1
|
Pearce DA, Lawrence JE, Avila Jimenez ML. Crucial stepping stones in freshwater microbiology. Nat Microbiol 2025; 10:6-7. [PMID: 39762434 DOI: 10.1038/s41564-024-01898-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Affiliation(s)
- David A Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria at Newcastle, Newcastle-upon-Tyne, UK.
- British Antarctic Survey, Cambridge, UK.
| | - James E Lawrence
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria at Newcastle, Newcastle-upon-Tyne, UK
| | | |
Collapse
|
2
|
Arrington HB, Lee SG, Lee JH, Covi JA. Assessment of the cyst wall and surface microbiota in dormant embryos of the Antarctic calanoid copepod, Boeckella poppei. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70035. [PMID: 39603712 PMCID: PMC11602222 DOI: 10.1111/1758-2229.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Embryos of zooplankton from inland waters and estuaries can remain viable for years in an extreme state of metabolic suppression. How these embryos resist microbial attack with limited metabolic capacity for immune defence or repair is unknown. As a first step in evaluating resistance to microbial attack in dormant zooplankton, surface colonization of the Antarctic freshwater copepod, Boeckella poppei, was evaluated. Scanning electron micrographs demonstrate the outer two layers of a five-layered cyst wall in B. poppei fragment and create a complex environment for microbial colonization. By contrast, the third layer remains undamaged during years of embryo storage in native sediment. The absence of damage to the third layer indicates that it is resistant to degradation by microbial enzymes. Scanning electron microscopy and microbiome analysis using the 16S ribosomal subunit gene and internal transcribed spacer (ITS) region demonstrate the presence of a diverse microbial community on the embryo surface. Coverage of the embryos with microbial life varies from a sparse population with individual microbes to complete coverage by a thick biofilm. Extracellular polymeric substance binds debris and provides a structural element for the microbial community. Frequent observation of bacterial fission indicates that the biofilm is viable in stored sediments.
Collapse
Affiliation(s)
- Hunter B. Arrington
- Department of Biology and Marine BiologyThe University of North Carolina at WilmingtonWilmingtonNorth CarolinaUSA
| | - Sung Gu Lee
- Division of Polar Life ScienceKorea Polar Research Institute (KOPRI)IncheonKorea
- Department of Polar SciencesUniversity of Science and TechnologyIncheonKorea
| | - Jun Hyuck Lee
- Division of Polar Life ScienceKorea Polar Research Institute (KOPRI)IncheonKorea
- Department of Polar SciencesUniversity of Science and TechnologyIncheonKorea
| | - Joseph A. Covi
- Department of Biology and Marine BiologyThe University of North Carolina at WilmingtonWilmingtonNorth CarolinaUSA
| |
Collapse
|
3
|
M B B, Tiwari AK, N S M, Mohan M, C M L. Source apportionment of major ions and trace metals in the lacustrine systems of Schirmacher Hills, East Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174189. [PMID: 38936712 DOI: 10.1016/j.scitotenv.2024.174189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The fabric of the Antarctic lacustrine system has a crucial role in assimilating the anthropogenic inputs and mitigating their long time impacts on climate change. Here, we present the changes in the concentrations of major ions and trace metals in the surface water of the lacustrine system to understand the extent of anthropogenic impacts from the adjacent Schirmacher Hills, East Antarctica. The results show that the land-locked lakes (closed-basin lakes surrounded by topographical barriers such as mountains or bedrock formations) in the region have a moderate enrichment in elemental concentrations compared to the pro-glacial lakes (marginal freshwater bodies that form at the terminus of a glacier or ice sheet). The water quality index (WQI: 7.58-12.63) and pollution evaluation index (PEI: 1.36-2.35) remained normal, indicating that the water in these lake are of good quality. However, a significant correlation between lithogenic elements (Al, Fe) and potentially toxic elements (Cd, Cr, and Ba), suggests an increase in the anthropogenic impacts. Based on the principal component analysis (PCA), the source of trace metals to the lacustrine systems appears to be the surrounding environment, followed by aerosol dust particles. Hierarchical cluster analysis (HCA) revealed that regional topography significantly impacts the supply of major ions/trace metals to these lakes. The present study provides baseline data and can be used to estimate and forecast future local and/or global anthropogenic contaminations in the lacustrine system of Schirmacher Hills, East Antarctica. Moreover, the presence of research stations (Maitri and Novolazarevskaya), tourist activities, and the potential for anthropogenic stressors necessitate continued monitoring and impact assessment programs within the Schirmacher Hills lacustrine systems. These programs are crucial for safeguarding this pristine ecosystem from future environmental disturbances under a changing Antarctic climate, as mandated by the Antarctic Treaty System and the Indian Antarctic Act.
Collapse
Affiliation(s)
- Binish M B
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India.
| | - A K Tiwari
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India
| | - Magesh N S
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India; Centre for Water Resources Development and Management, Kozhikode, Kerala 673571, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India; International Centre for Polar Studies, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Laluraj C M
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa 403804, India.
| |
Collapse
|
4
|
Tytgat B, Verleyen E, Sweetlove M, Van den Berge K, Pinseel E, Hodgson DA, Chown SL, Sabbe K, Wilmotte A, Willems A, The Polar Lake Sampling Consortium, Vyverman W. Polar lake microbiomes have distinct evolutionary histories. SCIENCE ADVANCES 2023; 9:eade7130. [PMID: 37976353 PMCID: PMC10656066 DOI: 10.1126/sciadv.ade7130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Toward the poles, life on land is increasingly dominated by microorganisms, yet the evolutionary origin of polar microbiomes remains poorly understood. Here, we use metabarcoding of Arctic, sub-Antarctic, and Antarctic lacustrine benthic microbial communities to test the hypothesis that high-latitude microbiomes are recruited from a globally dispersing species pool through environmental selection. We demonstrate that taxonomic overlap between the regions is limited within most phyla, even at higher-order taxonomic levels, with unique deep-branching phylogenetic clades being present in each region. We show that local and regional taxon richness and net diversification rate of regionally restricted taxa differ substantially between polar regions in both microeukaryotic and bacterial biota. This suggests that long-term evolutionary divergence resulting from low interhemispheric dispersal and diversification in isolation has been a prominent process shaping present-day polar lake microbiomes. Our findings illuminate the distinctive biogeography of polar lake ecosystems and underscore that conservation efforts should include their unique microbiota.
Collapse
Affiliation(s)
- Bjorn Tytgat
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Elie Verleyen
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Maxime Sweetlove
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Koen Van den Berge
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Gent, Belgium
| | - Eveline Pinseel
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
- Meise Botanic Garden, Meise, Belgium
| | - Dominic A. Hodgson
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
- Department of Geography, Durham University, Durham, UK
| | - Steven L. Chown
- Securing Antarctica’s Environmental Future, School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
| | - Annick Wilmotte
- InBio-Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Ghent University, Gent, Belgium
| | | | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Ghent University, Gent, Belgium
| |
Collapse
|
5
|
Kollár J, Kopalová K, Kavan J, Vrbická K, Nývlt D, Nedbalová L, Stibal M, Kohler TJ. Recently formed Antarctic lakes host less diverse benthic bacterial and diatom communities than their older counterparts. FEMS Microbiol Ecol 2023; 99:fiad087. [PMID: 37516444 PMCID: PMC10446143 DOI: 10.1093/femsec/fiad087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023] Open
Abstract
Glacier recession is creating new water bodies in proglacial forelands worldwide, including Antarctica. Yet, it is unknown how microbial communities of recently formed "young" waterbodies (originating decades to a few centuries ago) compare with established "old" counterparts (millennia ago). Here, we compared benthic microbial communities of different lake types on James Ross Island, Antarctic Peninsula, using 16S rDNA metabarcoding and light microscopy to explore bacterial and diatom communities, respectively. We found that the older lakes host significantly more diverse bacterial and diatom communities compared to the young ones. To identify potential mechanisms for these differences, linear models and dbRDA analyses suggested combinations of water temperature, pH, and conductivity to be the most important factors for diversity and community structuring, while differences in geomorphological and hydrological stability, though more difficult to quantify, are likely also influential. These results, along with an indicator species analysis, suggest that physical and chemical constraints associated with individual lakes histories are likely more influential to the assembly of the benthic microbial communities than lake age alone. Collectively, these results improve our understanding of microbial community drivers in Antarctic freshwaters, and help predict how the microbial landscape may shift with future habitat creation within a changing environment.
