1
|
Li X, Yang W, Novak M, Zhao L, de Ruiter PC, Yang Z, Guill C. Body Mass-Biomass Scaling Modulates Species Keystone-Ness to Press Perturbations. Ecol Lett 2025; 28:e70086. [PMID: 39964095 DOI: 10.1111/ele.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/04/2024] [Accepted: 01/30/2025] [Indexed: 05/10/2025]
Abstract
Identifying species with disproportionate effects on other species under press perturbations is essential, yet how species traits and community context drive their 'keystone-ness' remain unclear. We quantified keystone-ness as linearly approximated per capita net effect derived from normalised inverse community matrices and as non-linear per capita community biomass change from simulated perturbations in food webs with varying biomass structure. In bottom-heavy webs (negative relationship between species' body mass and their biomass within the web), larger species at higher trophic levels tended to be keystone species, whereas in top-heavy webs (positive body mass to biomass relationship), the opposite was true and the relationships between species' energetic traits and keystone-ness were weakened or reversed compared to bottom-heavy webs. Linear approximations aligned well with non-linear responses in bottom-heavy webs, but were less consistent in top-heavy webs. These findings highlight the importance of community context in shaping species' keystone-ness and informing effective conservation actions.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Mark Novak
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Lei Zhao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Peter C de Ruiter
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Biometris, Wageningen University, Wageningen, the Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Christian Guill
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
2
|
Cui Y, Xu D, Luo W, Zhai Y, Dai Y, Ji C, Li X, Chen J. Effects of volcanic environment on Setaria viridis rhizospheric soil microbial keystone taxa and ecosystem multifunctionality. ENVIRONMENTAL RESEARCH 2024; 263:120262. [PMID: 39481779 DOI: 10.1016/j.envres.2024.120262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Keystone taxa are significant within ecosystem multifunctionality, as certain species fulfil essential functions such as recycling soil nutrients, promoting plant growth, influencing biogeochemical processes, and contributing to human health maintenance. However, there are still gaps regarding the relationship between microbial communities in volcanic rhizospheric soil and ecosystem multifunctionality. As a result, in this research, we employed Illumina MiSeq high-throughput sequencing to analyse the microbial community composition of rhizospheric soil from volcanic S. viridis. Compared with non-volcanic areas, volcanic soils have higher fungal alpha diversity and the absolute abundance of bacteria (16S gene copies) showed significant variation between the two successions (P < 0.0001). The network analysis further demonstrated that the microbial diversity in non-volcanic regions surpassed that of the volcanic area. The volcanic fungi network has more nodes and edges, is more complex than non-volcanic areas (Nodes: 425 vs. 770; Edges: 21844 vs. 74532), and more rhizosphere growth-promoting bacteria are enriched. Regression analysis and correlation networks showed that fungal communities were more closely associated with ecosystem multifunctionality than bacteria. This study lays the groundwork for examining the microbial keystone taxa in the rhizosphere of volcanic plants and offers valuable insights into the multifaceted functions of plant rhizospheric soil ecosystems.
Collapse
Affiliation(s)
- Ye Cui
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, 230036, China
| | - Daolong Xu
- Inner Mongolia Academy of Science and Technology, Hohhot, 010010, Inner Mongolia, China
| | - Wumei Luo
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, 230036, China
| | - Yuxin Zhai
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, 230036, China
| | - Yiming Dai
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, 230036, China
| | - Chunxiang Ji
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, 230036, China.
| | - Jin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Xiao E, Deng J, Shao L, Xiao T, Meng F, Liu C, Ning Z. Increased microbial complexity and stability in rhizosphere soil: A key factor for plant resilience during mining disturbance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177100. [PMID: 39477125 DOI: 10.1016/j.scitotenv.2024.177100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/13/2024] [Accepted: 10/19/2024] [Indexed: 11/07/2024]
Abstract
The network-based complexity and stability of the microbial community are critical for host fitness under disturbance, but there are still gaps in our understanding of whether there are general rules governing this relationship. Despite evidence that the rhizosphere microbiome plays an important role in host fitness, it is unclear whether rhizosphere microbial complexity and stability influence host plant fitness under scenarios of environmental disturbance. Here, we investigated the effects of mining disturbance on the complexity and stability of the rhizosphere microbiome and its potential role in plant fitness. Our findings demonstrated that, compared with mildly disturbed mining sites, severely disturbed mining sites exhibited significantly increased complexity and stability indices of the rhizosphere microbial community. Furthermore, we identified a positive feedback relationship between microbial complexity and stability and the functional potential of the microbial community, which ultimately benefits plant fitness. Our study provides empirical evidence that mining disturbance increases microbial complexity and stability, thereby increasing the resilience of host plants to environmental disturbance. Understanding microbially mediated tolerance to mining disturbance may improve our ability to predict and manage plant adaptability in changing environments.
Collapse
Affiliation(s)
- Enzong Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jinmei Deng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Li Shao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Fande Meng
- Anhui Science & Technology University, College of Resource & Environment, Chuzhou 233100, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
4
|
Scesa P, Nguyen H, Weiss P, Rodriguez AP, Garchow M, Ohlemacher SI, Prappas E, Caplins SA, Bewley CA, Bohnert L, Zellmer AJ, Wood EM, Schmidt EW, Krug PJ. Defensive polyketides produced by an abundant gastropod are candidate keystone molecules in estuarine ecology. SCIENCE ADVANCES 2024; 10:eadp8643. [PMID: 39475615 PMCID: PMC11524194 DOI: 10.1126/sciadv.adp8643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
Secondary metabolites often function as antipredator defenses, but when bioactive at low concentrations, their off-target effects on other organisms may be overlooked. Candidate "keystone molecules" are proposed to affect community structure and ecosystem functions, generally originating as defenses of primary producers; the broader effects of animal chemistry remain largely unexplored, however. Here, we characterize five previously unreported polyketides (alderenes A to E) biosynthesized by sea slugs reaching exceptional densities (up to 9000 slugs per square meter) in Northern Hemisphere estuaries. Alderenes comprise only 0.1% of slug wet weight, yet rendered live slugs or dead flesh unpalatable to three co-occurring consumers, making a potential food resource unavailable and redirecting energy flow in critical nursery habitat. Alderenes also displaced infauna from the upper sediment of the mudflat but attracted ovipositing snails. By altering communities, such compounds may have unexpected cascading effects on processes ranging from bioturbation to reproduction of species not obviously connected to the producing organisms, warranting greater attention by ecologists.
Collapse
Affiliation(s)
- Paul Scesa
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Helen Nguyen
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | - Paige Weiss
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | - Alejandra P. Rodriguez
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | - Matthew Garchow
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | - Shannon I. Ohlemacher
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evangelia Prappas
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | - Serena A. Caplins
- Department of Population Biology, University of California at Davis, Davis, CA 95616, USA
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laine Bohnert
- Department of Biology, Occidental College, 1600 Campus Rd., Los Angeles, CA 90041, USA
| | - Amanda J. Zellmer
- Department of Biology, Occidental College, 1600 Campus Rd., Los Angeles, CA 90041, USA
| | - Eric M. Wood
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Patrick J. Krug
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| |
Collapse
|
5
|
Jordán F, Capelli G, Primicerio R, Hidas A, Fábián V, Patonai K, Bodini A. Spatial food webs in the Barents Sea: atlantification and the reorganization of the trophic structure. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230164. [PMID: 39034707 PMCID: PMC11293864 DOI: 10.1098/rstb.2023.0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/15/2024] [Accepted: 05/30/2024] [Indexed: 07/23/2024] Open
Abstract
Climate change affects ecosystems at several levels: by altering the spatial distribution of individual species, by locally rewiring interspecific interactions, and by reorganizing trophic networks at larger scales. The dynamics of marine food webs are becoming more and more sensitive to spatial processes and connections in the seascape. As a case study, we study the atlantification of the Barents Sea: we compare spatio-temporal subsystems at three levels: the identity of key organisms, critically important interactions and the entire food web. Network analysis offers quantitative measurements, including centrality indices, trophic similarity indices, a topological measure of interaction asymmetry and network-level measures. We found that atlantification alters the identity of key species (boreal demersals becoming hubs), results in strongly asymmetric interactions (dominated by haddock), changes the dominant regulation regime (from bottom-up to wasp-waist control) and makes the food web less modular. Since the results of food web analysis may be quite sensitive to network construction, the aggregation of food web data was explicitly studied to increase the robustness of food web analysis. We found that an alternative, mathematical aggregation algorithm better preserves some network properties (e.g. density) of the original, unaggregated network than the biologically inspired aggregation into functional groups. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Ferenc Jordán
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma43124, Italy
- KeyNode Research Ltd, Budapest, Hungary
| | - Greta Capelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma43124, Italy
- Faculty of Bioscience, Fisheries and Economy, UiT, The Arctic University of Norway, TromsoN-9037, Norway
| | - Raul Primicerio
- Faculty of Bioscience, Fisheries and Economy, UiT, The Arctic University of Norway, TromsoN-9037, Norway
| | - András Hidas
- KeyNode Research Ltd, Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest1113, Hungary
- Doctoral School of Environmental Sciences, Eötvös Loránd University, Budapest1053, Hungary
| | | | - Katalin Patonai
- Department of Biological Sciences, Université de Montréal, MontréalH2V 0B3, Canada
| | - Antonio Bodini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma43124, Italy
| |
Collapse
|
6
|
Tao R, Ding W, Zhang K, Li Y, Li J, Hu B, Chu G. Response of comammox Nitrospira clades A and B communities to long-term fertilization and rhizosphere effects and their relative contribution to nitrification in a subtropical paddy field of China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121939. [PMID: 39067343 DOI: 10.1016/j.jenvman.2024.121939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
The recently discovered complete ammonia oxidation (comammox Nitrospira) containing clade A and clade B has further complemented our understanding of nitrification process. Nevertheless, understanding the community feature of comammox Nitrospira clades A and B and their relative contribution to nitrification in paddy rhizosphere are still in its infancy. In this study, we assessed the community diversity and structure of comammox Nitrospira clades A and B in paddy rhizosphere and bulk soils under thirty years of different fertilization strategies, i.e., non-fertilization control (CK), chemical fertilizers application (NPK), and NPK plus swine manure (NPKM), respectively. NPKM significantly increased the a-diversity (Chao1 and Shannon indices) of comammox Nitrospira clade A and altered the community structure (P < 0.05) but had little effect on clade B. A two-way analysis of variance (ANOVA) showed that the effect of long-term fertilization on soil comammox Nitrospira community and nitrification potential rate (PNR) was much greater than that of rhizosphere. Compared with NPK, soil PNR was greatly increased by 51.0% under the NPKM treatment in the rhizosphere (P < 0.05). Phylogenetic analysis showed that NPKM improved the relative abundances of sub-clade A.2.1 and sub-clade A.3.2 of the comammox clade A community, with an average increase of 212.2 and 210.4% in both rhizosphere and bulk soils relative to the NPK treatment. Soil organic matter, NH4+-N, and pH were significant soil drivers of comammox Nitrospira clades A and B community. Furthermore, linear regression and structural equation modeling clearly showed that comammox Nitrospira clade A a-diversity were significantly associated with soil PNR (P < 0.05). Our results suggest (i) that comammox Nitrospira clade A are sensitive to the organic fertilization; and (ii) that comammox Nitrospira clade A contribute more to nitrification than clade B under the long-term organic fertilized paddy soil.
