1
|
Guoli Z, Charles Smith NE. Use of Ecological Networks to Reveal Interspecific Fungal Interactions from 150 Years of Foray Records. MYCOBIOLOGY 2025; 53:338-353. [PMID: 40391198 PMCID: PMC12086949 DOI: 10.1080/12298093.2025.2494891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/21/2025]
Abstract
Fungal forays have been conducted for more than 150 years, providing valuable, but underutilized, sets of records for studies of fungal ecology. Although foray records have been used to study species composition and phenological change, their potential of revealing internal interactions within fungal communities has not been explored. This paper collates foray records conducted in Yorkshire over the past 150 years focusing on 12 autumn-fruiting, generalist ectomycorrhizal fungal species. Using network and co-occurrence analysis, the study has identified and characterized the community characteristics between the species, identifying highly influential species and significant interactions between species. The results demonstrate the potential of foray records in detecting interspecific fungal interactions and highlight their potential to contribute to future research in fungal community ecology.
Collapse
Affiliation(s)
- Zhiru Guoli
- Wolfson College, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
2
|
Kennedy MS, Freiburger A, Cooper M, Beilsmith K, St George ML, Kalski M, Cham C, Guzzetta A, Ng SC, Chan FK, DeLeon O, Rubin D, Henry CS, Bergelson J, Chang EB. Diet outperforms microbial transplant to drive microbiome recovery in mice. Nature 2025:10.1038/s41586-025-08937-9. [PMID: 40307551 DOI: 10.1038/s41586-025-08937-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
A high-fat, low-fibre Western-style diet (WD) induces microbiome dysbiosis characterized by reduced taxonomic diversity and metabolic breadth1,2, which in turn increases risk for a wide array of metabolic3-5, immune6 and systemic pathologies. Recent work has established that WD can impair microbiome resilience to acute perturbations such as antibiotic treatment7,8, although little is known about the mechanism of impairment and the specific consequences for the host of prolonged post-antibiotic dysbiosis. Here we characterize the trajectory by which the gut microbiome recovers its taxonomic and functional profile after antibiotic treatment in mice on regular chow (RC) or WD, and find that only mice on RC undergo a rapid successional process of recovery. Metabolic modelling indicates that a RC diet promotes the development of syntrophic cross-feeding interactions, whereas in mice on WD, a dominant taxon monopolizes readily available resources without releasing syntrophic byproducts. Intervention experiments reveal that an appropriate dietary resource environment is both necessary and sufficient for rapid and robust microbiome recovery, whereas microbial transplant is neither. Furthermore, prolonged post-antibiotic dysbiosis in mice on WD renders them susceptible to infection by the intestinal pathogen Salmonella enterica serovar Typhimurium. Our data challenge widespread enthusiasm for faecal microbiota transplant (FMT) as a strategy to address dysbiosis, and demonstrate that specific dietary interventions are, at a minimum, an essential prerequisite for effective FMT, and may afford a safer, more natural and less invasive alternative.
Collapse
Affiliation(s)
- M S Kennedy
- Medical Scientist Training Program, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL, USA
| | - A Freiburger
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, USA
- Department of Chemical Engineering, Northwestern University, Evanston, IL, USA
| | - M Cooper
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - K Beilsmith
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, USA
| | - M L St George
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Medical Scientist Training Program, University of Illinois Chicago, Chicago, IL, USA
| | - M Kalski
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | - C Cham
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - A Guzzetta
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - S C Ng
- Microbiota I-Center (MagIC), Department of Medicine and Therapeutics, LKS Institute of Health Science, Institute of Digestive Disease, Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China
- New Cornerstone Science Laboratory, The Chinese University of Hong Kong, Hong Kong, China
| | - F K Chan
- Microbiota I-Center (MagIC), Department of Medicine and Therapeutics, LKS Institute of Health Science, Institute of Digestive Disease, Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - O DeLeon
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - D Rubin
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL, USA
| | - C S Henry
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, USA
| | - J Bergelson
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - E B Chang
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Kajihara KT, Yuan M, Amend AS, Cetraro N, Darcy JL, Fraiola KMS, Frank K, McFall-Ngai M, Medeiros MCI, Nakayama KK, Nelson CE, Rollins RL, Sparagon WJ, Swift SOI, Téfit MA, Yew JY, Yogi D, Hynson NA. Diversity, connectivity and negative interactions define robust microbiome networks across land, stream, and sea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631746. [PMID: 39829850 PMCID: PMC11741383 DOI: 10.1101/2025.01.07.631746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In this era of rapid global change, factors influencing the stability of ecosystems and their functions have come into the spotlight. For decades the relationship between stability and complexity has been investigated in modeled and empirical systems, yet results remain largely context dependent. To overcome this we leverage a multiscale inventory of fungi and bacteria ranging from single sites along an environmental gradient, to habitats inclusive of land, sea and stream, to an entire watershed. We use networks to assess the relationship between microbiome complexity and robustness and identify fundamental principles of stability. We demonstrate that while some facets of complexity are positively associated with robustness, others are not. Beyond positive biodiversity x robustness relationships we find that the number of "gatekeeper" species or those that are highly connected and central within their networks, and the proportion of predicted negative interactions are universal indicators of robust microbiomes. With the potential promise of microbiome engineering to address global challenges ranging from human to ecosystem health we identify properties of microbiomes for future experimental studies that may enhance their stability. We emphasize that features beyond biodiversity and additional characteristics beyond stability such as adaptability should be considered in these efforts.
Collapse
Affiliation(s)
- Kacie T Kajihara
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Mengting Yuan
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Anthony S Amend
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Nicolas Cetraro
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - John L Darcy
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Kauaoa M S Fraiola
- United States Geological Survey Pacific Islands Climate Adaptation Center, Honolulu, HI 96822, USA
| | - Kiana Frank
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Margaret McFall-Ngai
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Matthew C I Medeiros
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Kirsten K Nakayama
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Randi L Rollins
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Wesley J Sparagon
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Sean O I Swift
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Mélisandre A Téfit
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Danyel Yogi
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Nicole A Hynson
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
4
|
Srednick G, Swearer SE. Understanding diversity-synchrony-stability relationships in multitrophic communities. Nat Ecol Evol 2024; 8:1259-1269. [PMID: 38839850 DOI: 10.1038/s41559-024-02419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/22/2024] [Indexed: 06/07/2024]
Abstract
Understanding how species loss impacts ecosystem stability is critical given contemporary declines in global biodiversity. Despite decades of research on biodiversity-stability relationships, most studies are performed within a trophic level, overlooking the multitrophic complexity structuring natural communities. Here, in a global analysis of diversity-synchrony-stability (DSS) studies (n = 420), we found that 74% were monotrophic and biased towards terrestrial plant communities, with 91% describing stabilizing effects of asynchrony. Multitrophic studies (26%) were representative of all biomes and showed that synchrony had mixed effects on stability. To explore potential mechanisms, we applied a multitrophic framework adapted from DSS theory to investigate DSS relationships in algae-herbivore assemblages across five long-term tropical and temperate marine system datasets. Both algal and herbivore species diversity reduced within-group synchrony in both systems but had different interactive effects on species synchrony between systems. Herbivore synchrony was positively and negatively influenced by algal diversity in tropical versus temperate systems, respectively, and algal synchrony was positively influenced by herbivore diversity in temperate systems. While herbivore synchrony reduced multitrophic stability in both systems, algal synchrony only reduced stability in tropical systems. These results highlight the complexity of DSS relationships at the multitrophic level and emphasize why more multitrophic assessments are needed to better understand how biodiversity influences community stability in nature.
