1
|
Paterson AH, Queitsch C. Genome organization and botanical diversity. THE PLANT CELL 2024; 36:1186-1204. [PMID: 38382084 PMCID: PMC11062460 DOI: 10.1093/plcell/koae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The rich diversity of angiosperms, both the planet's dominant flora and the cornerstone of agriculture, is integrally intertwined with a distinctive evolutionary history. Here, we explore the interplay between angiosperm genome organization and botanical diversity, empowered by genomic approaches ranging from genetic linkage mapping to analysis of gene regulation. Commonality in the genetic hardware of plants has enabled robust comparative genomics that has provided a broad picture of angiosperm evolution and implicated both general processes and specific elements in contributing to botanical diversity. We argue that the hardware of plant genomes-both in content and in dynamics-has been shaped by selection for rather substantial differences in gene regulation between plants and animals such as maize and human, organisms of comparable genome size and gene number. Their distinctive genome content and dynamics may reflect in part the indeterminate development of plants that puts strikingly different demands on gene regulation than in animals. Repeated polyploidization of plant genomes and multiplication of individual genes together with extensive rearrangement and differential retention provide rich raw material for selection of morphological and/or physiological variations conferring fitness in specific niches, whether natural or artificial. These findings exemplify the burgeoning information available to employ in increasing knowledge of plant biology and in modifying selected plants to better meet human needs.
Collapse
Affiliation(s)
- Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Abnizova I, Stapel C, Boekhorst RT, Lee JTH, Hemberg M. Integrative analysis of transcriptomic and epigenomic data reveals distinct patterns for developmental and housekeeping gene regulation. BMC Biol 2024; 22:78. [PMID: 38600550 PMCID: PMC11005181 DOI: 10.1186/s12915-024-01869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Regulation of transcription is central to the emergence of new cell types during development, and it often involves activation of genes via proximal and distal regulatory regions. The activity of regulatory elements is determined by transcription factors (TFs) and epigenetic marks, but despite extensive mapping of such patterns, the extraction of regulatory principles remains challenging. RESULTS Here we study differentially and similarly expressed genes along with their associated epigenomic profiles, chromatin accessibility and DNA methylation, during lineage specification at gastrulation in mice. Comparison of the three lineages allows us to identify genomic and epigenomic features that distinguish the two classes of genes. We show that differentially expressed genes are primarily regulated by distal elements, while similarly expressed genes are controlled by proximal housekeeping regulatory programs. Differentially expressed genes are relatively isolated within topologically associated domains, while similarly expressed genes tend to be located in gene clusters. Transcription of differentially expressed genes is associated with differentially open chromatin at distal elements including enhancers, while that of similarly expressed genes is associated with ubiquitously accessible chromatin at promoters. CONCLUSION Based on these associations of (linearly) distal genes' transcription start sites (TSSs) and putative enhancers for developmental genes, our findings allow us to link putative enhancers to their target promoters and to infer lineage-specific repertoires of putative driver transcription factors, within which we define subgroups of pioneers and co-operators.
Collapse
Affiliation(s)
- Irina Abnizova
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Carine Stapel
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | | | - Martin Hemberg
- Wellcome Sanger Institute, Hinxton, UK.
- The Gene Lay Institute of Immunology and Inflammation Brigham & Women's Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
3
|
Kessler S, Minoux M, Joshi O, Ben Zouari Y, Ducret S, Ross F, Vilain N, Salvi A, Wolff J, Kohler H, Stadler MB, Rijli FM. A multiple super-enhancer region establishes inter-TAD interactions and controls Hoxa function in cranial neural crest. Nat Commun 2023; 14:3242. [PMID: 37277355 DOI: 10.1038/s41467-023-38953-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
Enhancer-promoter interactions preferentially occur within boundary-insulated topologically associating domains (TADs), limiting inter-TAD interactions. Enhancer clusters in linear proximity, termed super-enhancers (SEs), ensure high target gene expression levels. Little is known about SE topological regulatory impact during craniofacial development. Here, we identify 2232 genome-wide putative SEs in mouse cranial neural crest cells (CNCCs), 147 of which target genes establishing CNCC positional identity during face formation. In second pharyngeal arch (PA2) CNCCs, a multiple SE-containing region, partitioned into Hoxa Inter-TAD Regulatory Element 1 and 2 (HIRE1 and HIRE2), establishes long-range inter-TAD interactions selectively with Hoxa2, that is required for external and middle ear structures. HIRE2 deletion in a Hoxa2 haploinsufficient background results in microtia. HIRE1 deletion phenocopies the full homeotic Hoxa2 knockout phenotype and induces PA3 and PA4 CNCC abnormalities correlating with Hoxa2 and Hoxa3 transcriptional downregulation. Thus, SEs can overcome TAD insulation and regulate anterior Hoxa gene collinear expression in a CNCC subpopulation-specific manner during craniofacial development.
Collapse
Affiliation(s)
- Sandra Kessler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- INSERM UMR 1121, Université de Strasbourg, Faculté de Chirurgie Dentaire, 8, rue Sainte Elisabeth, 67 000, Strasbourg, France
| | - Onkar Joshi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Yousra Ben Zouari
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Fiona Ross
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nathalie Vilain
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Adwait Salvi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joachim Wolff
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Gaunt SJ. Seeking Sense in the Hox Gene Cluster. J Dev Biol 2022; 10:48. [PMID: 36412642 PMCID: PMC9680502 DOI: 10.3390/jdb10040048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The Hox gene cluster, responsible for patterning of the head-tail axis, is an ancestral feature of all bilaterally symmetrical animals (the Bilateria) that remains intact in a wide range of species. We can say that the Hox cluster evolved successfully only once since it is commonly the same in all groups, with labial-like genes at one end of the cluster expressed in the anterior embryo, and Abd-B-like genes at the other end of the cluster expressed posteriorly. This review attempts to make sense of the Hox gene cluster and to address the following questions. How did the Hox cluster form in the protostome-deuterostome last common ancestor, and why was this with a particular head-tail polarity? Why is gene clustering usually maintained? Why is there collinearity between the order of genes along the cluster and the positions of their expressions along the embryo? Why do the Hox gene expression domains overlap along the embryo? Why have vertebrates duplicated the Hox cluster? Why do Hox gene knockouts typically result in anterior homeotic transformations? How do animals adapt their Hox clusters to evolve new structural patterns along the head-tail axis?
Collapse
Affiliation(s)
- Stephen J Gaunt
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
5
|
Pinglay S, Bulajić M, Rahe DP, Huang E, Brosh R, Mamrak NE, King BR, German S, Cadley JA, Rieber L, Easo N, Lionnet T, Mahony S, Maurano MT, Holt LJ, Mazzoni EO, Boeke JD. Synthetic regulatory reconstitution reveals principles of mammalian Hox cluster regulation. Science 2022; 377:eabk2820. [PMID: 35771912 PMCID: PMC9648154 DOI: 10.1126/science.abk2820] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Precise Hox gene expression is crucial for embryonic patterning. Intra-Hox transcription factor binding and distal enhancer elements have emerged as the major regulatory modules controlling Hox gene expression. However, quantifying their relative contributions has remained elusive. Here, we introduce "synthetic regulatory reconstitution," a conceptual framework for studying gene regulation, and apply it to the HoxA cluster. We synthesized and delivered variant rat HoxA clusters (130 to 170 kilobases) to an ectopic location in the mouse genome. We found that a minimal HoxA cluster recapitulated correct patterns of chromatin remodeling and transcription in response to patterning signals, whereas the addition of distal enhancers was needed for full transcriptional output. Synthetic regulatory reconstitution could provide a generalizable strategy for deciphering the regulatory logic of gene expression in complex genomes.
Collapse
Affiliation(s)
- Sudarshan Pinglay
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Milica Bulajić
- Department of Biology, New York University, New York, NY 10003, USA
| | - Dylan P. Rahe
- Department of Biology, New York University, New York, NY 10003, USA
| | - Emily Huang
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Nicholas E. Mamrak
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Benjamin R. King
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Sergei German
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - John A. Cadley
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Lila Rieber
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Nicole Easo
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Timothée Lionnet
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Cell Biology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew T. Maurano
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Liam J. Holt
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | | | - Jef D. Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
6
|
Epigenomic Modifications in Modern and Ancient Genomes. Genes (Basel) 2022; 13:genes13020178. [PMID: 35205223 PMCID: PMC8872240 DOI: 10.3390/genes13020178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Epigenetic changes have been identified as a major driver of fundamental metabolic pathways. More specifically, the importance of epigenetic regulatory mechanisms for biological processes like speciation and embryogenesis has been well documented and revealed the direct link between epigenetic modifications and various diseases. In this review, we focus on epigenetic changes in animals with special attention on human DNA methylation utilizing ancient and modern genomes. Acknowledging the latest developments in ancient DNA research, we further discuss paleoepigenomic approaches as the only means to infer epigenetic changes in the past. Investigating genome-wide methylation patterns of ancient humans may ultimately yield in a more comprehensive understanding of how our ancestors have adapted to the changing environment, and modified their lifestyles accordingly. We discuss the difficulties of working with ancient DNA in particular utilizing paleoepigenomic approaches, and assess new paleoepigenomic data, which might be helpful in future studies.
