33600, Pessac, France
| |
Collapse
|
12
|
Hoog TG, Pawlak MR, Gaut NJ, Baxter GC, Bethel TA, Adamala KP, Engelhart AE. Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for molecular evolution on Mars. Nat Commun 2024; 15:3863. [PMID: 38769315 PMCID: PMC11106070 DOI: 10.1038/s41467-024-48037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
Mars is a particularly attractive candidate among known astronomical objects to potentially host life. Results from space exploration missions have provided insights into Martian geochemistry that indicate oxychlorine species, particularly perchlorate, are ubiquitous features of the Martian geochemical landscape. Perchlorate presents potential obstacles for known forms of life due to its toxicity. However, it can also provide potential benefits, such as producing brines by deliquescence, like those thought to exist on present-day Mars. Here we show perchlorate brines support folding and catalysis of functional RNAs, while inactivating representative protein enzymes. Additionally, we show perchlorate and other oxychlorine species enable ribozyme functions, including homeostasis-like regulatory behavior and ribozyme-catalyzed chlorination of organic molecules. We suggest nucleic acids are uniquely well-suited to hypersaline Martian environments. Furthermore, Martian near- or subsurface oxychlorine brines, and brines found in potential lifeforms, could provide a unique niche for biomolecular evolution.
Collapse
Affiliation(s)
- Tanner G Hoog
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Matthew R Pawlak
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Nathaniel J Gaut
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Gloria C Baxter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Thomas A Bethel
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Aaron E Engelhart
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
Akatsu Y, Mutsuro-Aoki H, Tamura K. Development of Allosteric Ribozymes for ATP and l-Histidine Based on the R3C Ligase Ribozyme. Life (Basel) 2024; 14:520. [PMID: 38672790 PMCID: PMC11051094 DOI: 10.3390/life14040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
During the evolution of the RNA, short RNAs are thought to have joined together to form long RNAs, enhancing their function as ribozymes. Previously, the artificial R3C ligase ribozyme (73 nucleotides) was successfully reduced to 46 nucleotides; however, its activity decreased significantly. Therefore, we aimed to develop allosteric ribozymes, whose activities could be regulated by effector compounds, based on the reduced R3C ligase ribozyme (R3C-A). Among the variants prepared by fusing an ATP-binding aptamer RNA with R3C-A, one mutant showed increased ligation activity in an ATP-dependent manner. Melting temperature measurements of the two RNA mutants suggested that the region around the aptamer site was stabilized by the addition of ATP. This resulted in a suitable conformation for the reaction at the ligation site. Another ribozyme was prepared by fusing R3C-A with a l-histidine-binding aptamer RNA, and the ligase activity increased with increasing l-histidine concentrations. Both ATP and l-histidine play prominent roles in current molecular biology and the interaction of RNAs and these molecules could be a key step in the evolution of the world of RNAs. Our results suggest promise in the development of general allosteric ribozymes that are independent of the type of effector molecule and provide important clues to the evolution of the RNA world.
Collapse
Affiliation(s)
- Yuna Akatsu
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; (Y.A.); (H.M.-A.)
| | - Hiromi Mutsuro-Aoki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; (Y.A.); (H.M.-A.)
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; (Y.A.); (H.M.-A.)
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
14
|
Saha R, Poduval P, Baratam K, Nagesh J, Srivastava A. Membrane Catalyzed Formation of Nucleotide Clusters and Their Role in the Origins of Life: Insights from Molecular Simulations and Lattice Modeling. J Phys Chem B 2024; 128:3121-3132. [PMID: 38518175 DOI: 10.1021/acs.jpcb.3c08061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
One of the mysteries in studying the molecular "Origin of Life" is the emergence of RNA and RNA-based life forms, where nonenzymatic polymerization of nucleotides is a crucial hypothesis in formation of large RNA chains. The nonenzymatic polymerization can be mediated by various environmental settings, such as cycles of hydration and dehydration, temperature variations, and proximity to a variety of organizing matrices, such as clay, salt, fatty acids, lipid membrane, and mineral surface. In this work, we explore the influence of different phases of the lipid membrane toward nucleotide organization and polymerization in a simulated prebiotic setting. Our molecular simulations quantify the localization propensity of a mononucleotide, uridine monophosphate (UMP), in distinct membrane settings. We perform all-atom molecular dynamics (MD) simulations to estimate the role of the monophasic and biphasic membranes in modifying the behavior of UMPs localization and their clustering mechanism. Based on the interaction energy of mononucleotides with the membrane and their diffusion profile from our MD calculations, we developed a lattice-based model to explore the thermodynamic limits of the observations made from the MD simulations. The mathematical model substantiates our hypothesis that the lipid layers can act as unique substrates for "catalyzing" polymerization of mononucleotides due to the inherent spatiotemporal heterogeneity and phase change behavior.
Collapse
Affiliation(s)
- Rajlaxmi Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | - Prathyush Poduval
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Krishnakanth Baratam
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Jayashree Nagesh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
15
|
Riggi VS, Watson EB, Steele A, Rogers KL. Mineral-Mediated Oligoribonucleotide Condensation: Broadening the Scope of Prebiotic Possibilities on the Early Earth. Life (Basel) 2023; 13:1899. [PMID: 37763303 PMCID: PMC10532843 DOI: 10.3390/life13091899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The origin of life on earth requires the synthesis of protobiopolymers in realistic geologic environments along strictly abiotic pathways that rely on inorganic phases (such as minerals) instead of cellular machinery to promote condensation. One such class of polymer central to biochemistry is the polynucleotides, and oligomerization of activated ribonucleotides has been widely studied. Nonetheless, the range of laboratory conditions tested to date is limited and the impact of realistic early Earth conditions on condensation reactions remains unexplored. Here, we investigate the potential for a variety of minerals to enhance oligomerization using ribonucleotide monomers as one example to model condensation under plausible planetary conditions. The results show that several minerals differing in both structure and composition enhance oligomerization. Sulfide minerals yielded oligomers of comparable lengths to those formed in the presence of clays, with galena being the most effective, yielding oligonucleotides up to six bases long. Montmorillonite continues to excel beyond other clays. Chemical pretreatment of the clay was not required, though maximum oligomer lengths decreased from ~11 to 6 bases. These results demonstrate the diversity of mineral phases that can impact condensation reactions and highlight the need for greater consideration of environmental context when assessing prebiotic synthesis and the origin of life.