Collapse
Affiliation(s)
- Griffin Srednick
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Stephen E Swearer
- Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Wilkes LN, Barner AK, Keyes AA, Morton D, Byrnes JEK, Dee LE. Quantifying co-extinctions and ecosystem service vulnerability in coastal ecosystems experiencing climate warming. GLOBAL CHANGE BIOLOGY 2024; 30:e17422. [PMID: 39034898 DOI: 10.1111/gcb.17422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
Climate change is negatively impacting ecosystems and their contributions to human well-being, known as ecosystem services. Previous research has mainly focused on the direct effects of climate change on species and ecosystem services, leaving a gap in understanding the indirect impacts resulting from changes in species interactions within complex ecosystems. This knowledge gap is significant because the loss of a species in a food web can lead to additional species losses or "co-extinctions," particularly when the species most impacted by climate change are also the species that play critical roles in food web persistence or provide ecosystem services. Here, we present a framework to investigate the relationships among species vulnerability to climate change, their roles within the food web, their contributions to ecosystem services, and the overall persistence of these systems and services in the face of climate-induced species losses. To do this, we assess the robustness of food webs and their associated ecosystem services to climate-driven species extinctions in eight empirical rocky intertidal food webs. Across food webs, we find that highly connected species are not the most vulnerable to climate change. However, we find species that directly provide ecosystem services are more vulnerable to climate change and more connected than species that do not directly provide services, which results in ecosystem service provision collapsing before food webs. Overall, we find that food webs are more robust to climate change than the ecosystem services they provide and show that combining species roles in food webs and services with their vulnerability to climate change offer predictions about the impacts of co-extinctions for future food web and ecosystem service persistence. However, these conclusions are limited by data availability and quality, underscoring the need for more comprehensive data collection on linking species roles in interaction networks and their vulnerabilities to climate change.
Collapse
Affiliation(s)
- Lexi N Wilkes
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
- Department of Biology, University of Massachusetts, Boston, Massachusetts, USA
| | | | - Aislyn A Keyes
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
- Bigelow Laboratory for Ocean Sciences, Boothbay, Maine, USA
| | - Dana Morton
- Department of Biology, Colby College, Waterville, Maine, USA
| | - Jarrett E K Byrnes
- Department of Biology, University of Massachusetts, Boston, Massachusetts, USA
| | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
6
|
Cirtwill AR, Åkesson A, Wootton KL, Eklöf A. Species motif participation provides unique information about species risk of extinction. J Anim Ecol 2024; 93:731-742. [PMID: 38556748 DOI: 10.1111/1365-2656.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Loss of species in food webs can set in motion a cascade of additional (secondary) extinctions. A species' position in a food web (e.g. its trophic level or number of interactions) is known to affect its ability to persist following disturbance. These simple measures, however, offer only a coarse description of how species fit into their community. One would therefore expect that more detailed structural measures such as participation in three-species motifs (meso-scale structures which provide information on a species' direct and indirect interactions) will also be related to probability of persistence. Disturbances affecting the basal resources have particularly strong effects on the rest of the food web. However, how disturbances branch out and affect consumer persistence depends on the structural pattern of species interactions in several steps. The magnitude, for example, the proportion of basal resources lost, will likely also affect the outcome. Here, we analyse whether a consumer's risk of secondary extinction after the removal of basal resources depends on the consumer's motif participation and how this relationship varies with the severity of disturbance. We show that consumer species which participate more frequently in the direct competition motif and less frequently in the omnivory motif generally have higher probability of persistence following disturbance to basal resources. However, both the strength of the disturbance and the overall network structure (i.e. connectance) affect the strength and direction of relationships between motif participation and persistence. Motif participation therefore captures important trends in species persistence and provides a rich description of species' structural roles in their communities, but must be considered in the context of network structure as a whole and of the specific disturbance applied.
Collapse
Affiliation(s)
- Alyssa R Cirtwill
- Spatial Foodweb Ecology Group, Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anna Åkesson
- Department of Theoretical Biology, Chemistry, and Physics, Linköping University, Linköping, Sweden
| | - Kate L Wootton
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Anna Eklöf
- Department of Theoretical Biology, Chemistry, and Physics, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Lever JJ, Van Nes EH, Scheffer M, Bascompte J. Five fundamental ways in which complex food webs may spiral out of control. Ecol Lett 2023; 26:1765-1779. [PMID: 37587015 DOI: 10.1111/ele.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Theory suggests that increasingly long, negative feedback loops of many interacting species may destabilize food webs as complexity increases. Less attention has, however, been paid to the specific ways in which these 'delayed negative feedbacks' may affect the response of complex ecosystems to global environmental change. Here, we describe five fundamental ways in which these feedbacks might pave the way for abrupt, large-scale transitions and species losses. By combining topological and bioenergetic models, we then proceed by showing that the likelihood of such transitions increases with the number of interacting species and/or when the combined effects of stabilizing network patterns approach the minimum required for stable coexistence. Our findings thus shift the question from the classical question of what makes complex, unaltered ecosystems stable to whether the effects of, known and unknown, stabilizing food-web patterns are sufficient to prevent abrupt, large-scale transitions under global environmental change.
Collapse
Affiliation(s)
- J Jelle Lever
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen, The Netherlands
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Egbert H Van Nes
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen, The Netherlands
| | - Marten Scheffer
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen, The Netherlands
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
An R, Liu Y, Pan C, Da Z, Zhang P, Qiao N, Zhao F, Ba S. Water quality determines protist taxonomic and functional group composition in a high-altitude wetland of international importance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163308. [PMID: 37028668 DOI: 10.1016/j.scitotenv.2023.163308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/26/2023] [Accepted: 04/01/2023] [Indexed: 05/27/2023]
Abstract
Alpine wetland is a natural laboratory for studying the Earth's third polar ecosphere. Protist communities are key components of wetland ecosystems which are extremely vulnerable to environmental change. It is of great importance to study the protist community in relation to environment, which might be the key to understand the ecosystem of the alpine wetlands under global change. In this study, we investigated the composition of protist communities across the Mitika Wetland, a unique alpine wetland hosting tremendous endemic diversity. Using 18S rRNA gene high-throughput sequencing, we evaluated how protist taxonomic and functional group composition is structured by seasonal climate and environmental variation. We found a high relative abundance of Ochrophyta, Ciliophora, and Cryptophyta, each of which showcased a unique spatial pattern in the wet and dry seasons. The proportion of consumers, parasites and phototrophs groups were stable among the functional zones and also between the seasons, with consumers dominating communities in terms of richness, while phototrophic taxa dominated in terms of relative abundance. Protist and each functional group were rather regulated by deterministic than stochastic processes, with water quality having a strong control on communities. Salinity and pH were the most important environmental factors at shaping protistan community. The protist co-occurrence network dominated by the positive edge indicating the communities resisted extreme environmental conditions through close cooperation, and more consumers were determined as the keystones in wet season and more phototrophic taxa in dry season. Our results provided the baseline of the protist taxonomic and functional group composition in the highest wetland, and highlighted environmental selections drive protist distribution, implying the alpine wetland ecosystem are sensitive to climate changes and human activities.
Collapse
Affiliation(s)
- Ruizhi An
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China
| | - Yang Liu
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China
| | - Chengmei Pan
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China
| | - Zhen Da
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China
| | - Peng Zhang
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China
| | - Nanqian Qiao
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China
| | - Feng Zhao
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Sang Ba
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, School of Ecology and Environment, Tibet University, Lhasa 850000, China; Center for Carbon Neutrality in the Earth's Third Pole, Tibet University, Lhasa 850000, China.
| |
Collapse
|
9
|
Fan C, Zhu D, Zhang T, Wu R. Efficient keystone species identification strategy based on tabu search. PLoS One 2023; 18:e0285575. [PMID: 37167265 PMCID: PMC10174581 DOI: 10.1371/journal.pone.0285575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
As species extinction accelerates globally and biodiversity declines dramatically, identifying keystone species becomes an effective way to conserve biodiversity. In traditional approaches, it is considered that the extinction of species with high centrality poses the greatest threat to secondary extinction. However, the indirect effect, which is equally important as the local and direct effects, is not included. Here, we propose an optimized disintegration strategy model for quantitative food webs and introduced tabu search, a metaheuristic optimization algorithm, to identify keystone species. Topological simulations are used to record secondary extinctions during species removal and secondary extinction areas, as well as to evaluate food web robustness. The effectiveness of the proposed strategy is also validated by comparing it with traditional methods. Results of our experiments demonstrate that our strategy can optimize the effect of food web disintegration and identify the species whose extinction is most destructive to the food web through global search. The algorithm provides an innovative and efficient way for further development of keystone species identification in the ecosystem.