Collapse
|
7
|
Diaz-Cuadros M, Pourquié O, El-Sherif E. Patterning with clocks and genetic cascades: Segmentation and regionalization of vertebrate versus insect body plans. PLoS Genet 2021; 17:e1009812. [PMID: 34648490 PMCID: PMC8516289 DOI: 10.1371/journal.pgen.1009812] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oscillatory and sequential processes have been implicated in the spatial patterning of many embryonic tissues. For example, molecular clocks delimit segmental boundaries in vertebrates and insects and mediate lateral root formation in plants, whereas sequential gene activities are involved in the specification of regional identities of insect neuroblasts, vertebrate neural tube, vertebrate limb, and insect and vertebrate body axes. These processes take place in various tissues and organisms, and, hence, raise the question of what common themes and strategies they share. In this article, we review 2 processes that rely on the spatial regulation of periodic and sequential gene activities: segmentation and regionalization of the anterior-posterior (AP) axis of animal body plans. We study these processes in species that belong to 2 different phyla: vertebrates and insects. By contrasting 2 different processes (segmentation and regionalization) in species that belong to 2 distantly related phyla (arthropods and vertebrates), we elucidate the deep logic of patterning by oscillatory and sequential gene activities. Furthermore, in some of these organisms (e.g., the fruit fly Drosophila), a mode of AP patterning has evolved that seems not to overtly rely on oscillations or sequential gene activities, providing an opportunity to study the evolution of pattern formation mechanisms.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ezzat El-Sherif
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Kim CY, Kim YC, Oh JH, Kim MH. HOXA5 confers tamoxifen resistance via the PI3K/AKT signaling pathway in ER-positive breast cancer. J Cancer 2021; 12:4626-4637. [PMID: 34149926 PMCID: PMC8210559 DOI: 10.7150/jca.59740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Tamoxifen is a commonly used drug to treat estrogen receptor-positive patients with breast cancer. Despite the outstanding efficacy of tamoxifen, approximately one-third of patients develop resistance toward it, thereby presenting a therapeutic challenge. HOX genes may be involved in the acquisition of tamoxifen resistance. In this study, we identified HOXA5, a member of the HOX gene family, as a marker of tamoxifen resistance. Using ChIP assay, we found that HOXA5 expression was significantly overexpressed in tamoxifen-resistant MCF7 (TAMR) breast cancer cells because of reduced H3K27me3 binding. HOXA5 upregulation resulted in activation of the PI3K/AKT signaling cascade, which in turn, led to p53 and p21 reduction, ultimately making the TAMR cells less apoptotic. Furthermore, elevated HOXA5 expression resulted in breast cancer cells acquiring more mesenchymal-like and stem cell traits associated with aggressive breast cancer phenotypes. In conclusion, our results delineate a mechanism by which HOXA5 promotes tumorigenesis, cancer progression, and tamoxifen resistance in breast cancer cells.
Collapse
Affiliation(s)
- Clara Yuri Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yu Cheon Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Anatomy, Graduate School of Medical Science, Bain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji Hoon Oh
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
9
|
Cho HJ, Park HY, Kim K, Chae H, Paek SH, Kim SK, Park CK, Choi SH, Park SH. Methylation and molecular profiles of ependymoma: Influence of patient age and tumor anatomic location. Mol Clin Oncol 2021; 14:88. [PMID: 33767857 DOI: 10.3892/mco.2021.2250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/05/2021] [Indexed: 12/30/2022] Open
Abstract
Ependymomas are tumors of the central nervous system that can occur in patients of all ages. Guidelines from the World Health Organization (WHO) for the grading of ependymomas consider patient age, tumor resection range, tumor location and histopathological grade. However, recent studies have suggested that a greater focus on both tumor location and patient age in terms of transcriptomic, genetic, and epigenetic analyses may provide a more accurate assessment of clinical prognosis than the grading system proposed by WHO guidelines. The current study identified the differences and similarities in ependymoma characteristics using three different molecular analyses and methylation arrays. Primary intracranial ependymoma tissues were obtained from 13 Korean patients (9 adults and 4 children), after which whole-exome sequencing (WES), ion-proton comprehensive cancer panel (CCP) analysis, RNA sequencing, and Infinium HumanMethylation450 BeadChip array analysis was performed. Somatic mutations, copy number variations, and fusion genes were identified. It was observed that the methylation status and differentially expressed genes were significantly different according to tumor location and patient age. Several novel gene fusions and somatic mutations were identified, including a yes-associated protein 1 fusion mutation in a child with a good prognosis. Moreover, the methylation microarray revealed that genes associated with neurogenesis and neuron differentiation were hypermethylated in the adult group, whereas genes in the homeobox gene family were hypermethylated in the supratentorial (ST) group. The results confirmed the existence of significantly differentially expressed tumor-specific genes based on tumor location and patient age. These results provided valuable insight into the epigenetic and genetic profiles of intracranial ependymomas and uncovered potential strategies for the identification of location- and age-based ependymoma-related prognostic factors.
Collapse
Affiliation(s)
- Hwa Jin Cho
- Department of Pathology, Inje University Busan Paik Hospital, Busan 47392, Republic of Korea
| | - Ha Young Park
- Department of Pathology, Inje University Busan Paik Hospital, Busan 47392, Republic of Korea
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Heejoon Chae
- Division of Computer Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung-Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
10
|
Meyer A, Schloissnig S, Franchini P, Du K, Woltering JM, Irisarri I, Wong WY, Nowoshilow S, Kneitz S, Kawaguchi A, Fabrizius A, Xiong P, Dechaud C, Spaink HP, Volff JN, Simakov O, Burmester T, Tanaka EM, Schartl M. Giant lungfish genome elucidates the conquest of land by vertebrates. Nature 2021; 590:284-289. [PMID: 33461212 PMCID: PMC7875771 DOI: 10.1038/s41586-021-03198-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/06/2021] [Indexed: 01/29/2023]
Abstract
Lungfishes belong to lobe-fined fish (Sarcopterygii) that, in the Devonian period, 'conquered' the land and ultimately gave rise to all land vertebrates, including humans1-3. Here we determine the chromosome-quality genome of the Australian lungfish (Neoceratodus forsteri), which is known to have the largest genome of any animal. The vast size of this genome, which is about 14× larger than that of humans, is attributable mostly to huge intergenic regions and introns with high repeat content (around 90%), the components of which resemble those of tetrapods (comprising mainly long interspersed nuclear elements) more than they do those of ray-finned fish. The lungfish genome continues to expand independently (its transposable elements are still active), through mechanisms different to those of the enormous genomes of salamanders. The 17 fully assembled lungfish macrochromosomes maintain synteny to other vertebrate chromosomes, and all microchromosomes maintain conserved ancient homology with the ancestral vertebrate karyotype. Our phylogenomic analyses confirm previous reports that lungfish occupy a key evolutionary position as the closest living relatives to tetrapods4,5, underscoring the importance of lungfish for understanding innovations associated with terrestrialization. Lungfish preadaptations to living on land include the gain of limb-like expression in developmental genes such as hoxc13 and sall1 in their lobed fins. Increased rates of evolution and the duplication of genes associated with obligate air-breathing, such as lung surfactants and the expansion of odorant receptor gene families (which encode proteins involved in detecting airborne odours), contribute to the tetrapod-like biology of lungfishes. These findings advance our understanding of this major transition during vertebrate evolution.
Collapse
Affiliation(s)
- Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| | | | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Kang Du
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | | | - Iker Irisarri
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Wai Yee Wong
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | | | - Susanne Kneitz
- Biochemistry and Cell Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Akane Kawaguchi
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | - Peiwen Xiong
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle, École Normale Superieure, Université Claude Bernard, Lyon, France
| | - Herman P Spaink
- Faculty of Science, Universiteit Leiden, Leiden, The Netherlands
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle, École Normale Superieure, Université Claude Bernard, Lyon, France
| | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
| | | | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany.
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
11
|
Steens J, Klar L, Hansel C, Slama A, Hager T, Jendrossek V, Aigner C, Klein D. The vascular nature of lung-resident mesenchymal stem cells. Stem Cells Transl Med 2020; 10:128-143. [PMID: 32830458 PMCID: PMC7780817 DOI: 10.1002/sctm.20-0191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Human lungs bear their own reservoir of endogenous mesenchymal stem cells (MSCs). Although described as located perivascular, the cellular identity of primary lung MSCs remains elusive. Here we investigated the vascular nature of lung‐resident MSCs (LR‐MSCs) using healthy human lung tissue. LR‐MSCs predominately reside within the vascular stem cell niche, the so‐called vasculogenic zone of adult lung arteries. Primary LR‐MSCs isolated from normal human lung tissue showed typical MSC characteristics in vitro and were phenotypically and functionally indistinguishable from MSCs derived from the vascular wall of adult human blood vessels (VW‐MSCs). Moreover, LR‐MSCs expressed the VW‐MSC‐specific HOX code a characteristic to discriminate VW‐MSCs from phenotypical similar cells. Thus, LR‐MSC should be considered as VW‐MSCs. Immunofluorescent analyses of non‐small lung cancer (NSCLC) specimen further confirmed the vascular adventitia as stem cell niche for LR‐MSCs, and revealed their mobilization and activation in NSCLC progression. These findings have implications for understanding the role of MSC in normal lung physiology and pulmonary diseases, as well as for the rational design of additional therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer Steens
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Lea Klar
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Christine Hansel
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Alexis Slama
- Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen, Essen, Germany
| | - Thomas Hager
- Institute of Pathology, University Clinic Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen, Essen, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
12
|
Najminejad H, Farhadihosseinabadi B, Dabaghian M, Dezhkam A, Rigi Yousofabadi E, Najminejad R, Abdollahpour-Alitappeh M, Karimi MH, Bagheri N, Mahi-Birjand M, Ghasemi N, Mazaheri M, Kalantar SM, Seifalian A, Sheikhha MH. Key Regulatory miRNAs and their Interplay with Mechanosensing and Mechanotransduction Signaling Pathways in Breast Cancer Progression. Mol Cancer Res 2020; 18:1113-1128. [PMID: 32430354 DOI: 10.1158/1541-7786.mcr-19-1229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/14/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022]
Abstract
According to the WHO, breast cancer is the most common cancer in women worldwide. Identification of underlying mechanisms in breast cancer progression is the main concerns of researches. The mechanical forces within the tumor microenvironment, in addition to biochemical stimuli such as different growth factors and cytokines, activate signaling cascades, resulting in various changes in cancer cell physiology. Cancer cell proliferation, invasiveness, migration, and, even, resistance to cancer therapeutic agents are changed due to activation of mechanotransduction signaling. The mechanotransduction signaling is frequently dysregulated in breast cancer, indicating its important role in cancer cell features. So far, a variety of experimental investigations have been conducted to determine the main regulators of the mechanotransduction signaling. Currently, the role of miRNAs has been well-defined in the cancer process through advances in molecular-based approaches. miRNAs are small groups of RNAs (∼22 nucleotides) that contribute to various biological events in cells. The central role of miRNAs in the regulation of various mediators involved in the mechanotransduction signaling has been well clarified over the last decade. Unbalanced expression of miRNAs is associated with different pathologic conditions. Overexpression and downregulation of certain miRNAs were found to be along with dysregulation of mechanotransduction signaling effectors. This study aimed to critically review the role of miRNAs in the regulation of mediators involved in the mechanosensing pathways and clarify how the cross-talk between miRNAs and their targets affect the cell behavior and physiology of breast cancer cells.