Collapse
Affiliation(s)
- Vincent S. Riggi
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - E. Bruce Watson
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Andrew Steele
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Earth and Planets Laboratory, Carnegie Institution for Science, 5251 Broad Branch Rd NW, Washington, DC 20015, USA
| | - Karyn L. Rogers
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
16
|
Kasuga M, Mutsuro-Aoki H, Ando T, Tamura K. Molecular Anatomy of the Class I Ligase Ribozyme for Elucidation of the Activity-Generating Unit. BIOLOGY 2023; 12:1012. [PMID: 37508441 PMCID: PMC10376402 DOI: 10.3390/biology12071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The class I ligase ribozyme consists of 121 nucleotides and shows a high catalytic rate comparable to that found in natural proteinaceous polymerases. In this study, we aimed to identify the smaller active unit of the class I ligase ribozyme comprising ~50 nucleotides, comparable to the estimated length of prebiotically synthesized RNA. Based on the three-dimensional structure of the class I ligase ribozyme, mutants were prepared and their ligation activities were analyzed. Sufficient ligation activity was maintained even when shortening to 94 nucleotides. However, because it would be difficult to approach the target of ~50 nucleotides by removing only the partial structure, the class I ligase ribozyme was then split into two molecules. The ligation activity was maintained even when splitting into two molecules of 55 and 39 nucleotides. Using a system with similar split ribozymes, we analyzed the ligation activity of mutants C30, C47, and A71, which have been previously identified as the positions that contribute to catalytic activity, and discussed the structural basis of the activity of these bases. Our findings suggest the rationale for the class I ligase ribozyme's assembling from multiple fragments that would be achievable with prebiotic synthesis.
Collapse
Affiliation(s)
- Miho Kasuga
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hiromi Mutsuro-Aoki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tadashi Ando
- Department of Applied Electronics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
17
|
Distinguishing Biotic vs. Abiotic Origins of ‘Bio’signatures: Clues from Messy Prebiotic Chemistry for Detection of Life in the Universe. Life (Basel) 2023; 13:life13030766. [PMID: 36983921 PMCID: PMC10058490 DOI: 10.3390/life13030766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
It is not a stretch to say that the search for extraterrestrial life is possibly the biggest of the cosmic endeavors that humankind has embarked upon. With the continued discovery of several Earth-like exoplanets, the hope of detecting potential biosignatures is multiplying amongst researchers in the astrobiology community. However, to be able to discern these signatures as being truly of biological origin, we also need to consider their probable abiotic origin. The field of prebiotic chemistry, which is aimed at understanding enzyme-free chemical syntheses of biologically relevant molecules, could particularly aid in this regard. Specifically, certain peculiar characteristics of prebiotically pertinent messy chemical reactions, including diverse and racemic product yields and lower synthesis efficiencies, can be utilized in analyzing whether a perceived ‘signature of life’ could possibly have chemical origins. The knowledge gathered from understanding the transition from chemistry to biology during the origin of life could be used for creating a library of abiotically synthesized biologically relevant organic molecules. This can then be employed in designing, standardizing, and testing mission-specific instruments/analysis systems, while also enabling the effective targeting of exoplanets with potentially ‘ongoing’ molecular evolutionary processes for robust detection of life in future explorative endeavors.
Collapse
|
18
|
Guo X, Fu S, Ying J, Zhao Y. Prebiotic chemistry: a review of nucleoside phosphorylation and polymerization. Open Biol 2023; 13:220234. [PMID: 36629018 PMCID: PMC9832566 DOI: 10.1098/rsob.220234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
The phosphorylation of nucleosides and their polymerization are crucial issues concerning the origin of life. The question of how these plausible chemical processes took place in the prebiotic Earth is still perplexing, despite several studies that have attempted to explain these prebiotic processes. The purpose of this article is to review these chemical reactions with respect to chemical evolution in the primeval Earth. Meanwhile, from our perspective, the chiral properties and selection of biomolecules should be considered in the prebiotic chemical origin of life, which may contribute to further research in this field to some extent.
Collapse
Affiliation(s)
- Xiaofan Guo
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
| | - Jianxi Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China
| |
Collapse
|
19
|
Dujardin A, Himbert S, Pudritz R, Rheinstädter MC. The Formation of RNA Pre-Polymers in the Presence of Different Prebiotic Mineral Surfaces Studied by Molecular Dynamics Simulations. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010112. [PMID: 36676060 PMCID: PMC9860743 DOI: 10.3390/life13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
We used all-atom Molecular Dynamics (MD) computer simulations to study the formation of pre-polymers between the four nucleotides in RNA (AMP, UMP, CMP, GMP) in the presence of different substrates that could have been present in a prebiotic environment. Pre-polymers are C3'-C5' hydrogen-bonded nucleotides that have been suggested to be the precursors of phosphodiester-bonded RNA polymers. We simulated wet-dry cycles by successively removing water molecules from the simulations, from ~60 to 3 water molecules per nucleotide. The nine substrates in this study include three clay minerals, one mica, one phosphate mineral, one silica, and two metal oxides. The substrates differ in their surface charge and ability to form hydrogen bonds with the nucleotides. From the MD simulations, we quantify the interactions between different nucleotides, and between nucleotides and substrates. For comparison, we included graphite as an inert substrate, which is not charged and cannot form hydrogen bonds. We also simulated the dehydration of a nucleotide-only system, which mimics the drying of small droplets. The number of hydrogen bonds between nucleotides and nucleotides and substrates was found to increase significantly when water molecules were removed from the systems. The largest number of C3'-C5' hydrogen bonds between nucleotides occurred in the graphite and nucleotide-only systems. While the surface of the substrates led to an organization and periodic arrangement of the nucleotides, none of the substrates was found to be a catalyst for pre-polymer formation, neither at full hydration, nor when dehydrated. While confinement and dehydration seem to be the main drivers for hydrogen bond formation, substrate interactions reduced the interactions between nucleotides in all cases. Our findings suggest that small supersaturated water droplets that could have been produced by geysers or springs on the primitive Earth may play an important role in non-enzymatic RNA polymerization.
Collapse
Affiliation(s)
- Alix Dujardin
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Ralph Pudritz
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
- Correspondence: ; Tel.: +1-(905)-525-9140-23134; Fax: +1-(905)-546-1252
| |
Collapse
|
20
|
Sati SC, Pant CK, Bhatt P, Pandey Y. Thymine Adsorption onto Cation Exchanged Montmorillonite Clay: Role of Biogenic Divalent Metal Cations in Prebiotic Processes of Chemical Evolution. ORIGINS LIFE EVOL B 2022; 52:233-247. [DOI: 10.1007/s11084-022-09633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022]
|
21
|
Acquisition of Dual Ribozyme-Functions in Nonfunctional Short Hairpin RNAs through Kissing-Loop Interactions. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101561. [PMID: 36294996 PMCID: PMC9604999 DOI: 10.3390/life12101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
The acquisition of functions via the elongation of nucleotides is an important factor in the development of the RNA world. In our previous study, we found that the introduction of complementary seven-membered kissing loops into inactive R3C ligase ribozymes revived their ligation activity. In this study, we applied the kissing complex formation-induced rearrangement of RNAs to two nonfunctional RNAs by introducing complementary seven-membered loops into each of them. By combining these two forms of RNAs, the ligase activity (derived from the R3C ligase ribozyme) as well as cleavage activity (derived from the hammerhead ribozyme) was obtained. Thus, effective RNA evolution toward the formation of a life system may require the achievement of “multiple” functions via kissing-loop interactions, as indicated in this study. Our results point toward the versatility of kissing-loop interactions in the evolution of RNA, i.e., two small nonfunctional RNAs can gain dual functions via a kissing-loop interaction.