Collapse
Affiliation(s)
- Rui Tao
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, PR China.
| | - Wangying Ding
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Keyi Zhang
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Yanyan Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, PR China
| | - Jun Li
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Baowei Hu
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Guixin Chu
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, PR China
| |
Collapse
|
7
|
Xin G, Xiaohong S, Yujiao S, Wenbao L, Yanjun W, Zhimou C, Arvolab L. Characterization of bacterial community dynamics dominated by salinity in lakes of the Inner Mongolian Plateau, China. Front Microbiol 2024; 15:1448919. [PMID: 39234542 PMCID: PMC11371557 DOI: 10.3389/fmicb.2024.1448919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Microorganisms in lakes are sensitive to salinity fluctuations. Despite extensive prior research on bacterial communities, our understanding of their characteristics and assembly mechanisms in lakes, especially in desert lakes with different salinities. To address this issue, we collected three samples from freshwater lakes, six from brackish lakes, and five from salt lakes in the Badanjilin Desert. The 16S rRNA gene sequencing was applied to investigate the bacterial interactions with rising salinity, community coexistence patterns, and assembly mechanisms. Our findings suggested that the increased lake salinity significantly reduces the bacterial community diversity and enhanced the community differentiation. Significant variations were observed in the contribution of biomarkers from Cyanobacteria, Chloroflexi, and Halobacterota to the composition of the lake bacterial communities. The bacterial communities in the salt lakes exhibited a higher susceptibility to salinity limitations than those in the freshwater and brackish lakes. In addition, the null modeling analyses confirmed the quantitative biases in the stochastic assembly processes of bacterial communities across freshwater, brackish, and saline lakes. With the increasing lake salinity, the significance of undominated and diffusion limitation decreased slightly, and the influence of homogenizing dispersal on community assembly increased. However, the stochasticity remained the dominant process across all lakes in the Badanjilin Desert. The analysis of co-occurring networks revealed that the rising salinity reduced the complexity of bacterial network structures and altered the interspecific interactions, resulting in the increased interspecies collaboration with increasing salinity levels. Under the influence of salinity stress, the key taxon Cyanobacteria in freshwater lakes (Schizothrix_LEGE_07164) was replaced by Proteobacteria (Thalassobaculum and Polycyclovorans) in brackish lakes, and Thermotogota (SC103) in salt lakes. The results indicated the symbiotic patterns of bacterial communities across varying salinity gradients in lakes and offer insights into potential mechanisms of community aggregation, thereby enhancing our understanding of bacterial distribution in response to salinity changes.
Collapse
Affiliation(s)
- Guo Xin
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
| | - Shi Xiaohong
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
- State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur, China
| | - Shi Yujiao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
| | - Li Wenbao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
| | - Wang Yanjun
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
| | - Cui Zhimou
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Protection and Utilization of Water Resources, Hohhot, China
| | - Lauri Arvolab
- Lammi Biological Station, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, Helsinki, Finland
| |
Collapse
|
8
|
Hajji AL, Lucas KN. Anthropogenic stressors and the marine environment: From sources and impacts to solutions and mitigation. MARINE POLLUTION BULLETIN 2024; 205:116557. [PMID: 38875966 DOI: 10.1016/j.marpolbul.2024.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Human-released contaminants are often poorly understood wholistically in marine ecosystems. This review examines the sources, pathways, impacts on marine animals, and mitigation strategies of five pollutants (plastics, per- and polyfluoroalkyl substances, bisphenol compounds, ethynylestradiol, and petroleum hydrocarbons). Both abiotic and biotic mechanisms contribute to all five contaminants' movement. These pollutants cause short- and long-term effects on many biological processes genetically, molecularly, neurologically, physiologically, reproductively, and developmentally. We explore the extension of adverse outcome pathways to ecosystem effects by considering known inter-generational and trophic relations resulting in large-scale direct and indirect impacts. In doing so, we develop an understanding of their roles as environmental stressors in marine environments for targeted mitigation and future work. Ecosystems are interconnected and so international collaboration, standards, measures preceding mass production, and citizen involvement are required to protect and conserve marine life.
Collapse
Affiliation(s)
- Angelina L Hajji
- Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Kelsey N Lucas
- Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
9
|
Yu Y, Guo Q, Zhang S, Guan Y, Jiang N, Zhang Y, Mao R, Bai K, Buriyev S, Samatov N, Zhang X, Yang W. Maize residue retention shapes soil microbial communities and co-occurrence networks upon freeze-thawing cycles. PeerJ 2024; 12:e17543. [PMID: 38887621 PMCID: PMC11182024 DOI: 10.7717/peerj.17543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
Maize residue retention is an effective agricultural practice for improving soil fertility in black soil region, where suffered from long freezing-thawing periods and intense freeze-thawing (FT) cycles. However, very few studies have examined the influence of maize residue retention on soil microbial communities under FT cycles. We investigated the response of soil microbial communities and co-occurrence networks to maize residue retention at different FT intensities over 12 cycles using a microcosm experiment conditioned in a temperature incubator. Our results indicated that maize residue retention induced dramatic shifts in soil archaeal, bacterial and fungal communities towards copiotroph-dominated communities. Maize residue retention consistently reduced soil fungal richness across all cycles, but this effect was weaker for archaea and bacteria. Normalized stochastic ratio analysis revealed that maize residue retention significantly enhanced the deterministic process of archaeal, bacterial and fungal communities. Although FT intensity significantly impacted soil respiration, it did not induce profound changes in soil microbial diversity and community composition. Co-occurrence network analysis revealed that maize residue retention simplified prokaryotic network, while did not impact fungal network complexity. The network robustness index suggested that maize residue retention enhanced the fungal network stability, but reduced prokaryotic network stability. Moreover, the fungal network in severe FT treatment harbored the most abundant keystone taxa, mainly being cold-adapted fungi. By identifying modules in networks, we observed that prokaryotic Module #1 and fungal Module #3 were enhanced by maize residue retention and contributed greatly to soil quality. Together, our results showed that maize residue retention exerted stronger influence on soil microbial communities and co-occurrence network patterns than FT intensity and highlighted the potential of microbial interactions in improving soil functionality.
Collapse
Affiliation(s)
- Yang Yu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Quankuan Guo
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Shuhan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yupeng Guan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nana Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Yang Zhang
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Rong Mao
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Keyu Bai
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Salimjan Buriyev
- Institute of Environment and Nature Conservation Technologies of the Ministry of Ecology, Environmental Protection, and Climate Change of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Nuriddin Samatov
- Institute of Environment and Nature Conservation Technologies of the Ministry of Ecology, Environmental Protection, and Climate Change of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Ximei Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Sporta Caputi S, Kabala JP, Rossi L, Careddu G, Calizza E, Ventura M, Costantini ML. Individual diet variability shapes the architecture of Antarctic benthic food webs. Sci Rep 2024; 14:12333. [PMID: 38811641 PMCID: PMC11137039 DOI: 10.1038/s41598-024-62644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Antarctic biodiversity is affected by seasonal sea-ice dynamics driving basal resource availability. To (1) determine the role of intraspecific dietary variability in structuring benthic food webs sustaining Antarctic biodiversity, and (2) understand how food webs and the position of topologically central species vary with sea-ice cover, single benthic individuals' diets were studied by isotopic analysis before sea-ice breakup and afterwards. Isotopic trophospecies (or Isotopic Trophic Units) were investigated and food webs reconstructed using Bayesian Mixing Models. As nodes, these webs used either ITUs regardless of their taxonomic membership (ITU-webs) or ITUs assigned to species (population-webs). Both were compared to taxonomic-webs based on taxa and their mean isotopic values. Higher resource availability after sea-ice breakup led to simpler community structure, with lower connectance and linkage density. Intra-population diet variability and compartmentalisation were crucial in determining community structure, showing population-webs to be more complex, stable and robust to biodiversity loss than taxonomic-webs. The core web, representing the minimal community 'skeleton' that expands opportunistically while maintaining web stability with changing resource availability, was also identified. Central nodes included the sea-urchin Sterechinus neumayeri and the bivalve Adamussium colbecki, whose diet is described in unprecedented detail. The core web, compartmentalisation and topologically central nodes represent crucial factors underlying Antarctica's rich benthic food web persistence.
Collapse
Affiliation(s)
- Simona Sporta Caputi
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Jerzy Piotr Kabala
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
| | - Loreto Rossi
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy.
| | - Giulio Careddu
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Edoardo Calizza
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Matteo Ventura
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
| | - Maria Letizia Costantini
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| |
Collapse
|
11
|
Sun QW, Chen JZ, Liao XF, Huang XL, Liu JM. Identification of keystone taxa in rhizosphere microbial communities using different methods and their effects on compounds of the host Cinnamomum migao. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171952. [PMID: 38537823 DOI: 10.1016/j.scitotenv.2024.171952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Exploring keystone taxa affecting microbial community stability and host function is crucial for understanding ecosystem functions. However, identifying keystone taxa from humongous microbial communities remains challenging. We collected 344 rhizosphere and bulk soil samples from the endangered plant C. migao for 2 years consecutively. Used high-throughput sequencing 16S rDNA and ITS to obtain the composition of bacterial and fungal communities. We explored keystone taxa and the applicability and limitations of five methods (SPEC-OCCU, Zi-Pi, Subnetwork, Betweenness, and Module), as well as the impact of microbial community domain, time series, and rhizosphere boundary on the identification of keystone taxa in the communities. Our results showed that the five methods, identified abundant keystone taxa in rhizosphere and bulk soil microbial communities. However, the keystone taxa shared by the rhizosphere and bulk soil microbial communities over time decreased rapidly decrease in the five methods. Among five methods on the identification of keystone taxa in the rhizosphere community, Module identified 113 taxa, SPEC-OCCU identified 17 taxa, Betweenness identified 3 taxa, Subnetwork identified 3 taxa, and Zi-Pi identified 4 taxa. The keystone taxa are mainly conditionally rare taxa, and their ecological functions include chemoheterotrophy, aerobic chemoheterotrophy, nitrate reduction, and anaerobic photoautotrophy. The results of the random forest model and structural equation model predict that keystone taxa Mortierella and Ellin6513 may have an effects on the accumulation of 1, 4, 7, - Cycloundecatriene, 1, 5, 9, 9-tetramethyl-, Z, Z, Z-, beta-copaene, bicyclogermacrene, 1,8-Cineole in C. migao fruits, but their effects still need further evidence. Our study evidence an unstable microbial community in the bulk soil, and the definition of microbial boundary and ecologically functional affected the identification of keystone taxa in the community. Subnetwork and Module are more in line with the definition of keystone taxa in microbial ecosystems in terms of maintaining community stability and hosting function.