Collapse
Affiliation(s)
- Chuanjin Fan
- School of Mathematics and Statistics, Shandong University, Weihai, Shandong, China
| | - Donghui Zhu
- School of Mathematics and Statistics, Shandong University, Weihai, Shandong, China
| | - Tongtong Zhang
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, China
| | - Ruijia Wu
- School of Law, Weihai, Shandong University, Weihai, Shandong, China
| |
Collapse
|
10
|
Ceron K, Sales LP, Santana DJ, Pires MM. Decoupled responses of biodiversity facets driven from anuran vulnerability to climate and land‐use changes. Ecol Lett 2023; 26:869-882. [DOI: 10.1111/ele.14207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
|
11
|
Banker RMW, Dineen AA, Sorman MG, Tyler CL, Roopnarine PD. Beyond functional diversity: The importance of trophic position to understanding functional processes in community evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.983374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecosystem structure—that is the species present, the functions they represent, and how those functions interact—is an important determinant of community stability. This in turn affects how ecosystems respond to natural and anthropogenic crises, and whether species or the ecological functions that they represent are able to persist. Here we use fossil data from museum collections, literature, and the Paleobiology Database to reconstruct trophic networks of Tethyan paleocommunities from the Anisian and Carnian (Triassic), Bathonian (Jurassic), and Aptian (Cretaceous) stages, and compare these to a previously reconstructed trophic network from a modern Jamaican reef community. We generated model food webs consistent with functional structure and taxon richnesses of communities, and compared distributions of guild level parameters among communities, to assess the effect of the Mesozoic Marine Revolution on ecosystem dynamics. We found that the trophic space of communities expanded from the Anisian to the Aptian, but this pattern was not monotonic. We also found that trophic position for a given guild was subject to variation depending on what other guilds were present in that stage. The Bathonian showed the lowest degree of trophic omnivory by top consumers among all Mesozoic networks, and was dominated by longer food chains. In contrast, the Aptian network displayed a greater degree of short food chains and trophic omnivory that we attribute to the presence of large predatory guilds, such as sharks and bony fish. Interestingly, the modern Jamaican community appeared to have a higher proportion of long chains, as was the case in the Bathonian. Overall, results indicate that trophic structure is highly dependent on the taxa and ecological functions present, primary production experienced by the community, and activity of top consumers. Results from this study point to a need to better understand trophic position when planning restoration activities because a community may be so altered by human activity that restoring a species or its interactions may no longer be possible, and alternatives must be considered to restore an important function. Further work may also focus on elucidating the precise roles of top consumers in moderating network structure and community stability.
Collapse
|
12
|
Stouffer DB. A critical examination of models of annual‐plant population dynamics and density‐dependent fecundity. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel B. Stouffer
- Centre for Integrative Ecology School of Biological Sciences University of Canterbury Christchurch New Zealand
| |
Collapse
|
13
|
Merging theory and experiments to predict and understand coextinctions. Trends Ecol Evol 2022; 37:886-898. [DOI: 10.1016/j.tree.2022.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
|
14
|
Fuzessy L, Sobral G, Carreira D, Rother DC, Barbosa G, Landis M, Galetti M, Dallas T, Cardoso Cláudio V, Culot L, Jordano P. Functional roles of frugivores and plants shape hyper‐diverse mutualistic interactions under two antagonistic conservation scenarios. Biotropica 2022. [DOI: 10.1111/btp.13065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lisieux Fuzessy
- São Paulo State University UNESP Rio Claro SP Brazil
- Estación Biológica de Doñana EBD‐CSIC Sevilla Spain
| | | | - Daiane Carreira
- University of São Paulo Escola Superior de Agricultura "Luiz de Queiroz" Esalq USP Piracicaba SP Brazil
| | - Débora Cristina Rother
- University of São Paulo USP São Paulo SP Brazil
- University of São Paulo Escola Superior de Agricultura "Luiz de Queiroz" Esalq USP Piracicaba SP Brazil
| | | | | | - Mauro Galetti
- São Paulo State University UNESP Rio Claro SP Brazil
- Department of Biology University of Miami Coral Gables Florida USA
| | - Tad Dallas
- Louisiana State University Baton Rouge Louisiana USA
| | | | | | | |
Collapse
|
15
|
Cranial Anatomical Integration and Disparity Among Bones Discriminate Between Primates and Non-primate Mammals. Evol Biol 2021. [DOI: 10.1007/s11692-021-09555-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe primate skull hosts a unique combination of anatomical features among mammals, such as a short face, wide orbits, and big braincase. Together with a trend to fuse bones in late development, these features define the anatomical organization of the skull of primates—which bones articulate to each other and the pattern this creates. Here, I quantified the anatomical organization of the skull of 17 primates and 15 non-primate mammals using anatomical network analysis to assess how the skulls of primates have diverged from those of other mammals, and whether their anatomical differences coevolved with brain size. Results show that primates have a greater anatomical integration of their skulls and a greater disparity among bones than other non-primate mammals. Brain size seems to contribute in part to this difference, but its true effect could not be conclusively proven. This supports the hypothesis that primates have a distinct anatomical organization of the skull, but whether this is related to their larger brains remains an open question.
Collapse
|
16
|
Darvariu VA, Hailes S, Musolesi M. Goal-directed graph construction using reinforcement learning. Proc Math Phys Eng Sci 2021. [DOI: 10.1098/rspa.2021.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Graphs can be used to represent and reason about systems and a variety of metrics have been devised to quantify their global characteristics. However, little is currently known about how to construct a graph or improve an existing one given a target objective. In this work, we formulate the construction of a graph as a decision-making process in which a central agent creates topologies by trial and error and receives rewards proportional to the value of the target objective. By means of this conceptual framework, we propose an algorithm based on reinforcement learning and graph neural networks to learn graph construction and improvement strategies. Our core case study focuses on robustness to failures and attacks, a property relevant for the infrastructure and communication networks that power modern society. Experiments on synthetic and real-world graphs show that this approach can outperform existing methods while being cheaper to evaluate. It also allows generalization to out-of-sample graphs, as well as to larger out-of-distribution graphs in some cases. The approach is applicable to the optimization of other global structural properties of graphs.
Collapse
Affiliation(s)
- Victor-Alexandru Darvariu
- Department of Computer Science, University College London, London, UK
- The Alan Turing Institute, London, UK
| | - Stephen Hailes
- Department of Computer Science, University College London, London, UK
| | - Mirco Musolesi
- Department of Computer Science, University College London, London, UK
- The Alan Turing Institute, London, UK
- Department of Computer Science and Engineering, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Carpentier C, Barabás G, Spaak JW, De Laender F. Reinterpreting the relationship between number of species and number of links connects community structure and stability. Nat Ecol Evol 2021; 5:1102-1109. [PMID: 34059819 DOI: 10.1038/s41559-021-01468-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/16/2021] [Indexed: 02/04/2023]
Abstract
For 50 years, ecologists have examined how the number of interactions (links) scales with the number of species in ecological networks. Here, we show that the way the number of links varies when species are sequentially removed from a community is fully defined by a single parameter identifiable from empirical data. We mathematically demonstrate that this parameter is network-specific and connects local stability and robustness, establishing a formal connection between community structure and two prime stability concepts. Importantly, this connection highlights a local stability-robustness trade-off, which is stronger in mutualistic than in trophic networks. Analysis of 435 empirical networks confirmed these results. We finally show how our network-specific approach relates to the classical across-network approach found in literature. Taken together, our results elucidate one of the intricate relationships between network structure and stability in community networks.