Collapse
|
22
|
Origins of Life Research: The Conundrum between Laboratory and Field Simulations of Messy Environments. Life (Basel) 2022; 12:life12091429. [PMID: 36143465 PMCID: PMC9504664 DOI: 10.3390/life12091429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Most experimental results that guide research related to the origin of life are from laboratory simulations of the early Earth conditions. In the laboratory, emphasis is placed on the purity of reagents and carefully controlled conditions, so there is a natural tendency to reject impurities and lack of control. However, life did not originate in laboratory conditions; therefore, we should take into consideration multiple factors that are likely to have contributed to the environmental complexity of the early Earth. This essay describes eight physical and biophysical factors that spontaneously resolve aqueous dispersions of ionic and organic solutes mixed with mineral particles and thereby promote specific chemical reactions required for life to begin.
Collapse
|
23
|
Wu LF, Liu Z, Roberts SJ, Su M, Szostak JW, Sutherland JD. Template-Free Assembly of Functional RNAs by Loop-Closing Ligation. J Am Chem Soc 2022; 144:13920-13927. [PMID: 35880790 PMCID: PMC9354263 DOI: 10.1021/jacs.2c05601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first ribozymes are thought to have emerged at a time when RNA replication proceeded via nonenzymatic template copying processes. However, functional RNAs have stable folded structures, and such structures are much more difficult to copy than short unstructured RNAs. How can these conflicting requirements be reconciled? Also, how can the inhibition of ribozyme function by complementary template strands be avoided or minimized? Here, we show that short RNA duplexes with single-stranded overhangs can be converted into RNA stem loops by nonenzymatic cross-strand ligation. We then show that loop-closing ligation reactions enable the assembly of full-length functional ribozymes without any external template. Thus, one can envisage a potential pathway whereby structurally complex functional RNAs could have formed at an early stage of evolution when protocell genomes might have consisted only of collections of short replicating oligonucleotides.
Collapse
Affiliation(s)
- Long-Fei Wu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom.,Department of Molecular Biology and Center for Computational and Integrative Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Samuel J Roberts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Meng Su
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Jack W Szostak
- Department of Molecular Biology and Center for Computational and Integrative Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
24
|
Müller UF, Elsila J, Trail D, DasGupta S, Giese CC, Walton CR, Cohen ZR, Stolar T, Krishnamurthy R, Lyons TW, Rogers KL, Williams LD. Frontiers in Prebiotic Chemistry and Early Earth Environments. ORIGINS LIFE EVOL B 2022; 52:165-181. [PMID: 35796897 PMCID: PMC9261198 DOI: 10.1007/s11084-022-09622-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
The Prebiotic Chemistry and Early Earth Environments (PCE3) Consortium is a community of researchers seeking to understand the origins of life on Earth and in the universe. PCE3 is one of five Research Coordination Networks (RCNs) within NASA’s Astrobiology Program. Here we report on the inaugural PCE3 workshop, intended to cross-pollinate, transfer information, promote cooperation, break down disciplinary barriers, identify new directions, and foster collaborations. This workshop, entitled, “Building a New Foundation”, was designed to propagate current knowledge, identify possibilities for multidisciplinary collaboration, and ultimately define paths for future collaborations. Presentations addressed the likely conditions on early Earth in ways that could be incorporated into prebiotic chemistry experiments and conceptual models to improve their plausibility and accuracy. Additionally, the discussions that followed among workshop participants helped to identify within each subdiscipline particularly impactful new research directions. At its core, the foundational knowledge base presented in this workshop should underpin future workshops and enable collaborations that bridge the many disciplines that are part of PCE3.
Collapse
Affiliation(s)
| | - Jamie Elsila
- NASA/Goddard Space Flight Center, Greenbelt, United States
| | - Dustin Trail
- University of Rochester, Rochester, United States
| | | | - Claudia-Corina Giese
- Leiden University, Leiden, The Netherlands.,Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Jayasinghe SA, Kennedy F, McMinn A, Martin A. Bacterial Utilisation of Aliphatic Organics: Is the Dwarf Planet Ceres Habitable? Life (Basel) 2022; 12:821. [PMID: 35743852 PMCID: PMC9224870 DOI: 10.3390/life12060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
The regolith environment and associated organic material on Ceres is analogous to environments that existed on Earth 3-4 billion years ago. This has implications not only for abiogenesis and the theory of transpermia, but it provides context for developing a framework to contrast the limits of Earth's biosphere with extraterrestrial environments of interest. In this study, substrate utilisation by the ice-associated bacterium Colwellia hornerae was examined with respect to three aliphatic organic hydrocarbons that may be present on Ceres: dodecane, isobutyronitrile, and dioctyl-sulphide. Following inoculation into a phyllosilicate regolith spiked with a hydrocarbon (1% or 20% organic concentration wt%), cell density, electron transport activity, oxygen consumption, and the production of ATP, NADPH, and protein in C. hornerae was monitored for a period of 32 days. Microbial growth kinetics were correlated with changes in bioavailable carbon, nitrogen, and sulphur. We provide compelling evidence that C. hornerae can survive and grow by utilising isobutyronitrile and, in particular, dodecane. Cellular growth, electron transport activity, and oxygen consumption increased significantly in dodecane at 20 wt% compared to only minor growth at 1 wt%. Importantly, the reduction in total carbon, nitrogen, and sulphur observed at 20 wt% is attributed to biotic, rather than abiotic, processes. This study illustrates that short-term bacterial incubation studies using exotic substrates provide a useful indicator of habitability. We suggest that replicating the regolith environment of Ceres warrants further study and that this dwarf planet could be a valid target for future exploratory missions.
Collapse
Affiliation(s)
- Sahan A. Jayasinghe
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia; (S.A.J.); (F.K.)
| | - Fraser Kennedy
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia; (S.A.J.); (F.K.)
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7004, Australia; (S.A.J.); (F.K.)
| | - Andrew Martin
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
26
|
Chen C, Ding PC, Li Z, Shi GQ, Sun Y, Kantorovich LN, Besenbacher F, Yu M. Super‐Robust Xanthine–Sodium Complexes on Au(111). Angew Chem Int Ed Engl 2022; 61:e202200064. [DOI: 10.1002/anie.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Chong Chen
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- School of Chemistry and Chemical Engineering Suzhou University Suzhou 234000 China
- Interdisciplinary Nanoscience Center (iNANO) and Deptment of Physics and Astronomy Aarhus University Aarhus 8000 Denmark
| | - Pengcheng C. Ding
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- School of Instrumentation Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Zhuo Li
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Guoqiang Q. Shi
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Ye Sun
- School of Instrumentation Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Lev N. Kantorovich
- Department of Physics King's College London The Strand London WC2R 2LS UK
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO) and Deptment of Physics and Astronomy Aarhus University Aarhus 8000 Denmark
| | - Miao Yu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
27
|
Jia TZ, Nishikawa S, Fujishima K. Sequencing the Origins of Life. BBA ADVANCES 2022; 2:100049. [PMID: 37082609 PMCID: PMC10074849 DOI: 10.1016/j.bbadva.2022.100049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/10/2023] Open
Abstract
One goal of origins of life research is to understand how primitive informational and catalytic biopolymers emerged and evolved. Recently, a number of sequencing techniques have been applied to analysis of replicating and evolving primitive biopolymer systems, providing a sequence-specific and high-resolution view of primitive chemical processes. Here, we review application of sequencing techniques to analysis of synthetic and primitive nucleic acids and polypeptides. This includes next-generation sequencing of primitive polymerization and evolution processes, followed by discussion of other novel biochemical techniques that could contribute to sequence analysis of primitive biopolymer driven chemical systems. Further application of sequencing to origins of life research, perhaps as a life detection technology, could provide insight into the origin and evolution of informational and catalytic biopolymers on early Earth or elsewhere.