Collapse
Affiliation(s)
- Hamid Najminejad
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Farhadihosseinabadi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Dabaghian
- Research and Development Department, Razi Vaccine and serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Asiyeh Dezhkam
- Department of Midwifery, School of Nursing and Midwifery, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Reza Najminejad
- Department of Internal Medicine, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | | | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Motahareh Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasrin Ghasemi
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd), The London BioScience Innovation Centre, London, United Kingdom.
| | - Mohammad Hasan Sheikhha
- Genetics and Biotechnology Lab, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
13
|
Lewis EMA, Sankar S, Tong C, Patterson ES, Waller LE, Gontarz P, Zhang B, Ornitz DM, Kroll KL. Geminin is required for Hox gene regulation to pattern the developing limb. Dev Biol 2020; 464:11-23. [PMID: 32450229 DOI: 10.1016/j.ydbio.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/09/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Development of the complex structure of the vertebrate limb requires carefully orchestrated interactions between multiple regulatory pathways and proteins. Among these, precise regulation of 5' Hox transcription factor expression is essential for proper limb bud patterning and elaboration of distinct limb skeletal elements. Here, we identified Geminin (Gmnn) as a novel regulator of this process. A conditional model of Gmnn deficiency resulted in loss or severe reduction of forelimb skeletal elements, while both the forelimb autopod and hindlimb were unaffected. 5' Hox gene expression expanded into more proximal and anterior regions of the embryonic forelimb buds in this Gmnn-deficient model. A second conditional model of Gmnn deficiency instead caused a similar but less severe reduction of hindlimb skeletal elements and hindlimb polydactyly, while not affecting the forelimb. An ectopic posterior SHH signaling center was evident in the anterior hindlimb bud of Gmnn-deficient embryos in this model. This center ectopically expressed Hoxd13, the HOXD13 target Shh, and the SHH target Ptch1, while these mutant hindlimb buds also had reduced levels of the cleaved, repressor form of GLI3, a SHH pathway antagonist. Together, this work delineates a new role for Gmnn in modulating Hox expression to pattern the vertebrate limb.
Collapse
Affiliation(s)
- Emily M A Lewis
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Savita Sankar
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Caili Tong
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ethan S Patterson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura E Waller
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paul Gontarz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
14
|
Paul P, Singh SK, Patra B, Liu X, Pattanaik S, Yuan L. Mutually Regulated AP2/ERF Gene Clusters Modulate Biosynthesis of Specialized Metabolites in Plants. PLANT PHYSIOLOGY 2020; 182:840-856. [PMID: 31727678 PMCID: PMC6997685 DOI: 10.1104/pp.19.00772] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/28/2019] [Indexed: 05/14/2023]
Abstract
APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) gene clusters regulate the biosynthesis of diverse specialized metabolites, including steroidal glycoalkaloids in tomato (Solanum lycopersicum) and potato (Solanum tuberosum), nicotine in tobacco (Nicotiana tabacum), and pharmaceutically valuable terpenoid indole alkaloids in Madagascar periwinkle (Catharanthus roseus). However, the regulatory relationships between individual AP2/ERF genes within the cluster remain unexplored. We uncovered intracluster regulation of the C. roseus AP2/ERF regulatory circuit, which consists of ORCA3, ORCA4, and ORCA5 ORCA3 and ORCA5 activate ORCA4 by directly binding to a GC-rich motif in the ORCA4 promoter. ORCA5 regulates its own expression through a positive autoregulatory loop and indirectly activates ORCA3 In determining the functional conservation of AP2/ERF clusters in other plant species, we found that GC-rich motifs are present in the promoters of analogous AP2/ERF clusters in tobacco, tomato, and potato. Intracluster regulation is evident within the tobacco NICOTINE2 (NIC2) ERF cluster. Moreover, overexpression of ORCA5 in tobacco and of NIC2 ERF189 in C. roseus hairy roots activates nicotine and terpenoid indole alkaloid pathway genes, respectively, suggesting that the AP2/ERFs are functionally equivalent and are likely to be interchangeable. Elucidation of the intracluster and mutual regulation of transcription factor gene clusters advances our understanding of the underlying molecular mechanism governing regulatory gene clusters in plants.
Collapse
Affiliation(s)
- Priyanka Paul
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546
| | - Barunava Patra
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546
| | - Xiaoyu Liu
- College of Life Sciences, Shanxi Agricultural University, Shanxi 030801, China
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky 40546
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
15
|
Kudlicki A. Why a Constant Number of Vertebrae? Digital Control of Segmental Identity during Vertebrate Development: The Somite Cycle Controls a Digital, Chromatin-Based Counter That Defines Segmental Identity and Body Plans in Vertebrate Animals. Bioessays 2019; 42:e1900133. [PMID: 31755133 DOI: 10.1002/bies.201900133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/01/2019] [Indexed: 11/06/2022]
Abstract
It is not understood how the numbers and identities of vertebrae are controlled during mammalian development. The remarkable robustness and conservation of segmental numbers may suggest the digital nature of the underlying process. The study proposes a mechanism that allows cells to obtain and store the segmental information in digital form, and to produce a pattern of chromatin accessibility that in turn regulates Hox gene expression specific to the metameric segment. The model requires that a regulatory element be present such that the number of occurrences of the motif between two consecutive Hox genes equals the number of segments under the control of the anterior gene. This is true for the recently discovered hydroxyl radical cleavage 3bp-periodic (HRC3) motif, associated with histone modifications and developmental genes. The finding not only allows the correct prediction of the numbers of segments using only sequence information, but also resolves the 40-year-old enigma of the function of temporal and spatial collinearity of Hox genes. The logic of the mechanism is illustrated in the attached animated video. How different aspects of the proposed mechanism can be tested experimentally is also discussed.
Collapse
Affiliation(s)
- Andrzej Kudlicki
- Institute for Translational Sciences, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, USA
| |
Collapse
|
16
|
Chen YQ, Yang TQ, Zhou B, Yang MX, Feng HJ, Wang YL. HOXA5 overexpression promotes osteosarcoma cell apoptosis through the p53 and p38α MAPK pathway. Gene 2019; 689:18-23. [DOI: 10.1016/j.gene.2018.11.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 12/15/2022]
|
17
|
Li Q, Dong C, Cui J, Wang Y, Hong X. Over-expressed lncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:265. [PMID: 30376874 PMCID: PMC6208043 DOI: 10.1186/s13046-018-0941-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Background Glioblastoma multiforme (GBM) is the common primary brain tumor classified the most malignant glioma. Long non-coding RNAs (LncRNAs) are important epigenetic regulators with critical roles in cancer initiation and progression. LncRNA HOTAIRM1 transcribes from the antisense strand of HOXA gene cluster which locus in chromosome 7p15.2. Recent studies have shown that HOTAIRM1 is involved in acute myeloid leukemia and colorectal cancer. Here we sought to investigate the role of HOTAIRM1 in GBM and explore its mechanisms of action. Methods The expressions of HOTAIRM1 and HOXA1 in GBM tissues and cells were determined by qRT-PCR, and the association between HOTAIRM1, HOXA1 transcription and tumor grade were analyzed. The biological function of HOTAIRM1 in GBM was evaluated both in vitro and in vivo. Chromatin immunoprecipitation (ChIP) assay and quantitative Sequenom MassARRAY methylation analysis were performed to explore whether HOTAIRM1 could regulate histone and DNA modification status of the HOXA1 gene transcription start sites (TSS) and activate its transcription. ChIP and RNA-ChIP were further performed to determine the molecular mechanism of HOTAIRM1 in epigenetic regulation of the HOXA1 gene. Results HOTAIRM1 was abnormally up-regulated in GBM tissues and cells, and this up-regulation was correlated with grade malignancy in glioma patients. HOTAIRM1 silencing caused tumor suppressive effects via inhibiting cell proliferation, migration and invasion, and inducing cell apoptosis. In vivo experiments showed knockdown of HOTAIRM1 lessened the tumor growth. Additionally, HOTAIRM1 action as regulating the expression of the HOXA1 gene. HOXA1, as an oncogene, it’s expression levels were markedly elevated in GBM tissues and cell lines. Mechanistically, HOTAIRM1 mediated demethylation of histone H3K9 and H3K27 and reduced DNA methylation levels by sequester epigenetic modifiers G9a and EZH2, which are H3K9me2 and H3K27me3 specific histone methyltransferases, and DNA methyltransferases (DnmTs) away from the TSS of HOXA1 gene. Conclusions We investigated the potential role of HOTAIRM1 to promote GBM cell proliferation, migration, invasion and inhibit cell apoptosis by epigenetic regulation of HOXA1 gene that can be targeted simultaneously to effectively treat GBM, thus putting forward a promising strategy for GBM treatment. Meanwhile, this finding provides an example of transcriptional control over the chromatin state of gene and may help explain the role of lncRNAs within the HOXA gene cluster. Electronic supplementary material The online version of this article (10.1186/s13046-018-0941-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China.
| | - Chengya Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing, 100050, China
| | - Jiayue Cui
- Department of Histology and Embryology of Basic Medicine College, Jilin University, Changchun, Jilin Province, China
| | - Yubo Wang
- Department of Neurosurgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
18
|
Abstract
Complexity in genome architecture determines how gene expression programs are established, maintained, and modified from early developmental stages to normal adult phenotypes. Large scale and hierarchical organization of the genome impacts various aspects of cell functions, ranging from X-chromosome inactivation, stem-cell fate determination to transcription, DNA replication, and cellular repair. While chromatin loops and topologically-associated domains represent a basic structural or fundamental unit of chromatin organization, spatio-temporal organization of the genome further creates a complex network of interacting genome patterns, forming chromosomal compartments and chromosome territories. The understanding of human diseases, including cancers, auto-immune disorders, Alzheimer's, and cardiovascular diseases, relies on the associated molecular and epigenetic mechanisms. There is a growing interest in the impact of three-dimensional chromatin folding upon the genome structure and function, which gives rise to the question "What's in the fold?" and is the main focus of this review. Here we discuss the principles determining the spatial and regulatory relationships between gene regulation and three-dimensional chromatin landscapes, and how changes in chromatin-folding could influence the outcome of genome function in healthy and disease states.