Collapse
Affiliation(s)
- Qing-Wen Sun
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Guizhou Province Key Laboratory of Chinese Pharmacology and Pharmacognosy, 550025, China
| | - Jing-Zhong Chen
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Guizhou Province Key Laboratory of Chinese Pharmacology and Pharmacognosy, 550025, China.
| | | | | | - Ji-Ming Liu
- College of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Hong W, Mei H, Shi X, Lin X, Wang S, Ni R, Wang Y, Song L. Viral community distribution, assembly mechanism, and associated hosts in an industrial park wastewater treatment plant. ENVIRONMENTAL RESEARCH 2024; 247:118156. [PMID: 38199475 DOI: 10.1016/j.envres.2024.118156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/02/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Viruses manipulate bacterial community composition and impact wastewater treatment efficiency. Some viruses pose threats to the environment and human populations through infection. Improving the efficiency of wastewater treatment and ensuring the health of the effluent and receptor pools requires an understanding of how viral communities assemble and interact with hosts in wastewater treatment plants (WWTPs). We used metagenomic analysis to study the distribution, assembly mechanism, and sensitive hosts for the viral communities in raw water, anaerobic tanks, and returned activated sludge units of a large-scale industrial park WWTP. Uroviricota (53.42% ± 0.14%) and Nucleocytoviricota (26.1% ± 0.19%) were dominant in all units. Viral community composition significantly differed between units, as measured by β diversity (P = 0.005). Compared to raw water, the relative viral abundance decreased by 29.8% in the anaerobic tank but increased by 9.9% in the activated sludge. Viral community assembly in raw water and anaerobic tanks was predominantly driven by deterministic processes (MST <0.5) versus stochastic processes (MST >0.5) in the activated sludge, indicating that differences in diffusion limits may fundamentally alter the assembly mechanisms of viral communities between the solid and liquid-phase environments. Acidobacteria was identified as the sensitive host contributing to viral abundance, exhibiting strong interactions and a mutual dependence (degree = 59). These results demonstrate the occurrence and prevalence of viruses in WWTPs, their different assembly mechanism, and sensitive hosts. These observations require further study of the mechanisms of viral community succession, ecological function, and roles in the successive wastewater treatment units.
Collapse
Affiliation(s)
- Wenqing Hong
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Hong Mei
- East China Engineering Science and Technology Co., Ltd, Hefei, 230024, China
| | - Xianyang Shi
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China.
| | - Xiaoxing Lin
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Shuijing Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Renjie Ni
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Yan Wang
- East China Engineering Science and Technology Co., Ltd, Hefei, 230024, China
| | - Liyan Song
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China.
| |
Collapse
|
13
|
Toju H, Suzuki SS, Baba YG. Interaction network rewiring and species' contributions to community-scale flexibility. PNAS NEXUS 2024; 3:pgae047. [PMID: 38444600 PMCID: PMC10914369 DOI: 10.1093/pnasnexus/pgae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
The architecture of species interaction networks is a key factor determining the stability of ecological communities. However, the fact that ecological network architecture can change through time is often overlooked in discussions on community-level processes, despite its theoretical importance. By compiling a time-series community dataset involving 50 spider species and 974 Hexapoda prey species/strains, we quantified the extent to which the architecture of predator-prey interaction networks could shift across time points. We then developed a framework for finding species that could increase the flexibility of the interaction network architecture. Those "network coordinator" species are expected to promote the persistence of species-rich ecological communities by buffering perturbations in communities. Although spiders are often considered as generalist predators, their contributions to network flexibility vary greatly among species. We also found that detritivorous prey species can be cores of interaction rewiring, dynamically interlinking below-ground and above-ground community dynamics. We further found that the predator-prey interactions between those network coordinators differed from those highlighted in the standard network-analytical framework assuming static topology. Analyses of network coordinators will add a new dimension to our understanding of species coexistence mechanisms and provide platforms for systematically prioritizing species in terms of their potential contributions in ecosystem conservation and restoration.
Collapse
Affiliation(s)
- Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2133, Japan
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Sayaka S Suzuki
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2133, Japan
| | - Yuki G Baba
- Biodiversity Division, Institute for Agro-Environmental Sciences, NARO, Tsukuba, Ibaraki 305-8604, Japan
| |
Collapse
|
14
|
Chen Y, Xu Y, Ma Y, Lin J, Ruan A. Microbial community structure and its driving mechanisms in the Hangbu estuary of Chaohu Lake under different sedimentary areas. ENVIRONMENTAL RESEARCH 2023; 238:117153. [PMID: 37726029 DOI: 10.1016/j.envres.2023.117153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
Estuaries are known for their high ecological diversity and biological productivity. Sediment microorganisms, as crucial components of estuarine ecosystems, play a pivotal role in reflecting the intricate and dynamic ecological niches. However, our research on microbial community characteristics in estuarine ecosystems under different sedimentary types remains limited. In this study, we collected a total of 27 samples from three sampling sites at Hangbu estuary in Chaohu Lake, and three sedimentary areas were classified based on the overlying water flow conditions and sediment particle properties to elucidate their microbial community structure, environmental drivers, assembly processes, and co-occurrence network characteristics. Our results showed significant differences in microbial community composition and diversity among three sedimentary areas. Redundancy analysis indicated that the differences in microbial community composition at the OTU level among the three sedimentary areas were mainly determined by nitrate-nitrogen, temperature, and water content. Phylogenetic bin-based null model analysis revealed that temperature was a key factor influencing deterministic processes among the three sedimentary areas, while stochastic processes predominantly governed the assembly of microbial communities. In addition, co-occurrence network analysis demonstrated that the network in the hydraulically driven sedimentary area of the lake, consisting mainly of medium and fine silt, had the highest complexity, stability, and cohesion, but was missing potential keystone taxa. The remaining two sedimentary areas had 5 and 8 potential keystone taxa, respectively. Overall, our study proposes the delineation of sedimentary types and comprehensively elucidates the microbial community characteristics under different sedimentary areas, providing a new perspective for studying sediment microbial community structure and helping future scholars systematically study ecological dynamics in estuaries.
Collapse
Affiliation(s)
- Yang Chen
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yaofei Xu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yunmei Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Jie Lin
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Aidong Ruan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| |
Collapse
|
15
|
Chen J, Xiao Q, Xu D, Li Z, Chao L, Li X, Liu H, Wang P, Zheng Y, Liu X, Qu H, Bao Y. Soil microbial community composition and co-occurrence network responses to mild and severe disturbances in volcanic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165889. [PMID: 37524180 DOI: 10.1016/j.scitotenv.2023.165889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Soil physicochemical properties and vegetation types are the main factors affecting soil microorganisms, but there are few studies on the effects of the disturbance following volcanic eruption. To make up for this lack of knowledge, we used Illumina Miseq high-throughput sequencing to study the characteristics of soil microorganisms on both shores of a volcanically disturbed lake. Soil microorganisms in the two sites were subjected to different degrees of volcanic disturbance and showed significant heterogeneity. Mild volcanic disturbance area had higher enrichment of prokaryotic community. Co-occurrence network analysis showed that a total of 12 keystone taxa (9 prokaryotes and 3 fungi) were identified, suggesting that soil prokaryote may play a more significant role than fungi in overall community structure and function. Compared with severe volcanic disturbance area, the soil microbial community in mild volcanic disturbance area had the higher modular network (0.327 vs 0.291). The competition was stronger (positive/negative link ratio, P/N: 1.422 vs 1.159). Random forest analysis showed that soil superoxide dismutase was the most significant variable associated with soil microbial community. Structural equation model (SEM) results showed that keystone had a directly positive effect on prokaryotic (λ = 0.867, P < 0.001) and fungal (λ = 0.990, P < 0.001) multifunctionality while had also a directly positive effect on fungal diversity (λ = 0.553, P < 0.001), suggesting that keystone taxa played a key role in maintaining ecosystem stability. These results were important for understanding the effects of different levels of volcanic disturbance on soil ecosystems.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Qingchen Xiao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Daolong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zishan Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Lumeng Chao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Haijing Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Pengfei Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Yaxin Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Xinyan Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Hanting Qu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China.
| |
Collapse
|
16
|
Wang W, Ji D, Peng S, Loladze I, Harrison MT, Davies WJ, Smith P, Xia L, Wang B, Liu K, Zhu K, Zhang W, Ouyang L, Liu L, Gu J, Zhang H, Yang J, Wang F. Eco-physiology and environmental impacts of newly developed rice genotypes for improved yield and nitrogen use efficiency coordinately. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165294. [PMID: 37414171 DOI: 10.1016/j.scitotenv.2023.165294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Significant advancements have been made in understanding the genetic regulation of nitrogen use efficiency (NUE) and identifying crucial NUE genes in rice. However, the development of rice genotypes that simultaneously exhibit high yield and NUE has lagged behind these theoretical advancements. The grain yield, NUE, and greenhouse gas (GHG) emissions of newly-bred rice genotypes under reduced nitrogen application remain largely unknown. To address this knowledge gap, field experiments were conducted, involving 80 indica (14 to 19 rice genotypes each year in Wuxue, Hubei) and 12 japonica (8 to 12 rice genotypes each year in Yangzhou, Jiangsu). Yield, NUE, agronomy, and soil parameters were assessed, and climate data were recorded. The experiments aimed to assess genotypic variations in yield and NUE among these genotypes and to investigate the eco-physiological basis and environmental impacts of coordinating high yield and high NUE. The results showed significant variations in yield and NUE among the genotypes, with 47 genotypes classified as moderate-high yield with high NUE (MHY_HNUE). These genotypes demonstrated the higher yields and NUE levels, with 9.6 t ha-1, 54.4 kg kg-1, 108.1 kg kg-1, and 64 % for yield, NUE for grain and biomass production, and N harvest index, respectively. Nitrogen uptake and tissue concentration were key drivers of the relationship between yield and NUE, particularly N uptake at heading and N concentrations in both straw and grain at maturity. Increase in pre-anthesis temperature consistently lowered yield and NUE. Genotypes within the MHY_HNUE group exhibited higher methane emissions but lower nitrous oxide emissions compared to those in the low to middle yield and NUE group, resulting in a 12.8 % reduction in the yield-scaled greenhouse gas balance. In conclusion, prioritizing crop breeding efforts on yield and resource use efficiency, as well as developing genotypes resilient to high temperatures with lower GHGs, can mitigate planetary warming.
Collapse
Affiliation(s)
- Weilu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Dongling Ji
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Shaobing Peng
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Irakli Loladze
- Bryan College of Health Sciences, Bryan Medical Center, Lincoln, NE 68506, USA
| | - Matthew Tom Harrison
- Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, Tasmania 7248, Australia
| | | | - Pete Smith
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Longlong Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ke Liu
- Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, Tasmania 7248, Australia
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wen Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100071, China
| | - Linhan Ouyang
- College of Economics and Management, Department of Management Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jianchang Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Fei Wang
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Hernandez DJ, Kiesewetter KN, Almeida BK, Revillini D, Afkhami ME. Multidimensional specialization and generalization are pervasive in soil prokaryotes. Nat Ecol Evol 2023; 7:1408-1418. [PMID: 37550510 DOI: 10.1038/s41559-023-02149-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/04/2023] [Indexed: 08/09/2023]
Abstract
Habitat specialization underpins biological processes from species distributions to speciation. However, organisms are often described as specialists or generalists based on a single niche axis, despite facing complex, multidimensional environments. Here, we analysed 236 environmental soil microbiomes across the United States and demonstrate that 90% of >1,200 prokaryotes followed one of two trajectories: specialization on all niche axes (multidimensional specialization) or generalization on all axes (multidimensional generalization). We then documented that this pervasive multidimensional specialization/generalization had many ecological and evolutionary consequences. First, multidimensional specialization and generalization are highly conserved with very few transitions between these two trajectories. Second, multidimensional generalists dominated communities because they were 73 times more abundant than specialists. Lastly, multidimensional specialists played important roles in community structure with ~220% more connections in microbiome networks. These results indicate that multidimensional generalization and specialization are evolutionarily stable with multidimensional generalists supporting larger populations and multidimensional specialists playing important roles within communities, probably stemming from their overrepresentation among pollutant detoxifiers and nutrient cyclers. Taken together, we demonstrate that the vast majority of soil prokaryotes are restricted to one of two multidimensional niche trajectories, multidimensional specialization or multidimensional generalization, which then has far-reaching consequences for evolutionary transitions, microbial dominance and community roles.