Collapse
Affiliation(s)
- Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Corresponding author
| | - Shota Nishikawa
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa-shi, Kanagawa 252-0882, Japan
| |
Collapse
|
28
|
Chen C, Ding PC, Li Z, Shi GQ, Sun Y, Kantorovich LN, Besenbacher F, Yu M. Super‐Robust Xanthine–Sodium Complexes on Au(111). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chong Chen
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- School of Chemistry and Chemical Engineering Suzhou University Suzhou 234000 China
- Interdisciplinary Nanoscience Center (iNANO) and Deptment of Physics and Astronomy Aarhus University Aarhus 8000 Denmark
| | - Pengcheng C. Ding
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- School of Instrumentation Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Zhuo Li
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Guoqiang Q. Shi
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Ye Sun
- School of Instrumentation Science and Engineering Harbin Institute of Technology Harbin 150001 China
| | - Lev N. Kantorovich
- Department of Physics King's College London The Strand London WC2R 2LS UK
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO) and Deptment of Physics and Astronomy Aarhus University Aarhus 8000 Denmark
| | - Miao Yu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
29
|
Criado-Reyes J, Bizzarri BM, García-Ruiz JM, Saladino R, Di Mauro E. The role of borosilicate glass in Miller-Urey experiment. Sci Rep 2021; 11:21009. [PMID: 34697338 PMCID: PMC8545935 DOI: 10.1038/s41598-021-00235-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/06/2021] [Indexed: 11/08/2022] Open
Abstract
We have designed a set of experiments to test the role of borosilicate reactor on the yielding of the Miller-Urey type of experiment. Two experiments were performed in borosilicate flasks, two in a Teflon flask and the third couple in a Teflon flask with pieces of borosilicate submerged in the water. The experiments were performed in CH4, N2, and NH3 atmosphere either buffered at pH 8.7 with NH4Cl or unbuffered solutions at pH ca. 11, at room temperature. The Gas Chromatography-Mass Spectroscopy results show important differences in the yields, the number of products, and molecular weight. In particular, a dipeptide, multi-carbon dicarboxylic acids, PAHs, and a complete panel of biological nucleobases form more efficiently or exclusively in the borosilicate vessel. Our results offer a better explanation of the famous Miller's experiment showing the efficiency of borosilicate in a triphasic system including water and the reduced Miller-Urey atmosphere.
Collapse
Affiliation(s)
- Joaquín Criado-Reyes
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas, Universidad de Granada, Avenida de las Palmeras 4, Armilla, 18100, Granada, Spain
| | - Bruno M Bizzarri
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100, Viterbo, Italy
| | - Juan Manuel García-Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas, Universidad de Granada, Avenida de las Palmeras 4, Armilla, 18100, Granada, Spain.
| | - Raffaele Saladino
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100, Viterbo, Italy.
| | - Ernesto Di Mauro
- Ecological and Biological Sciences Department (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100, Viterbo, Italy
| |
Collapse
|
30
|
Abstract
B-DNA, the informational molecule for life on earth, appears to contain ratios structured around the irrational number 1.618…, often known as the “golden ratio”. This occurs in the ratio of the length:width of one turn of the helix; the ratio of the spacing of the two helices; and in the axial structure of the molecule which has ten-fold rotational symmetry. That this occurs in the information-carrying molecule for life is unexpected, and suggests the action of some process. What this process might be is unclear, but it is central to any understanding of the formation of DNA, and so life.
Collapse
|
31
|
Vianello F, Cecconello A, Magro M. Toward the Specificity of Bare Nanomaterial Surfaces for Protein Corona Formation. Int J Mol Sci 2021; 22:7625. [PMID: 34299242 PMCID: PMC8305441 DOI: 10.3390/ijms22147625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022] Open
Abstract
Aiming at creating smart nanomaterials for biomedical applications, nanotechnology aspires to develop a new generation of nanomaterials with the ability to recognize different biological components in a complex environment. It is common opinion that nanomaterials must be coated with organic or inorganic layers as a mandatory prerequisite for applications in biological systems. Thus, it is the nanomaterial surface coating that predominantly controls the nanomaterial fate in the biological environment. In the last decades, interdisciplinary studies involving not only life sciences, but all branches of scientific research, provided hints for obtaining uncoated inorganic materials able to interact with biological systems with high complexity and selectivity. Herein, the fragmentary literature on the interactions between bare abiotic materials and biological components is reviewed. Moreover, the most relevant examples of selective binding and the conceptualization of the general principles behind recognition mechanisms were provided. Nanoparticle features, such as crystalline facets, density and distribution of surface chemical groups, and surface roughness and topography were encompassed for deepening the comprehension of the general concept of recognition patterns.
Collapse
Affiliation(s)
| | | | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (F.V.); (A.C.)
| |
Collapse
|
32
|
Role of the Interchangeable Cations on the Sorption of Fumaric and Succinic Acids on Montmorillonite and its Relevance in Prebiotic Chemistry. ORIGINS LIFE EVOL B 2021; 51:87-116. [PMID: 34251577 DOI: 10.1007/s11084-021-09609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/21/2021] [Indexed: 10/20/2022]
Abstract
It has been proposed that clays could have served as key factors in promoting the increase in complexity of organic matter in primitive terrestrial and extraterrestrial environments. The aim of this work is to study the adsorption-desorption of two dicarboxylic acids, fumaric and succinic acids, onto clay minerals (sodium and iron montmorillonite). These two acids may have played a role in prebiotic chemistry, and in extant biochemistry, they constitute an important redox couple (e.g. in Krebs cycle) in extant biochemistry. Smectite clays might have played a key role in the origins of life. The effect of pH on sorption has been tested; the analysis was performed by UV-vis and FTIR-ATR spectroscopy, X-ray diffraction and X-ray fluorescence. The results show that chemisorption is the main responsible of the adsorption processes among the dicarboxylic acids and clays. The role of the ion, present in the clay, is fundamental in the adsorption processes of dicarboxylic acids. These ions (sodium and iron) were selected due to their relevance on the geochemical environments that possibly existed into the primitive Earth. Different mechanisms are proposed to explain the sorption of dicarboxylic acids in the clay. In this work, we propose the formation of complexes among metal cations in the clays and dicarboxylic acids. The organic complexes were probably formed in the prebiotic environments enabling chemical processes, prior to the appearance of life. Thus, the data presented here are relevant to the origin of life studies.