Collapse
Affiliation(s)
- Camille Carpentier
- Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth and the Environment, Namur Institute of Complex Systems, University of Namur, Namur, Belgium.
| | - György Barabás
- Department of Physics, Chemistry and Biology, Division of Theoretical Biology, Linköping University, Linköping, Sweden.,MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary
| | - Jürg Werner Spaak
- Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth and the Environment, Namur Institute of Complex Systems, University of Namur, Namur, Belgium.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Frederik De Laender
- Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth and the Environment, Namur Institute of Complex Systems, University of Namur, Namur, Belgium
| |
Collapse
|
18
|
Thompson AR, Roth-Monzón AJ, Aanderud ZT, Adams BJ. Phagotrophic Protists and Their Associates: Evidence for Preferential Grazing in an Abiotically Driven Soil Ecosystem. Microorganisms 2021; 9:1555. [PMID: 34442632 PMCID: PMC8398437 DOI: 10.3390/microorganisms9081555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022] Open
Abstract
The complex relationship between ecosystem function and soil food web structure is governed by species interactions, many of which remain unmapped. Phagotrophic protists structure soil food webs by grazing the microbiome, yet their involvement in intraguild competition, susceptibility to predator diversity, and grazing preferences are only vaguely known. These species-dependent interactions are contextualized by adjacent biotic and abiotic processes, and thus obfuscated by typically high soil biodiversity. Such questions may be investigated in the McMurdo Dry Valleys (MDV) of Antarctica because the physical environment strongly filters biodiversity and simplifies the influence of abiotic factors. To detect the potential interactions in the MDV, we analyzed the co-occurrence among shotgun metagenome sequences for associations suggestive of intraguild competition, predation, and preferential grazing. In order to control for confounding abiotic drivers, we tested co-occurrence patterns against various climatic and edaphic factors. Non-random co-occurrence between phagotrophic protists and other soil fauna was biotically driven, but we found no support for competition or predation. However, protists predominately associated with Proteobacteria and avoided Actinobacteria, suggesting grazing preferences were modulated by bacterial cell-wall structure and growth rate. Our study provides a critical starting-point for mapping protist interactions in native soils and highlights key trends for future targeted molecular and culture-based approaches.
Collapse
Affiliation(s)
- Andrew R. Thompson
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (A.J.R.-M.); (B.J.A.)
| | - Andrea J. Roth-Monzón
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (A.J.R.-M.); (B.J.A.)
- Department of Ecology and Evolutionary Biology, University of Connecticut, Mansfield, CT 06269, USA
| | - Zachary T. Aanderud
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Byron J. Adams
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (A.J.R.-M.); (B.J.A.)
- Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
19
|
Keyes AA, McLaughlin JP, Barner AK, Dee LE. An ecological network approach to predict ecosystem service vulnerability to species losses. Nat Commun 2021; 12:1586. [PMID: 33707438 PMCID: PMC7952599 DOI: 10.1038/s41467-021-21824-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Human-driven threats are changing biodiversity, impacting ecosystem services. The loss of one species can trigger secondary extinctions of additional species, because species interact-yet the consequences of these secondary extinctions for services remain underexplored. Herein, we compare robustness of food webs and the ecosystem services (hereafter 'services') they provide; and investigate factors determining service responses to secondary extinctions. Simulating twelve extinction scenarios for estuarine food webs with seven services, we find that food web and service robustness are highly correlated, but that robustness varies across services depending on their trophic level and redundancy. Further, we find that species providing services do not play a critical role in stabilizing food webs - whereas species playing supporting roles in services through interactions are critical to the robustness of both food webs and services. Together, our results reveal indirect risks to services through secondary species losses and predictable differences in vulnerability across services.
Collapse
Affiliation(s)
- Aislyn A Keyes
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - John P McLaughlin
- Depeartment of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | | | - Laura E Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
20
|
Robroek BJM, Martí M, Svensson BH, Dumont MG, Veraart AJ, Jassey VEJ. Rewiring of peatland plant–microbe networks outpaces species turnover. OIKOS 2021. [DOI: 10.1111/oik.07635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bjorn J. M. Robroek
- Aquatic Ecology and Environmental Biology, Inst. for Water and Wetland Research, Faculty of Science, Radboud Univ. Nijmegen Nijmegen the Netherlands
| | - Magalí Martí
- Thematic Studies – Environmental Change, Linköping Univ. Linköping Sweden
| | - Bo H. Svensson
- Thematic Studies – Environmental Change, Linköping Univ. Linköping Sweden
| | - Marc G. Dumont
- School of Biological Sciences, Faculty of Environmental and Life Sciences, Univ. of Southampton Southampton UK
| | - Annelies J. Veraart
- Aquatic Ecology and Environmental Biology, Inst. for Water and Wetland Research, Faculty of Science, Radboud Univ. Nijmegen Nijmegen the Netherlands
| | - Vincent E. J. Jassey
- Laboratoire d'Ecologie Fonctionnelle et Environnement, Univ. de Toulouse, CNRS Toulouse Cedex France
| |
Collapse
|
21
|
Davies TJ. Ecophylogenetics redux. Ecol Lett 2021; 24:1073-1088. [PMID: 33565697 DOI: 10.1111/ele.13682] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/24/2022]
Abstract
Species' evolutionary histories shape their present-day ecologies, but the integration of phylogenetic approaches in ecology has had a contentious history. The field of ecophylogenetics promised to reveal the process of community assembly from simple indices of phylogenetic pairwise distances - communities shaped by environmental filtering were composed of closely related species, whereas communities shaped by competition were composed of less closely related species. However, the mapping of ecology onto phylogeny proved to be not so straightforward, and the field remains mired in controversy. Nonetheless, ecophylogenetic methods provided important advances across ecology. For example the phylogenetic distances between species is a strong predictor of pest and pathogen sharing, and can thus inform models of species invasion, coexistence and the disease dilution/amplification effect of biodiversity. The phylogenetic structure of communities may also provide information on niche space occupancy, helping interpret patterns of facilitation, succession and ecosystem functioning - with relevance for conservation and restoration - and the dynamics among species within foodwebs and metacommunities. I suggest leveraging advances in our understanding of the process of evolution on phylogenetic trees would allow the field to progress further, while maintaining the essence of the original vision that proved so seductive.
Collapse
Affiliation(s)
- T Jonathan Davies
- Departments of Botany, Forest & Conservation Sciences, Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, BC, V6T 1Z4, Canada.,African Centre for DNA Barcoding, University of Johannesburg, Johannesburg, 2092, South Africa
| |
Collapse
|
22
|
Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web. Sci Rep 2021; 11:1765. [PMID: 33469119 PMCID: PMC7815714 DOI: 10.1038/s41598-021-81392-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/29/2020] [Indexed: 01/29/2023] Open
Abstract
Top-down and bottom-up forces determine ecosystem function and dynamics. Fisheries as a top-down force can shorten and destabilize food webs, while effects driven by climate change can alter the bottom-up forces of primary productivity. We assessed the response of a highly-resolved intertidal food web to these two global change drivers, using network analysis and bioenergetic modelling. We quantified the relative importance of artisanal fisheries as another predator species, and evaluated the independent and combined effects of fisheries and changes in plankton productivity on food web dynamics. The food web was robust to the loss of all harvested species but sensitive to the decline in plankton productivity. Interestingly, fisheries dampened the negative impacts of decreasing plankton productivity on non-harvested species by reducing the predation pressure of harvested consumers on non-harvested resources, and reducing the interspecific competition between harvested and non-harvested basal species. In contrast, the decline in plankton productivity increased the sensitivity of harvested species to fishing by reducing the total productivity of the food web. Our results show that strategies for new scenarios caused by climate change are needed to protect marine ecosystems and the wellbeing of local communities dependent on their resources.
Collapse
|
23
|
Meyer JM, Leempoel K, Losapio G, Hadly EA. Molecular Ecological Network Analyses: An Effective Conservation Tool for the Assessment of Biodiversity, Trophic Interactions, and Community Structure. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.588430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
24
|
Häussler J, Barabás G, Eklöf A. A Bayesian network approach to trophic metacommunities shows that habitat loss accelerates top species extinctions. Ecol Lett 2020; 23:1849-1861. [PMID: 32981202 PMCID: PMC7702078 DOI: 10.1111/ele.13607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/09/2020] [Accepted: 08/14/2020] [Indexed: 11/28/2022]
Abstract
We develop a novel approach to analyse trophic metacommunities, which allows us to explore how progressive habitat loss affects food webs. Our method combines classic metapopulation models on fragmented landscapes with a Bayesian network representation of trophic interactions for calculating local extinction rates. This means that we can repurpose known results from classic metapopulation theory for trophic metacommunities, such as ranking the habitat patches of the landscape with respect to their importance to the persistence of the metacommunity as a whole. We use this to study the effects of habitat loss, both on model communities and the plant‐mammal Serengeti food web dataset as a case study. Combining straightforward parameterisability with computational efficiency, our method permits the analysis of species‐rich food webs over large landscapes, with hundreds or even thousands of species and habitat patches, while still retaining much of the flexibility of explicit dynamical models.