Collapse
Affiliation(s)
- Jan Kollár
- Faculty of Science, Department of Ecology, Charles University, Viničná 7, Prague 2, CZ-12844, Czech Republic
| | - Kateřina Kopalová
- Faculty of Science, Department of Ecology, Charles University, Viničná 7, Prague 2, CZ-12844, Czech Republic
| | - Jan Kavan
- Polar-Geo-Lab, Faculty of Science, Department of Geography, Masaryk University, Kotlářská 2, Brno, CZ-61137, Czech Republic
- Alfred Jahn Cold Regions Research Centre, University of Wroclaw, pl. Uniwersytecki 1, Wroclaw 50-137, Poland
| | - Kristýna Vrbická
- Faculty of Science, Department of Ecology, Charles University, Viničná 7, Prague 2, CZ-12844, Czech Republic
| | - Daniel Nývlt
- Polar-Geo-Lab, Faculty of Science, Department of Geography, Masaryk University, Kotlářská 2, Brno, CZ-61137, Czech Republic
| | - Linda Nedbalová
- Faculty of Science, Department of Ecology, Charles University, Viničná 7, Prague 2, CZ-12844, Czech Republic
| | - Marek Stibal
- Faculty of Science, Department of Ecology, Charles University, Viničná 7, Prague 2, CZ-12844, Czech Republic
| | - Tyler J Kohler
- Faculty of Science, Department of Ecology, Charles University, Viničná 7, Prague 2, CZ-12844, Czech Republic
| |
Collapse
|
6
|
Lukashanets DA, Maisak NN. Bdelloid rotifers (Bdelloidea, Rotifera) in shallow freshwater ecosystems of Thala Hills, East Antarctica. Polar Biol 2022. [DOI: 10.1007/s00300-022-03106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractShallow waters, little-studied in Continental Antarctica, among other micrometazoans host bdelloid rotifers, which diversity, ecology, and distributional patterns in turn are poorly known. To address these issues, we analysed plankton samples collected during the 2018/2019 season in the Thala Hills oasis (East Antarctica), in shallow freshwater lakes and temporary ponds that formed during intense snow melting in December–January. Bdelloids were present in more than 90% of the sites with nine species revealed. The most frequent were Antarctic endemics [Philodina gregaria (P. gregaria), Adineta grandis (A. grandis), and Adineta coatsi (A. coatsi)], while some non-abundant bdelloids either provide characteristics of widely distributed taxa or require further taxonomy studies as they can be species new for the science. The abundance of bdelloids varied greatly across studied sites and localities, with a maximum of more than 700,000 ind m−3 and an increasing tendency to be more numerous in rock-basin temporary ponds, compared to larger lakes, with variability for different taxa. The environmental parameters strongly explain the bdelloid distribution (78.4% of the variation), with the most important factors being the type of bottom (9.9%), altitude (8.0%), TDS (6.6%), and salinity (6.5%). The cyanobacterial mats from the bottom didn’t contribute much to bdelloid distributional patterns, despite being known to be a preferred habitat for micrometazoans including rotifers. These results shape a perspective to study the processes of the formation of Antarctic seasonal aquatic habitats settled by organisms, which demonstrate an ecomorphological range from planktonic organisms to crawling ‘scrapers’.
Collapse
|
7
|
Prado T, Brandão ML, Fumian TM, Freitas L, Chame M, Leomil L, Magalhães MGP, Degrave WMS, Leite JPG, Miagostovich MP. Virome analysis in lakes of the South Shetland Islands, Antarctica - 2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158537. [PMID: 36075413 DOI: 10.1016/j.scitotenv.2022.158537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/05/2022] [Accepted: 09/01/2022] [Indexed: 05/25/2023]
Abstract
Polar freshwater ecosystems are characterized by a distinct microbiota. However, little is known about viral diversity and abundance, especially regarding the ecology of RNA viruses. We used shotgun metagenomic analysis on samples from Antarctic ecosystems, and report here the characterization of the virome fraction, from different lakes located in the South Shetland Islands (Penguin, Ardley, Deception and King George Island) in the Peninsula Antarctica, in the summer season 2020. DNA viruses (99.4 %) prevailed over RNA viruses (0.6 %) in the lake samples. Six viral orders were identified in the metagenomic libraries: Caudovirales (dsDNA), which was prevalent in most lakes; Picornavirales (ssRNA+); Sobelivirales (ssRNA+); Tolivirales (ssRNA+); Petitvirales (ssDNA) and Baphyvirales (ssDNA), including eight viral families (Herelleviridae, Siphoviridae, Myoviridae, Microviridae, Marnaviridae, Bacilladnaviridae, Barnaviridae and Tombusviridae) and several other, mainly non-classified ssRNA(+) viruses in the lakes of Ardley Island. Bacteriophages (dsDNA) (Herelleviridae family) infecting the phylum Firmicutes and Siphoviridae were predominant in most lakes evaluated. Functional analysis demonstrated a prevalence of unknown proteins (68 %) in the virome. Our prospective study provides virome analysis data from different lakes in the South Shetland Islands, Antarctica, opening exploratory lines for future research related to the biodiversity and viral ecology in this extreme ecosystem.
Collapse
Affiliation(s)
- Tatiana Prado
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil.
| | - Martha Lima Brandão
- FioAntar Project/ VPPIS - Fiocruz, Av Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| | - Lucas Freitas
- Laboratory of Respiratory Virus and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro CEP 21040-360, Brazil
| | - Marcia Chame
- Institutional Platform for Biodiversity and Wildlife Health, Av Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Luciana Leomil
- SENAI Innovation Institute for Biosynthetics and Fibers, Technology Center for Chemical and Textile Industry, 4° Andar: Biotecnologia, Rua Fernando de Souza Barros, 120, Parque Tecnológico da UFRJ, Cidade Universitária, Rio de Janeiro CEP 21941-857, Brazil
| | - Maithê Gaspar Pontes Magalhães
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Wim Maurits Sylvain Degrave
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| |
Collapse
|
8
|
Maturana CS, Biersma EM, Díaz A, González-Wevar C, Contador T, Convey P, Jackson JA, Poulin E. Survivors and colonizers: Contrasting biogeographic histories reconciled in the Antarctic freshwater copepod Boeckella poppei. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1012852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Two main hypotheses have been proposed to explain the contemporary distribution of Antarctic terrestrial biota. We assess whether the current distribution of maritime Antarctic populations of the freshwater copepod Boeckella poppei is the result of (1) a post-Last Glacial Maximum (LGM) colonization, or whether (2) the species survived in regional glacial refugia throughout the LGM and earlier glaciations. Using 438 specimens from 34 different sampling sites across Southern South America, South Georgia, South Orkney Islands, South Shetland Islands, and the Antarctic Peninsula, we analyzed mitochondrial and nuclear sequences to uncover patterns of genetic diversity and population structure. We also performed median-joining haplotype network, phylogenetic reconstruction, and divergence time analyses. Finally, we evaluated past demographic changes and historical scenarios using the Approximate Bayesian Computation (ABC) method. Our data support the existence of two clades with different and contrasting biogeographic histories. The first clade has been present in maritime Antarctica since at least the mid-Pleistocene, with the South Orkney Islands the most likely refugial area. The second clade has a broader distribution including southern South America, South Georgia, South Shetland Islands, and the Antarctic Peninsula. The ABC method identified long-distance dispersal (LDD) colonization event(s) from southern South America to South Georgia and the maritime Antarctic after the LGM deglaciation, supporting more recent colonization of Antarctic locations. The current Antarctic and sub-Antarctic distribution of B. poppei is likely derived from two independent biogeographic events. The combination of both (1) post-LGM colonization from southern South America and (2) longer-term persistence in in situ regional refugia throughout glacial periods challenges current understanding of the biogeographic history of Antarctic freshwater biota. Re-colonization of ice-impacted Antarctic areas would have occurred following a LDD and Establishment model, pointing to the existence of possible post-dispersal barriers, despite widely assumed high passive dispersal capacity in freshwater invertebrates.
Collapse
|
9
|
Bergami E, Krupinski Emerenciano A, Palmeira Pinto L, Reina Joviano W, Font A, Almeida de Godoy T, Silva JRMC, González-Aravena M, Corsi I. Behavioural, physiological and molecular responses of the Antarctic fairy shrimp Branchinecta gaini (Daday, 1910) to polystyrene nanoplastics. NANOIMPACT 2022; 28:100437. [PMID: 36332901 DOI: 10.1016/j.impact.2022.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution represents an emerging environmental issue in terrestrial Antarctica, especially in the Antarctic Peninsula and Maritime Antarctica, which have been recently recognized as hot spots for plastic litter. In these regions, freshwater (FW) environments such as lakes host isolated ecosystems and species that can be severely affected by increasing environmental and anthropogenic stressors, which include plastics that are still overlooked. In this study, we investigated for the first time the impact of nanoplastics on adults of the fairy shrimp Branchinecta gaini (Order Anostraca) populating Antarctic FW ecosystems, using surface charged polystyrene nanoparticles (PS NPs) as a proxy. Short-term acute toxicity (48 h) was investigated by exposing adults to carboxyl (-COOH, 60 nm) and amino-modified (-NH2, 50 nm) PS NPs at 1 and 5 μg mL-1. Biodisposition of PS NPs and lethal and sub-lethal effects (i.e., swimming, moulting, histology, gene expression) were assessed. Behaviour of PS NPs in Antarctic FW media was monitored through 48 h of exposure showing that both PS NPs kept their nanoscale size in the Antarctic FW media. Survival of fairy shrimp adults over short-term exposure was not affected, on the other hand an increase in moulting rate and alterations in the gut epithelium were observed upon exposure to both PS NPs. Significant alterations at the behavioural (ventilation rate) and molecular (up-regulation of Hsp70mit, Hsp83, Sod, P450) levels were related to PS NP surface charge and associated with PS-NH2 exposure only. Nanoplastics could represent a threat for Antarctic FW biodiversity and the Antarctic fairy shrimp could be a valuable model for assessing their impact on such remote and pristine aquatic ecosystems.