Collapse
|
19
|
Nagel S, MacLeod RAF, Meyer C, Kaufmann M, Drexler HG. NKL homeobox gene activities in B-cell development and lymphomas. PLoS One 2018; 13:e0205537. [PMID: 30308041 PMCID: PMC6181399 DOI: 10.1371/journal.pone.0205537] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Homeobox genes encode transcription factors which regulate basic processes in development and cell differentiation. Several members of the NKL subclass are deregulated in T-cell progenitors and support leukemogenesis. We have recently described particular expression patterns of nine NKL homeobox genes in early hematopoiesis and T-cell development. Here, we screened NKL homeobox gene activities in normal B-cell development and extended the NKL-code to include this lymphoid lineage. Analysis of public expression profiling datasets revealed that HHEX and NKX6-3 were the only members differentially active in naïve B-cells, germinal center B-cells, plasma cells and memory B-cells. Subsequent examination of different types of B-cell malignancies showed both aberrant overexpression of NKL-code members and ectopic activation of subclass members physiologically silent in lymphopoiesis including BARX2, DLX1, EMX2, NKX2-1, NKX2-2 and NKX3-2. Based on these findings we performed detailed studies of the B-cell specific NKL homeobox gene NKX6-3 which showed enhanced activity in patient subsets of follicular lymphoma, mantle cell lymphoma and diffuse large B-cell lymphoma (DLBCL), and in three DLBCL cell lines to serve as in vitro models. While excluding genomic and chromosomal rearrangements at the locus of NKX6-3 (8p11) promoter studies demonstrated that B-cell factors MYB and PAX5 activated NKX6-3 transcription. Furthermore, aberrant BMP7/SMAD1-signalling and deregulated expression of chromatin complex components AUTS2 and PCGF5 promoted NKX6-3 activation. Finally, NKL homeobox genes HHEX, HLX, MSX1 and NKX6-3 were expressed in B-cell progenitors and generated a regulatory gene network in cell lines which we propose may provide physiological support for NKL-code formation in early B-cell development. Together, we identified an NKL-code in B-cell development whose violation may deregulate differentiation and promote malignant transformation.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| | - Roderick A. F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Maren Kaufmann
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
20
|
Kruitwagen T, Chymkowitch P, Denoth-Lippuner A, Enserink J, Barral Y. Centromeres License the Mitotic Condensation of Yeast Chromosome Arms. Cell 2018; 175:780-795.e15. [PMID: 30318142 PMCID: PMC6197839 DOI: 10.1016/j.cell.2018.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 06/14/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022]
Abstract
During mitosis, chromatin condensation shapes chromosomes as separate, rigid, and compact sister chromatids to facilitate their segregation. Here, we show that, unlike wild-type yeast chromosomes, non-chromosomal DNA circles and chromosomes lacking a centromere fail to condense during mitosis. The centromere promotes chromosome condensation strictly in cis through recruiting the kinases Aurora B and Bub1, which trigger the autonomous condensation of the entire chromosome. Shugoshin and the deacetylase Hst2 facilitated spreading the condensation signal to the chromosome arms. Targeting Aurora B to DNA circles or centromere-ablated chromosomes or releasing Shugoshin from PP2A-dependent inhibition bypassed the centromere requirement for condensation and enhanced the mitotic stability of DNA circles. Our data indicate that yeast cells license the chromosome-autonomous condensation of their chromatin in a centromere-dependent manner, excluding from this process non-centromeric DNA and thereby inhibiting their propagation.
Collapse
Affiliation(s)
- Tom Kruitwagen
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| | - Pierre Chymkowitch
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | | | - Jorrit Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Faculty of Medicine, Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Faculty of Mathematics and Natural Sciences, Department of Biosciences, University of Oslo, Norway
| | - Yves Barral
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
21
|
Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat Ecol Evol 2018; 2:1761-1771. [PMID: 30297745 DOI: 10.1038/s41559-018-0673-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Modern cartilaginous fishes are divided into elasmobranchs (sharks, rays and skates) and chimaeras, and the lack of established whole-genome sequences for the former has prevented our understanding of early vertebrate evolution and the unique phenotypes of elasmobranchs. Here we present de novo whole-genome assemblies of brownbanded bamboo shark and cloudy catshark and an improved assembly of the whale shark genome. These relatively large genomes (3.8-6.7 Gbp) contain sparse distributions of coding genes and regulatory elements and exhibit reduced molecular evolutionary rates. Our thorough genome annotation revealed Hox C genes previously hypothesized to have been lost, as well as distinct gene repertories of opsins and olfactory receptors that would be associated with adaptation to unique underwater niches. We also show the early establishment of the genetic machinery governing mammalian homoeostasis and reproduction at the jawed vertebrate ancestor. This study, supported by genomic, transcriptomic and epigenomic resources, provides a foundation for the comprehensive, molecular exploration of phenotypes unique to sharks and insights into the evolutionary origins of vertebrates.
Collapse
|
22
|
Evidence for the implication of the histone code in building the genome structure. Biosystems 2018; 164:49-59. [DOI: 10.1016/j.biosystems.2017.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
|
23
|
Rink JC. Stem Cells, Patterning and Regeneration in Planarians: Self-Organization at the Organismal Scale. Methods Mol Biol 2018; 1774:57-172. [PMID: 29916155 DOI: 10.1007/978-1-4939-7802-1_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The establishment of size and shape remains a fundamental challenge in biological research that planarian flatworms uniquely epitomize. Planarians can regenerate complete and perfectly proportioned animals from tiny and arbitrarily shaped tissue pieces; they continuously renew all organismal cell types from abundant pluripotent stem cells, yet maintain shape and anatomy in the face of constant turnover; they grow when feeding and literally degrow when starving, while scaling form and function over as much as a 40-fold range in body length or an 800-fold change in total cell numbers. This review provides a broad overview of the current understanding of the planarian stem cell system, the mechanisms that pattern the planarian body plan and how the interplay between patterning signals and cell fate choices orchestrates regeneration. What emerges is a conceptual framework for the maintenance and regeneration of the planarian body plan on basis of the interplay between pluripotent stem cells and self-organizing patterns and further, the general utility of planarians as model system for the mechanistic basis of size and shape.
Collapse
Affiliation(s)
- Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
24
|
Prohaska SJ, Berkemer SJ, Gärtner F, Gatter T, Retzlaff N, Höner Zu Siederdissen C, Stadler PF. Expansion of gene clusters, circular orders, and the shortest Hamiltonian path problem. J Math Biol 2017; 77:313-341. [PMID: 29260295 PMCID: PMC6060901 DOI: 10.1007/s00285-017-1197-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 12/02/2017] [Indexed: 11/30/2022]
Abstract
Clusters of paralogous genes such as the famous HOX cluster of developmental transcription factors tend to evolve by stepwise duplication of its members, often involving unequal crossing over. Gene conversion and possibly other mechanisms of concerted evolution further obfuscate the phylogenetic relationships. As a consequence, it is very difficult or even impossible to disentangle the detailed history of gene duplications in gene clusters. In this contribution we show that the expansion of gene clusters by unequal crossing over as proposed by Walter Gehring leads to distinctive patterns of genetic distances, namely a subclass of circular split systems. Furthermore, when the gene cluster was left undisturbed by genome rearrangements, the shortest Hamiltonian paths with respect to genetic distances coincide with the genomic order. This observation can be used to detect ancient genomic rearrangements of gene clusters and to distinguish gene clusters whose evolution was dominated by unequal crossing over within genes from those that expanded through other mechanisms.
Collapse
Affiliation(s)
- Sonja J Prohaska
- Computational EvoDevo Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Sarah J Berkemer
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103, Leipzig, Germany.,Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Fabian Gärtner
- Competence Center for Scalable Data Services and Solutions Dresden/Leipzig and Bioinformatics Group, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Thomas Gatter
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Nancy Retzlaff
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103, Leipzig, Germany.,Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | | | - Christian Höner Zu Siederdissen
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Peter F Stadler
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103, Leipzig, Germany. .,Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany. .,RNomics Group, Fraunhofer Institute for Cell Therapy and Immunology, 04103, Leipzig, Germany. .,Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, 1090, Wien, Austria. .,Santa Fe Insitute, 1399 Hyde Park Rd., Santa Fe, NM, 87501, USA.
| |
Collapse
|
25
|
Ramanathan A, Srijaya TC, Sukumaran P, Zain RB, Abu Kasim NH. Homeobox genes and tooth development: Understanding the biological pathways and applications in regenerative dental science. Arch Oral Biol 2017; 85:23-39. [PMID: 29031235 DOI: 10.1016/j.archoralbio.2017.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Homeobox genes are a group of conserved class of transcription factors that function as key regulators during the embryonic developmental processes. They act as master regulator for developmental genes, which involves coordinated actions of various auto and cross-regulatory mechanisms. In this review, we summarize the expression pattern of homeobox genes in relation to the tooth development and various signaling pathways or molecules contributing to the specific actions of these genes in the regulation of odontogenesis. MATERIALS AND METHODS An electronic search was undertaken using combination of keywords e.g. Homeobox genes, tooth development, dental diseases, stem cells, induced pluripotent stem cells, gene control region was used as search terms in PubMed and Web of Science and relevant full text articles and abstract were retrieved that were written in English. A manual hand search in text books were also carried out. Articles related to homeobox genes in dentistry and tissue engineering and regenerative medicine of odontogenesis were selected. RESULTS The possible perspective of stem cells technology in odontogenesis and subsequent analysis of gene correction pertaining to dental disorders through the possibility of induced pluripotent stem cells technology is also inferred. CONCLUSIONS We demonstrate the promising role of tissue engineering and regenerative medicine on odontogenesis, which can generate a new ray of hope in the field of dental science.
Collapse
Affiliation(s)
- Anand Ramanathan
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | | | - Prema Sukumaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia.
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
Armas-López L, Zúñiga J, Arrieta O, Ávila-Moreno F. The Hedgehog-GLI pathway in embryonic development and cancer: implications for pulmonary oncology therapy. Oncotarget 2017; 8:60684-60703. [PMID: 28948003 PMCID: PMC5601171 DOI: 10.18632/oncotarget.19527] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
Transcriptional regulation and epigenetic mechanisms closely control gene expression through diverse physiological and pathophysiological processes. These include the development of germ layers and post-natal epithelial cell-tissue differentiation, as well as, involved with the induction, promotion and/or progression of human malignancies. Diverse studies have shed light on the molecular similarities and differences involved in the stages of embryological epithelial development and dedifferentiation processes in malignant tumors of epithelial origin, of which many focus on lung carcinomas. In lung cancer, several transcriptional, epigenetic and genetic aberrations have been described to partly arise from environmental risk factors, but ethnic genetic predisposition factors may also play a role. The classification of the molecular hallmarks of cancer has been essential to study and achieve a comprehensive view of the interaction networks between cell signaling pathways and functional roles of the transcriptional and epigenetic regulatory mechanisms. This has in turn increased understanding on how these molecular networks are involved in embryo-layers and malignant diseases development. Ultimately, a major biomedicine goal is to achieve a thorough understanding of their roles as diagnostic, prognostic and treatment response indicators in lung oncological patients. Recently, several notable cell-signaling pathways have been studied based on their contribution to promoting and/or regulating the engagement of different cancer hallmarks, among them genome instability, exacerbated proliferative signaling, replicative immortality, tumor invasion-metastasis, inflammation, and immune-surveillance evasion mechanisms. Of these, the Hedgehog-GLI (Hh) cell-signaling pathway has been identified as a main molecular contribution into several of the abovementioned functional embryo-malignancy processes. Nonetheless, the systematic study of the regulatory epigenetic and transcriptional mechanisms has remained mostly unexplored, which could identify the interaction networks between specific biomarkers and/or new therapeutic targets in malignant tumor progression and resistance to lung oncologic therapy. In the present work, we aimed to revise the most important up-to-date experimental and clinical findings in biology, embryology and cancer research regarding the Hh pathway. We explore the potential control of the transcriptional-epigenetic programming versus reprogramming mechanisms associated with its Hh-GLI cell signaling pathway members. Last, we present a summary of this information to systematically integrate the Hh signaling pathway to identify and propose novel compound strategies or better oncological therapeutic schemes for lung cancer patients.