Collapse
Affiliation(s)
- Johanna Häussler
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, Jena, 07743, Germany
| | - György Barabás
- Linköping University, Linköping, SE-58183, Sweden.,MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Pázmány Péter sétány, Budapest, H-1117, Hungary
| | - Anna Eklöf
- Linköping University, Linköping, SE-58183, Sweden
| |
Collapse
|
25
|
Abstract
Observational studies have not yet shown that environmental variables can explain pervasive nonlinear patterns of species abundance, because those patterns could result from (indirect) interactions with other species (e.g., competition), and models only estimate direct responses. The experiments that could extract these indirect effects at regional to continental scales are not feasible. Here, a biophysical approach quantifies environment- species interactions (ESI) that govern community change from field data. Just as species interactions depend on population abundances, so too do the effects of environment, as when drought is amplified by competition. By embedding dynamic ESI within framework that admits data gathered on different scales, we quantify responses that are induced indirectly through other species, including probabilistic uncertainty in parameters, model specification, and data. Simulation demonstrates that ESI are needed for accurate interpretation. Analysis demonstrates how nonlinear responses arise even when their direct responses to environment are linear. Applications to experimental lakes and the Breeding Bird Survey (BBS) yield contrasting estimates of ESI. In closed lakes, interactions involving phytoplankton and their zooplankton grazers play a large role. By contrast, ESI are weak in BBS, as expected where year-to-year movement degrades the link between local population growth and species interactions. In both cases, nonlinear responses to environmental gradients are induced by interactions between species. Stability analysis indicates stability in the closed-system lakes and instability in BBS. The probabilistic framework has direct application to conservation planning that must weigh risk assessments for entire habitats and communities against competing interests.
Collapse
|
26
|
The marine fish food web is globally connected. Nat Ecol Evol 2019; 3:1153-1161. [PMID: 31358950 DOI: 10.1038/s41559-019-0950-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/20/2019] [Indexed: 12/25/2022]
Abstract
The productivity of marine ecosystems and the services they provide to humans are largely dependent on complex interactions between prey and predators. These are embedded in a diverse network of trophic interactions, resulting in a cascade of events following perturbations such as species extinction. The sheer scale of oceans, however, precludes the characterization of marine feeding networks through de novo sampling. This effort ought instead to rely on a combination of extensive data and inference. Here we investigate how the distribution of trophic interactions at the global scale shapes the marine fish food web structure. We hypothesize that the heterogeneous distribution of species ranges in biogeographic regions should concentrate interactions in the warmest areas and within species groups. We find that the inferred global metaweb of marine fish-that is, all possible potential feeding links between co-occurring species-is highly connected geographically with a low degree of spatial modularity. Metrics of network structure correlate with sea surface temperature and tend to peak towards the tropics. In contrast to open-water communities, coastal food webs have greater interaction redundancy, which may confer robustness to species extinction. Our results suggest that marine ecosystems are connected yet display some resistance to perturbations because of high robustness at most locations.
Collapse
|
27
|
Clark JS, Nuñez CL, Tomasek B. Foodwebs based on unreliable foundations: spatiotemporal masting merged with consumer movement, storage, and diet. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1381] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James S. Clark
- Nicholas School of the Environment Duke University Durham North Carolina 27708 USA
- Department of Statistical Science Duke University Durham North Carolina 27708 USA
| | - Chase L. Nuñez
- Nicholas School of the Environment Duke University Durham North Carolina 27708 USA
| | - Bradley Tomasek
- Nicholas School of the Environment Duke University Durham North Carolina 27708 USA
| |
Collapse
|
28
|
Griffith GP, Strutton PG, Semmens JM, Fulton EA. Identifying important species that amplify or mitigate the interactive effects of human impacts on marine food webs. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2019; 33:403-412. [PMID: 30091174 DOI: 10.1111/cobi.13202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/11/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Some species may have a larger role than others in the transfer of complex effects of multiple human stressors, such as changes in biomass, through marine food webs. We devised a novel approach to identify such species. We constructed annual interaction-effect networks (IENs) of the simulated changes in biomass between species of the southeastern Australian marine system. Each annual IEN was composed of the species linked by either an additive (sum of the individual stressor response), synergistic (lower biomass compared with additive effects), or antagonistic (greater biomass compared with additive effects) response to the interaction effect of ocean warming, ocean acidification, and fisheries. Structurally, over the simulation period, the number of species and links in the synergistic IENs increased and the network structure became more stable. The stability of the antagonistic IENs decreased and became more vulnerable to the loss of species. In contrast, there was no change in the structural attributes of species linked by an additive response. Using indices common in food-web and network theory, we identified the species in each IEN for which a change in biomass from stressor effects would disproportionately affect the biomass of other species via direct and indirect local, intermediate, and global predator-prey feeding interactions. Knowing the species that transfer the most synergistic or antagonistic responses in a food-web may inform conservation under increasing multiple-stressor impacts.
Collapse
Affiliation(s)
- Gary P Griffith
- Norwegian Polar Institute, Postbox 6606, Langes, 9296, Tromsø, Norway
- Institute for Marine and Antarctic Studies, Private Bag 49, Hobart 7001, Australia
| | - Peter G Strutton
- Institute for Marine and Antarctic Studies, Private Bag 49, Hobart 7001, Australia
- Australian Research Council Centre of Excellence for Climate System Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Jayson M Semmens
- Institute for Marine and Antarctic Studies, Private Bag 49, Hobart 7001, Australia
| | - Elizabeth A Fulton
- Commonwealth Scientific and Industrial Research Organization, GPO Box 1538, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
29
|
Rolls RJ, Baldwin DS, Bond NR, Lester RE, Robson BJ, Ryder DS, Thompson RM, Watson GA. A framework for evaluating food-web responses to hydrological manipulations in riverine systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:136-150. [PMID: 28783010 DOI: 10.1016/j.jenvman.2017.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/20/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
Environmental flows are used to restore elements of the hydrological regime altered by human use of water. One of the primary justifications and purposes for environmental flows is the maintenance of target species populations but, paradoxically, there has been little emphasis on incorporating the food-web and trophic dynamics that determine population-level responses into the monitoring and evaluation of environmental flow programs. We develop a generic framework for incorporating trophic dynamics into monitoring programs to identify the food-web linkages between hydrological regimes and population-level objectives of environmental flows. These linkages form the basis for objective setting, ecological targets and indicator selection that are necessary for planning monitoring programs with a rigorous scientific basis. Because there are multiple facets of trophic dynamics that influence energy production and transfer through food webs, the specific objectives of environmental flows need to be defined during the development of monitoring programs. A multitude of analytical methods exist that each quantify distinct aspects of food webs (e.g. energy production, prey selection, energy assimilation), but no single method can provide a basis for holistic understanding of food webs. Our paper critiques a range of analytical methods for quantifying attributes of food webs to inform the setting, monitoring and evaluation of trophic outcomes of environmental flows and advance the conceptual understanding of trophic dynamics in river-floodplain systems.