Collapse
Affiliation(s)
- E Bergami
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy.
| | - A Krupinski Emerenciano
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. L. Prestes 1524, São Paulo, SP 05508-000, Brazil
| | - L Palmeira Pinto
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. L. Prestes 1524, São Paulo, SP 05508-000, Brazil
| | - W Reina Joviano
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. L. Prestes 1524, São Paulo, SP 05508-000, Brazil
| | - A Font
- Scientific Department, Chilean Antarctic Institute, Plaza Muñoz Gamero 1055, 6200965 Punta Arenas, Chile
| | - T Almeida de Godoy
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. L. Prestes 1524, São Paulo, SP 05508-000, Brazil
| | - J R M C Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. L. Prestes 1524, São Paulo, SP 05508-000, Brazil
| | - M González-Aravena
- Scientific Department, Chilean Antarctic Institute, Plaza Muñoz Gamero 1055, 6200965 Punta Arenas, Chile
| | - I Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| |
Collapse
|
10
|
Rosa LH, Ogaki MB, Lirio JM, Vieira R, Coria SH, Pinto OHB, Carvalho-Silva M, Convey P, Rosa CA, Câmara PEAS. Fungal diversity in a sediment core from climate change impacted Boeckella Lake, Hope Bay, north-eastern Antarctic Peninsula assessed using metabarcoding. Extremophiles 2022; 26:16. [PMID: 35499659 DOI: 10.1007/s00792-022-01264-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023]
Abstract
We studied the fungal DNA present in a lake sediment core obtained from Trinity Peninsula, Hope Bay, north-eastern Antarctic Peninsula, using metabarcoding through high-throughput sequencing (HTS). Sequences obtained were assigned to 146 amplicon sequence variants (ASVs) primarily representing unknown fungi, followed by the phyla Ascomycota, Rozellomycota, Basidiomycota, Chytridiomycota and Mortierellomycota. The most abundant taxa were assigned to Fungal sp., Pseudeurotium hygrophilum, Rozellomycota sp. 1, Pseudeurotiaceae sp. 1 and Chytridiomycota sp. 1. The majority of the DNA reads, representing 40 ASVs, could only be assigned at higher taxonomic levels and may represent taxa not currently included in the sequence databases consulted and/or be previously undescribed fungi. Different sections of the core were characterized by high sequence diversity, richness and moderate ecological dominance indices. The assigned diversity was dominated by cosmopolitan cold-adapted fungi, including known saprotrophic, plant and animal pathogenic and symbiotic taxa. Despite the overall dominance of Ascomycota and Basidiomycota and psychrophilic Mortierellomycota, members of the cryptic phyla Rozellomycota and Chytridiomycota were also detected in abundance. As Boeckella Lake may cease to exist in approaching decades due the effects of local climatic changes, it also an important location for the study of the impacts of these changes on Antarctic microbial diversity.
Collapse
Affiliation(s)
- Luiz Henrique Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, 31270-901, Brazil.
| | - Mayara Baptistucci Ogaki
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | | | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.,Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
| | - Carlos Augusto Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, PO Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | | |
Collapse
|
11
|
Roldán DM, Carrizo D, Sánchez-García L, Menes RJ. Diversity and Effect of Increasing Temperature on the Activity of Methanotrophs in Sediments of Fildes Peninsula Freshwater Lakes, King George Island, Antarctica. Front Microbiol 2022; 13:822552. [PMID: 35369426 PMCID: PMC8969513 DOI: 10.3389/fmicb.2022.822552] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Global warming has a strong impact on polar regions. Particularly, the Antarctic Peninsula and nearby islands have experienced a marked warming trend in the past 50 years. Therefore, higher methane (CH4) emissions from this area could be expected in the future. Since mitigation of these emissions can be carried out by microbial oxidation, understanding this biological process is crucial since to our knowledge, no related studies have been performed in this area before. In this work, the aerobic CH4 oxidation potential of five freshwater lake sediments of Fildes Peninsula (King George Island, South Shetland Islands) was determined with values from 0.07 to 10 μmol CH4 gdw–1 day–1 and revealed up to 100-fold increase in temperature gradients (5, 10, 15, and 20°C). The structure and diversity of the bacterial community in the sediments were analyzed by next-generation sequencing (Illumina MiSeq) of 16S rRNA and pmoA genes. A total of 4,836 ASVs were identified being Proteobacteria, Actinobacteriota, Acidobacteriota, and Bacteroidota the most abundant phyla. The analysis of the pmoA gene identified 200 ASVs of methanotrophs, being Methylobacter Clade 2 (Type I, family Methylococcaceae) the main responsible of the aerobic CH4 oxidation. Moreover, both approaches revealed the presence of methanotrophs of the classes Gammaproteobacteria (families Methylococcaceae and Crenotrichaceae), Alphaproteobacteria (family Methylocystaceae), Verrucomicrobia (family Methylacidiphilaceae), and the candidate phylum of anaerobic methanotrophs Methylomirabilota. In addition, bacterial phospholipid fatty acids (PLFA) biomarkers were studied as a proxy for aerobic methane-oxidizing bacteria and confirmed these results. Methanotrophic bacterial diversity was significantly correlated with pH. In conclusion, our findings suggest that aerobic methanotrophs could mitigate in situ CH4 emissions in a future scenario with higher temperatures in this climate-sensitive area. This study provides new insights into the diversity of methanotrophs, as well as the influence of temperature on the CH4 oxidation potential in sediments of freshwater lakes in polar regions of the southern hemisphere.
Collapse
Affiliation(s)
- Diego M. Roldán
- Laboratorio de Ecología Microbiana Medioambiental, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Microbiología, Unidad Asociada del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Daniel Carrizo
- Centro de Astrobiología, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial (CSIC-INTA), Madrid, Spain
| | - Laura Sánchez-García
- Centro de Astrobiología, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial (CSIC-INTA), Madrid, Spain
| | - Rodolfo Javier Menes
- Laboratorio de Ecología Microbiana Medioambiental, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Microbiología, Unidad Asociada del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Rodolfo Javier Menes,
| |
Collapse
|
12
|
Highly Stable, Cold-Active Aldehyde Dehydrogenase from the Marine Antarctic Flavobacterium sp. PL002. FERMENTATION 2021. [DOI: 10.3390/fermentation8010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stable aldehyde dehydrogenases (ALDH) from extremophilic microorganisms constitute efficient catalysts in biotechnologies. In search of active ALDHs at low temperatures and of these enzymes from cold-adapted microorganisms, we cloned and characterized a novel recombinant ALDH from the psychrotrophic Flavobacterium PL002 isolated from Antarctic seawater. The recombinant enzyme (F-ALDH) from this cold-adapted strain was obtained by cloning and expressing of the PL002 aldH gene (1506 bp) in Escherichia coli BL21(DE3). Phylogeny and structural analyses showed a high amino acid sequence identity (89%) with Flavobacterium frigidimaris ALDH and conservation of all active site residues. The purified F-ALDH by affinity chromatography was homotetrameric, preserving 80% activity at 4 °C for 18 days. F-ALDH used both NAD+ and NADP+ and a broad range of aliphatic and aromatic substrates, showing cofactor-dependent compensatory KM and kcat values and the highest catalytic efficiency (0.50 µM−1 s−1) for isovaleraldehyde. The enzyme was active in the 4–60 °C-temperature interval, with an optimal pH of 9.5, and a preference for NAD+-dependent reactions. Arrhenius plots of both NAD(P)+-dependent reactions indicated conformational changes occurring at 30 °C, with four(five)-fold lower activation energy at high temperatures. The high thermal stability and substrate-specific catalytic efficiency of this novel cold-active ALDH favoring aliphatic catalysis provided a promising catalyst for biotechnological and biosensing applications.