Collapse
Affiliation(s)
| | | | | | - Daniel Revillini
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | | |
Collapse
|
18
|
Márton Z, Csitári B, Felföldi T, Hidas A, Jordán F, Szabó A, Székely AJ. Contrasting response of microeukaryotic and bacterial communities to the interplay of seasonality and local stressors in shallow soda lakes. FEMS Microbiol Ecol 2023; 99:fiad095. [PMID: 37586889 PMCID: PMC10449373 DOI: 10.1093/femsec/fiad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Seasonal environmental variation is a leading driver of microbial planktonic community assembly and interactions. However, departures from usual seasonal trends are often reported. To understand the role of local stressors in modifying seasonal succession, we sampled fortnightly, throughout three seasons, five nearby shallow soda lakes exposed to identical seasonal and meteorological changes. We characterised their microeukaryotic and bacterial communities by amplicon sequencing of the 16S and 18S rRNA gene, respectively. Biological interactions were inferred by analyses of synchronous and time-shifted interaction networks, and the keystone taxa of the communities were topologically identified. The lakes showed similar succession patterns during the study period with spring being characterised by the relevance of trophic interactions and a certain level of community stability followed by a more dynamic and variable summer-autumn period. Adaptation to general seasonal changes happened through shared core microbiome of the lakes. Stochastic events such as desiccation disrupted common network attributes and introduced shifts from the prevalent seasonal trajectory. Our results demonstrated that, despite being extreme and highly variable habitats, shallow soda lakes exhibit certain similarities in the seasonality of their planktonic communities, yet local stressors such as droughts instigate deviations from prevalent trends to a greater extent for microeukaryotic than for bacterial communities.
Collapse
Affiliation(s)
- Zsuzsanna Márton
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, H-1113 Budapest, Hungary
- Doctoral School of Environmental Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Bianka Csitári
- Doctoral School of Environmental Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
- Karolinska Institutet, 171 65 Stockholm, Sweden
- Uppsala University, 752 36 Uppsala, Sweden
| | - Tamás Felföldi
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- Department of Microbiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - András Hidas
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- Doctoral School of Environmental Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Ferenc Jordán
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Attila Szabó
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Anna J Székely
- Uppsala University, 752 36 Uppsala, Sweden
- Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
19
|
Patonai K, Jordán F, Castaldelli G, Congiu L, Gavioli A. Spatial variability of the Po River food web and its comparison with the Danube River food web. PLoS One 2023; 18:e0288652. [PMID: 37450464 PMCID: PMC10348563 DOI: 10.1371/journal.pone.0288652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Freshwater ecosystems are experiencing unprecedented pressure globally. To address environmental challenges, systematic and comparative studies on ecosystems are needed, though mostly lacking, especially for rivers. Here, we describe the food web of the Po River (as integrated from the white literature and monitoring data), describe the three river sections using network analysis, and compare our results with the previously compiled Danube River food web. The Po River food web was taxonomically aggregated in five consecutive steps (T1-T5) and it was also analyzed using the regular equivalence (REGE) algorithm to identify structurally similar nodes in the most aggregated T5 model. In total, the two river food webs shared 30 nodes. Two network metrics (normalized degree centrality [nDC]) and normalized betweenness centrality [nBC]) were compared using Mann-Whitney tests in the two rivers. On average, the Po River nodes have larger nDC values than in the Danube, meaning that neighboring connections are better mapped. Regarding nBC, there were no significant differences between the two rivers. Finally, based on both centrality indices, Carassius auratus is the most important node in the Po River food web, whereas phytoplankton and detritus are most important in the Danube River. Using network analysis and comparative methods, it is possible to draw attention to important trophic groups and knowledge gaps, which can guide future research. These simple models for the Po River food web can pave the way for more advanced models, supporting quantitative and predictive-as well as more functional-descriptions of ecosystems.
Collapse
Affiliation(s)
- Katalin Patonai
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Jordán
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giuseppe Castaldelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | | | - Anna Gavioli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
20
|
Han Z, Wang C, Lei B, Hui N, Yu Y, Shi Y, Zheng J. A limited overlap of interactions between the bacterial community of water and sediment in wetland ecosystem of the Yellow River floodplain. Front Microbiol 2023; 14:1193940. [PMID: 37426011 PMCID: PMC10325576 DOI: 10.3389/fmicb.2023.1193940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/09/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Aquatic ecosystems in floodplains provide homes for a variety of active bacterial populations. However, the coexistence pattern of bacterial communities of water and sediment in these ecosystems is unclear. Methods In the present study, Illumina Mi-Seq sequencing were to assess bacteria's co-occurrence patterns in the water and sediment of different time dynamics and plant communities of the Yellow River floodplain ecosystem. Results and discussion The results showed that compared to water, the α-diversity of the bacterial community was way greater in sediment. The bacterial community structure significantly differed between water and sediment, and there was a limited overlap of interactions between the bacterial community of water and sediment. In addition, bacteria in water and sediment coexisting show different temporal shifts and community assembly patterns. The water was selected for specific groups of microorganisms that assemble over time in a non-reproducible and non-random way, whereas the sediment environment was relatively stable, and the bacterial communities were gathered randomly. The depth and plant cover significantly influenced the structure of a bacterial community in the sediment. The bacterial community in sediment formed a more robust network than those in water to cope with external changes. These findings improved our comprehension of the ecological trends of water and sediment bacterium colonies coexisting enhanced the biological barrier function, and the capacity of floodplain ecosystems to provide services and offered support for doing so.
Collapse
Affiliation(s)
- Zhiguang Han
- Yellow River Floodplain Ecosystems Research Station, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Department of Civil Engineering and Architecture, Henan University, Kaifeng, Henan, China
| | - Cong Wang
- Yellow River Floodplain Ecosystems Research Station, School of Life Sciences, Henan University, Kaifeng, Henan, China
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Binghai Lei
- Yellow River Floodplain Ecosystems Research Station, School of Life Sciences, Henan University, Kaifeng, Henan, China
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyan Yu
- Yellow River Floodplain Ecosystems Research Station, School of Life Sciences, Henan University, Kaifeng, Henan, China
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Yu Shi
- Yellow River Floodplain Ecosystems Research Station, School of Life Sciences, Henan University, Kaifeng, Henan, China
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Junqiang Zheng
- Yellow River Floodplain Ecosystems Research Station, School of Life Sciences, Henan University, Kaifeng, Henan, China
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
21
|
Fan C, Zhu D, Zhang T, Wu R. Efficient keystone species identification strategy based on tabu search. PLoS One 2023; 18:e0285575. [PMID: 37167265 PMCID: PMC10174581 DOI: 10.1371/journal.pone.0285575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
As species extinction accelerates globally and biodiversity declines dramatically, identifying keystone species becomes an effective way to conserve biodiversity. In traditional approaches, it is considered that the extinction of species with high centrality poses the greatest threat to secondary extinction. However, the indirect effect, which is equally important as the local and direct effects, is not included. Here, we propose an optimized disintegration strategy model for quantitative food webs and introduced tabu search, a metaheuristic optimization algorithm, to identify keystone species. Topological simulations are used to record secondary extinctions during species removal and secondary extinction areas, as well as to evaluate food web robustness. The effectiveness of the proposed strategy is also validated by comparing it with traditional methods. Results of our experiments demonstrate that our strategy can optimize the effect of food web disintegration and identify the species whose extinction is most destructive to the food web through global search. The algorithm provides an innovative and efficient way for further development of keystone species identification in the ecosystem.
Collapse
Affiliation(s)
- Chuanjin Fan
- School of Mathematics and Statistics, Shandong University, Weihai, Shandong, China
| | - Donghui Zhu
- School of Mathematics and Statistics, Shandong University, Weihai, Shandong, China
| | - Tongtong Zhang
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, China
| | - Ruijia Wu
- School of Law, Weihai, Shandong University, Weihai, Shandong, China
| |
Collapse
|
22
|
Solórzano‑Kraemer MM, Peñalver E, Herbert MCM, Delclòs X, Brown BV, Aung NN, Peretti AM. Necrophagy by insects in Oculudentavis and other lizard body fossils preserved in Cretaceous amber. Sci Rep 2023; 13:2907. [PMID: 36808156 PMCID: PMC9938861 DOI: 10.1038/s41598-023-29612-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 02/20/2023] Open
Abstract
When a vertebrate carcass begins its decay in terrestrial environments, a succession of different necrophagous arthropod species, mainly insects, are attracted. Trophic aspects of the Mesozoic environments are of great comparative interest, to understand similarities and differences with extant counterparts. Here, we comprehensively study several exceptional Cretaceous amber pieces, in order to determine the early necrophagy by insects (flies in our case) on lizard specimens, ca. 99 Ma old. To obtain well-supported palaeoecological data from our amber assemblages, special attention has been paid in the analysis of the taphonomy, succession (stratigraphy), and content of the different amber layers, originally resin flows. In this respect, we revisited the concept of syninclusion, establishing two categories to make the palaeoecological inferences more accurate: eusyninclusions and parasyninclusions. We observe that resin acted as a "necrophagous trap". The lack of dipteran larvae and the presence of phorid flies indicates decay was in an early stage when the process was recorded. Similar patterns to those in our Cretaceous cases have been observed in Miocene ambers and actualistic experiments using sticky traps, which also act as "necrophagous traps"; for example, we observed that flies were indicative of the early necrophagous stage, but also ants. In contrast, the absence of ants in our Late Cretaceous cases confirms the rareness of ants during the Cretaceous and suggests that early ants lacked this trophic strategy, possibly related to their sociability and recruitment foraging strategies, which developed later in the dimensions we know them today. This situation potentially made necrophagy by insects less efficient in the Mesozoic.