Collapse
Affiliation(s)
- Robert J Rolls
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.
| | - Darren S Baldwin
- The Murray-Darling Freshwater Research Centre, La Trobe University, PO Box 821, Wodonga, VIC 3689, Australia; CSIRO Land and Water, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Nick R Bond
- The Murray-Darling Freshwater Research Centre, La Trobe University, PO Box 821, Wodonga, VIC 3689, Australia
| | - Rebecca E Lester
- School of Life and Environmental Sciences, Centre for Integrative Ecology, PO Box 423, Warrnambool, VIC 3280, Australia
| | - Barbara J Robson
- CSIRO Land and Water, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Daren S Ryder
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Ross M Thompson
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Garth A Watson
- The Murray-Darling Freshwater Research Centre, La Trobe University, PO Box 821, Wodonga, VIC 3689, Australia; CSIRO Land and Water, GPO Box 1700, Canberra, ACT 2601, Australia
| |
Collapse
|
30
|
Abstract
Food webs have been found to exhibit remarkable "motif profiles", patterns in the relative prevalences of all possible three-species subgraphs, and this has been related to ecosystem properties such as stability and robustness. Analysing 46 food webs of various kinds, we find that most food webs fall into one of two distinct motif families. The separation between the families is well predicted by a global measure of hierarchical order in directed networks-trophic coherence. We find that trophic coherence is also a good predictor for the extent of omnivory, defined as the tendency of species to feed on multiple trophic levels. We compare our results to a network assembly model that admits tunable trophic coherence via a single free parameter. The model is able to generate food webs in either of the two families by varying this parameter, and correctly classifies almost all the food webs in our database. This is in contrast with the two most popular food web models, the generalized cascade and niche models, which can only generate food webs within a single motif family. Our findings suggest the importance of trophic coherence in modelling local preying patterns in food webs.
Collapse
Affiliation(s)
- Janis Klaise
- Centre for Complexity Science, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| | - Samuel Johnson
- Centre for Complexity Science, University of Warwick, Coventry, CV4 7AL, United Kingdom
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
31
|
Bell G, Fortier-Dubois É. Trophic dynamics of a simple model ecosystem. Proc Biol Sci 2017; 284:rspb.2017.1463. [PMID: 28904142 DOI: 10.1098/rspb.2017.1463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/08/2017] [Indexed: 11/12/2022] Open
Abstract
We have constructed a model of community dynamics that is simple enough to enumerate all possible food webs, yet complex enough to represent a wide range of ecological processes. We use the transition matrix to predict the outcome of succession and then investigate how the transition probabilities are governed by resource supply and immigration. Low-input regimes lead to simple communities whereas trophically complex communities develop when there is an adequate supply of both resources and immigrants. Our interpretation of trophic dynamics in complex communities hinges on a new principle of mutual replenishment, defined as the reciprocal alternation of state in a pair of communities linked by the invasion and extinction of a shared species. Such neutral couples are the outcome of succession under local dispersal and imply that food webs will often be made up of suites of trophically equivalent species. When immigrants arrive from an external pool of fixed composition a similar principle predicts a dynamic core of webs constituting a neutral interchange network, although communities may express an extensive range of other webs whose membership is only in part predictable. The food web is not in general predictable from whole-community properties such as productivity or stability, although it may profoundly influence these properties.
Collapse
Affiliation(s)
- Graham Bell
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada H3A 1B1
| | - Étienne Fortier-Dubois
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada H3A 1B1
| |
Collapse
|
32
|
Sander EL, Wootton JT, Allesina S. Ecological Network Inference From Long-Term Presence-Absence Data. Sci Rep 2017; 7:7154. [PMID: 28769079 PMCID: PMC5541006 DOI: 10.1038/s41598-017-07009-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/20/2017] [Indexed: 11/21/2022] Open
Abstract
Ecological communities are characterized by complex networks of trophic and nontrophic interactions, which shape the dy-namics of the community. Machine learning and correlational methods are increasingly popular for inferring networks from co-occurrence and time series data, particularly in microbial systems. In this study, we test the suitability of these methods for inferring ecological interactions by constructing networks using Dynamic Bayesian Networks, Lasso regression, and Pear-son’s correlation coefficient, then comparing the model networks to empirical trophic and nontrophic webs in two ecological systems. We find that although each model significantly replicates the structure of at least one empirical network, no model significantly predicts network structure in both systems, and no model is clearly superior to the others. We also find that networks inferred for the Tatoosh intertidal match the nontrophic network much more closely than the trophic one, possibly due to the challenges of identifying trophic interactions from presence-absence data. Our findings suggest that although these methods hold some promise for ecological network inference, presence-absence data does not provide enough signal for models to consistently identify interactions, and networks inferred from these data should be interpreted with caution.
Collapse
Affiliation(s)
- Elizabeth L Sander
- University of Chicago, Department of Ecology and Evolution, Chicago, 60637, USA.
| | - J Timothy Wootton
- University of Chicago, Department of Ecology and Evolution, Chicago, 60637, USA
| | - Stefano Allesina
- University of Chicago, Department of Ecology and Evolution, Chicago, 60637, USA.,University of Chicago, Computation Institute, Chicago, 60637, USA
| |
Collapse
|
33
|
Liu Y, Tang M, Do Y, Hui PM. Accurate ranking of influential spreaders in networks based on dynamically asymmetric link weights. Phys Rev E 2017; 96:022323. [PMID: 28950650 PMCID: PMC7217521 DOI: 10.1103/physreve.96.022323] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/03/2017] [Indexed: 11/07/2022]
Abstract
We propose an efficient and accurate measure for ranking spreaders and identifying the influential ones in spreading processes in networks. While the edges determine the connections among the nodes, their specific role in spreading should be considered explicitly. An edge connecting nodes i and j may differ in its importance for spreading from i to j and from j to i. The key issue is whether node j, after infected by i through the edge, would reach out to other nodes that i itself could not reach directly. It becomes necessary to invoke two unequal weights w_{ij} and w_{ji} characterizing the importance of an edge according to the neighborhoods of nodes i and j. The total asymmetric directional weights originating from a node leads to a novel measure s_{i}, which quantifies the impact of the node in spreading processes. An s-shell decomposition scheme further assigns an s-shell index or weighted coreness to the nodes. The effectiveness and accuracy of rankings based on s_{i} and the weighted coreness are demonstrated by applying them to nine real-world networks. Results show that they generally outperform rankings based on the nodes' degree and k-shell index while maintaining a low computational complexity. Our work represents a crucial step towards understanding and controlling the spread of diseases, rumors, information, trends, and innovations in networks.
Collapse
Affiliation(s)
- Ying Liu
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
| | - Ming Tang
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Information Science Technology, East China Normal University, Shanghai 200241, China
| | - Younghae Do
- Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea
| | - Pak Ming Hui
- Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
34
|
|
35
|
Dee LE, De Lara M, Costello C, Gaines SD. To what extent can ecosystem services motivate protecting biodiversity? Ecol Lett 2017; 20:935-946. [PMID: 28656624 DOI: 10.1111/ele.12790] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/17/2017] [Accepted: 04/14/2017] [Indexed: 01/22/2023]
Abstract
Society increasingly focuses on managing nature for the services it provides people rather than for the existence of particular species. How much biodiversity protection would result from this modified focus? Although biodiversity contributes to ecosystem services, the details of which species are critical, and whether they will go functionally extinct in the future, are fraught with uncertainty. Explicitly considering this uncertainty, we develop an analytical framework to determine how much biodiversity protection would arise solely from optimising net value from an ecosystem service. Using stochastic dynamic programming, we find that protecting a threshold number of species is optimal, and uncertainty surrounding how biodiversity produces services makes it optimal to protect more species than are presumed critical. We define conditions under which the economically optimal protection strategy is to protect all species, no species, and cases in between. We show how the optimal number of species to protect depends upon different relationships between species and services, including considering multiple services. Our analysis provides simple criteria to evaluate when managing for particular ecosystem services could warrant protecting all species, given uncertainty. Evaluating this criterion with empirical estimates from different ecosystems suggests that optimising some services will be more likely to protect most species than others.