Collapse
|
13
|
Maturana CS, Rosenfeld S, Biersma EM, Segovia NI, González‐Wevar CA, Díaz A, Naretto J, Duggan IC, Hogg ID, Poulin E, Convey P, Jackson JA. Historical biogeography of the Gondwanan freshwater genus
Boeckella
(Crustacea): Timing and modes of speciation in the Southern Hemisphere. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Claudia S. Maturana
- Laboratorio de Ecología Molecular Departamento de Ciencias Ecológicas Facultad de Ciencias Universidad de Chile Ñuñoa Chile
- Instituto de Ecología y Biodiversidad (IEB) Ñuñoa Chile
- British Antarctic Survey (BAS)Natural Environment Research Council Cambridge UK
| | - Sebastián Rosenfeld
- Laboratorio de Ecología Molecular Departamento de Ciencias Ecológicas Facultad de Ciencias Universidad de Chile Ñuñoa Chile
- Instituto de Ecología y Biodiversidad (IEB) Ñuñoa Chile
- Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos Universidad de Magallanes Punta Arenas Chile
| | - Elisabeth M. Biersma
- British Antarctic Survey (BAS)Natural Environment Research Council Cambridge UK
- Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Nicolás I. Segovia
- Instituto de Ecología y Biodiversidad (IEB) Ñuñoa Chile
- Laboratorio de Diversidad Molecular Departamento de Biología Marina Facultad de Ciencias del Mar Universidad Católica del Norte Coquimbo Chile
| | - Claudio A. González‐Wevar
- Instituto de Ecología y Biodiversidad (IEB) Ñuñoa Chile
- Instituto de Ciencias Marinas y Limnológicas (ICML) Facultad de Ciencias Universidad Austral de Chile Valdivia Chile
- Centro FONDAP de Investigaciones en Dinámicas de Ecosistemas Marinos de Altas Latitudes Universidad Austral de Chile Valdivia Chile
| | - Angie Díaz
- Instituto de Ecología y Biodiversidad (IEB) Ñuñoa Chile
- Laboratorio de Ecología Molecular Marina Departamento de Zoología Universidad de Concepción Concepción Chile
| | - Javier Naretto
- Laboratorio de Ecología Molecular Departamento de Ciencias Ecológicas Facultad de Ciencias Universidad de Chile Ñuñoa Chile
- Costa Humboldt Peñalolén Chile
| | - Ian C. Duggan
- School of Science University of Waikato Hamilton New Zealand
| | - Ian D. Hogg
- School of Science University of Waikato Hamilton New Zealand
- Polar Knowledge Canada Canadian High Arctic Research Station Cambridge Bay Vic. Canada
| | - Elie Poulin
- Laboratorio de Ecología Molecular Departamento de Ciencias Ecológicas Facultad de Ciencias Universidad de Chile Ñuñoa Chile
- Instituto de Ecología y Biodiversidad (IEB) Ñuñoa Chile
| | - Peter Convey
- British Antarctic Survey (BAS)Natural Environment Research Council Cambridge UK
| | - Jennifer A. Jackson
- British Antarctic Survey (BAS)Natural Environment Research Council Cambridge UK
| |
Collapse
|
14
|
Fonseca BM, Câmara PEAS, Ogaki MB, Pinto OHB, Lirio JM, Coria SH, Vieira R, Carvalho-Silva M, Amorim ET, Convey P, Rosa LH. Green algae (Viridiplantae) in sediments from three lakes on Vega Island, Antarctica, assessed using DNA metabarcoding. Mol Biol Rep 2021; 49:179-188. [PMID: 34686990 DOI: 10.1007/s11033-021-06857-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vega Island is located off the eastern tip of the Antarctic Peninsula (Maritime Antarctica), in the Weddell Sea. In this study, we used metabarcoding to investigate green algal DNA sequence diversity present in sediments from three lakes on Vega Island (Esmeralda, Copépodo, and Pan Negro Lakes). METHODS AND RESULTS Total DNA was extracted and the internal transcribed spacer 2 region of the nuclear ribosomal DNA was used as a DNA barcode for molecular identification. Green algae were represented by sequences representing 78 taxa belonging to Phylum Chlorophyta, of which 32% have not previously been recorded from Antarctica. Sediment from Pan Negro Lake generated the highest number of DNA reads (11,205), followed by Esmeralda (9085) and Copépodo (1595) Lakes. Esmeralda Lake was the richest in terms of number of taxa (59), with Copépodo and Pan Negro Lakes having 30 taxa each. Bray-Curtis dissimilarity among lakes was high (~ 0.80). The Order Chlamydomonadales (Chlorophyceae) gave the highest contribution in terms of numbers of taxa and DNA reads in all lakes. The most abundant taxon was Chlorococcum microstigmatum. CONCLUSIONS The study confirms the utility of DNA metabarcoding in assessing potential green algal diversity in Antarctic lakes, generating new Antarctic records.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | | | - Peter Convey
- British Antarctic Survey, Cambridge, UK
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
15
|
Antarctica as a reservoir of planetary analogue environments. Extremophiles 2021; 25:437-458. [PMID: 34586500 DOI: 10.1007/s00792-021-01245-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
One of the main objectives of astrobiological research is the investigation of the habitability of other planetary bodies. Since space exploration missions are expensive and require long-term organization, the preliminary study of terrestrial environments is an essential step to prepare and support exploration missions. The Earth hosts a multitude of extreme environments whose characteristics resemble celestial bodies in our Solar System. In these environments, the physico-chemical properties partly match extraterrestrial environments and could clarify limits and adaptation mechanisms of life, the mineralogical or geochemical context, and support and interpret data sent back from planetary bodies. One of the best terrestrial analogues is Antarctica, whose conditions lie on the edge of habitability. It is characterized by a cold and dry climate (Onofri et al., Nova Hedwigia 68:175-182, 1999), low water availability, strong katabatic winds, salt concentration, desiccation, and high radiation. Thanks to the harsh conditions like those in other celestial bodies, Antarctica offers good terrestrial analogues for celestial body (Mars or icy moons; Léveillé, CR Palevol 8:637-648, https://doi.org/10.1016/j.crpv.2009.03.005 , 2009). The continent could be distinguished into several habitats, each with characteristics similar to those existing on other bodies. Here, we reported a description of each simulated parameter within the habitats, in relation to each of the simulated extraterrestrial environments.
Collapse
|
16
|
First Insights into the Microbiology of Three Antarctic Briny Systems of the Northern Victoria Land. DIVERSITY 2021. [DOI: 10.3390/d13070323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Different polar environments (lakes and glaciers), also in Antarctica, encapsulate brine pools characterized by a unique combination of extreme conditions, mainly in terms of high salinity and low temperature. Since 2014, we have been focusing our attention on the microbiology of brine pockets from three lakes in the Northern Victoria Land (NVL), lying in the Tarn Flat (TF) and Boulder Clay (BC) areas. The microbial communities have been analyzed for community structure by next generation sequencing, extracellular enzyme activities, metabolic potentials, and microbial abundances. In this study, we aim at reconsidering all available data to analyze the influence exerted by environmental parameters on the community composition and activities. Additionally, the prediction of metabolic functions was attempted by the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) tool, highlighting that prokaryotic communities were presumably involved in methane metabolism, aromatic compound biodegradation, and organic compound (proteins, polysaccharides, and phosphates) decomposition. The analyzed cryoenvironments were different in terms of prokaryotic diversity, abundance, and retrieved metabolic pathways. By the analysis of DNA sequences, common operational taxonomic units ranged from 2.2% to 22.0%. The bacterial community was dominated by Bacteroidetes. In both BC and TF brines, sequences of the most thermally tolerant and methanogenic Archaea were detected, some of them related to hyperthermophiles.
Collapse
|
17
|
Diversity of fungal DNA in lake sediments on Vega Island, north-east Antarctic Peninsula assessed using DNA metabarcoding. Extremophiles 2021; 25:257-265. [PMID: 33837855 DOI: 10.1007/s00792-021-01226-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
We assessed the diversity of fungal DNA present in sediments of three lakes on Vega Island, north-east Antarctic Peninsula using metabarcoding through high-throughput sequencing (HTS). A total of 640,902 fungal DNA reads were detected, which were assigned to 224 taxa of the phyla Ascomycota, Rozellomycota, Basidiomycota, Chytridiomycota and Mortierellomycota, in rank order of abundance. The most abundant genera were Pseudogymnoascus, Penicillium and Mortierella. However, a majority (423,508, 66%) of the reads, representing by 43 ASVs, could only be assigned at higher taxonomic levels and may represent taxa not currently included in the sequence databases used or be new or previously unreported taxa present in Antarctic lakes. The three lakes were characterized by high sequence diversity, richness, and moderate dominance indices. The ASVs were dominated by psychrotolerant and cosmopolitan cold-adapted Ascomycota, Basidiomycota and Mortierellomycota commonly reported in Antarctic environments. However, other taxa detected included unidentified members of Rozellomycota and Chytridiomycota species not previously reported in Antarctic lakes. The assigned diversity was composed mainly of taxa recognized as decomposers and pathogens of plants and invertebrates.
Collapse
|
18
|
|
19
|
Howell L, LaRue M, Flanagan SP. Environmental DNA as a tool for monitoring Antarctic vertebrates. NEW ZEALAND JOURNAL OF ZOOLOGY 2021. [DOI: 10.1080/03014223.2021.1900299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lucy Howell
- Gateway Antarctica, School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Michelle LaRue
- Gateway Antarctica, School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Sarah P. Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
20
|
Reed KA, Lee SG, Lee JH, Park H, Covi JA. The ultrastructure of resurrection: Post-diapause development in an Antarctic freshwater copepod. J Struct Biol 2021; 213:107705. [PMID: 33577904 DOI: 10.1016/j.jsb.2021.107705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/30/2022]
Abstract
The copepod, Boeckella poppei, is broadly distributed in Antarctic and subantarctic maritime lakes threatened by climate change and anthropogenic chemicals. Unfortunately, comparatively little is known about freshwater zooplankton in lakes influenced by the Southern Ocean. In order to predict the impact of climate change and chemicals on freshwater species like B. poppei, it is necessary to understand the nature of their most resilient life stages. Embryos of B. poppei survive up to two centuries in a resilient dormant state, but no published studies evaluate the encapsulating wall that protects theses embryos or their development after dormancy. This study fills that knowledge gap by using microscopy to examine development and the encapsulating wall in B. poppei embryos from Antarctica. The encapsulating wall of B. poppei is comprised of three layers that appear to be conserved among crustacean zooplankton, but emergence and hatching are uniquely delayed until the nauplius is fully formed in this species. Diapause embryos in Antarctic sediments appear to be in a partially syncytial mid-gastrula stage. The number of nuclei quadruples between the end of diapause and hatching. Approximately 75% of yolk platelets are completely consumed during the same time period. However, some yolk platelets are left completely intact at the time of hatching. Preservation of complete yolk platelets suggests an all-or-none biochemical process for activating yolk consumption that is inactivated during dormancy to preserve yolk for post-dormancy development. The implications of these and additional ultrastructural features are discussed in the context of anthropogenic influence and the natural environment.