Collapse
Affiliation(s)
- Leonel Armas-López
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES) Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics And Lung Diseases Laboratory (UNAM-INER), Mexico City, México
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Research Unit, Mexico City, México
| | - Oscar Arrieta
- Instituto Nacional de Cancerología (INCAN), Thoracic Oncology Clinic, Mexico City, México
| | - Federico Ávila-Moreno
- Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores (FES) Iztacala, Biomedicine Research Unit (UBIMED), Cancer Epigenomics And Lung Diseases Laboratory (UNAM-INER), Mexico City, México
- Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, Research Unit, Mexico City, México
| |
Collapse
|
27
|
Hoxa5 increases mitochondrial apoptosis by inhibiting Akt/mTORC1/S6K1 pathway in mice white adipocytes. Oncotarget 2017; 8:95332-95345. [PMID: 29221131 PMCID: PMC5707025 DOI: 10.18632/oncotarget.20521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Homeobox A5(Hoxa5), a member of the Hox family, plays a important role in the regulation of proliferation and apoptosis in cancer cells. The dysregulation of the adipocyte apoptosis in vivo leads to obesity and metabolic disorders. However, the effects of Hoxa5 on adipocyte apoptosis are still unknown. In this study, palmitic acid (PA) significantly increased the mRNA level of Hoxa5 and triggered white adipocyte apoptosis in vivo and in vitro. Further analysis revealed that Hoxa5 enhanced the early and late apoptotic cells and fragmentation of genomic DNA in adipocytes from inguinal white adipose tissue (iWAT) of mice. Moreover, Hoxa5 aggravated white adipocyte apoptosis through mitochondrial pathway rather than endoplasmic reticulum stress (ERS)-induced or death receptor (DR)-mediated pathway. Our data also confirmed that Hoxa5 promoted mitochondrial apoptosis pathway by elevating the transcription activity of Bax and inhibiting the protein kinase B (Akt)/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. In summary, these findings revealed a novel mechanism that linked Hoxa5 to white adipocyte apoptosis, which provided some potential possibilities to prevent and treat obesity and some metabolic diseases.
Collapse
|
28
|
Neijts R, Deschamps J. At the base of colinear Hox gene expression: cis -features and trans -factors orchestrating the initial phase of Hox cluster activation. Dev Biol 2017; 428:293-299. [DOI: 10.1016/j.ydbio.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/16/2017] [Indexed: 10/19/2022]
|
29
|
Saleem MAM, Mendoza-Parra MA, Cholley PE, Blum M, Gronemeyer H. Epimetheus - a multi-profile normalizer for epigenomic sequencing data. BMC Bioinformatics 2017; 18:259. [PMID: 28499349 PMCID: PMC5429578 DOI: 10.1186/s12859-017-1655-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/26/2017] [Indexed: 11/30/2022] Open
Abstract
Background Exponentially increasing numbers of NGS-based epigenomic datasets in public repositories like GEO constitute an enormous source of information that is invaluable for integrative and comparative studies of gene regulatory mechanisms. One of today’s challenges for such studies is to identify functionally informative local and global patterns of chromatin states in order to describe the regulatory impact of the epigenome in normal cell physiology and in case of pathological aberrations. Critically, the most preferred Chromatin ImmunoPrecipitation-Sequencing (ChIP-Seq) is inherently prone to significant variability between assays, which poses significant challenge on comparative studies. One challenge concerns data normalization to adjust sequencing depth variation. Results Currently existing tools either apply linear scaling corrections and/or are restricted to specific genomic regions, which can be prone to biases. To overcome these restrictions without any external biases, we developed Epimetheus, a genome-wide quantile-based multi-profile normalization tool for histone modification data and related datasets. Conclusions Epimetheus has been successfully used to normalize epigenomics data in previous studies on X inactivation in breast cancer and in integrative studies of neuronal cell fate acquisition and tumorigenic transformation; Epimetheus is freely available to the scientific community. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1655-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohamed-Ashick M Saleem
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Marco-Antonio Mendoza-Parra
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. .,Centre National de la Recherche Scientifique UMR 7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France. .,Université de Strasbourg, Illkirch, France.
| | - Pierre-Etienne Cholley
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Matthias Blum
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Hinrich Gronemeyer
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. .,Centre National de la Recherche Scientifique UMR 7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France. .,Université de Strasbourg, Illkirch, France.
| |
Collapse
|
30
|
Nayak A, Reck A, Morsczeck C, Müller S. Flightless-I governs cell fate by recruiting the SUMO isopeptidase SENP3 to distinct HOX genes. Epigenetics Chromatin 2017; 10:15. [PMID: 28344658 PMCID: PMC5364561 DOI: 10.1186/s13072-017-0122-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite recent studies on the role of ubiquitin-related SUMO modifier in cell fate decisions, our understanding on precise molecular mechanisms of these processes is limited. Previously, we established that the SUMO isopeptidase SENP3 regulates chromatin assembly of the MLL1/2 histone methyltransferase complex at distinct HOX genes, including the osteogenic master regulator DLX3. A comprehensive mechanism that regulates SENP3 transcriptional function was not understood. RESULTS Here, we identified flightless-I homolog (FLII), a member of the gelsolin family of actin-remodeling proteins, as a novel regulator of SENP3. We demonstrate that FLII is associated with SENP3 and the MLL1/2 complex. We further show that FLII determines SENP3 recruitment and MLL1/2 complex assembly on the DLX3 gene. Consequently, FLII is indispensible for H3K4 methylation and proper loading of active RNA polymerase II at this gene locus. Most importantly, FLII-mediated SENP3 regulation governs osteogenic differentiation of human mesenchymal stem cells. CONCLUSION Altogether, these data reveal a crucial functional interconnection of FLII with the sumoylation machinery that converges on epigenetic regulation and cell fate determination.
Collapse
Affiliation(s)
- Arnab Nayak
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Anja Reck
- Department of Oral and Maxillofacial Surgery, University of Regensburg, 93042 Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University of Regensburg, 93042 Regensburg, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University Medical School, University Hospital Building 75, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
31
|
Chung SH, Bae CW. Association of Surfactant Protein with Expression of Hoxa5 and Hoxb5 in Rabbit Fetal Lung. Int J Med Sci 2017; 14:1189-1196. [PMID: 29104474 PMCID: PMC5666551 DOI: 10.7150/ijms.20721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
Hox genes regulate organ formation and identity of the embryo, and expressed in specific temporo-spatial patterns in the developing embryo. We compared the expression levels of the Hoxa5, Hoxb5, surfactant protein (SP)-A, and SP-B genes in immature and mature rabbit fetal lung tissues, and to uncover roles for Hoxa5, Hoxb5, SP-A, and SP-B. Cesarean sections were performed after rabbits were divided into two groups of 30-31 days of gestation (term group, n = 24) and 26-27 days of gestation (preterm group, n = 24). mRNA levels of Hoxa5, Hoxb5, SP-A, and SP-B were compared by quantitative reverse transcriptase polymerase chain reaction, and protein expression of Hoxa5 and Hoxb5 was compared by western blot analysis. Fetal lung tissue histology was observed by hematoxylin and eosin (H&E) staining. The relative expression ratios of SP-A and SP-B mRNA in the term to preterm groups were 2.45:1 and 2.94:1, respectively. Hoxb5 mRNA and protein levels decreased in the term group, with a relative expression ratio of 0.48:1 and 0.50:1, however, Hoxa5 mRNA and protein levels increased in the term group with a relative expression ration of 2.99:1 and 2.33:1, respectively, for the term to preterm groups. Moreover, a significant positive correlation was found between the expression of Hoxa5 and SP-A, SP-B in the term group. Hoxa5 gene may be essential for the expression of SP-A and SP-B in term rabbits. The Hoxb5 gene may be an important factor for lung maturation in preterm rabbits.
Collapse
Affiliation(s)
- Sung-Hoon Chung
- Department of Pediatrics, Kyung Hee University School of Medicine, Seoul, Korea
| | - Chong-Woo Bae
- Department of Pediatrics, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Rux DR, Song JY, Swinehart IT, Pineault KM, Schlientz AJ, Trulik KG, Goldstein SA, Kozloff KM, Lucas D, Wellik DM. Regionally Restricted Hox Function in Adult Bone Marrow Multipotent Mesenchymal Stem/Stromal Cells. Dev Cell 2016; 39:653-666. [PMID: 27939685 DOI: 10.1016/j.devcel.2016.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 10/13/2016] [Accepted: 11/10/2016] [Indexed: 01/07/2023]
Abstract
Posterior Hox genes (Hox9-13) are critical for patterning the limb skeleton along the proximodistal axis during embryonic development. Here we show that Hox11 paralogous genes, which developmentally pattern the zeugopod (radius/ulna and tibia/fibula), remain regionally expressed in the adult skeleton. Using Hoxa11EGFP reporter mice, we demonstrate expression exclusively in multipotent mesenchymal stromal cells (MSCs) in the bone marrow of the adult zeugopod. Hox-positive cells express PDGFRα and CD51, are marked by LepR-Cre, and exhibit colony-forming unit fibroblast activity and tri-lineage differentiation in vitro. Loss of Hox11 function leads to fracture repair defects, including reduced cartilage formation and delayed ossification. Hox mutant cells are defective in osteoblastic and chondrogenic differentiation in tri-lineage differentiation experiments, and these defects are zeugopod specific. In the stylopod (humerus and femur) and sternum, bone marrow MSCs express other regionally restricted Hox genes, and femur fractures heal normally in Hox11 mutants. Together, our data support regional Hox expression and function in skeletal MSCs.