Collapse
Affiliation(s)
- Laura E Dee
- Bren School of Environmental Science & Management, University of California, Santa Barbara, 2400 Bren Hall, Santa Barbara, CA, 93106, USA
- Institute on the Environment, University of Minnesota, St. Paul, MN, 55108, USA
| | - Michel De Lara
- École des Ponts ParisTech, Université Paris-Est, Cermics. 6 et 8 avenue Blaise Pascal, 77455 Marne la Vallée Cedex 2, France
| | - Christopher Costello
- Bren School of Environmental Science & Management, University of California, Santa Barbara, 2400 Bren Hall, Santa Barbara, CA, 93106, USA
| | - Steven D Gaines
- Bren School of Environmental Science & Management, University of California, Santa Barbara, 2400 Bren Hall, Santa Barbara, CA, 93106, USA
| |
Collapse
|
36
|
Chaalali A, Beaugrand G, Raybaud V, Lassalle G, Saint-Béat B, Le Loc’h F, Bopp L, Tecchio S, Safi G, Chifflet M, Lobry J, Niquil N. From species distributions to ecosystem structure and function: A methodological perspective. Ecol Modell 2016. [DOI: 10.1016/j.ecolmodel.2016.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
McDonald-Madden E, Sabbadin R, Game ET, Baxter PWJ, Chadès I, Possingham HP. Using food-web theory to conserve ecosystems. Nat Commun 2016; 7:10245. [PMID: 26776253 PMCID: PMC4735605 DOI: 10.1038/ncomms10245] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/23/2015] [Indexed: 11/09/2022] Open
Abstract
Food-web theory can be a powerful guide to the management of complex ecosystems. However, we show that indices of species importance common in food-web and network theory can be a poor guide to ecosystem management, resulting in significantly more extinctions than necessary. We use Bayesian Networks and Constrained Combinatorial Optimization to find optimal management strategies for a wide range of real and hypothetical food webs. This Artificial Intelligence approach provides the ability to test the performance of any index for prioritizing species management in a network. While no single network theory index provides an appropriate guide to management for all food webs, a modified version of the Google PageRank algorithm reliably minimizes the chance and severity of negative outcomes. Our analysis shows that by prioritizing ecosystem management based on the network-wide impact of species protection rather than species loss, we can substantially improve conservation outcomes. The influence of species conservation on food webs is less well understood than the effects of species loss. Here, the authors test several indices against optimal food web management and find no current metrics are reliably effective at identifying species conservation priorities.
Collapse
Affiliation(s)
- E McDonald-Madden
- School of Geography, Planning and Environmental Management, University of Queensland, St Lucia, Queensland 4072, Australia
| | - R Sabbadin
- Unité de Mathématiques et Informatique Appliquées, Toulouse, INRA UR 875, BP 27 F-31326 Castanet-Tolosan, France
| | - E T Game
- The Nature Conservancy, Conservation Science, South Brisbane, Queensland 4101, Australia
| | - P W J Baxter
- Centre for Applications in Natural Resource Mathematics, School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - I Chadès
- CSIRO, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia
| | - H P Possingham
- School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia.,School of Mathematics and Physics, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
38
|
Santamaría S, Galeano J, Pastor JM, Méndez M. Removing interactions, rather than species, casts doubt on the high robustness of pollination networks. OIKOS 2015. [DOI: 10.1111/oik.02921] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Silvia Santamaría
- Área de Biodiversidad y Conservación, Univ. Rey Juan Carlos; c/Tulipán s/n. ES-28933 Móstoles Madrid Spain
| | - Javier Galeano
- Complex System Group, Technical Univ. of Madrid; Ciudad Universitaria s/n ES-28040 Madrid Spain
| | - Juan Manuel Pastor
- Complex System Group, Technical Univ. of Madrid; Ciudad Universitaria s/n ES-28040 Madrid Spain
| | - Marcos Méndez
- Área de Biodiversidad y Conservación, Univ. Rey Juan Carlos; c/Tulipán s/n. ES-28933 Móstoles Madrid Spain
| |
Collapse
|
39
|
Rossi L, di Lascio A, Carlino P, Calizza E, Costantini ML. Predator and detritivore niche width helps to explain biocomplexity of experimental detritus-based food webs in four aquatic and terrestrial ecosystems. ECOLOGICAL COMPLEXITY 2015. [DOI: 10.1016/j.ecocom.2015.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Butt N, Seabrook L, Maron M, Law BS, Dawson TP, Syktus J, McAlpine CA. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. GLOBAL CHANGE BIOLOGY 2015; 21:3267-77. [PMID: 25605302 DOI: 10.1111/gcb.12869] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/06/2015] [Indexed: 05/22/2023]
Abstract
Forest vertebrate fauna provide critical services, such as pollination and seed dispersal, which underpin functional and resilient ecosystems. In turn, many of these fauna are dependent on the flowering phenology of the plant species of such ecosystems. The impact of changes in climate, including climate extremes, on the interaction between these fauna and flora has not been identified or elucidated, yet influences on flowering phenology are already evident. These changes are well documented in the mid to high latitudes. However, there is emerging evidence that the flowering phenology, nectar/pollen production, and fruit production of long-lived trees in tropical and subtropical forests are also being impacted by changes in the frequency and severity of climate extremes. Here, we examine the implications of these changes for vertebrate fauna dependent on these resources. We review the literature to establish evidence for links between climate extremes and flowering phenology, elucidating the nature of relationships between different vertebrate taxa and flowering regimes. We combine this information with climate change projections to postulate about the likely impacts on nectar, pollen and fruit resource availability and the consequences for dependent vertebrate fauna. The most recent climate projections show that the frequency and intensity of climate extremes will increase during the 21st century. These changes are likely to significantly alter mass flowering and fruiting events in the tropics and subtropics, which are frequently cued by climate extremes, such as intensive rainfall events or rapid temperature shifts. We find that in these systems the abundance and duration of resource availability for vertebrate fauna is likely to fluctuate, and the time intervals between episodes of high resource availability to increase. The combined impact of these changes has the potential to result in cascading effects on ecosystems through changes in pollinator and seed dispersal ecology, and demands a focused research effort.
Collapse
Affiliation(s)
- Nathalie Butt
- ARC Centre of Excellence for Environmental Decisions and School of Biological Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - Leonie Seabrook
- School of Geography, Planning and Environmental Management, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - Martine Maron
- School of Geography, Planning and Environmental Management, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - Bradley S Law
- Forest Science Unit, NSW Primary Industries, Locked Bag 5123, Parramatta, NSW, 2124, Australia
| | - Terence P Dawson
- School of the Environment, University of Dundee, Perth Rd, Dundee, DD1 4HN, UK
| | - Jozef Syktus
- School of Geography, Planning and Environmental Management, The University of Queensland, St. Lucia, Qld, 4072, Australia
- Department of Science, Information Technology, Innovation and the Arts, Ecosciences Precinct, Dutton Park, Qld, 4102, Australia
| | - Clive A McAlpine
- School of Geography, Planning and Environmental Management, The University of Queensland, St. Lucia, Qld, 4072, Australia
| |
Collapse
|
41
|
Calizza E, Costantini ML, Rossi L. Effect of multiple disturbances on food web vulnerability to biodiversity loss in detritus-based systems. Ecosphere 2015. [DOI: 10.1890/es14-00489.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Quinto J, Marcos-García MDLÁ, Díaz-Castelazo C, Rico-Gray V, Galante E, Micó E. Association patterns in saproxylic insect networks in three Iberian Mediterranean woodlands and their resistance to microhabitat loss. PLoS One 2015; 10:e0122141. [PMID: 25811197 PMCID: PMC4374943 DOI: 10.1371/journal.pone.0122141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 02/16/2015] [Indexed: 11/18/2022] Open
Abstract
The assessment of the relationship between species diversity, species interactions and environmental characteristics is indispensable for understanding network architecture and ecological distribution in complex networks. Saproxylic insect communities inhabiting tree hollow microhabitats within Mediterranean woodlands are highly dependent on woodland configuration and on microhabitat supply they harbor, so can be studied under the network analysis perspective. We assessed the differences in interacting patterns according to woodland site, and analysed the importance of functional species in modelling network architecture. We then evaluated their implications for saproxylic assemblages' persistence, through simulations of three possible scenarios of loss of tree hollow microhabitat. Tree hollow-saproxylic insect networks per woodland site presented a significant nested pattern. Those woodlands with higher complexity of tree individuals and tree hollow microhabitats also housed higher species/interactions diversity and complexity of saproxylic networks, and exhibited a higher degree of nestedness, suggesting that a higher woodland complexity positively influences saproxylic diversity and interaction complexity, thus determining higher degree of nestedness. Moreover, the number of insects acting as key interconnectors (nodes falling into the core region, using core/periphery tests) was similar among woodland sites, but the species identity varied on each. Such differences in insect core composition among woodland sites suggest the functional role they depict at woodland scale. Tree hollows acting as core corresponded with large tree hollows near the ground and simultaneously housing various breeding microsites, whereas core insects were species mediating relevant ecological interactions within saproxylic communities, e.g. predation, competitive or facilitation interactions. Differences in network patterns and tree hollow characteristics among woodland sites clearly defined different sensitivity to microhabitat loss, and higher saproxylic diversity and woodland complexity showed positive relation with robustness. These results highlight that woodland complexity goes hand in hand with biotic and ecological complexity of saproxylic networks, and together exhibited positive effects on network robustness.