Collapse
Affiliation(s)
- Katherine A Reed
- The University of North Carolina at Wilmington, Department of Biology and Marine Biology, 601 S. College Rd., Wilmington, NC 28403, USA
| | - Sung Gu Lee
- Unit of Research for Practical Application, Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, South Korea
| | - Jun Hyuck Lee
- Unit of Research for Practical Application, Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, South Korea
| | - Hyun Park
- Division of Biotechnology, Korea University, 145 Anam-ro, Seungbuk-gu, Seoul, South Korea
| | - Joseph A Covi
- The University of North Carolina at Wilmington, Department of Biology and Marine Biology, 601 S. College Rd., Wilmington, NC 28403, USA.
| |
Collapse
|
21
|
Comparison of Diatom Paleo-Assemblages with Adjacent Limno-Terrestrial Communities on Vega Island, Antarctic Peninsula. WATER 2020. [DOI: 10.3390/w12051340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diatoms are useful ecological and paleolimnological indicators routinely used to reconstruct past conditions and monitor environmental change. Despite this, diatom assemblages from lake sediment cores are often difficult to interpret due to a limited knowledge of the ecology of some species, some of which may originate from the adjacent limno-terrestrial landscape. Here, we compare diatom assemblages from two recently published Antarctic lake sediment cores collected from the northeast and southwest sides of Vega Island, Antarctic Peninsula. We further compare the sediment core assemblages with adjacent modern communities inhabiting four different limno-terrestrial habitat types to gauge the importance of landscape connectivity in determining paleo-assemblage structure. We found that diatom assemblage composition was significantly different between the two cores, and our survey of modern habitats further revealed habitat type to be an important factor determining the composition of limno-terrestrial samples. Differences in modern habitats were driven primarily by Chamaepinnularia krookiformis in mosses, Nitzschia paleacea in ponds, and Fistulifera pelliculosa in streams. When modern communities were compared with paleo-assemblages through ordination, the cored lake from the northeast side, which exhibited greater hydrological connectivity with its surroundings, clustered more closely with the adjacent modern samples. Meanwhile, the cored lake from the southwest side, which was more hydrologically isolated, formed a distinct cluster separate from the others. Overall, species richness and diversity were greater on the southwest side of the island than the northeast, and the known distributions of diatom taxa supported the notion that Vega Island was a transitional zone between the Maritime and Continental Antarctic bioregions. These results collectively suggested that while environmental and spatial controls may be influential in determining diatom community composition, the unique hydrogeological setting of individual waterbodies was an important consideration for determining the assemblage structure of lake cores. This paper furthermore expanded ongoing research of diatom diversity and distributions on maritime Antarctic islands, which will improve diatom-based interpretations for regional ecological monitoring and paleolimnology in the future.
Collapse
|
22
|
Dillon ML, Hawes I, Jungblut AD, Mackey TJ, Eisen JA, Doran PT, Sumner DY. Energetic and Environmental Constraints on the Community Structure of Benthic Microbial Mats in Lake Fryxell, Antarctica. FEMS Microbiol Ecol 2020; 96:fiz207. [PMID: 31905236 PMCID: PMC6974422 DOI: 10.1093/femsec/fiz207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/03/2020] [Indexed: 11/13/2022] Open
Abstract
Ecological communities are regulated by the flow of energy through environments. Energy flow is typically limited by access to photosynthetically active radiation (PAR) and oxygen concentration (O2). The microbial mats growing on the bottom of Lake Fryxell, Antarctica, have well-defined environmental gradients in PAR and (O2). We analyzed the metagenomes of layers from these microbial mats to test the extent to which access to oxygen and light controls community structure. We found variation in the diversity and relative abundances of Archaea, Bacteria and Eukaryotes across three (O2) and PAR conditions: high (O2) and maximum PAR, variable (O2) with lower maximum PAR, and low (O2) and maximum PAR. We found distinct communities structured by the optimization of energy use on a millimeter-scale across these conditions. In mat layers where (O2) was saturated, PAR structured the community. In contrast, (O2) positively correlated with diversity and affected the distribution of dominant populations across the three habitats, suggesting that meter-scale diversity is structured by energy availability. Microbial communities changed across covarying gradients of PAR and (O2). The comprehensive metagenomic analysis suggests that the benthic microbial communities in Lake Fryxell are structured by energy flow across both meter- and millimeter-scales.
Collapse
Affiliation(s)
- Megan L Dillon
- Lawrence Berkeley National Laboratory Climate and Ecosystem Sciences Division 70A-2245B, One Cyclotron Rd Berkeley, CA 94720 510-486-5538
- Department of Earth and Planetary Sciences, University of California, Davis One Shields Ave Davis, CA 95616, USA
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, 58 Cross Rd Sulphur Point Tauranga 3110, New Zealand
| | - Anne D Jungblut
- Life Sciences Department, Natural History Museum, Cromwell Rd South Kensington London SW7 5BD, UK
| | - Tyler J Mackey
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge, MA 02139-4307, USA
| | - Jonathan A Eisen
- Department of Evolution and Ecology, University of California, Davis, One Shields Ave Davis, CA USA
| | - Peter T Doran
- Geology and Geophysics, Louisiana State University, E235 Howe Russell Kniffen Baton Rouge, LA 70803 USA
| | - Dawn Y Sumner
- Department of Earth and Planetary Sciences, University of California, Davis One Shields Ave Davis, CA 95616, USA
| |
Collapse
|
23
|
Abstract
Viruses are diverse parasites of cells and extremely abundant. They might have arisen during an early phase of the evolution of life on Earth dominated by ribonucleic acid or RNA-like macromolecules, or when a cellular world was already well established. The theories of the origin of life on Earth shed light on the possible origin of primitive viruses or virus-like genetic elements in our biosphere. Some features of present-day viruses, notably error-prone replication, might be a consequence of the selective forces that mediated their ancestral origin. Two views on the role of viruses in our biosphere predominate; viruses considered as opportunistic, selfish elements, and viruses considered as active participants in the construction of the cellular world via the lateral transfer of genes. These two models have a bearing on viruses being considered predominantly as disease agents or predominantly as cooperators in the shaping of differentiated cellular organisms.
Collapse
|
24
|
Kakareka S, Kukharchyk T, Kurman P. Major and trace elements content in freshwater lakes of Vecherny Oasis, Enderby Land, East Antarctica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113126. [PMID: 31542663 DOI: 10.1016/j.envpol.2019.113126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/17/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
In the article the results of major and trace elements investigation in freshwater lakes of Vecherny Oasis (Enderby Land, East Antarctica) are considered. Water sampling was carried out during seasonal Belarusian Antarctic expeditions in 2011-2017. Totally 22 water samples from four lakes, three temporal ponds and one water course were collected for major and trace elements determination. The total concentrations of Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Na, Mg, Mn, Mo, Ni, Pb, Sb, Se, Th, Tl, V, W, Zn in all samples as well as more than 40 additional trace elements in 3 samples from lakes were determined using ICP-MS method. It is shown that increase of heavy metals concentration (Cd, Pb, Zn, Sb, Co, Ni, Se, Mn) and As in the lakes compared to temporary ponds can be explained by anthropogenic impact including previous human activity in the oasis in late 1970th - early 1990th. The maximum concentrations of a number of technophilic elements (Pb, Mo, Mn, V, Sb, Zn) in Lake Nizhneye are possibly connected with the its lowest hypsometric location in catchment and the drainage of the territory impacted by past and present human activity.
Collapse
Affiliation(s)
- Sergey Kakareka
- Institute for Nature Management, National Academy of Sciences of Belarus, Laboratory of Transboundary Pollution, Skoriny st., 10, Minsk, 220114, Belarus
| | - Tamara Kukharchyk
- Institute for Nature Management, National Academy of Sciences of Belarus, Laboratory of Transboundary Pollution, Skoriny st., 10, Minsk, 220114, Belarus.
| | - Peter Kurman
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Laboratory of Physical and Chemical Methods, akad. Kuprevicha st., 2, Minsk, 220141, Belarus
| |
Collapse
|
25
|
Sommers P, Fontenele RS, Kringen T, Kraberger S, Porazinska DL, Darcy JL, Schmidt SK, Varsani A. Single-Stranded DNA Viruses in Antarctic Cryoconite Holes. Viruses 2019; 11:E1022. [PMID: 31689942 PMCID: PMC6893807 DOI: 10.3390/v11111022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022] Open
Abstract
Antarctic cryoconite holes, or small melt-holes in the surfaces of glaciers, create habitable oases for isolated microbial communities with tightly linked microbial population structures. Viruses may influence the dynamics of polar microbial communities, but the viromes of the Antarctic cryoconite holes have yet to be characterized. We characterize single-stranded DNA (ssDNA) viruses from three cryoconite holes in the Taylor Valley, Antarctica, using metagenomics. Half of the assembled metagenomes cluster with those in the viral family Microviridae (n = 7), and the rest with unclassified circular replication associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses (n = 7). An additional 18 virus-like circular molecules encoding either a Rep, a capsid protein gene, or other unidentified but viral-like open reading frames were identified. The samples from which the genomes were identified show a strong gradient in microbial diversity and abundances, and the number of viral genomes detected in each sample mirror that gradient. Additionally, one of the CRESS genomes assembled here shares ~90% genome-wide pairwise identity with a virus identified from a freshwater pond on the McMurdo Ice Shelf (Antarctica). Otherwise, the similarity of these viruses to those previously identified is relatively low. Together, these patterns are consistent with the presence of a unique regional virome present in fresh water host populations of the McMurdo Dry Valley region.