Collapse
Affiliation(s)
- Mónica M. Solórzano‑Kraemer
- grid.462628.c0000 0001 2184 5457Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - Enrique Peñalver
- CN-Instituto Geológico y Minero de España CSIC, C/Cirilo Amorós 42, 46004, Valencia, Spain.
| | - Mélanie C. M. Herbert
- grid.462628.c0000 0001 2184 5457Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - Xavier Delclòs
- Departament de Dinàmica de la Terra i de l’Oceà, Faculty of Earth Sciences, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Brian V. Brown
- grid.243983.70000 0001 2302 4724Entomology Section, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, 90007 Los Angeles, CA USA
| | - Nyi Nyi Aung
- grid.440502.70000 0001 1118 1335Myanmar Geosciences Society, c/o Department of Geology, University of Yangon, 11041 Yangon, Myanmar ,Peretti Museum Foundation, Baumschulweg 13, 6045 Meggen, Switzerland
| | - Adolf M. Peretti
- Peretti Museum Foundation, Baumschulweg 13, 6045 Meggen, Switzerland ,GRS Gemresearch Swisslab AG, Baumschulweg 13, 6045 Meggen, Switzerland
| |
Collapse
|
23
|
Yang Y, Chai Y, Xie H, Zhang L, Zhang Z, Yang X, Hao S, Gai J, Chen Y. Responses of soil microbial diversity, network complexity and multifunctionality to three land-use changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160255. [PMID: 36402341 DOI: 10.1016/j.scitotenv.2022.160255] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Land-use change is one of the greatest challenges for natural ecosystem services. Soil microbiomes are essential for modulating multiple ecosystem functions. However, little is known about the impact of land-use changes on soil microbial communities and their associated soil functions. In this study, 150 alpine soil samples representing conversion of forests to shrublands or grasslands, and of shrublands to grasslands were investigated for bacterial, fungal and protistan community diversity, co-occurrence network, as well as their relationships with soil multifunctionality via a sampling strategy of space-for-time substitution. The conversion of forest to grassland increased the diversity of fungi and bacteria, and altered the microbial community structures of bacteria, fungi and protists, resulting a greater impact on soil microbiome than other land-use conversions. Cross-trophic interaction analyses demonstrated this conversion increased microbial network complexity and robustness, whereas forest to shrubland had the opposite trend. The land-use induced changes in soil multifunctionality were related with microbial network modules, but were not always associated with variations of microbial diversity. Random forest modeling further suggested the significant role of microbial modules in explaining soil multifunctionality, together with environmental factors. These findings indicate divergent responses of belowground multitrophic organisms to land-use changes, and the potential role of microbial module in forecasting soil multifunctionality.
Collapse
Affiliation(s)
- Yi Yang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yabo Chai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Hanjie Xie
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Zhang
- State Key laboratory Urban & Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiming Zhang
- School of Ecology and Environmental Sciences, Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, Yunnan, China
| | - Xue Yang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Shenglei Hao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jingping Gai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Yongliang Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Pu J, Li Z, Tang H, Zhou G, Wei C, Dong W, Jin Z, He T. Response of soil microbial communities and rice yield to nitrogen reduction with green manure application in karst paddy areas. Front Microbiol 2023; 13:1070876. [PMID: 36699610 PMCID: PMC9869043 DOI: 10.3389/fmicb.2022.1070876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Fertilizer application practices are one of the major challenges facing agroecology. The agrobenefits of combined application of green manure and chemical fertilizers, and the potential of green manure to replace chemical fertilizers are now well documented. However, little is known about the impact of fertilization practices on microbial communities and tice yield. In this study, the diversity of bacterial and fungal communities, symbiotic networks and their relationship with soil function were analyzed in five fertilization treatments (N: 100% nitrogen fertilizer alone; M: green manure alone; MN60: green manure couple with 60% nitrogen fertilizer, MN80: green manure couple with 80% nitrogen fertilizer; and MN100: green manure couple with 100% nitrogen fertilizer). First, early rice yield was significantly higher by 12.6% in MN100 treatment in 2021 compared with N. Secondly, soil bacterial diversity showed an increasing trend with increasing N fertilizer application after green manure input, however, the opposite was true for fungal diversity. Microbial interaction analysis showed that different fertilizer applications changed soil microbial network complexity and fertilizer-induced changes in soil microbial interactions were closely related to soil environmental changes. Random forest models further predicted the importance of soil environment, microorganisms and rice yield. Overall, nitrogen fertilizer green manure altered rice yield due to its effects on soil environment and microbial communities. In the case of combined green manure and N fertilizer application, bacteria and fungi showed different responses to fertilization method, and the full amount of N fertilizer in combination with green manure reduced the complexity of soil microbial network. In contrast, for more ecologically sensitive karst areas, we recommend fertilization practices with reduced N by 20-40% for rice production. Graphical Abstract.
Collapse
Affiliation(s)
- Junyu Pu
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning, Guangxi, China,The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Zhongyi Li
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning, Guangxi, China,*Correspondence: Zhongyi Li, ✉
| | - Hongqin Tang
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning, Guangxi, China
| | - Guopeng Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihui Wei
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning, Guangxi, China
| | - Wenbin Dong
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning, Guangxi, China
| | - Zhenjiang Jin
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Tieguang He
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning, Guangxi, China,Tieguang He, ✉
| |
Collapse
|
25
|
Wang Z, Hu X, Qu Q, Hao W, Deng P, Kang W, Feng R. Dual regulatory effects of microplastics and heat waves on river microbial carbon metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129879. [PMID: 36084464 DOI: 10.1016/j.jhazmat.2022.129879] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Rivers play a critical role in the global carbon cycle, but the processes can be affected by widespread microplastic (MP) pollution and the increasing frequency of heat waves (HWs) in a warming climate. However, little is known about the role of river microbes in regulating the carbon cycle under the combined action of MP pollution and HWs. Here, through seven-day MP exposure and three cycles of HW simulation experiments, we found that MPs inhibited the thermal adaptation of the microbial community, thus regulating carbon metabolism. The CO2 release level increased, while the carbon degradation ability and the preference for stable carbon were inhibited. Metabonomic, 16 S rRNA and ITS gene analyses further revealed that the regulation of carbon metabolism was closely related to the microbial r-/K- strategy, community assembly and transformation of keystone taxa. The random forest model revealed that dissolved oxygen and ammonia-nitrogen were important variables influencing microbial carbon metabolism. The above findings regarding microbe-mediated carbon metabolism provide insights into the effect of climate-related HWs on the ecological risks of MPs.
Collapse
Affiliation(s)
- Zhongwei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weidan Hao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
26
|
Goldsborough E, Gopal M, McEvoy JW, Blumenthal RS, Jacobsen AP. Pollution and cardiovascular health: A contemporary review of morbidity and implications for planetary health. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 25:100231. [PMID: 38510496 PMCID: PMC10946040 DOI: 10.1016/j.ahjo.2022.100231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 03/22/2024]
Abstract
Pollution is a leading cause of premature morbidity and mortality and an important risk factor for cardiovascular disease. Convincing data predict increased rates of cardiovascular morbidity and mortality with current and projected pollution burden trends. Multiple classes of pollutants - including criteria air pollutants, secondhand smoke, toxic steel pollutants, and manufactured chemical pollutants - are associated with varied cardiovascular disease risk profiles. To reduce the future risk of cardiovascular disease from anthropogenic pollution, mitigation strategies, both at the individual level and population level, must be thoughtfully and intentionally employed. The literature supporting individual level interventions to protect against cardiovascular disease is growing but lacks large clinical trials. Population level interventions are crucial to larger societal change and rely upon policy and governmental support. While these mitigation strategies can play a major role in maintaining the health of individuals, planetary health - the impact on human health because of anthropogenic perturbation of natural ecosystems - must also be acknowledged. Future research is needed to further delineate the planetary health implications of current and projected pollutant burden as well as the mitigation strategies employed to attenuate future pollutant burden.
Collapse
Affiliation(s)
| | - Medha Gopal
- Saint George's University School of Medicine, University Centre Grenada, West Indies, Grenada
| | - John William McEvoy
- National Institute for Prevention and Cardiovascular Health, National University of Ireland Galway, Galway, Ireland
| | - Roger S. Blumenthal
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan P. Jacobsen
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Haro D, Neira S, Hernández-Padilla JC, Arreguín-Sánchez F, Sabat P, Vargas C. Approaching the Ecological Role of the Squat Lobster ( Munida gregaria) and the Fuegian Sprat ( Sprattus fuegensis) in the Francisco Coloane Marine Area (Magellan Strait, Chile) Using a Pelagic Food Web Model. Animals (Basel) 2022; 13:ani13010003. [PMID: 36611614 PMCID: PMC9818014 DOI: 10.3390/ani13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The structure and functioning of the food web of the Francisco Coloane Marine Area in the Magellan Strait, Chile, was quantified, with an emphasis on identifying the ecological role of the squat lobster (Munida gregaria) and the Fuegian sprat (Sprattus fuegensis). Food web indicators, the trophic level, and centrality indices were estimated using Ecopath with Ecosim. Dynamic simulations were carried out to evaluate the ecosystem impacts of biomass changes in squat lobster and Fuegian sprat. The model calculated a total ecosystem biomass of 71.7 t km-2 and a total primary production of 2450.9 t km-2 year-1. Squat lobster and Fuegian sprat were located in specific trophic levels of 2.3 and 2.7, respectively. Squat lobster reduction produced a decrease in the biomass of red cod (42-56%) and humpback whales (25-28%) and Fuegian sprat reduction a decrease in penguins (15-37%) and seabirds (11-34%). The Francisco Coloane Area is an immature ecosystem with productivity and energy flows values within those reported for productive ecosystems; the role of the squat lobster seems to be related to the structure of the food web, and the role of the Fuegian sprat seems to be related to the functioning of the ecosystem and to the energy transfer to top predators.
Collapse
Affiliation(s)
- Daniela Haro
- Centro Bahía Lomas, Facultad de Ciencias, Universidad Santo Tomas, Ignacio Carrera Pinto 1350, Punta Arenas 6200000, Chile
- Correspondence:
| | - Sergio Neira
- Center for Oceanographic Research COPAS COASTAL ANID FB210021, Departamento de Oceanografía, Universidad de Concepción, Víctor Lamas St. 1290, Concepción 4030000, Chile
| | - Juan Carlos Hernández-Padilla
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico, CINVESTAV, Unidad Mérida Km. 6 Antigua Carretera a Progreso Apdo. Postal 73, Mérida 97310, Mexico
| | - Francisco Arreguín-Sánchez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, P.O. Box 592, La Paz 23090, Mexico
| | - Pablo Sabat
- Laboratorio de Ecofisiología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 7500945, Chile
| | - Cristian Vargas
- Instituto de Fomento Pesquero, Enrique Abello 680, Punta Arenas 6200000, Chile
| |
Collapse
|
28
|
Gupta A, David Figueroa H, O'Gorman E, Jones I, Woodward G, Petchey OL. How many predator guts are required to predict trophic interactions? FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Fartmann T, Drung M, Henning O, Löffler F, Brüggeshemke J. Breeding-bird assemblages of calcareous grasslands and heathlands provide evidence for Common juniper (Juniperus communis) as a keystone species. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
30
|
Russo L, Casella V, Marabotti A, Jordán F, Congestri R, D'Alelio D. Trophic hierarchy in a marine community revealed by network analysis on co-occurrence data. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Palmeirim AF, Emer C, Benchimol M, Storck-Tonon D, Bueno AS, Peres CA. Emergent properties of species-habitat networks in an insular forest landscape. SCIENCE ADVANCES 2022; 8:eabm0397. [PMID: 36026453 PMCID: PMC9417167 DOI: 10.1126/sciadv.abm0397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Deforestation and fragmentation are pervasive drivers of biodiversity loss, but how they scale up to entire landscapes remains poorly understood. Here, we apply species-habitat networks based on species co-occurrences to test the effects of insular fragmentation on multiple taxa-medium-large mammals, small nonvolant mammals, lizards, understory birds, frogs, dung beetles, orchid bees, and trees-across 22 forest islands and three continuous forest sites within a river-damming quasi-experimental landscape in Central Amazonia. Widespread, nonrandom local species extinctions were translated into highly nested networks of low connectance and modularity. Networks' robustness considering the sequential removal of large-to-small sites was generally low; between 5% (dung beetles) and 50% (orchid bees) of species persisted when retaining only <10 ha of islands. In turn, larger sites and body size were the main attributes structuring the networks. Our results raise the prospects that insular forest fragmentation results in simplified species-habitat networks, with distinct taxa persistence to habitat loss.