Collapse
|
33
|
Mojarro A, Jin L, Szostak JW, Head JW, Zuber MT. In search of the RNA world on Mars. GEOBIOLOGY 2021; 19:307-321. [PMID: 33565260 PMCID: PMC8248371 DOI: 10.1111/gbi.12433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 05/17/2023]
Abstract
Advances in origins of life research and prebiotic chemistry suggest that life as we know it may have emerged from an earlier RNA World. However, it has been difficult to reconcile the conditions used in laboratory experiments with real-world geochemical environments that may have existed on the early Earth and hosted the origin(s) of life. This challenge is due to geologic resurfacing and recycling that have erased the overwhelming majority of the Earth's prebiotic history. We therefore propose that Mars, a planet frozen in time, comprised of many surfaces that have remained relatively unchanged since their formation > 4 Gya, is the best alternative to search for environments consistent with geochemical requirements imposed by the RNA world. In this study, we synthesize in situ and orbital observations of Mars and modeling of its early atmosphere into solutions containing a range of pHs and concentrations of prebiotically relevant metals (Fe2+ , Mg2+ , and Mn2+ ) spanning various candidate aqueous environments. We then experimentally determine RNA degradation kinetics due to metal-catalyzed hydrolysis (cleavage) and evaluate whether early Mars could have been permissive toward the accumulation of long-lived RNA polymers. Our results indicate that a Mg2+ -rich basalt sourcing metals to a slightly acidic (pH 5.4) environment mediates the slowest rates of RNA cleavage, though geologic evidence and basalt weathering models suggest aquifers on Mars would be near neutral (pH ~ 7). Moreover, the early onset of oxidizing conditions on Mars has major consequences regarding the availability of oxygen-sensitive metals (i.e., Fe2+ and Mn2+ ) due to increased RNA degradation rates and precipitation. Overall, (a) low pH decreases RNA cleavage at high metal concentrations; (b) acidic to neutral pH environments with Fe2+ or Mn2+ cleave more RNA than Mg2+ ; and (c) alkaline environments with Mg2+ dramatically cleaves more RNA while precipitates were observed for Fe2+ and Mn2+ .
Collapse
Affiliation(s)
- Angel Mojarro
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Lin Jin
- Department of Molecular Biology, and Center for Computational and Integrative BiologyMassachusetts General HospitalBostonMAUSA
| | - Jack W. Szostak
- Department of Molecular Biology, and Center for Computational and Integrative BiologyMassachusetts General HospitalBostonMAUSA
| | - James W. Head
- Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceRIUSA
| | - Maria T. Zuber
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
34
|
Gaut NJ, Adamala KP. Reconstituting Natural Cell Elements in Synthetic Cells. Adv Biol (Weinh) 2021; 5:e2000188. [DOI: 10.1002/adbi.202000188] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/05/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Nathaniel J. Gaut
- Department of Genetics Cell Biology and Development University of Minnesota 420 Washington Ave SE Minneapolis MN 55455 USA
| | - Katarzyna P. Adamala
- Department of Genetics Cell Biology and Development University of Minnesota 420 Washington Ave SE Minneapolis MN 55455 USA
| |
Collapse
|
35
|
Wang Z, Huang Z, Han J, Xie G, Liu J. Polyvalent Metal Ion Promoted Adsorption of DNA Oligonucleotides by Montmorillonite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1037-1044. [PMID: 33435677 DOI: 10.1021/acs.langmuir.0c02529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Montmorillonite (MMT) is a two-dimensional (2D) clay material. Its abundance on the early earth has attracted studies for its role in prebiotic reactions, and adsorption of DNA to MMT is potentially important for understanding the origin of life. Although several possible models of DNA adsorption on MMT have been established, a consensus on the adsorption mechanism has yet to be formed, thereby a fundamental adsorption study is performed here. Adding up to 300 mM NaCl failed to promote DNA adsorption on MMT, Al2O3, or SiO2 nanoparticles. For polyvalent metals, DNA adsorption was achieved following the order Ce3+ > Cu2+ > Ni2+ > Zn2+. Among them, Ce3+ and Cu2+ inverted the surface charge of MMT to positive. In addition, using washing experiments, Cu2+- and Ce3+-mediated adsorption mainly depended on the DNA phosphate backbone, while Ni2+ and Zn2+ interacted with the backbone phosphate groups and adenine bases of DNA. Overall, these polyvalent metal ions promoted DNA adsorption via a cation bridge model. This research provides new insights into the surface interactions of MMT and DNA, which is conducive to future work on the interaction between clays and biopolymers.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jing Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
36
|
Catalytic promiscuity in the RNA World may have aided the evolution of prebiotic metabolism. PLoS Comput Biol 2021; 17:e1008634. [PMID: 33497378 PMCID: PMC7864428 DOI: 10.1371/journal.pcbi.1008634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/05/2021] [Accepted: 12/14/2020] [Indexed: 11/19/2022] Open
Abstract
The Metabolically Coupled Replicator System (MCRS) model of early chemical evolution offers a plausible and efficient mechanism for the self-assembly and the maintenance of prebiotic RNA replicator communities, the likely predecessors of all life forms on Earth. The MCRS can keep different replicator species together due to their mandatory metabolic cooperation and limited mobility on mineral surfaces, catalysing reaction steps of a coherent reaction network that produces their own monomers from externally supplied compounds. The complexity of the MCRS chemical engine can be increased by assuming that each replicator species may catalyse more than a single reaction of metabolism, with different catalytic activities of the same RNA sequence being in a trade-off relation: one catalytic activity of a promiscuous ribozyme can increase only at the expense of the others on the same RNA strand. Using extensive spatially explicit computer simulations we have studied the possibility and the conditions of evolving ribozyme promiscuity in an initial community of single-activity replicators attached to a 2D surface, assuming an additional trade-off between replicability and catalytic activity. We conclude that our promiscuous replicators evolve under weak catalytic trade-off, relatively strong activity/replicability trade-off and low surface mobility of the replicators and the metabolites they produce, whereas catalytic specialists benefit from very strong catalytic trade-off, weak activity/replicability trade-off and high mobility. We argue that the combination of conditions for evolving promiscuity are more probable to occur for surface-bound RNA replicators, suggesting that catalytic promiscuity may have been a significant factor in the diversification of prebiotic metabolic reaction networks. Complex biochemical machineries responsible for maintaining the correct ratio of enzymes and genes were highly unlikely to exist at the wake of life. Individual genes must have been subject to competition for resources of replication leading to the competitive exclusion between them, and thus to the loss of genetic information. A feasible scenario that avoids competitive exclusion requires the assumption of mandatory cooperation between the enzymes. A potentially dynamically important but mostly neglected feature of RNA enzymes (ribozymes) is their capacity to catalyse more than a single reaction. Here, we analyse the possibility that this “promiscous” nature of prebiotic ribozymes could have helped the maintenance of early replicator communities cooperating in running a simple metabolism. To do so, we have implemented a spatially explicit computer model simulating the dynamics of replicating entities on a mineral surface–an extension of the Metabolically Coupled Replicator System including the possibility of multiple catalytic activities within the same replicator. Our results suggest that under realistic assumptions of replicator and metabolite mobility and feasible trade-off relations between different catalytic activities of the same RNA replicator molecule, catalytic promiscuity may have indeed helped booting up life through supporting the assembly of minimal metabolisms.