Collapse
Affiliation(s)
- Danielle R Rux
- Department of Cell and Developmental Biology, University of Michigan Medical Center, University of Michigan, 109 Zina Pitcher, 2053 BSRB, Ann Arbor, MI 48109-2200, USA
| | - Jane Y Song
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ilea T Swinehart
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Kyriel M Pineault
- Department of Cell and Developmental Biology, University of Michigan Medical Center, University of Michigan, 109 Zina Pitcher, 2053 BSRB, Ann Arbor, MI 48109-2200, USA
| | - Aleesa J Schlientz
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Kelsey G Trulik
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Steve A Goldstein
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ken M Kozloff
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Daniel Lucas
- Department of Cell and Developmental Biology, University of Michigan Medical Center, University of Michigan, 109 Zina Pitcher, 2053 BSRB, Ann Arbor, MI 48109-2200, USA
| | - Deneen M Wellik
- Department of Cell and Developmental Biology, University of Michigan Medical Center, University of Michigan, 109 Zina Pitcher, 2053 BSRB, Ann Arbor, MI 48109-2200, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109-2200, USA; Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
33
|
Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, Li Y, Lin S, Lin Y, Barr CL, Ren B. A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome. Cell Rep 2016; 17:2042-2059. [PMID: 27851967 PMCID: PMC5478386 DOI: 10.1016/j.celrep.2016.10.061] [Citation(s) in RCA: 565] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/02/2016] [Accepted: 10/18/2016] [Indexed: 01/19/2023] Open
Abstract
The three-dimensional configuration of DNA is integral to all nuclear processes in eukaryotes, yet our knowledge of the chromosome architecture is still limited. Genome-wide chromosome conformation capture studies have uncovered features of chromatin organization in cultured cells, but genome architecture in human tissues has yet to be explored. Here, we report the most comprehensive survey to date of chromatin organization in human tissues. Through integrative analysis of chromatin contact maps in 21 primary human tissues and cell types, we find topologically associating domains highly conserved in different tissues. We also discover genomic regions that exhibit unusually high levels of local chromatin interactions. These frequently interacting regions (FIREs) are enriched for super-enhancers and are near tissue-specifically expressed genes. They display strong tissue-specificity in local chromatin interactions. Additionally, FIRE formation is partially dependent on CTCF and the Cohesin complex. We further show that FIREs can help annotate the function of non-coding sequence variants.
Collapse
Affiliation(s)
- Anthony D Schmitt
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; UCSD Biomedical Sciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ming Hu
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, 650 First Avenue, New York, NY 10016, USA.
| | - Inkyung Jung
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Zheng Xu
- Departments of Genetics, Biostatistics, and Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA; Quantitative Life Sciences Initiative, University of Nebraska, Lincoln, NE 68583, USA; Department of Statistics, University of Nebraska, Lincoln, NE 68583, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; USCD Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Catherine L Tan
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Yun Li
- Departments of Genetics, Biostatistics, and Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shin Lin
- Division of Cardiology, Department of Medicine, University of Washington, 850 Republican Street, Seattle, WA 98108, USA
| | - Yiing Lin
- Department of Surgery, Washington University School of Medicine, 660 S Euclid Ave., Campus Box 8109, St. Louis, MO 63110, USA
| | - Cathy L Barr
- Krembil Research Institute University Health Network, The Hospital for Sick Children, The University of Toronto, Krembil Discovery Tower, 60 Leonard Ave. 8KD-412, Toronto, ON M5T 2S8, Canada
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
34
|
Mendoza-Parra MA, Malysheva V, Mohamed Saleem MA, Lieb M, Godel A, Gronemeyer H. Reconstructed cell fate-regulatory programs in stem cells reveal hierarchies and key factors of neurogenesis. Genome Res 2016; 26:1505-1519. [PMID: 27650846 PMCID: PMC5088593 DOI: 10.1101/gr.208926.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 09/16/2016] [Indexed: 01/24/2023]
Abstract
Cell lineages, which shape the body architecture and specify cell functions, derive from the integration of a plethora of cell intrinsic and extrinsic signals. These signals trigger a multiplicity of decisions at several levels to modulate the activity of dynamic gene regulatory networks (GRNs), which ensure both general and cell-specific functions within a given lineage, thereby establishing cell fates. Significant knowledge about these events and the involved key drivers comes from homogeneous cell differentiation models. Even a single chemical trigger, such as the morphogen all-trans retinoic acid (RA), can induce the complex network of gene-regulatory decisions that matures a stem/precursor cell to a particular step within a given lineage. Here we have dissected the GRNs involved in the RA-induced neuronal or endodermal cell fate specification by integrating dynamic RXRA binding, chromatin accessibility, epigenetic promoter epigenetic status, and the transcriptional activity inferred from RNA polymerase II mapping and transcription profiling. Our data reveal how RA induces a network of transcription factors (TFs), which direct the temporal organization of cognate GRNs, thereby driving neuronal/endodermal cell fate specification. Modeling signal transduction propagation using the reconstructed GRNs indicated critical TFs for neuronal cell fate specification, which were confirmed by CRISPR/Cas9-mediated genome editing. Overall, this study demonstrates that a systems view of cell fate specification combined with computational signal transduction models provides the necessary insight in cellular plasticity for cell fate engineering. The present integrated approach can be used to monitor the in vitro capacity of (engineered) cells/tissues to establish cell lineages for regenerative medicine.
Collapse
Affiliation(s)
- Marco-Antonio Mendoza-Parra
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Valeriya Malysheva
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Mohamed Ashick Mohamed Saleem
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Michele Lieb
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Aurelie Godel
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Hinrich Gronemeyer
- Equipe Labellisée Ligue Contre le Cancer, Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| |
Collapse
|
35
|
Ali S, Amina B, Anwar S, Minhas R, Parveen N, Nawaz U, Azam SS, Abbasi AA. Genomic features of human limb specific enhancers. Genomics 2016; 108:143-150. [PMID: 27580967 DOI: 10.1016/j.ygeno.2016.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/08/2016] [Accepted: 08/27/2016] [Indexed: 12/18/2022]
Abstract
To elucidate important cellular and molecular interactions that regulate patterning and skeletal development, vertebrate limbs served as a model organ. A growing body of evidence from detailed studies on a subset of limb regulators like the HOXD cluster or SHH, reveals the importance of enhancers in limb related developmental and disease processes. Exploiting the recent genome-wide availability of functionally confirmed enhancer dataset, this study establishes regulatory interactions for dozens of human limb developmental genes. From these data, it appears that the long-range regulatory interactions are fairly common during limb development. This observation highlights the significance of chromosomal breaks/translocations in human limb deformities. Transcriptional factor (TF) analysis predicts that the differentiation of early nascent limb-bud into future territories entail distinct TF interaction networks. Conclusively, an important motivation for annotating the human limb specific regulatory networks is to pave way for the systematic exploration of their role in disease and evolution.
Collapse
Affiliation(s)
- Shahid Ali
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Bibi Amina
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Saneela Anwar
- National Center for Bioinformatics, Computational Biology Lab, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Rashid Minhas
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Nazia Parveen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Uzma Nawaz
- Department of Statistics, The Women University, Multan 60000, Pakistan.
| | - Syed Sikandar Azam
- National Center for Bioinformatics, Computational Biology Lab, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
36
|
Nützmann HW, Huang A, Osbourn A. Plant metabolic clusters - from genetics to genomics. THE NEW PHYTOLOGIST 2016; 211:771-89. [PMID: 27112429 PMCID: PMC5449196 DOI: 10.1111/nph.13981] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/22/2016] [Indexed: 05/18/2023]
Abstract
Contents 771 I. 771 II. 772 III. 780 IV. 781 V. 786 786 References 786 SUMMARY: Plant natural products are of great value for agriculture, medicine and a wide range of other industrial applications. The discovery of new plant natural product pathways is currently being revolutionized by two key developments. First, breakthroughs in sequencing technology and reduced cost of sequencing are accelerating the ability to find enzymes and pathways for the biosynthesis of new natural products by identifying the underlying genes. Second, there are now multiple examples in which the genes encoding certain natural product pathways have been found to be grouped together in biosynthetic gene clusters within plant genomes. These advances are now making it possible to develop strategies for systematically mining multiple plant genomes for the discovery of new enzymes, pathways and chemistries. Increased knowledge of the features of plant metabolic gene clusters - architecture, regulation and assembly - will be instrumental in expediting natural product discovery. This review summarizes progress in this area.
Collapse
Affiliation(s)
- Hans-Wilhelm Nützmann
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ancheng Huang
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
37
|
Beagrie RA, Pombo A. Gene activation by metazoan enhancers: Diverse mechanisms stimulate distinct steps of transcription. Bioessays 2016; 38:881-93. [PMID: 27452946 DOI: 10.1002/bies.201600032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enhancers can stimulate transcription by a number of different mechanisms which control different stages of the transcription cycle of their target genes, from recruitment of the transcription machinery to elongation by RNA polymerase. These mechanisms may not be mutually exclusive, as a single enhancer may act through different pathways by binding multiple transcription factors. Multiple enhancers may also work together to regulate transcription of a shared target gene. Most of the evidence supporting different enhancer mechanisms comes from the study of single genes, but new high-throughput experimental frameworks offer the opportunity to integrate and generalize disparate mechanisms identified at single genes. This effort is especially important if we are to fully understand how sequence variation within enhancers contributes to human disease.
Collapse
Affiliation(s)
- Robert A Beagrie
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| |
Collapse
|
38
|
Kloet SL, Makowski MM, Baymaz HI, van Voorthuijsen L, Karemaker ID, Santanach A, Jansen PWTC, Di Croce L, Vermeulen M. The dynamic interactome and genomic targets of Polycomb complexes during stem-cell differentiation. Nat Struct Mol Biol 2016; 23:682-690. [PMID: 27294783 PMCID: PMC4939079 DOI: 10.1038/nsmb.3248] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
Abstract
Although the core subunits of Polycomb group (PcG) complexes are well characterized, little is known about the dynamics of these protein complexes during cellular differentiation. We used quantitative interaction proteomics and genome-wide profiling to study PcG proteins in mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We found that the stoichiometry and genome-wide binding of PRC1 and PRC2 were highly dynamic during neural differentiation. Intriguingly, we observed a downregulation and loss of PRC2 from chromatin marked with trimethylated histone H3 K27 (H3K27me3) during differentiation, whereas PRC1 was retained at these sites. Additionally, we found PRC1 at enhancer and promoter regions independently of PRC2 binding and H3K27me3. Finally, overexpression of NPC-specific PRC1 interactors in ESCs led to increased Ring1b binding to, and decreased expression of, NPC-enriched Ring1b-target genes. In summary, our integrative analyses uncovered dynamic PcG subcomplexes and their widespread colocalization with active chromatin marks during differentiation.