Collapse
Affiliation(s)
- Pacifica Sommers
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| | - Tayele Kringen
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| | - Dorota L Porazinska
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA.
| | - John L Darcy
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Steven K Schmidt
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7701, South Africa.
| |
Collapse
|
26
|
Papale M, Lo Giudice A, Conte A, Rizzo C, Rappazzo AC, Maimone G, Caruso G, La Ferla R, Azzaro M, Gugliandolo C, Paranhos R, Cabral AS, Romano Spica V, Guglielmin M. Microbial Assemblages in Pressurized Antarctic Brine Pockets (Tarn Flat, Northern Victoria Land): A Hotspot of Biodiversity and Activity. Microorganisms 2019; 7:E333. [PMID: 31505750 PMCID: PMC6780602 DOI: 10.3390/microorganisms7090333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/03/2022] Open
Abstract
Two distinct pressurized hypersaline brine pockets (named TF4 and TF5), separated by a thin ice layer, were detected below an ice-sealed Antarctic lake. Prokaryotic (bacterial and archaeal) diversity, abundances (including virus-like particles) and metabolic profiles were investigated by an integrated approach, including traditional and new-generation methods. Although similar diversity indices were computed for both Bacteria and Archaea, distinct bacterial and archaeal assemblages were observed. Bacteroidetes and Gammaproteobacteria were more abundant in the shallowest brine pocket, TF4, and Deltaproteobacteria, mainly represented by versatile sulphate-reducing bacteria, dominated in the deepest, TF5. The detection of sulphate-reducing bacteria and methanogenic Archaea likely reflects the presence of a distinct synthrophic consortium in TF5. Surprisingly, members assigned to hyperthermophilic Crenarchaeota and Euryarchaeota were common to both brines, indicating that these cold habitats host the most thermally tolerant Archaea. The patterns of microbial communities were different, coherently with the observed microbiological diversity between TF4 and TF5 brines. Both the influence exerted by upward movement of saline brines from a sub-surface anoxic system and the possible occurrence of an ancient ice remnant from the Ross Ice Shelf were the likely main factors shaping the microbial communities.
Collapse
Affiliation(s)
- Maria Papale
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy.
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy.
| | - Antonella Conte
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy.
| | - Carmen Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy.
| | - Alessandro C Rappazzo
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy.
| | - Giovanna Maimone
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy.
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy.
| | - Rosabruna La Ferla
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy.
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (ISP-CNR), 98122 Messina, Italy.
| | - Concetta Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy.
| | - Rodolfo Paranhos
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro 21.941-590, Brazil.
| | - Anderson S Cabral
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro 21.941-590, Brazil.
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Public Health Unit, University of Rome "Foro Italico", P.zza Lauro De Bosis 6, 00135 Rome, Italy.
| | - Mauro Guglielmin
- Dipartimento di Scienze Teoriche e Applicate, University of Insubria, 21100 Varese, Italy.
| |
Collapse
|
27
|
Spatial distribution of freshwater crustaceans in Antarctic and Subantarctic lakes. Sci Rep 2019; 9:7928. [PMID: 31138844 PMCID: PMC6538651 DOI: 10.1038/s41598-019-44290-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/16/2019] [Indexed: 11/16/2022] Open
Abstract
Antarctic and Subantarctic lakes are unique ecosystems with relatively simple food webs, which are likely to be strongly affected by climate warming. While Antarctic freshwater invertebrates are adapted to extreme environmental conditions, little is known about the factors determining their current distribution and to what extent this is explained by biogeography or climate. We explored the distribution of freshwater crustaceans (one of the most abundant and diverse group of organisms in Antarctic and Subantarctic lakes) across four biogeographic provinces (Continental Antarctic, CA; Maritime Antarctic, MA; Subantarctic islands, SA; and Southern Cool Temperate, SCT) based on the literature, predicting that species distribution would be determined by biogeography, spatial autocorrelation among regions (in relation to dispersal) and climate. We found that variation in species composition was largely explained by the joint effect of spatial autocorrelation and climate, with little effect of biogeography – only regions within the SA province had a clearly distinct species composition. This highlights a plausible main influence of crustacean dispersal – mainly through migratory seabirds – and suggests that some regions will be more affected by climate warming than others, possibly in relation to the existence of nearby sources of colonists.
Collapse
|
28
|
Yau S, Seth-Pasricha M. Viruses of Polar Aquatic Environments. Viruses 2019; 11:v11020189. [PMID: 30813316 PMCID: PMC6410135 DOI: 10.3390/v11020189] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
The poles constitute 14% of the Earth’s biosphere: The aquatic Arctic surrounded by land in the north, and the frozen Antarctic continent surrounded by the Southern Ocean. In spite of an extremely cold climate in addition to varied topographies, the polar aquatic regions are teeming with microbial life. Even in sub-glacial regions, cellular life has adapted to these extreme environments where perhaps there are traces of early microbes on Earth. As grazing by macrofauna is limited in most of these polar regions, viruses are being recognized for their role as important agents of mortality, thereby influencing the biogeochemical cycling of nutrients that, in turn, impact community dynamics at seasonal and spatial scales. Here, we review the viral diversity in aquatic polar regions that has been discovered in the last decade, most of which has been revealed by advances in genomics-enabled technologies, and we reflect on the vast extent of the still-to-be explored polar microbial diversity and its “enigmatic virosphere”.
Collapse
Affiliation(s)
- Sheree Yau
- Integrative Marine Biology Laboratory (BIOM), CNRS, UMR7232, Sorbonne Université, 66650 Banyuls-sur-Mer, France.
| | - Mansha Seth-Pasricha
- Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
29
|
Logares R, Tesson SVM, Canbäck B, Pontarp M, Hedlund K, Rengefors K. Contrasting prevalence of selection and drift in the community structuring of bacteria and microbial eukaryotes. Environ Microbiol 2018; 20:2231-2240. [PMID: 29727053 DOI: 10.1111/1462-2920.14265] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 11/30/2022]
Abstract
Whether or not communities of microbial eukaryotes are structured in the same way as bacteria is a general and poorly explored question in ecology. Here, we investigated this question in a set of planktonic lake microbiotas in Eastern Antarctica that represent a natural community ecology experiment. Most of the analysed lakes emerged from the sea during the last 6000 years, giving rise to waterbodies that originally contained marine microbiotas and that subsequently evolved into habitats ranging from freshwater to hypersaline. We show that habitat diversification has promoted selection driven by the salinity gradient in bacterial communities (explaining ∼ 72% of taxa turnover), while microeukaryotic counterparts were predominantly structured by ecological drift (∼72% of the turnover). Nevertheless, we also detected a number of microeukaryotes with specific responses to salinity, indicating that albeit minor, selection has had a role in the structuring of specific members of their communities. In sum, we conclude that microeukaryotes and bacteria inhabiting the same communities can be structured predominantly by different processes. This should be considered in future studies aiming to understand the mechanisms that shape microbial assemblages.
Collapse
Affiliation(s)
- Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Sylvie V M Tesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.,Department of Biology, Lund University, Lund, Sweden
| | - Björn Canbäck
- Department of Biology, Lund University, Lund, Sweden
| | - Mikael Pontarp
- Department of Biology, Lund University, Lund, Sweden.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
30
|
Abstract
Viruses play an important role in the control of microbial communities, and it has been suggested that the influence of viruses in polar ecosystems, with low nutrients and under extreme environmental conditions, may be greater. Viral metagenomics allows the genetic characterization of complex viral communities without the need to isolate and grow viruses. Recent investigations in Antarctica and the Arctic are uncovering a great diversity of DNA viruses, including bacteriophages, circular single-stranded DNA viruses, algal-infecting phycodnaviruses, and virophages, adapted to these extreme environments. The limited sequence similarity between viruses in Antarctica and the Arctic suggests that viral communities in the two polar regions have evolved independently since the formation of the Antarctic continent, estimated to occur 25 million years ago. The community of RNA viruses in Antarctica is dominated by the order Picornavirales and their quasispecies composition suggests that higher genetic variability may correlate with viral adaptation to new environmental conditions.
Collapse
|
31
|
Pessi IS, Lara Y, Durieu B, Maalouf PDC, Verleyen E, Wilmotte A. Community structure and distribution of benthic cyanobacteria in Antarctic lacustrine microbial mats. FEMS Microbiol Ecol 2018; 94:4935156. [DOI: 10.1093/femsec/fiy042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/13/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Igor S Pessi
- InBioS—Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000 Liège, Belgium
| | - Yannick Lara
- InBioS—Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000 Liège, Belgium
| | - Benoit Durieu
- InBioS—Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000 Liège, Belgium
| | - Pedro de C Maalouf
- InBioS—Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000 Liège, Belgium
| | - Elie Verleyen
- Research Group Protistology and Aquatic Ecology, Department of Biology, Ghent University, Campus Sterre, Krijgslaan 281-S8, 9000 Gent, Belgium
| | - Annick Wilmotte
- InBioS—Centre for Protein Engineering, University of Liège, Allée du Six Août 13, B6a, Quartier Agora, Sart-Tilman, 4000 Liège, Belgium
| |
Collapse
|
32
|
Jungblut AD, Hawes I. Using Captain Scott's Discovery specimens to unlock the past: has Antarctic cyanobacterial diversity changed over the last 100 years? Proc Biol Sci 2018. [PMID: 28637848 DOI: 10.1098/rspb.2017.0833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evidence of climate-driven environmental change is increasing in Antarctica, and with it comes concern that this will propagate to impacts on biological communities. Recognition and prediction of change needs to incorporate the extent and timescales over which communities vary under extant conditions. However, few observations of Antarctic microbial communities, which dominate inland habitats, allow this. We therefore carried out the first molecular comparison of Cyanobacteria in historic herbarium microbial mats from freshwater ecosystems on Ross Island and the McMurdo Ice Shelf, collected by Captain R.F. Scott's 'Discovery' Expedition (1902-1903), with modern samples from those areas. Using 16S rRNA gene surveys, we found that modern and historic cyanobacteria assemblages showed some variation in community structure but were dominated by the same genotypes. Modern communities had a higher richness, including genotypes not found in historic samples, but they had the highest similarity to other cyanobacteria sequences from Antarctica. The results imply slow cyanobacterial 16S rRNA gene genotype turnover and considerable community stability within Antarctic microbial mats. We suggest that this relates to Antarctic freshwater 'organisms requiring a capacity to withstand diverse stresses, and that this could also provide a degree of resistance and resilience to future climatic-driven environmental change in Antarctica.