Collapse
|
37
|
Prebiotic chemistry and origins of life research with atomistic computer simulations. Phys Life Rev 2020; 34-35:105-135. [DOI: 10.1016/j.plrev.2018.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 02/02/2023]
|
38
|
Kovalenko SP. Physicochemical Processes That Probably Originated Life. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Osinski G, Cockell C, Pontefract A, Sapers H. The Role of Meteorite Impacts in the Origin of Life. ASTROBIOLOGY 2020; 20:1121-1149. [PMID: 32876492 PMCID: PMC7499892 DOI: 10.1089/ast.2019.2203] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The conditions, timing, and setting for the origin of life on Earth and whether life exists elsewhere in our solar system and beyond represent some of the most fundamental scientific questions of our time. Although the bombardment of planets and satellites by asteroids and comets has long been viewed as a destructive process that would have presented a barrier to the emergence of life and frustrated or extinguished life, we provide a comprehensive synthesis of data and observations on the beneficial role of impacts in a wide range of prebiotic and biological processes. In the context of previously proposed environments for the origin of life on Earth, we discuss how meteorite impacts can generate both subaerial and submarine hydrothermal vents, abundant hydrothermal-sedimentary settings, and impact analogues for volcanic pumice rafts and splash pools. Impact events can also deliver and/or generate many of the necessary chemical ingredients for life and catalytic substrates such as clays as well. The role that impact cratering plays in fracturing planetary crusts and its effects on deep subsurface habitats for life are also discussed. In summary, we propose that meteorite impact events are a fundamental geobiological process in planetary evolution that played an important role in the origin of life on Earth. We conclude with the recommendation that impact craters should be considered prime sites in the search for evidence of past life on Mars. Furthermore, unlike other geological processes such as volcanism or plate tectonics, impact cratering is ubiquitous on planetary bodies throughout the Universe and is independent of size, composition, and distance from the host star. Impact events thus provide a mechanism with the potential to generate habitable planets, moons, and asteroids throughout the Solar System and beyond.
Collapse
Affiliation(s)
- G.R. Osinski
- Institute for Earth and Space Exploration, University of Western Ontario, London, Canada
- Department of Earth Sciences, University of Western Ontario, London, Canada
- Address correspondence to: Dr. Gordon Osinski, Department of Earth Sciences, 1151 Richmond Street, University of Western Ontario, London ON, N6A 5B7, Canada
| | - C.S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - A. Pontefract
- Department of Biology, Georgetown University, Washington, DC, USA
| | - H.M. Sapers
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
40
|
Mutsuro-Aoki H, Hamachi K, Kurihara R, Tamura K. Aminoacylation of short hairpin RNAs through kissing-loop interactions indicates evolutionary trend of RNA molecules. Biosystems 2020; 197:104206. [PMID: 32640271 DOI: 10.1016/j.biosystems.2020.104206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
The unique G3:U70 base pair in the acceptor stem of tRNAAla has been shown to be a critical recognition site by alanyl-tRNA synthetase (AlaRS). The base pair resides on one of the arms of the L-shaped structure of tRNA (minihelix) and the genetic code has likely evolved from a primordial tRNA-aaRS (aminoacyl-tRNA synthetase) system. In terms of the evolution of tRNA, incorporation of a G:U base pair in the structure would be important. Here, we found that two independent short hairpin RNAs change their conformation through kissing-loop interactions, finally forming a minihelix-like structure, in which the G3:U70 base pair is incorporated. The RNA system can be properly aminoacylated by the minimal Escherichia coli AlaRS variant with alanylation activity (AlaRS442N). Thus, characteristic structural features produced via kissing-loop interactions may provide important clues into the evolution of RNA.
Collapse
Affiliation(s)
- Hiromi Mutsuro-Aoki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kokoro Hamachi
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Ryodai Kurihara
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
41
|
NMR analysis of nucleotide π-stacking in prebiotically relevant crowded environment. Commun Chem 2020; 3:51. [PMID: 36703483 PMCID: PMC9814533 DOI: 10.1038/s42004-020-0300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 04/07/2020] [Indexed: 01/29/2023] Open
Abstract
The prebiotic soup of a putative 'RNA World' would have been replete with a plethora of molecules resulting from complex chemical syntheses and exogeneous delivery. The presence of background molecules could lead to molecular crowding, potentially affecting the course of the reactions facilitated therein. Using NMR spectroscopy, we have analyzed the effect of crowding on the stacking ability of RNA monomers. Our findings corroborate that the purines stack more efficiently than the pyrimidine ribonucleotides. This competence is further enhanced in the presence of a crowding agent. This enhanced stacking could result in greater sequestration of the purine monomers, putting their ready availability for relevant nonenzymatic reactions into question. Thus, this study demonstrates the need for systematic characterization of molecular crowding in the context of prebiotically pertinent processes. Unraveling such phenomena is essential for our understanding of the transition from abiotic to biotic, during the origin of life.
Collapse
|
42
|
Damer B, Deamer D. The Hot Spring Hypothesis for an Origin of Life. ASTROBIOLOGY 2020; 20:429-452. [PMID: 31841362 PMCID: PMC7133448 DOI: 10.1089/ast.2019.2045] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/23/2019] [Indexed: 05/05/2023]
Abstract
We present a testable hypothesis related to an origin of life on land in which fluctuating volcanic hot spring pools play a central role. The hypothesis is based on experimental evidence that lipid-encapsulated polymers can be synthesized by cycles of hydration and dehydration to form protocells. Drawing on metaphors from the bootstrapping of a simple computer operating system, we show how protocells cycling through wet, dry, and moist phases will subject polymers to combinatorial selection and draw structural and catalytic functions out of initially random sequences, including structural stabilization, pore formation, and primitive metabolic activity. We propose that protocells aggregating into a hydrogel in the intermediate moist phase of wet-dry cycles represent a primitive progenote system. Progenote populations can undergo selection and distribution, construct niches in new environments, and enable a sharing network effect that can collectively evolve them into the first microbial communities. Laboratory and field experiments testing the first steps of the scenario are summarized. The scenario is then placed in a geological setting on the early Earth to suggest a plausible pathway from life's origin in chemically optimal freshwater hot spring pools to the emergence of microbial communities tolerant to more extreme conditions in dilute lakes and salty conditions in marine environments. A continuity is observed for biogenesis beginning with simple protocell aggregates, through the transitional form of the progenote, to robust microbial mats that leave the fossil imprints of stromatolites so representative in the rock record. A roadmap to future testing of the hypothesis is presented. We compare the oceanic vent with land-based pool scenarios for an origin of life and explore their implications for subsequent evolution to multicellular life such as plants. We conclude by utilizing the hypothesis to posit where life might also have emerged in habitats such as Mars or Saturn's icy moon Enceladus. "To postulate one fortuitously catalyzed reaction, perhaps catalyzed by a metal ion, might be reasonable, but to postulate a suite of them is to appeal to magic." -Leslie Orgel.