Collapse
Affiliation(s)
| | - Carine Emer
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Juruá, Rua das Papoulas, 97 Manaus, Brazil
| | - Maíra Benchimol
- Laboratório de Ecologia Aplicada à Conservação, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Danielle Storck-Tonon
- Programa de Pós-Graduação em Ambiente e Sistemas de Produção Agrícola (PPGASP), Universidade do Estado de Mato Grosso, Tangará da Serra, Brazil
| | - Anderson S. Bueno
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Júlio de Castilhos, RS, Brazil
| | - Carlos A. Peres
- School of Environmental Sciences, University of East Anglia, Norwich, UK
- Instituto Juruá, Rua das Papoulas, 97 Manaus, Brazil
| |
Collapse
|
32
|
Shi Y, Xu M, Zhao Y, Cheng L, Chu H. Soil pH Determines the Spatial Distribution, Assembly Processes, and Co-existence Networks of Microeukaryotic Community in Wheat Fields of the North China Plain. Front Microbiol 2022; 13:911116. [PMID: 35958140 PMCID: PMC9358722 DOI: 10.3389/fmicb.2022.911116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022] Open
Abstract
Soil microeukaryotes play a pivotal role in soil nutrient cycling and crop growth in agroecosystems. However, knowledge of microeukaryotic community distribution patterns, assembly processes, and co-existence networks is greatly limited. Here, microbial eukaryotes in bulk and rhizosphere soils of the North China Plain were investigated. The results showed that soil pH was the driving factor for the microeukaryotic community composition in the bulk and rhizosphere soils. The soil microeukaryotic community could significantly differ between alkaline and acidic soils. The results indicated that the soil pH had a stronger effect than niche differences on community composition. Partial Mantel tests showed that soil pH and spatial distance had similar effects on the microeukaryotic community composition in the bulk soil. However, in the rhizosphere soil, spatial distance had a stronger effect than soil pH. Infer Community Assembly Mechanisms by Phylogenetic bin-based null model (iCAMP) analysis revealed that drift was the most important process driving microeukaryotic community assembly, with an average relative importance of 37.4-71.1%. Dispersal limitation displayed slightly greater importance in alkaline rhizosphere than in alkaline bulk soils. Meanwhile, the opposite trend was observed in acidic soils. In addition, the contribution of each assembly process to each iCAMP lineage "bin" varied according to the acidic or alkaline conditions of the soil and the niche environment. High proportions of positive links were found within the four ecological networks. Alkaline soil networks, especially the alkaline bulk soil network, showed greater complexity than the acidic soil networks. Natural connectivity analysis revealed that the rhizosphere community had a greater stability than the bulk soil community in alkaline soil. This study provides a foundation for understanding the potential roles of microbial eukaryotes in agricultural soil ecosystem functioning.
Collapse
Affiliation(s)
- Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Mengwei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yige Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Liang Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Yan Q, Liu Y, Hu A, Wan W, Zhang Z, Liu K. Distinct strategies of the habitat generalists and specialists in sediment of Tibetan lakes. Environ Microbiol 2022; 24:4153-4166. [PMID: 35590455 DOI: 10.1111/1462-2920.16044] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/05/2022] [Indexed: 12/01/2022]
Abstract
Microbial metacommunities normally comprise generalists and specialists. Uncovering the mechanisms underlying the diversity patterns of these two sub-communities is crucial for aquatic biodiversity maintenance. However, little is known about the ecological assembly processes and co-occurrence patterns of the habitat generalists and specialists across large spatial scales in plateau lake sediments, particularly regarding their environmental adaptations. Here, we investigated assembly processes of the habitat generalists and specialists in sediment of Tibetan lakes and their role in the stability of metacommunity co-occurrence network. Our results showed that the habitat generalists exhibited broader environmental thresholds and closer phylogenetic clustering than specialist counterparts. In contrast, the specialists exhibited stronger phylogenetic signals of ecological preferences compared with the habitat generalists. Stochastic processes dominated the habitat generalist (63.2%) and specialist (81.3%) community assembly. Sediment pH was the major factor mediating the balance between stochastic and deterministic processes in the habitat generalists and specialists. In addition, revealed by network analysis, the habitat specialists played a greater role in maintaining the stability of metacommunity co-occurrence network. The insights gained from this study can be helpful to understand the mechanisms underlying maintenance of sediment microbial diversity in plateau lakes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Yan
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China.,School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongqin Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China.,Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Anyu Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Zhihao Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Keshao Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Xu P, Zhou W, Xie M, Ding D, Suo A. Temporal and spatial comparison of food web structure in marine pastures in the Pearl River Estuary: Implications for sustainable fisheries management. Ecol Evol 2022; 12:e8903. [PMID: 35592066 PMCID: PMC9102640 DOI: 10.1002/ece3.8903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
The biological and ecological integrity of marine ecosystems in the Pearl River Estuary (PRE) has been compromised due to overfishing and water pollution. Fishing moratorium and artificial reef construction have been implemented in Wanshan and Miaowan for resource protection and restoration. Therefore, food web structure and trophic pathways of Wanshan, Miaowan, and Wailingding in different temporal and spatial situation will be determined using the Ecopath model, as well as the keystone species affecting these ecosystems, which can provide a basis for fishery management. The results showed that the energy transfer efficiency of IV and V trophic levels (TL) was higher than that of II and III‐TL before and after fishing moratorium, and the energy transfer efficiency of artificial reefs II and III‐TL was only slightly higher than that of nonartificial reefs in Wanshan. In addition, the mean values of ecosystem property indicators (consumption, respiration flow, total system throughput, and total biomass) after the fishing moratorium were significantly higher than those before the fishing moratorium. The average value of the ecosystem attribute indicators (consumption, respiration flow, total system throughput, and total biomass) of artificial reefs is lower than those of nonartificial reef areas, which may be related to the differences in community composition between artificial reefs and non‐artificial reefs. Finally, Nemipterus japonicus and Gastrophysus spadiceus are keystone species that distinguish the Wanshan and Miaowan artificial reefs from other areas. Overall, the fishing moratorium has a positive effect on the short‐term restoration of fishery resources, mainly restoring short‐life cycle organisms. However, the construction of artificial reefs will be more conducive to the persistence of ecosystem restoration. In addition, reasonable proliferation, release and fishing of N. japonicus and G. spadiceus will be beneficial to the sustainable utilization of fishery resources.
Collapse
Affiliation(s)
- Peng Xu
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China
| | - Mujiao Xie
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Dewen Ding
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China
| | - Anning Suo
- CAS Key Laboratory of Tropical Marine Bio‐Resources and Ecology South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China
| |
Collapse
|
35
|
Xin-Yue W, Jing H, Yi-Min L. Dynamic analysis of disturbance propagation in ecological networks with quarantine items and proportional migration. INT J BIOMATH 2022. [DOI: 10.1142/s1793524522500462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to study the stability of the ecosystem under external attack, we regard the ecosystem as a complex network and the species disturbance after the attack as an infectious disease. We establish an ecological network disturbance propagation model based on the infectious disease model, and analyze its dynamics with the above ideas. In this paper, the species are regarded as nodes in the network, and the predator–prey relationship is regarded as the edge of the network. When the ecosystem is attacked by external forces, the disturbance can be transmitted from a species to its predator or prey through the food chain, and the disturbed species can recover themselves and then return to a stable state. At the same time, we consider adding human quarantine and protection of disturbed species. In this way, all species in the ecosystem are divided into four states: undisturbed, disturbed, quarantine and recovered. By analyzing the dynamics of disturbance propagation, the critical threshold and equilibrium point of disturbance diffusion are determined, and the local and global stability of disease-free equilibrium and endemic equilibrium are analyzed. The results show that the existence of endemic equilibrium depends on the critical threshold of disturbance propagation, which is related to the structure of food web, the propagation proportion of disturbance and the recovery proportion of species after being attacked. The larger the propagation proportion is, the weaker the resistance stability is, and the easier the disturbance propagates in the system. The higher the recovery proportion of the disturbed species, the stronger the stability of the recovery rate, and the more difficult it is for the disturbance to propagate in the system. Then we regard human protection of species as species immunity, and choose the most effective species protection measures by comparing and analyzing the threshold changes under the three protection strategies. The results show that the moderately large neighbor nodes of the disturbed species should be protected. This kind of protection measure is the most effective and it is easier to restrain the propagation of disturbance. Finally, the food webs of 85 species in a pine forest in Otago, New Zealand is selected to analyze the propagation process of disturbance by numerical simulation.
Collapse
Affiliation(s)
- Wang Xin-Yue
- Mathematical Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hua Jing
- Mathematical Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Li Yi-Min
- Mathematical Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
36
|
Mérillet L, Robert M, Hernvann PY, Pecuchet L, Pavoine S, Mouchet M, Primicerio R, Kopp D. Effects of life-history traits and network topological characteristics on the robustness of marine food webs. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
37
|
Shi Y, Zhang K, Ma T, Zhang Z, Li P, Xing Z, Ding J. Foliar Herbivory Reduces Rhizosphere Fungal Diversity and Destabilizes the Co-occurrence Network. Front Microbiol 2022; 13:846332. [PMID: 35350618 PMCID: PMC8957981 DOI: 10.3389/fmicb.2022.846332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
Insect herbivores can adversely impact terrestrial plants throughout ontogeny and across various ecosystems. Simultaneously, the effects of foliar herbivory may extend belowground, to the soil microbial community. However, the responses in terms of the diversity, assembly, and stability of rhizosphere fungi to aboveground herbivory remain understudied. Here, using high-throughput sequencing, the effects of foliar insect herbivory on rhizosphere fungal microbes were investigated in a common garden experiment that manipulated herbivory intensity and time from herbivore removal. The number of observed fungal species was reduced by a greater herbivory intensity, with some species evidently sensitive to herbivory intensity and time since herbivore removal. Rhizofungal assembly processes were altered by both herbivory intensity and time since herbivore removal. Further, we found evidence that both factors strongly influenced fungal community stability: a high intensity of herbivory coupled with a shorter time since herbivore removal resulted in low stability. These results suggest that foliar herbivory can adversely alter fungal diversity and stability, which would in turn be harmful for plant health. Fortunately, the effect seems to gradually diminish with time elapsed after herbivore removal. Our findings provide a fresh, in-depth view into the roles of rhizofungi in enhancing the adaption ability of plants under environmental stress.