Collapse
Affiliation(s)
- Susan L Kloet
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Matthew M Makowski
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - H Irem Baymaz
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Lisa van Voorthuijsen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Ino D Karemaker
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Alexandra Santanach
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Biomedical Genetics, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Biomedical Genetics, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands.,Cancer GenomiCs.nl (CGC.nl) Consortium, Center for Molecular Medicine, UMC Utrecht, The Netherlands
| |
Collapse
|
39
|
Lowdon RF, Jang HS, Wang T. Evolution of Epigenetic Regulation in Vertebrate Genomes. Trends Genet 2016; 32:269-283. [PMID: 27080453 PMCID: PMC4842087 DOI: 10.1016/j.tig.2016.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/31/2022]
Abstract
Empirical models of sequence evolution have spurred progress in the field of evolutionary genetics for decades. We are now realizing the importance and complexity of the eukaryotic epigenome. While epigenome analysis has been applied to genomes from single-cell eukaryotes to human, comparative analyses are still relatively few and computational algorithms to quantify epigenome evolution remain scarce. Accordingly, a quantitative model of epigenome evolution remains to be established. We review here the comparative epigenomics literature and synthesize its overarching themes. We also suggest one mechanism, transcription factor binding site (TFBS) turnover, which relates sequence evolution to epigenetic conservation or divergence. Lastly, we propose a framework for how the field can move forward to build a coherent quantitative model of epigenome evolution.
Collapse
Affiliation(s)
- Rebecca F Lowdon
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Hyo Sik Jang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
40
|
Visualizing the HoxD Gene Cluster at the Nanoscale Level. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:9-16. [PMID: 26767994 DOI: 10.1101/sqb.2015.80.027177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transcription of HoxD cluster genes in limbs is coordinated by two topologically associating domains (TADs), neighboring the cluster and containing various enhancers. Here, we use a combination of microscopy approaches and chromosome conformation capture to assess the structural changes occurring in this global architecture in various functional states. We observed that despite their spatial juxtaposition, the TADs are consistently kept as distinct three-dimensional units. Hox genes located at their boundary can show significant spatial segregation over long distances, suggesting that physical elongation of the HoxD cluster occurs. The use of superresolution imaging (STORM [stochastic optical reconstruction microscopy]) revealed that the gene cluster can be in an either compact or elongated shape. The latter configuration is observed in transcriptionally active tissue and in embryonic stem cells, consistent with chromosome conformation capture results. Such morphological changes at HoxD in developing digits seem to be associated with its position at the boundary between two TADs and support the idea that chromatin dynamics is important in the establishment of transcriptional activity.
Collapse
|
41
|
Nanoscale spatial organization of the HoxD gene cluster in distinct transcriptional states. Proc Natl Acad Sci U S A 2015; 112:13964-9. [PMID: 26504220 DOI: 10.1073/pnas.1517972112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chromatin condensation plays an important role in the regulation of gene expression. Recently, it was shown that the transcriptional activation of Hoxd genes during vertebrate digit development involves modifications in 3D interactions within and around the HoxD gene cluster. This reorganization follows a global transition from one set of regulatory contacts to another, between two topologically associating domains (TADs) located on either side of the HoxD locus. Here, we use 3D DNA FISH to assess the spatial organization of chromatin at and around the HoxD gene cluster and report that although the two TADs are tightly associated, they appear as spatially distinct units. We measured the relative position of genes within the cluster and found that they segregate over long distances, suggesting that a physical elongation of the HoxD cluster can occur. We analyzed this possibility by super-resolution imaging (STORM) and found that tissues with distinct transcriptional activity exhibit differing degrees of elongation. We also observed that the morphological change of the HoxD cluster in developing digits is associated with its position at the boundary between the two TADs. Such variations in the fine-scale architecture of the gene cluster suggest causal links among its spatial configuration, transcriptional activation, and the flanking chromatin context.
Collapse
|
42
|
Khan AA, Lee AJ, Roh TY. Polycomb group protein-mediated histone modifications during cell differentiation. Epigenomics 2015; 7:75-84. [PMID: 25687468 DOI: 10.2217/epi.14.61] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Polycomb group (PcG) proteins play an important role in the regulation of gene expression, especially genes encoding lineage-specific factors. Perturbations in PcG protein expression may trigger an unexpected developmental pathway, resulting in birth defects and developmental disabilities. Two Polycomb repressive complexes, PRC1 and PRC2, have been identified and are related with diverse cellular processes through histone modifications. Many developmental genes are trimethylated at histone H3 lysine 27 (H3K27me3) mediated by PRC2, which provides a binding site for PRC1. These processes contribute to chromatin compaction and transcriptional repression. In this review, we discuss about the complex formation of PcG proteins, the mechanism through which they are recruited to target sites and their functional roles in cell differentiation.
Collapse
Affiliation(s)
- Abdul Aziz Khan
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science & Technology (POSTECH), Pohang, Gyeongbuk 790-784, Republic of Korea
| | | | | |
Collapse
|
43
|
Rask-Andersen M, Almén MS, Schiöth HB. Scrutinizing the FTO locus: compelling evidence for a complex, long-range regulatory context. Hum Genet 2015; 134:1183-93. [DOI: 10.1007/s00439-015-1599-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/30/2015] [Indexed: 01/06/2023]
|
44
|
Srivastava S, Dhawan J, Mishra RK. Epigenetic mechanisms and boundaries in the regulation of mammalian Hox clusters. Mech Dev 2015; 138 Pt 2:160-169. [PMID: 26254900 DOI: 10.1016/j.mod.2015.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 01/07/2023]
Abstract
Hox gene expression imparts segment identity to body structures along the anterior-posterior axis and is tightly governed by higher order chromatin mechanisms. Chromatin regulatory features of the homeotic complex are best defined in Drosophila melanogaster, where multiple cis-regulatory elements have been identified that ensure collinear Hox gene expression patterns in accordance with their genomic organization. Recent studies focused on delineating the epigenetic features of the vertebrate Hox clusters have helped reveal their dynamic chromatin organization and its impact on gene expression. Enrichment for the 'activating' H3K4me3 and 'repressive' H3K27me3 histone modifications is a particularly strong read-out for transcriptional status and correlates well with the evidence for chromatin loop domain structures and stage specific topological changes at these loci. However, it is not clear how such distinct domains are imposed and regulated independent of each other. Comparative analysis of the chromatin structure and organization of the homeotic gene clusters in fly and mammals is increasingly revealing the functional conservation of chromatin mediated mechanisms. Here we discuss the case for interspersed boundary elements existing within mammalian Hox clusters along with their possible roles and mechanisms of action. Recent studies suggest a role for factors other than the well characterized vertebrate boundary factor CTCF, such as the GAGA binding factor (GAF), in maintaining chromatin domains at the Hox loci. We also present data demonstrating how such regulatory elements may be involved in organizing higher order structure and demarcating active domains of gene expression at the mammalian Hox clusters.
Collapse
Affiliation(s)
- Surabhi Srivastava
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
45
|
Matsuoka Y, Bando T, Watanabe T, Ishimaru Y, Noji S, Popadić A, Mito T. Short germ insects utilize both the ancestral and derived mode of Polycomb group-mediated epigenetic silencing of Hox genes. Biol Open 2015; 4:702-9. [PMID: 25948756 PMCID: PMC4467190 DOI: 10.1242/bio.201411064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In insect species that undergo long germ segmentation, such as Drosophila, all segments are specified simultaneously at the early blastoderm stage. As embryogenesis progresses, the expression boundaries of Hox genes are established by repression of gap genes, which is subsequently replaced by Polycomb group (PcG) silencing. At present, however, it is not known whether patterning occurs this way in a more ancestral (short germ) mode of embryogenesis, where segments are added gradually during posterior elongation. In this study, two members of the PcG family, Enhancer of zeste (E(z)) and Suppressor of zeste 12 (Su(z)12), were analyzed in the short germ cricket, Gryllus bimaculatus. Results suggest that although stepwise negative regulation by gap and PcG genes is present in anterior members of the Hox cluster, it does not account for regulation of two posterior Hox genes, abdominal-A (abd-A) and Abdominal-B (Abd-B). Instead, abd-A and Abd-B are predominantly regulated by PcG genes, which is the mode present in vertebrates. These findings suggest that an intriguing transition of the PcG-mediated silencing of Hox genes may have occurred during animal evolution. The ancestral bilaterian state may have resembled the current vertebrate mode of regulation, where PcG-mediated silencing of Hox genes occurs before their expression is initiated and is responsible for the establishment of individual expression domains. Then, during insect evolution, the repression by transcription factors may have been acquired in anterior Hox genes of short germ insects, while PcG silencing was maintained in posterior Hox genes.
Collapse
Affiliation(s)
- Yuji Matsuoka
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8506, Japan
| | - Tetsuya Bando
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8506, Japan Present address: Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama city, Okayama, 700-8530, Japan
| | - Takahito Watanabe
- Center for Collaboration among Agriculture, Industry and Commerce, The University of Tokushima, 2-24 Shinkura-cho, Tokushima City, Tokushima 770-8501, Japan
| | - Yoshiyasu Ishimaru
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8506, Japan
| | - Sumihare Noji
- Center for Collaboration among Agriculture, Industry and Commerce, The University of Tokushima, 2-24 Shinkura-cho, Tokushima City, Tokushima 770-8501, Japan
| | - Aleksandar Popadić
- Biological Sciences Department, Wayne State University, Detroit, MI 48202, USA
| | - Taro Mito
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8506, Japan
| |
Collapse
|
46
|
Structure, function and evolution of topologically associating domains (TADs) at HOX loci. FEBS Lett 2015; 589:2869-76. [PMID: 25913784 DOI: 10.1016/j.febslet.2015.04.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/24/2022]
Abstract
Hox genes encode transcription factors necessary for patterning the major developing anterior to posterior embryonic axis. In addition, during vertebrate evolution, various subsets of this gene family were co-opted along with the emergence of novel body structures, such as the limbs or the external genitalia. The morphogenesis of these axial structures thus relies in part upon the precisely controlled transcription of specific Hox genes, a mechanism involving multiple long-range enhancers. Recently, it was reported that such regulatory mechanisms were largely shared between different developing tissues, though with some specificities, suggesting the recruitment of ancestral regulatory modalities from one tissue to another. The analysis of chromatin architectures at HoxD and HoxA loci revealed the existence of two flanking topologically associating domains (TADs), precisely encompassing the adjacent regulatory landscapes. Here, we discuss the function of these TADs in the control of Hox gene regulation and we speculate about their capacity to serve as structural frameworks for the emergence of novel enhancers. In this view, TADs may have been used as genomic niches to evolve pleiotropic regulations found at many developmental loci.