Collapse
Affiliation(s)
- Bruce Damer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California
| |
Collapse
|
43
|
Abstract
Abiotic emergence of ordered information stored in the form of RNA is an important unresolved problem concerning the origin of life. A polymer longer than 40–100 nucleotides is necessary to expect a self-replicating activity, but the formation of such a long polymer having a correct nucleotide sequence by random reactions seems statistically unlikely. However, our universe, created by a single inflation event, likely includes more than 10100 Sun-like stars. If life can emerge at least once in such a large volume, it is not in contradiction with our observations of life on Earth, even if the expected number of abiogenesis events is negligibly small within the observable universe that contains only 1022 stars. Here, a quantitative relation is derived between the minimum RNA length lmin required to be the first biological polymer, and the universe size necessary to expect the formation of such a long and active RNA by randomly adding monomers. It is then shown that an active RNA can indeed be produced somewhere in an inflationary universe, giving a solution to the abiotic polymerization problem. On the other hand, lmin must be shorter than ~20 nucleotides for the abiogenesis probability close to unity on a terrestrial planet, but a self-replicating activity is not expected for such a short RNA. Therefore, if extraterrestrial organisms of a different origin from those on Earth are discovered in the future, it would imply an unknown mechanism at work to polymerize nucleotides much faster than random statistical processes.
Collapse
|
44
|
Poulet F, Gross C, Horgan B, Loizeau D, Bishop JL, Carter J, Orgel C. Mawrth Vallis, Mars: A Fascinating Place for Future In Situ Exploration. ASTROBIOLOGY 2020; 20:199-234. [PMID: 31916851 DOI: 10.1089/ast.2019.2074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
After the successful landing of the Mars Science Laboratory rover, both NASA and ESA initiated a selection process for potential landing sites for the Mars2020 and ExoMars missions, respectively. Two ellipses located in the Mawrth Vallis region were proposed and evaluated during a series of meetings (three for Mars2020 mission and five for ExoMars). We describe here the regional context of the two proposed ellipses as well as the framework of the objectives of these two missions. Key science targets of the ellipses and their astrobiological interests are reported. This work confirms that the proposed ellipses contain multiple past martian wet environments of a subaerial, subsurface, and/or subaqueous character, in which to probe the past climate of Mars; build a broad picture of possible past habitable environments; evaluate their exobiological potentials; and search for biosignatures in well-preserved rocks. A mission scenario covering several key investigations during the nominal mission of each rover is also presented, as well as descriptions of how the site fulfills the science requirements and expectations of in situ martian exploration. These serve as a basis for potential future exploration of the Mawrth Vallis region with new missions and describe opportunities for human exploration of Mars in terms of resources and science discoveries.
Collapse
Affiliation(s)
- François Poulet
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, Orsay, France
| | - Christoph Gross
- Institute of Geological Sciences, Planetary Sciences and Remote Sensing Group, Freie Universität Berlin, Berlin, Germany
| | | | - Damien Loizeau
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, Orsay, France
| | | | - John Carter
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, Orsay, France
| | - Csilla Orgel
- Institute of Geological Sciences, Planetary Sciences and Remote Sensing Group, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
45
|
Abstract
The chemistry of abiotic nucleotide synthesis of RNA and DNA in the context of their prebiotic origins on early earth is a continuing challenge. How did (or how can) the nucleotides form and assemble from the small molecule inventories and under conditions that prevailed on early earth 3.5-4 billion years ago? This review provides a background and up-to-date progress that will allow the reader to judge where the field stands currently and what remains to be achieved. We start with a brief primer on the biological synthesis of nucleotides, followed by an extensive focus on the prebiotic formation of the components of nucleotides-either via the synthesis of ribose and the canonical nucleobases and then joining them together or by building both the conjoined sugar and nucleobase, part-by-part-toward the ultimate goal of forming RNA and DNA by polymerization. The review will emphasize that there are-and will continue to be-many more questions than answers from the synthetic, mechanistic, and analytical perspectives. We wrap up the review with a cautionary note in this context about coming to conclusions as to whether the problem of chemistry of prebiotic nucleotide synthesis has been solved.
Collapse
Affiliation(s)
- Mahipal Yadav
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Ravi Kumar
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|
46
|
Martínez-Bachs B, Rimola A. Prebiotic Peptide Bond Formation Through Amino Acid Phosphorylation. Insights from Quantum Chemical Simulations. Life (Basel) 2019; 9:life9030075. [PMID: 31527465 PMCID: PMC6789625 DOI: 10.3390/life9030075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Condensation reactions between biomolecular building blocks are the main synthetic channels to build biopolymers. However, under highly diluted prebiotic conditions, condensations are thermodynamically hampered since they release water. Moreover, these reactions are also kinetically hindered as, in the absence of any catalyst, they present high activation energies. In living organisms, in the formation of peptides by condensation of amino acids, this issue is overcome by the participation of adenosine triphosphate (ATP), in which, previous to the condensation, phosphorylation of one of the reactants is carried out to convert it as an activated intermediate. In this work, we present for the first time results based on density functional theory (DFT) calculations on the peptide bond formation between two glycine (Gly) molecules adopting this phosphorylation-based mechanism considering a prebiotic context. Here, ATP has been modeled by a triphosphate (TP) component, and different scenarios have been considered: (i) gas-phase conditions, (ii) in the presence of a Mg2+ ion available within the layer of clays, and (iii) in the presence of a Mg2+ ion in watery environments. For all of them, the free energy profiles have been fully characterized. Energetics derived from the quantum chemical calculations indicate that none of the processes seem to be feasible in the prebiotic context. In scenarios (i) and (ii), the reactions are inhibited due to unfavorable thermodynamics associated with the formation of high energy intermediates, while in scenario (iii), the reaction is inhibited due to the high free energy barrier associated with the condensation reactions. As a final consideration, the role of clays in this TP-mediated peptide bond formation route is advocated, since the interaction of the phosphorylated intermediate with the internal clay surfaces could well favor the reaction free energies.