Collapse
Affiliation(s)
- Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Kaoping Zhang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Tiantian Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhongyue Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhenlong Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
38
|
Hernández‐Agüero JA, Ruiz‐Tapiador I, Cayuela L. What feeds on
Quercus ilex
L.? A biogeographical approach to studying trophic interactions in a Mediterranean keystone species. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
| | | | - Luis Cayuela
- Departamento de Biología y Geología Física y Química Inorgánica Universidad Rey Juan Carlos Madrid Spain
| |
Collapse
|
39
|
Huaylla CA, Nacif ME, Coulin C, Kuperman MN, Garibaldi LA. Decoding information in multilayer ecological networks: The keystone species case. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Librán-Embid F, Grass I, Emer C, Ganuza C, Tscharntke T. A plant-pollinator metanetwork along a habitat fragmentation gradient. Ecol Lett 2021; 24:2700-2712. [PMID: 34612562 DOI: 10.1111/ele.13892] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/25/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022]
Abstract
To understand how plant-pollinator interactions respond to habitat fragmentation, we need novel approaches that can capture properties that emerge at broad scales, where multiple communities engage in metanetworks. Here we studied plant-pollinator interactions over 2 years on 29 calcareous grassland fragments selected along independent gradients of habitat size and surrounding landscape diversity of cover types. We associated network centrality of plant-pollinator interactions and grassland fragments with their ecological and landscape traits, respectively. Interactions involving habitat specialist plants and large-bodied pollinators were the most central, implying that species with these traits form the metanetwork core. Large fragments embedded in landscapes with high land cover diversity exhibited the highest centrality; however, small fragments harboured many unique interactions not found on larger fragments. Intensively managed landscapes have reached a point in which all remaining fragments matter, meaning that losing any further areas may vanish unique interactions with unknown consequences for ecosystem functioning.
Collapse
Affiliation(s)
- Felipe Librán-Embid
- Agroecology, University of Göttingen, Göttingen, Germany.,Zoological Biodiversity, Institute of Geobotany, Leibniz University of Hannover, Hannover, Germany
| | - Ingo Grass
- Department of Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany
| | - Carine Emer
- Instituto de Biociências, Departamento de Ecologia, Universidade Estadual Paulista, Rio Claro, SP, Brazil.,Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Cristina Ganuza
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
41
|
Patonai K, Jordán F. Integrating trophic data from the literature: The Danube River food web. FOOD WEBS 2021. [DOI: 10.1016/j.fooweb.2021.e00203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Mateos-Hernández L, Obregón D, Wu-Chuang A, Maye J, Bornères J, Versillé N, de la Fuente J, Díaz-Sánchez S, Bermúdez-Humarán LG, Torres-Maravilla E, Estrada-Peña A, Hodžić A, Šimo L, Cabezas-Cruz A. Anti-Microbiota Vaccines Modulate the Tick Microbiome in a Taxon-Specific Manner. Front Immunol 2021; 12:704621. [PMID: 34322135 PMCID: PMC8312226 DOI: 10.3389/fimmu.2021.704621] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
The lack of tools for the precise manipulation of the tick microbiome is currently a major limitation to achieve mechanistic insights into the tick microbiome. Anti-tick microbiota vaccines targeting keystone bacteria of the tick microbiota alter tick feeding, but their impact on the taxonomic and functional profiles of the tick microbiome has not been tested. In this study, we immunized a vertebrate host model (Mus musculus) with live bacteria vaccines targeting keystone (i.e., Escherichia-Shigella) or non-keystone (i.e., Leuconostoc) taxa of tick microbiota and tested the impact of bacterial-specific antibodies (Abs) on the structure and function of tick microbiota. We also investigated the effect of these anti-microbiota vaccines on mice gut microbiota composition. Our results showed that the tick microbiota of ticks fed on Escherichia coli-immunized mice had reduced Escherichia-Shigella abundance and lower species diversity compared to ticks fed on control mice immunized with a mock vaccine. Immunization against keystone bacteria restructured the hierarchy of nodes in co-occurrence networks and reduced the resistance of the bacterial network to taxa removal. High levels of E. coli-specific IgM and IgG were negatively correlated with the abundance of Escherichia-Shigella in tick microbiota. These effects were not observed when Leuconostoc was targeted with vaccination against Leuconostoc mesenteroides. Prediction of functional pathways in the tick microbiome using PICRUSt2 revealed that E. coli vaccination reduced the abundance of lysine degradation pathway in tick microbiome, a result validated by qPCR. In contrast, the gut microbiome of immunized mice showed no significant alterations in the diversity, composition and abundance of bacterial taxa. Our results demonstrated that anti-tick microbiota vaccines are a safe, specific and an easy-to-use tool for manipulation of vector microbiome. These results guide interventions for the control of tick infestations and pathogen infection/transmission.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Dasiel Obregón
- School of Environmental Sciences University of Guelph, Guelph, ON, Canada
| | - Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Jennifer Maye
- SEPPIC Paris La Défense, La Garenne Colombes, 92250, France
| | | | | | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ciudad Real, Spain
| | | | - Edgar Torres-Maravilla
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ladislav Šimo
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| |
Collapse
|
43
|
Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proc Natl Acad Sci U S A 2021; 118:2025321118. [PMID: 34131077 DOI: 10.1073/pnas.2025321118] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Permafrost degradation may induce soil carbon (C) loss, critical for global C cycling, and be mediated by microbes. Despite larger C stored within the active layer of permafrost regions, which are more affected by warming, and the critical roles of Qinghai-Tibet Plateau in C cycling, most previous studies focused on the permafrost layer and in high-latitude areas. We demonstrate in situ that permafrost degradation alters the diversity and potentially decreases the stability of active layer microbial communities. These changes are associated with soil C loss and potentially a positive C feedback. This study provides insights into microbial-mediated mechanisms responsible for C loss within the active layer in degraded permafrost, aiding in the modeling of C emission under future scenarios.
Collapse
|
44
|
Shakeri Yekta S, Liu T, Mendes Anacleto T, Axelsson Bjerg M, Šafarič L, Goux X, Karlsson A, Björn A, Schnürer A. Effluent solids recirculation to municipal sludge digesters enhances long-chain fatty acids degradation capacity. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:56. [PMID: 33663594 PMCID: PMC7934545 DOI: 10.1186/s13068-021-01913-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/21/2021] [Indexed: 06/05/2023]
Abstract
BACKGROUND Slow degradation kinetics of long-chain fatty acids (LCFA) and their accumulation in anaerobic digesters disrupt methanogenic activity and biogas production at high loads of waste lipids. In this study, we evaluated the effect of effluent solids recirculation on microbial LCFA (oleate) degradation capacity in continuous stirred-tank sludge digesters, with the overall aim of providing operating conditions for efficient co-digestion of waste lipids. Furthermore, the impacts of LCFA feeding frequency and sulfide on process performance and microbial community dynamics were investigated, as parameters that were previously shown to be influential on LCFA conversion to biogas. RESULTS Effluent solids recirculation to municipal sludge digesters enabled biogas production of up to 78% of the theoretical potential from 1.0 g oleate l-1 day-1. In digesters without effluent recirculation, comparable conversion efficiency could only be reached at oleate loading rates up to 0.5 g l-1 day-1. Pulse feeding of oleate (supplementation of 2.0 g oleate l-1 every second day instead of 1.0 g oleate l-1 every day) did not have a substantial impact on the degree of oleate conversion to biogas in the digesters that operated with effluent recirculation, while it marginally enhanced oleate conversion to biogas in the digesters without effluent recirculation. Next-generation sequencing of 16S rRNA gene amplicons of bacteria and archaea revealed that pulse feeding resulted in prevalence of fatty acid-degrading Smithella when effluent recirculation was applied, whereas Candidatus Cloacimonas prevailed after pulse feeding of oleate in the digesters without effluent recirculation. Combined oleate pulse feeding and elevated sulfide level contributed to increased relative abundance of LCFA-degrading Syntrophomonas and enhanced conversion efficiency of oleate, but only in the digesters without effluent recirculation. CONCLUSIONS Effluent solids recirculation improves microbial LCFA degradation capacity, providing possibilities for co-digestion of larger amounts of waste lipids with municipal sludge.
Collapse
Affiliation(s)
- Sepehr Shakeri Yekta
- Department of Thematic Studies-Environmental Change, Linköping University, 58183, Linköping, Sweden.
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden.
| | - Tong Liu
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007, Uppsala, Sweden
| | - Thuane Mendes Anacleto
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Mette Axelsson Bjerg
- Department of Thematic Studies-Environmental Change, Linköping University, 58183, Linköping, Sweden
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
| | - Luka Šafarič
- Department of Thematic Studies-Environmental Change, Linköping University, 58183, Linköping, Sweden
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
| | - Xavier Goux
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 4422, Belvaux, Luxembourg
| | - Anna Karlsson
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
- Scandinavian Biogas Fuels AB, 11160, Stockholm, Sweden
| | - Annika Björn
- Department of Thematic Studies-Environmental Change, Linköping University, 58183, Linköping, Sweden
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
| | - Anna Schnürer
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007, Uppsala, Sweden
| |
Collapse
|
45
|
Du H, Song Z, Zhang M, Nie Y, Xu Y. The deletion of Schizosaccharomyces pombe decreased the production of flavor-related metabolites during traditional Baijiu fermentation. Food Res Int 2021; 140:109872. [PMID: 33648190 DOI: 10.1016/j.foodres.2020.109872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 01/03/2023]
Abstract
The microbiota in traditional solid-state fermentation is a complex microbiota that plays a key role in the production of feed, fuel, food and pharmaceutical products. The function of microbiota is an important factor dictating the quantity and quality of products. Core functional species play key metabolic roles in the microbiota, and their disappearance could result in the abnormal fermentation process. In this work, we combined Baijiu production and laboratory experiments to explore the keystone microbes and their metabolites. We found the deletion of core functional microbe resulted in the loss of multiple metabolites involved many alcohols and acids. In the traditional Baijiu production, the absence or appearance of Schizosaccharomyces pombe caused the content divergence in 227 flavor-related metabolites, especially in ethanol, butanol and pentanoic acid between abnormal and normal group (each content > 1 mg/kg and the content ratio of normal/abnormal group > 2). Schi. pombe increased the expression level of related genes involving alcohol dehydrogenase (ADH), acyl-CoA oxidase (ACOX) and trans-2-enoyl-CoA reductase (TER). Moreover, in the verification experiment of laboratory, the absence or appearance of Schizosaccharomyces pombe C-11 caused the content divergence in 136 flavor-related metabolites, especially in ethanol, butanol and pentanoic acid between Sp- and Sp+ group (each content > 1 mg/kg and the content ratio of Sp+/Sp- group > 2). Our results identified specific member that were essential for the function of fermentation microbiota. This study also suggests species deletions from fermentation microbiota and synthetic consortium could be a useful approach to illustrate relevant microbe-metabolites association and defining metabolic roles in the traditional solid-state fermentation.