Collapse
Affiliation(s)
- Anne D Jungblut
- Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Ian Hawes
- University of Waikato, 58 Cross Road, Tauranga 3110, New Zealand
| |
Collapse
|
33
|
Blanco Y, Gallardo-Carreño I, Ruiz-Bermejo M, Puente-Sánchez F, Cavalcante-Silva E, Quesada A, Prieto-Ballesteros O, Parro V. Critical Assessment of Analytical Techniques in the Search for Biomarkers on Mars: A Mummified Microbial Mat from Antarctica as a Best-Case Scenario. ASTROBIOLOGY 2017; 17:984-996. [PMID: 29016195 PMCID: PMC5655591 DOI: 10.1089/ast.2016.1467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/20/2017] [Indexed: 05/17/2023]
Abstract
The search for biomarkers of present or past life is one of the major challenges for in situ planetary exploration. Multiple constraints limit the performance and sensitivity of remote in situ instrumentation. In addition, the structure, chemical, and mineralogical composition of the sample may complicate the analysis and interpretation of the results. The aim of this work is to highlight the main constraints, performance, and complementarity of several techniques that have already been implemented or are planned to be implemented on Mars for detection of organic and molecular biomarkers on a best-case sample scenario. We analyzed a 1000-year-old desiccated and mummified microbial mat from Antarctica by Raman and IR (infrared) spectroscopies (near- and mid-IR), thermogravimetry (TG), differential thermal analysis, mass spectrometry (MS), and immunological detection with a life detector chip. In spite of the high organic content (ca. 20% wt/wt) of the sample, the Raman spectra only showed the characteristic spectral peaks of the remaining beta-carotene biomarker and faint peaks of phyllosilicates over a strong fluorescence background. IR spectra complemented the mineralogical information from Raman spectra and showed the main molecular vibrations of the humic acid functional groups. The TG-MS system showed the release of several volatile compounds attributed to biopolymers. An antibody microarray for detecting cyanobacteria (CYANOCHIP) detected biomarkers from Chroococcales, Nostocales, and Oscillatoriales orders. The results highlight limitations of each technique and suggest the necessity of complementary approaches in the search for biomarkers because some analytical techniques might be impaired by sample composition, presentation, or processing. Key Words: Planetary exploration-Life detection-Microbial mat-Life detector chip-Thermogravimetry-Raman spectroscopy-NIR-DRIFTS. Astrobiology 17, 984-996.
Collapse
Affiliation(s)
- Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | - Marta Ruiz-Bermejo
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | | - Antonio Quesada
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| |
Collapse
|
34
|
Koo H, Mojib N, Hakim JA, Hawes I, Tanabe Y, Andersen DT, Bej AK. Microbial Communities and Their Predicted Metabolic Functions in Growth Laminae of a Unique Large Conical Mat from Lake Untersee, East Antarctica. Front Microbiol 2017; 8:1347. [PMID: 28824553 PMCID: PMC5543034 DOI: 10.3389/fmicb.2017.01347] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/03/2017] [Indexed: 01/15/2023] Open
Abstract
In this study, we report the distribution of microbial taxa and their predicted metabolic functions observed in the top (U1), middle (U2), and inner (U3) decadal growth laminae of a unique large conical microbial mat from perennially ice-covered Lake Untersee of East Antarctica, using NextGen sequencing of the 16S rRNA gene and bioinformatics tools. The results showed that the U1 lamina was dominated by cyanobacteria, specifically Phormidium sp., Leptolyngbya sp., and Pseudanabaena sp. The U2 and U3 laminae had high abundances of Actinobacteria, Verrucomicrobia, Proteobacteria, and Bacteroidetes. Closely related taxa within each abundant bacterial taxon found in each lamina were further differentiated at the highest taxonomic resolution using the oligotyping method. PICRUSt analysis, which determines predicted KEGG functional categories from the gene contents and abundances among microbial communities, revealed a high number of sequences belonging to carbon fixation, energy metabolism, cyanophycin, chlorophyll, and photosynthesis proteins in the U1 lamina. The functional predictions of the microbial communities in U2 and U3 represented signal transduction, membrane transport, zinc transport and amino acid-, carbohydrate-, and arsenic- metabolisms. The Nearest Sequenced Taxon Index (NSTI) values processed through PICRUSt were 0.10, 0.13, and 0.11 for U1, U2, and U3 laminae, respectively. These values indicated a close correspondence with the reference microbial genome database, implying high confidence in the predicted metabolic functions of the microbial communities in each lamina. The distribution of microbial taxa observed in each lamina and their predicted metabolic functions provides additional insight into the complex microbial ecosystem at Lake Untersee, and lays the foundation for studies that will enhance our understanding of the mechanisms responsible for the formation of these unique mat structures and their evolutionary significance.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, United States
| | - Nazia Mojib
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, United States
| | - Joseph A Hakim
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, United States
| | - Ian Hawes
- Gateway Antarctica, University of CanterburyChristchurch, New Zealand
| | - Yukiko Tanabe
- National Institute of Polar ResearchTachikawa, Japan
| | - Dale T Andersen
- Carl Sagan Center, SETI Institute, Mountain ViewCA, United States
| | - Asim K Bej
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, United States
| |
Collapse
|
35
|
Identity, ecology and ecophysiology of planktic green algae dominating in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula). Extremophiles 2016; 21:187-200. [PMID: 27888351 DOI: 10.1007/s00792-016-0894-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
The aim of this study was to assess the phylogenetic relationships, ecology and ecophysiological characteristics of the dominant planktic algae in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula). Phylogenetic analyses of 18S rDNA together with analysis of ITS2 rDNA secondary structure and cell morphology revealed that the two strains belong to one species of the genus Monoraphidium (Chlorophyta, Sphaeropleales, Selenastraceae) that should be described as new in future. Immotile green algae are thus apparently capable to become the dominant primary producer in the extreme environment of Antarctic lakes with extensive ice-cover. The strains grew in a wide temperature range, but the growth was inhibited at temperatures above 20 °C, indicating their adaptation to low temperature. Preferences for low irradiances reflected the light conditions in their original habitat. Together with relatively high growth rates (0.4-0.5 day-1) and unprecedently high content of polyunsaturated fatty acids (PUFA, more than 70% of total fatty acids), it makes these isolates interesting candidates for biotechnological applications.
Collapse
|
36
|
Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biol 2016. [DOI: 10.1007/s00300-016-2045-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Patten BC. Systems ecology and environmentalism: Getting the science right. Part II: The Janus Enigma Hypothesis. Ecol Modell 2016. [DOI: 10.1016/j.ecolmodel.2015.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Microbial communities within the water column of freshwater Lake Radok, East Antarctica: predominant 16S rDNA phylotypes and bacterial cultures. Polar Biol 2016. [DOI: 10.1007/s00300-016-2008-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
|
40
|
Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake. Appl Environ Microbiol 2016; 82:3659-3670. [PMID: 27084010 DOI: 10.1128/aem.00478-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/10/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activated cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (Flavobacteria and Methylobacteriaceae) were independently associated with two key MCM lake microalgae (Isochrysis and Chlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite of Chlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. IMPORTANCE Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential interactions with other microbes. Our work reveals that Antarctic lake protists rely on metabolic versatility for their energy and nutrient requirements in this unique and isolated environment.
Collapse
|
41
|
Ecosystem function decays by fungal outbreaks in Antarctic microbial mats. Sci Rep 2016; 6:22954. [PMID: 26972923 PMCID: PMC4789741 DOI: 10.1038/srep22954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/17/2016] [Indexed: 11/12/2022] Open
Abstract
Antarctica harbours a remarkably diverse range of freshwater bodies and terrestrial ecosystems, where microbial mats are considered the most important systems in terms of biomass and metabolic capabilities. We describe the presence of lysis plaque-like macroscopic blighted patches within the predominant microbial mats on Livingston Island (Antarctic Peninsula). Those blighting circles are associated with decay in physiological traits as well as nitrogen depletion and changes in the spatial microstructure; these alterations were likely related to disruption of the biogeochemical gradients within the microbial ecosystem caused by an unusually high fungal abundance and consequent physical alterations. This phenomenon has been evidenced at a time of unprecedented rates of local warming in the Antarctic Peninsula area, and decay of these ecosystems is potentially stimulated by warmer temperatures.
Collapse
|
42
|
Distribution of cold adaptation proteins in microbial mats in Lake Joyce, Antarctica: Analysis of metagenomic data by using two bioinformatics tools. J Microbiol Methods 2016; 120:23-8. [DOI: 10.1016/j.mimet.2015.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 11/18/2022]
|
43
|
Introduction to Virus Origins and Their Role in Biological Evolution. VIRUS AS POPULATIONS 2016. [PMCID: PMC7204881 DOI: 10.1016/b978-0-12-800837-9.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viruses are extremely abundant and diverse parasites of cells. They might have arisen during an early phase of the evolution of life on Earth dominated by RNA or RNA-like macromolecules, or when a cellular world was already well established. The theories of the origin of life on Earth shed light on the possible origin of primitive viruses or virus-like genetic elements in our biosphere. Some features of present day viruses, notably error-prone replication, might be a consequence of the selective forces that mediated their ancestral origin. Two views on the role of viruses in our biosphere predominate: viruses considered as opportunistic, selfish elements, and viruses considered as active participants in the construction of the cellular world via lateral transfers of genes. These two models bear on considering viruses predominantly as disease agents or predominantly as cooperators in the shaping of differentiated cellular organisms.