Collapse
Affiliation(s)
- Javier Quinto
- Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante, Alicante, Spain
| | | | | | | | - Eduardo Galante
- Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante, Alicante, Spain
| | - Estefanía Micó
- Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante, Alicante, Spain
| |
Collapse
|
43
|
Bondavalli C, Bodini A. How interaction strength affects the role of functional and redundant connections in food webs. ECOLOGICAL COMPLEXITY 2014. [DOI: 10.1016/j.ecocom.2014.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Eklöf A, Tang S, Allesina S. Secondary extinctions in food webs: a Bayesian network approach. Methods Ecol Evol 2013. [DOI: 10.1111/2041-210x.12062] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Anna Eklöf
- Department of Ecology & Evolution; University of Chicago; Chicago; IL; USA
| | - Si Tang
- Department of Ecology & Evolution; University of Chicago; Chicago; IL; USA
| | | |
Collapse
|
45
|
Bellingeri M, Vincenzi S. Robustness of empirical food webs with varying consumer's sensitivities to loss of resources. J Theor Biol 2013; 333:18-26. [PMID: 23685067 DOI: 10.1016/j.jtbi.2013.04.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/18/2013] [Accepted: 04/25/2013] [Indexed: 11/17/2022]
Abstract
Food web responses to species loss have been mostly studied in binary food webs, thus without accounting for the amount of energy transferred in consumer-resource interactions. We introduce an energetic criterion, called extinction threshold, for which a species goes secondarily extinct when a certain fraction of its incoming energy is lost. We study the robustness to random node loss of 10 food webs based on empirically-derived weightings. We use different extinction scenarios (random removal and from most- to least-connected species), and we simulate 10(5) replicates for each extinction threshold to account for stochasticity of extinction dynamics. We quantified robustness on the basis of how many additional species (i.e. secondary extinctions) were lost after the direct removal of species (i.e. primary extinctions). For all food webs, the expected robustness linearly decreases with extinction threshold, although a large variance in robustness is observed. The sensitivity of robustness to variations in extinction threshold increases with food web species richness and quantitative unweighted link density, while we observed a nonlinear relationship when the predictor is food web connectance and no relationship with the proportion of autotrophs.
Collapse
Affiliation(s)
- Michele Bellingeri
- Department of Physics, University of Parma, Viale Usberti 7/A, I-43124 Parma, Italy
| | | |
Collapse
|
46
|
Donohue I, Petchey OL, Montoya JM, Jackson AL, McNally L, Viana M, Healy K, Lurgi M, O'Connor NE, Emmerson MC. On the dimensionality of ecological stability. Ecol Lett 2013; 16:421-9. [DOI: 10.1111/ele.12086] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/27/2012] [Accepted: 01/02/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Ian Donohue
- School of Natural Sciences; Trinity College Dublin; Ireland
- Trinity Centre for Biodiversity Research; Trinity College Dublin; Ireland
| | - Owen L. Petchey
- Institute of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
| | - José M. Montoya
- Instituto de Ciencias del Mar; Agencia Consejo Superior de Investigaciones Científicas; Barcelona Spain
| | - Andrew L. Jackson
- School of Natural Sciences; Trinity College Dublin; Ireland
- Trinity Centre for Biodiversity Research; Trinity College Dublin; Ireland
| | - Luke McNally
- School of Natural Sciences; Trinity College Dublin; Ireland
- Trinity Centre for Biodiversity Research; Trinity College Dublin; Ireland
| | - Mafalda Viana
- School of Natural Sciences; Trinity College Dublin; Ireland
- Trinity Centre for Biodiversity Research; Trinity College Dublin; Ireland
| | - Kevin Healy
- School of Natural Sciences; Trinity College Dublin; Ireland
- Trinity Centre for Biodiversity Research; Trinity College Dublin; Ireland
| | - Miguel Lurgi
- Instituto de Ciencias del Mar; Agencia Consejo Superior de Investigaciones Científicas; Barcelona Spain
- Centre for Ecological Research and Forestry Applications (CREAF); Universitat Autònoma de Barcelona; Bellaterra Spain
| | - Nessa E. O'Connor
- School of Biological Sciences; Queen's University Belfast; Belfast UK
| | - Mark C. Emmerson
- School of Biological Sciences; Queen's University Belfast; Belfast UK
| |
Collapse
|
47
|
Torres-Alruiz MD, Rodríguez DJ. A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes. Ecol Modell 2013. [DOI: 10.1016/j.ecolmodel.2012.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Quinto J, Marcos-García MÁ, Díaz-Castelazo C, Rico-Gray V, Brustel H, Galante E, Micó E. Breaking down complex Saproxylic communities: understanding sub-networks structure and implications to network robustness. PLoS One 2012; 7:e45062. [PMID: 23028763 PMCID: PMC3460928 DOI: 10.1371/journal.pone.0045062] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
Saproxylic insect communities inhabiting tree hollow microhabitats correspond with large food webs which simultaneously are constituted by multiple types of plant-animal and animal-animal interactions, according to the use of trophic resources (wood- and insect-dependent sub-networks), or to trophic habits or interaction types (xylophagous, saprophagous, xylomycetophagous, predators and commensals). We quantitatively assessed which properties of specialised networks were present in a complex networks involving different interacting types such as saproxylic community, and how they can be organised in trophic food webs. The architecture, interacting patterns and food web composition were evaluated along sub-networks, analysing their implications to network robustness from random and directed extinction simulations. A structure of large and cohesive modules with weakly connected nodes was observed throughout saproxylic sub-networks, composing the main food webs constituting this community. Insect-dependent sub-networks were more modular than wood-dependent sub-networks. Wood-dependent sub-networks presented higher species degree, connectance, links, linkage density, interaction strength, and were less specialised and more aggregated than insect-dependent sub-networks. These attributes defined high network robustness in wood-dependent sub-networks. Finally, our results emphasise the relevance of modularity, differences among interacting types and interrelations among them in modelling the structure of saproxylic communities and in determining their stability.
Collapse
Affiliation(s)
- Javier Quinto
- Centro Iberoamericano de la Biodiversidad CIBIO, Universidad de Alicante, Alicante, España
| | | | | | | | - Hervé Brustel
- Université de Toulouse, École d’Ingénieurs de Purpan, INPT, Toulouse, France
| | - Eduardo Galante
- Centro Iberoamericano de la Biodiversidad CIBIO, Universidad de Alicante, Alicante, España
| | - Estefanía Micó
- Centro Iberoamericano de la Biodiversidad CIBIO, Universidad de Alicante, Alicante, España
| |
Collapse
|
49
|
Campbell C, Yang S, Shea K, Albert R. Topology of plant-pollinator networks that are vulnerable to collapse from species extinction. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021924. [PMID: 23005802 DOI: 10.1103/physreve.86.021924] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/13/2012] [Indexed: 06/01/2023]
Abstract
The ability to predict the collapse of ecological communities is of significant concern in light of global patterns of rapid species extinctions. Here, we use a recently developed dynamic Boolean network-based model of mutualistic plant-pollinator community formation to investigate the stability of simulated ecological communities in the face of sequential species extinctions. We assess communities in terms of the relative change in biodiversity after species loss, and find that communities that experience a significant loss of biodiversity differ from more robust communities according to a number of topological characteristics. Notably, we show that high nestedness, a property commonly believed to promote community stability, may in extreme circumstances promote a critical over-reliance on individual species. Furthermore, the species important to the survival of the rest of the ecosystem occupy different positions in the network than less important species. Our results suggest that network measures may be applied to real ecosystems to yield insight into both their stability and the identity of potentially critical species.
Collapse
Affiliation(s)
- Colin Campbell
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | |
Collapse
|
50
|
|