Collapse
Affiliation(s)
- Hai Du
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhewei Song
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Microbiology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Nie
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
46
|
Gatmiry ZS, Hafezalkotob A, Khakzar bafruei M, Soltani R. Food web conservation vs. strategic threats: A security game approach. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Rhodes OE, Bréchignac F, Bradshaw C, Hinton TG, Mothersill C, Arnone JA, Aubrey DP, Barnthouse LW, Beasley JC, Bonisoli-Alquati A, Boring LR, Bryan AL, Capps KA, Clément B, Coleman A, Condon C, Coutelot F, DeVol T, Dharmarajan G, Fletcher D, Flynn W, Gladfelder G, Glenn TC, Hendricks S, Ishida K, Jannik T, Kapustka L, Kautsky U, Kennamer R, Kuhne W, Lance S, Laptyev G, Love C, Manglass L, Martinez N, Mathews T, McKee A, McShea W, Mihok S, Mills G, Parrott B, Powell B, Pryakhin E, Rypstra A, Scott D, Seaman J, Seymour C, Shkvyria M, Ward A, White D, Wood MD, Zimmerman JK. Integration of ecosystem science into radioecology: A consensus perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140031. [PMID: 32559536 DOI: 10.1016/j.scitotenv.2020.140031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
In the Fall of 2016 a workshop was held which brought together over 50 scientists from the ecological and radiological fields to discuss feasibility and challenges of reintegrating ecosystem science into radioecology. There is a growing desire to incorporate attributes of ecosystem science into radiological risk assessment and radioecological research more generally, fueled by recent advances in quantification of emergent ecosystem attributes and the desire to accurately reflect impacts of radiological stressors upon ecosystem function. This paper is a synthesis of the discussions and consensus of the workshop participant's responses to three primary questions, which were: 1) How can ecosystem science support radiological risk assessment? 2) What ecosystem level endpoints potentially could be used for radiological risk assessment? and 3) What inference strategies and associated methods would be most appropriate to assess the effects of radionuclides on ecosystem structure and function? The consensus of the participants was that ecosystem science can and should support radiological risk assessment through the incorporation of quantitative metrics that reflect ecosystem functions which are sensitive to radiological contaminants. The participants also agreed that many such endpoints exit or are thought to exit and while many are used in ecological risk assessment currently, additional data need to be collected that link the causal mechanisms of radiological exposure to these endpoints. Finally, the participants agreed that radiological risk assessments must be designed and informed by rigorous statistical frameworks capable of revealing the causal inference tying radiological exposure to the endpoints selected for measurement.
Collapse
Affiliation(s)
- Olin E Rhodes
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America.
| | - Francois Bréchignac
- Institut de Radioprotection et de Sûreté Nucléaire, International Union of Radioecology, Center of Cadarache, Bldg 159, BP 1, 13115 St Paul-lez-Durance cedex, France
| | - Clare Bradshaw
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Thomas G Hinton
- Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima University, Fukushima 960-1296, Japan
| | | | - John A Arnone
- Division of Earth and Ecosystem Sciences Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, United States of America
| | - Doug P Aubrey
- Savannah River Ecology Lab, Warnell School of Forestry and Natural Resources, Drawer E, Aiken, SC 29802, United States of America
| | - Lawrence W Barnthouse
- LWB Environmental Services, Inc., 1620 New London Rd., Hamilton, OH 45013, United States of America
| | - James C Beasley
- Savannah River Ecology Lab, Warnell School of Forestry and Natural Resources, Drawer E, Aiken, SC 29802, United States of America
| | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768, United States of America
| | - Lindsay R Boring
- Joseph W. Jones Ecological Research Center, #988 Jones Center Dr., Newton, GA 39870, United States of America
| | - Albert L Bryan
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Krista A Capps
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America; Odum School of Ecology, University of Georgia, Athens, GA 30602, United States of America
| | - Bernard Clément
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518, rue Maurice Audin, Vaulx-en-Velin, France
| | - Austin Coleman
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Caitlin Condon
- School of Nuclear Science and Engineering, 100 Radiation Center, Oregon State University, Corvallis, OR 97331, United States of America
| | - Fanny Coutelot
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Clemson, SC 29625, United States of America
| | - Timothy DeVol
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Anderson, SC 29625-6510, United States of America
| | - Guha Dharmarajan
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Dean Fletcher
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Wes Flynn
- Department of Forestry and Natural Resources, Purdue University, 715 W State Street, West Lafayette, IN 47907, United States of America
| | - Garth Gladfelder
- School of Nuclear Science and Engineering, 100 Radiation Center, Oregon State University, Corvallis, OR 97331, United States of America
| | - Travis C Glenn
- Department of Environmental Health Science, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, United States of America
| | - Susan Hendricks
- Hancock Biological Station, 561 Emma Dr., Murray State University, Murray, KY 42071, United States of America
| | - Ken Ishida
- The University of Tokyo, Yokoze, 6632-12, Yokoze-town, Chichibu-gun, 368-0072, Japan
| | - Tim Jannik
- Savannah River National Laboratory, SRS Bldg. 999-W, Room 312, Aiken, SC 29808, United States of America
| | - Larry Kapustka
- LK Consultancy, P.O Box 373, 100 202 Blacklock Way SW, Turner Valley, Alberta T0L 2A0, Canada
| | - Ulrik Kautsky
- Svensk Kärnbränslehantering AB, PO Box 3091, SE-169 03 Solna, Sweden
| | - Robert Kennamer
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Wendy Kuhne
- Savannah River National Laboratory, 735-A, B-102, Aiken, SC 29808, United States of America
| | - Stacey Lance
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Gennadiy Laptyev
- Ukrainian HydroMeteorological Institute, 37 Prospekt Nauki, Kiev 02038, Ukraine
| | - Cara Love
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Lisa Manglass
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Anderson, SC 29625-6510, United States of America
| | - Nicole Martinez
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Anderson, SC 29625-6510, United States of America
| | - Teresa Mathews
- Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831, United States of America
| | - Arthur McKee
- Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59860, United States of America
| | - William McShea
- Smithsonian's Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, United States of America
| | - Steve Mihok
- Canadian Nuclear Safety Commission, P.O. Box 1046, Station B, 280 Slater St., Ottawa, Ontario K1P 5S9, Canada
| | - Gary Mills
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Ben Parrott
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Brian Powell
- Department of Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Clemson, SC 29625, United States of America; Savannah River National Laboratory, Aiken, SC 29808, United States of America
| | - Evgeny Pryakhin
- Urals Research Center for Radiation Medicine, Vorovsky Str., 68a, Chelyabinsk 454141, Russia
| | - Ann Rypstra
- Ecology Research Center, Miami University, Oxford, OH 45056, United States of America
| | - David Scott
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - John Seaman
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Colin Seymour
- Dept. of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Maryna Shkvyria
- Kyiv zoological park of national importance, prosp. Peremohy, 32, Kyiv 04116, Ukraine
| | - Amelia Ward
- Department of Biological Sciences, PO Box 870344, University of Alabama, Tuscaloosa, AL 35487, United States of America
| | - David White
- Hancock Biological Station, 561 Emma Dr., Murray State University, Murray, KY 42071, United States of America
| | - Michael D Wood
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT. United Kingdom
| | - Jess K Zimmerman
- University of Puerto Rico, #17 Ave Universidad, San Juan 00925, Puerto Rico
| |
Collapse
|
48
|
Compton SG, Greeff JM. Few figs for frugivores: Riparian fig trees in Zimbabwe may not be a dry season keystone resource. Afr J Ecol 2020. [DOI: 10.1111/aje.12773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Jaco M. Greeff
- Division of Genetics, Department of Biochemistry, Genetics and Microbiology University of Pretoria Pretoria South Africa
| |
Collapse
|
49
|
Lao A, Cabezas H, Orosz Á, Friedler F, Tan R. Socio-ecological network structures from process graphs. PLoS One 2020; 15:e0232384. [PMID: 32750052 PMCID: PMC7402476 DOI: 10.1371/journal.pone.0232384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/21/2020] [Indexed: 11/26/2022] Open
Abstract
We propose a process graph (P-graph) approach to develop ecosystem networks from knowledge of the properties of the component species. Originally developed as a process engineering tool for designing industrial plants, the P-graph framework has key advantages over conventional ecological network analysis techniques based on input-output models. A P-graph is a bipartite graph consisting of two types of nodes, which we propose to represent components of an ecosystem. Compartments within ecosystems (e.g., organism species) are represented by one class of nodes, while the roles or functions that they play relative to other compartments are represented by a second class of nodes. This bipartite graph representation enables a powerful, unambiguous representation of relationships among ecosystem compartments, which can come in tangible (e.g., mass flow in predation) or intangible form (e.g., symbiosis). For example, within a P-graph, the distinct roles of bees as pollinators for some plants and as prey for some animals can be explicitly represented, which would not otherwise be possible using conventional ecological network analysis. After a discussion of the mapping of ecosystems into P-graph, we also discuss how this framework can be used to guide understanding of complex networks that exist in nature. Two component algorithms of P-graph, namely maximal structure generation (MSG) and solution structure generation (SSG), are shown to be particularly useful for ecological network analysis. These algorithms enable candidate ecosystem networks to be deduced based on current scientific knowledge on the individual ecosystem components. This method can be used to determine the (a) effects of loss of specific ecosystem compartments due to extinction, (b) potential efficacy of ecosystem reconstruction efforts, and (c) maximum sustainable exploitation of human ecosystem services by humans. We illustrate the use of P-graph for the analysis of ecosystem compartment loss using a small-scale stylized case study, and further propose a new criticality index that can be easily derived from SSG results.
Collapse
Affiliation(s)
- Angelyn Lao
- Mathematics and Statistics Department, De La Salle University, Manila, Philippines
| | - Heriberto Cabezas
- University of Miskolc, Research Institute of Applied Earth Science, Miskolc, Hungary
- Institute for Process Systems Engineering and Sustainability, Pázmány Péter Catholic University, Budapest, Hungary
| | - Ákos Orosz
- Department of Computer Science and Systems Technology, University of Pannonia, Veszprém, Hungary
| | - Ferenc Friedler
- Institute for Process Systems Engineering and Sustainability, Pázmány Péter Catholic University, Budapest, Hungary
- Széchenyi István University, Debrecen, Hungary
| | - Raymond Tan
- Chemical Engineering Department, De La Salle University, Manila, Philippines
| |
Collapse
|
50
|
Ecological networks: Pursuing the shortest path, however narrow and crooked. Sci Rep 2019; 9:17826. [PMID: 31780703 PMCID: PMC6883044 DOI: 10.1038/s41598-019-54206-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 10/27/2019] [Indexed: 11/24/2022] Open
Abstract
Representing data as networks cuts across all sub-disciplines in ecology and evolutionary biology. Besides providing a compact representation of the interconnections between agents, network analysis allows the identification of especially important nodes, according to various metrics that often rely on the calculation of the shortest paths connecting any two nodes. While the interpretation of a shortest paths is straightforward in binary, unweighted networks, whenever weights are reported, the calculation could yield unexpected results. We analyzed 129 studies of ecological networks published in the last decade that use shortest paths, and discovered a methodological inaccuracy related to the edge weights used to calculate shortest paths (and related centrality measures), particularly in interaction networks. Specifically, 49% of the studies do not report sufficient information on the calculation to allow their replication, and 61% of the studies on weighted networks may contain errors in how shortest paths are calculated. Using toy models and empirical ecological data, we show how to transform the data prior to calculation and illustrate the pitfalls that need to be avoided. We conclude by proposing a five-point check-list to foster best-practices in the calculation and reporting of centrality measures in ecology and evolution studies.
Collapse
|