Collapse
Affiliation(s)
- Berta Martínez-Bachs
- Department de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Albert Rimola
- Department de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
47
|
Shah V, de Bouter J, Pauli Q, Tupper AS, Higgs PG. Survival of RNA Replicators is much Easier in Protocells than in Surface-Based, Spatial Systems. Life (Basel) 2019; 9:life9030065. [PMID: 31394866 PMCID: PMC6789734 DOI: 10.3390/life9030065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 01/27/2023] Open
Abstract
In RNA-World scenarios for the origin of life, replication is catalyzed by polymerase ribozymes. Replicating RNA systems are subject to invasion by non-functional parasitic strands. It is well-known that there are two ways to avoid the destruction of the system by parasites: spatial clustering in models with limited diffusion, or group selection in protocells. Here, we compare computational models of replication in spatial models and protocells as closely as possible in order to determine the relative importance of these mechanisms in the RNA World. For the survival of the polymerases, the replication rate must be greater than a minimum threshold value, kmin, and the mutation rate in replication must be less than a maximum value, Mmax, which is known as the error threshold. For the protocell models, we find that kmin is substantially lower and Mmax is substantially higher than for the equivalent spatial models; thus, the survival of polymerases is much easier in protocells than on surfaces. The results depend on the maximum number of strands permitted in one protocell or one lattice site in the spatial model, and on whether replication is limited by the supply of monomers or the population size of protocells. The substantial advantages that are seen in the protocell models relative to the spatial models are robust to changing these details. Thus, cooperative polymerases with limited accuracy would have found it much easier to operate inside lipid compartments, and this suggests that protocells may have been a very early step in the development of life. We consider cases where parasites have an equal replication rate to polymerases, and cases where parasites multiply twice as fast as polymerases. The advantage of protocell models over spatial models is increased when the parasites multiply faster.
Collapse
Affiliation(s)
- Vismay Shah
- Origins Institute and Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, CA L8S 4L8, USA
| | - Jonathan de Bouter
- Origins Institute and Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, CA L8S 4L8, USA
| | - Quinn Pauli
- Origins Institute and Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, CA L8S 4L8, USA
| | - Andrew S Tupper
- Origins Institute and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, CA L8S 4L8, USA
| | - Paul G Higgs
- Origins Institute and Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, CA L8S 4L8, USA.
| |
Collapse
|
48
|
Rodrigues F, Georgelin T, Gabant G, Rigaud B, Gaslain F, Zhuang G, Gardênnia da Fonseca M, Valtchev V, Touboul D, Jaber M. Confinement and Time Immemorial: Prebiotic Synthesis of Nucleotides on a Porous Mineral Nanoreactor. J Phys Chem Lett 2019; 10:4192-4196. [PMID: 31305079 DOI: 10.1021/acs.jpclett.9b01448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the successful one-pot synthesis of adenosine mono-, di-, and triphosphate in the confined space of a mordenite zeolite. This is also the first report of ATP synthesized onto a porous mineral surface. The results revealed a plausible prebiotic route to ribonucleotides and highlighted the contribution of microporous minerals in the origins of life.
Collapse
Affiliation(s)
- Francisco Rodrigues
- Sorbonne University , CNRS UMR 8220, Laboratoire d'Archéologie Moléculaire et Structurale , 4 Place Jussieu , F-75005 Paris , France
- Department of Chemistry , State University of Paraíba , UEPB, Campina Grande , Paraíba 58429-500, Brazil
| | - Thomas Georgelin
- Centre de Biophysique Moléculaire , CNRS, Rue Charles Sadron, 45000 Orléans , France
| | - Guillaume Gabant
- Centre de Biophysique Moléculaire , CNRS, Rue Charles Sadron, 45000 Orléans , France
| | - Baptiste Rigaud
- CNRS Institut des Matériaux de Paris Centre (FR2482) , 4 Place Jussieu , 75005 Paris , France
| | - Fabrice Gaslain
- MINES ParisTech , PSL - Research University , MAT - Centre des Matériaux, CNRS UMR 7633, BP 87, F-91003 Evry , France
| | - Guanzheng Zhuang
- Sorbonne University , CNRS UMR 8220, Laboratoire d'Archéologie Moléculaire et Structurale , 4 Place Jussieu , F-75005 Paris , France
| | - Maria Gardênnia da Fonseca
- Department of Chemistry , Federal University of Paraíba , UFPB, João Pessoa , Paraíba 58059-900 , Brazil
| | - Valentin Valtchev
- Normandy University , Laboratoire Catalyse & Spectrochimie, ENSICAEN , 6 bl Maréchal Juin , 14050 Caen , France
| | - David Touboul
- CNRS-Institut de Chimie des Substances Naturelles, UPR2301 , Université Paris-Saclay , 91198 Gif-sur-Yvette cedex, France
| | - Maguy Jaber
- Sorbonne University , CNRS UMR 8220, Laboratoire d'Archéologie Moléculaire et Structurale , 4 Place Jussieu , F-75005 Paris , France
| |
Collapse
|
49
|
Mizuuchi R, Blokhuis A, Vincent L, Nghe P, Lehman N, Baum D. Mineral surfaces select for longer RNA molecules. Chem Commun (Camb) 2019; 55:2090-2093. [PMID: 30694272 PMCID: PMC6377063 DOI: 10.1039/c8cc10319d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report empirically and theoretically that multiple prebiotic minerals can selectively accumulate longer RNAs, with selectivity enhanced at higher temperatures. We further demonstrate that surfaces can be combined with a catalytic RNA to form longer RNA polymers, supporting the potential of minerals to develop genetic information on the early Earth.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Department of Chemistry, Portland State University, Portland, OR 97201, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Hamachi K, Mutsuro-Aoki H, Tanizawa K, Hirasawa I, Umehara T, Tamura K. Effects of complementary loop composition in truncated R3C ligase ribozymes on kiss switch activation. Biosystems 2019; 177:9-15. [PMID: 30639771 DOI: 10.1016/j.biosystems.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/24/2022]
Abstract
The formation of a kissing-loop through the introduction of complementary 7-membered loops is known to dramatically increase the activity of truncated R3C ligase ribozymes that otherwise display reduced activity. Restoration of activity is thought to result from kissing complex formation-induced rearrangement of two molecules with complementary loops. By combining two types of R3C ligase ribozyme mutants, <A> and <hairpin-ΔU>, the influence of loop composition on ligation activity was investigated. Substrate ligation occurred in <hairpin-ΔU>, but not in <A>, despite the absence of a substrate-binding site in <hairpin-ΔU>. Loop-loop interactions of <A>- and <hairpin-ΔU>-variants with complementary 6-membered loops also resulted in proper kissing-complex formation-induced substrate ligation. However, heterogeneous combinations of 7- and 6-membered loops, and/or of 6- and 5-membered loops had distinct results that depended upon the sequence and bulged nucleotides of the loop regions. These differences suggest that both thermodynamic and kinetic controls act upon the kissing-loop interaction-mediated rearrangement of the shortened trans-R3C ribozymes.
Collapse
Affiliation(s)
- Kokoro Hamachi
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hiromi Mutsuro-Aoki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kana Tanizawa
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Ito Hirasawa
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Takuya Umehara
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|