Collapse
|
44
|
López-Bueno A, Rastrojo A, Peiró R, Arenas M, Alcamí A. Ecological connectivity shapes quasispecies structure of RNA viruses in an Antarctic lake. Mol Ecol 2015. [PMID: 26198078 DOI: 10.1111/mec.13321] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- A. López-Bueno
- Department of Virology and Microbiology; Centro de Biología Molecular ‘Severo Ochoa’ (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid); Nicolás Cabrera 1 Cantoblanco 28049 Madrid Spain
| | - A. Rastrojo
- Department of Virology and Microbiology; Centro de Biología Molecular ‘Severo Ochoa’ (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid); Nicolás Cabrera 1 Cantoblanco 28049 Madrid Spain
| | - R. Peiró
- Department of Virology and Microbiology; Centro de Biología Molecular ‘Severo Ochoa’ (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid); Nicolás Cabrera 1 Cantoblanco 28049 Madrid Spain
| | - M. Arenas
- Department of Virology and Microbiology; Centro de Biología Molecular ‘Severo Ochoa’ (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid); Nicolás Cabrera 1 Cantoblanco 28049 Madrid Spain
| | - A. Alcamí
- Department of Virology and Microbiology; Centro de Biología Molecular ‘Severo Ochoa’ (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid); Nicolás Cabrera 1 Cantoblanco 28049 Madrid Spain
| |
Collapse
|
45
|
Chown SL, Clarke A, Fraser CI, Cary SC, Moon KL, McGeoch MA. The changing form of Antarctic biodiversity. Nature 2015; 522:431-8. [DOI: 10.1038/nature14505] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/24/2015] [Indexed: 11/09/2022]
|
46
|
van den Hoff J, Bell E. The ciliate Mesodinium rubrum and its cryptophyte prey in Antarctic aquatic environments. Polar Biol 2015. [DOI: 10.1007/s00300-015-1686-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Xu Y, Vick-Majors T, Morgan-Kiss R, Priscu JC, Amaral-Zettler L. Ciliate diversity, community structure, and novel taxa in lakes of the McMurdo Dry Valleys, Antarctica. THE BIOLOGICAL BULLETIN 2014; 227:175-190. [PMID: 25411375 DOI: 10.1086/bblv227n2p175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report an in-depth survey of next-generation DNA sequencing of ciliate diversity and community structure in two permanently ice-covered McMurdo Dry Valley lakes during the austral summer and autumn (November 2007 and March 2008). We tested hypotheses on the relationship between species richness and environmental conditions including environmental extremes, nutrient status, and day length. On the basis of the unique environment that exists in these high-latitude lakes, we expected that novel taxa would be present. Alpha diversity analyses showed that extreme conditions-that is, high salinity, low oxygen, and extreme changes in day length-did not impact ciliate richness; however, ciliate richness was 30% higher in samples with higher dissolved organic matter. Beta diversity analyses revealed that ciliate communities clustered by dissolved oxygen, depth, and salinity, but not by season (i.e., day length). The permutational analysis of variance test indicated that depth, dissolved oxygen, and salinity had significant influences on the ciliate community for the abundance matrices of resampled data, while lake and season were not significant. This result suggests that the vertical trends in dissolved oxygen concentration and salinity may play a critical role in structuring ciliate communities. A PCR-based strategy capitalizing on divergent eukaryotic V9 hypervariable region ribosomal RNA gene targets unveiled two new genera in these lakes. A novel taxon belonging to an unknown class most closely related to Cryptocaryon irritans was also inferred from separate gene phylogenies.
Collapse
Affiliation(s)
- Yuan Xu
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Trista Vick-Majors
- Montana State University, Department of Land Resources and Environmental Sciences, 334 Leon Johnson Hall, Bozeman, Montana 59717
| | | | - John C Priscu
- Montana State University, Department of Land Resources and Environmental Sciences, 334 Leon Johnson Hall, Bozeman, Montana 59717
| | - Linda Amaral-Zettler
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543; and Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
48
|
Patterns of Macroinvertebrate and Fish Diversity in Freshwater Sulphide Springs. DIVERSITY-BASEL 2014. [DOI: 10.3390/d6030597] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Extreme environments are characterised by the presence of physicochemical stressors and provide unique study systems to address problems in evolutionary ecology research. Sulphide springs provide an example of extreme freshwater environments; because hydrogen sulphide’s adverse physiological effects induce mortality in metazoans even at micromolar concentrations. Sulphide springs occur worldwide, but while microbial communities in sulphide springs have received broad attention, little is known about macroinvertebrates and fish inhabiting these toxic environments. We reviewed qualitative occurrence records of sulphide spring faunas on a global scale and present a quantitative case study comparing diversity patterns in sulphidic and adjacent non-sulphidic habitats across replicated river drainages in Southern Mexico. While detailed studies in most regions of the world remain scarce, available data suggests that sulphide spring faunas are characterised by low species richness. Dipterans (among macroinvertebrates) and cyprinodontiforms (among fishes) appear to dominate the communities in these habitats. At least in fish, there is evidence for the presence of highly endemic species and populations exclusively inhabiting sulphide springs. We provide a detailed discussion of traits that might predispose certain taxonomic groups to colonize sulphide springs, how colonizers subsequently adapt to cope with sulphide toxicity, and how adaptation may be linked to speciation processes.
Collapse
|
49
|
Lepot K, Compère P, Gérard E, Namsaraev Z, Verleyen E, Tavernier I, Hodgson DA, Vyverman W, Gilbert B, Wilmotte A, Javaux EJ. Organic and mineral imprints in fossil photosynthetic mats of an East Antarctic lake. GEOBIOLOGY 2014; 12:424-450. [PMID: 25039968 DOI: 10.1111/gbi.12096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
Lacustrine microbial mats in Antarctic ice-free oases are considered modern analogues of early microbial ecosystems as their primary production is generally dominated by cyanobacteria, the heterotrophic food chain typically truncated due to extreme environmental conditions, and they are geographically isolated. To better understand early fossilization and mineralization processes in this context, we studied the microstructure and chemistry of organo-mineral associations in a suite of sediments 50-4530 cal. years old from a lake in Skarvsnes, Lützow Holm Bay, East Antarctica. First, we report an exceptional preservation of fossil autotrophs and their biomolecules on millennial timescales. The pigment scytonemin is preserved inside cyanobacterial sheaths. As non-pigmented sheaths are also preserved, scytonemin likely played little role in the preservation of sheath polysaccharides, which have been cross-linked by ether bonds. Coccoids preserved thylakoids and autofluorescence of pigments such as carotenoids. This exceptional preservation of autotrophs in the fossil mats argues for limited biodegradation during and after deposition. Moreover, cell-shaped aggregates preserved sulfur-rich nanoglobules, supporting fossilization of instable intracellular byproducts of chemotrophic or phototrophic S-oxidizers. Second, we report a diversity of micro- to nanostructured CaCO3 precipitates intimately associated with extracellular polymeric substances, cyanobacteria, and/or other prokaryotes. Micro-peloids Type 1 display features that distinguish them from known carbonates crystallized in inorganic conditions: (i) Type 1A are often filled with globular nanocarbonates and/or surrounded by a fibrous fringe, (ii) Type 1B are empty and display ovoid to wrinkled fringes of nanocrystallites that can be radially oriented (fibrous or triangular) or multilayered, and (iii) all show small-size variations. Type 2 rounded carbonates 1-2 μm in diameter occurring inside autofluorescent spheres interpreted as coccoidal bacteria may represent fossils of intracellular calcification. These organo-mineral associations support organically driven nanocarbonate crystallization and stabilization, hence providing potential markers for microbial calcification in ancient rocks.
Collapse
Affiliation(s)
- K Lepot
- Paléobiogéologie, Paléobotanique & Paléopalynologie, Département de Géologie, Université de Liège, 4000, Liège, Belgium; Géosystèmes, Université Lille 1, CNRS UMR 8217, SN5, 59655, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hu X. Ciliates in extreme environments. J Eukaryot Microbiol 2014; 61:410-8. [PMID: 24801529 DOI: 10.1111/jeu.12120] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/29/2022]
Abstract
As eukaryotic microbial life, ciliated protozoan may be found actively growing in some extreme condition where there is a sufficient energy source to sustain it because they are exceedingly adaptable and not notably less adaptable than the prokaryotes. However, a crucial problem in the study of ciliates in extreme environments is the lack of reliable cultivation techniques. To our knowledge, only a tiny fraction of ciliates can be cultured in the laboratory, even for a very limited period, which can partly explain the paucity of our understanding about ciliates diversity in various extremes although the interest in the biodiversity of extremophiles increased significantly during the past three decades. This mini-review aims to compile the knowledge of several groups of free-living ciliates that can be microscopically observed in extreme environmental samples, although most habitats have not been sufficiently well explored for sound generalizations.
Collapse
Affiliation(s)
- Xiaozhong Hu
- Laboratory of Protozoology, Institute of Evolution and Marine Biodiversity & College of Fisheries, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|