Collapse
|
47
|
Li Y, Mukherjee I, Thum KE, Tanurdzic M, Katari MS, Obertello M, Edwards MB, McCombie WR, Martienssen RA, Coruzzi GM. The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants. Genome Biol 2015; 16:79. [PMID: 25928034 PMCID: PMC4464704 DOI: 10.1186/s13059-015-0640-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/20/2015] [Indexed: 01/12/2023] Open
Abstract
Background Histone methylation modifies the epigenetic state of target genes to regulate gene expression in the context of developmental and environmental changes. Previously, we used a positive genetic screen to identify an Arabidopsis mutant, cli186, which was impaired in carbon and light signaling. Here, we report a deletion of the Arabidopsis histone methyltransferase SDG8 in this mutant (renamed sdg8-5), which provides a unique opportunity to study the global function of a specific histone methyltransferase within a multicellular organism. Results To assess the specific role of SDG8, we examine how the global histone methylation patterns and transcriptome were altered in the sdg8-5 deletion mutant compared to wild type, within the context of transient light and carbon treatments. Our results reveal that the sdg8 deletion is associated with a significant reduction of H3K36me3, preferentially towards the 3′ end of the gene body, accompanied by a reduction in gene expression. We uncover 728 direct targets of SDG8 that have altered methylation in the sdg8-5 mutant and are also bound by SDG8. As a group, this set of SDG8 targets is enriched in specific biological processes including defense, photosynthesis, nutrient metabolism and energy metabolism. Importantly, 64% of these SDG8 targets are responsive to light and/or carbon signals. Conclusions The histone methyltransferase SDG8 functions to regulate the H3K36 methylation of histones associated with gene bodies in Arabidopsis. The H3K36me3 mark in turn is associated with high-level expression of a specific set of light and/or carbon responsive genes involved in photosynthesis, metabolism and energy production. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0640-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Li
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Indrani Mukherjee
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Karen E Thum
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Milos Tanurdzic
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA. .,School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Manpreet S Katari
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Mariana Obertello
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA. .,Instituto de Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Vuelta de Obligado 2490 Piso 2, Buenos Aires, C1428ADN, Argentina.
| | - Molly B Edwards
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - W Richard McCombie
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
| | | | - Gloria M Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
48
|
Li Y, Mukherjee I, Thum KE, Tanurdzic M, Katari MS, Obertello M, Edwards MB, McCombie WR, Martienssen RA, Coruzzi GM. The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants. Genome Biol 2015. [PMID: 25928034 DOI: 10.1186/s13059-015-0640-642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Histone methylation modifies the epigenetic state of target genes to regulate gene expression in the context of developmental and environmental changes. Previously, we used a positive genetic screen to identify an Arabidopsis mutant, cli186, which was impaired in carbon and light signaling. Here, we report a deletion of the Arabidopsis histone methyltransferase SDG8 in this mutant (renamed sdg8-5), which provides a unique opportunity to study the global function of a specific histone methyltransferase within a multicellular organism. RESULTS To assess the specific role of SDG8, we examine how the global histone methylation patterns and transcriptome were altered in the sdg8-5 deletion mutant compared to wild type, within the context of transient light and carbon treatments. Our results reveal that the sdg8 deletion is associated with a significant reduction of H3K36me3, preferentially towards the 3' end of the gene body, accompanied by a reduction in gene expression. We uncover 728 direct targets of SDG8 that have altered methylation in the sdg8-5 mutant and are also bound by SDG8. As a group, this set of SDG8 targets is enriched in specific biological processes including defense, photosynthesis, nutrient metabolism and energy metabolism. Importantly, 64% of these SDG8 targets are responsive to light and/or carbon signals. CONCLUSIONS The histone methyltransferase SDG8 functions to regulate the H3K36 methylation of histones associated with gene bodies in Arabidopsis. The H3K36me3 mark in turn is associated with high-level expression of a specific set of light and/or carbon responsive genes involved in photosynthesis, metabolism and energy production.
Collapse
Affiliation(s)
- Ying Li
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Indrani Mukherjee
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Karen E Thum
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Milos Tanurdzic
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Manpreet S Katari
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - Mariana Obertello
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
- Instituto de Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Vuelta de Obligado 2490 Piso 2, Buenos Aires, C1428ADN, Argentina.
| | - Molly B Edwards
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| | - W Richard McCombie
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
| | | | - Gloria M Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
49
|
Kurscheid S, Bady P, Sciuscio D, Samarzija I, Shay T, Vassallo I, Criekinge WV, Daniel RT, van den Bent MJ, Marosi C, Weller M, Mason WP, Domany E, Stupp R, Delorenzi M, Hegi ME. Chromosome 7 gain and DNA hypermethylation at the HOXA10 locus are associated with expression of a stem cell related HOX-signature in glioblastoma. Genome Biol 2015; 16:16. [PMID: 25622821 PMCID: PMC4342872 DOI: 10.1186/s13059-015-0583-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/08/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND HOX genes are a family of developmental genes that are expressed neither in the developing forebrain nor in the normal brain. Aberrant expression of a HOX-gene dominated stem-cell signature in glioblastoma has been linked with increased resistance to chemo-radiotherapy and sustained proliferation of glioma initiating cells. Here we describe the epigenetic and genetic alterations and their interactions associated with the expression of this signature in glioblastoma. RESULTS We observe prominent hypermethylation of the HOXA locus 7p15.2 in glioblastoma in contrast to non-tumoral brain. Hypermethylation is associated with a gain of chromosome 7, a hallmark of glioblastoma, and may compensate for tumor-driven enhanced gene dosage as a rescue mechanism by preventing undue gene expression. We identify the CpG island of the HOXA10 alternative promoter that appears to escape hypermethylation in the HOX-high glioblastoma. An additive effect of gene copy gain at 7p15.2 and DNA methylation at key regulatory CpGs in HOXA10 is significantly associated with HOX-signature expression. Additionally, we show concordance between methylation status and presence of active or inactive chromatin marks in glioblastoma-derived spheres that are HOX-high or HOX-low, respectively. CONCLUSIONS Based on these findings, we propose co-evolution and interaction between gene copy gain, associated with a gain of chromosome 7, and additional epigenetic alterations as key mechanisms triggering a coordinated, but inappropriate, HOX transcriptional program in glioblastoma.
Collapse
MESH Headings
- Brain/metabolism
- Brain/pathology
- Cell Line, Tumor
- Chromosomes, Human, Pair 7/genetics
- CpG Islands
- DNA Copy Number Variations/genetics
- DNA Methylation/genetics
- Databases, Genetic
- Epigenesis, Genetic
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genetic Loci
- Genome, Human
- Glioblastoma/genetics
- Histones/metabolism
- Homeobox A10 Proteins
- Homeodomain Proteins/genetics
- Humans
- Linear Models
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Promoter Regions, Genetic
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Transcriptome/genetics
Collapse
Affiliation(s)
- Sebastian Kurscheid
- Neurosurgery, Lausanne University Hospital, Lausanne, 1011, Switzerland.
- Neuroscience Research Center, Lausanne University Hospital, Lausanne, 1011, Switzerland.
- Bioinformatics Core Facility, Swiss Institute for Bioinformatics, Lausanne, 1005, Switzerland.
- Present address: The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| | - Pierre Bady
- Neurosurgery, Lausanne University Hospital, Lausanne, 1011, Switzerland.
- Neuroscience Research Center, Lausanne University Hospital, Lausanne, 1011, Switzerland.
- Bioinformatics Core Facility, Swiss Institute for Bioinformatics, Lausanne, 1005, Switzerland.
- Department of Education and Research, University of Lausanne, Lausanne, 1011, Switzerland.
| | - Davide Sciuscio
- Neurosurgery, Lausanne University Hospital, Lausanne, 1011, Switzerland.
- Neuroscience Research Center, Lausanne University Hospital, Lausanne, 1011, Switzerland.
| | - Ivana Samarzija
- Neurosurgery, Lausanne University Hospital, Lausanne, 1011, Switzerland.
- Neuroscience Research Center, Lausanne University Hospital, Lausanne, 1011, Switzerland.
| | - Tal Shay
- Ben-Gurion University of the Negev, Beersheba, Israel.
| | - Irene Vassallo
- Neurosurgery, Lausanne University Hospital, Lausanne, 1011, Switzerland.
- Neuroscience Research Center, Lausanne University Hospital, Lausanne, 1011, Switzerland.
| | - Wim V Criekinge
- Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium.
| | - Roy T Daniel
- Neurosurgery, Lausanne University Hospital, Lausanne, 1011, Switzerland.
| | - Martin J van den Bent
- Department of Neurology/Neurooncology, Erasmus MC Cancer Center, Rotterdam, The Netherlands.
| | - Christine Marosi
- Department of Medicine, Medical University Vienna, Vienna, Austria.
| | - Michael Weller
- Department of Neurology, University of Tübingen, Tübingen, Germany.
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland.
| | - Warren P Mason
- Princess Margaret Hospital, University of Toronto, Toronto, Canada.
| | - Eytan Domany
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel.
| | - Roger Stupp
- Neurosurgery, Lausanne University Hospital, Lausanne, 1011, Switzerland.
- Department of Oncology, University Hospital Zurich, Zurich, 8091, Switzerland.
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute for Bioinformatics, Lausanne, 1005, Switzerland.
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, 1011, Switzerland.
- Department of Oncology, University of Lausanne, Lausanne, 1011, Switzerland.
| | - Monika E Hegi
- Neurosurgery, Lausanne University Hospital, Lausanne, 1011, Switzerland.
- Neuroscience Research Center, Lausanne University Hospital, Lausanne, 1011, Switzerland.
| |
Collapse
|
50
|
Abstract
There is no obvious morphological counterpart of the autopod (wrist/ankle and digits) in living fishes. Comparative molecular data may provide insight into understanding both the homology of elements and the evolutionary developmental mechanisms behind the fin to limb transition. In mouse limbs the autopod is built by a "late" phase of Hoxd and Hoxa gene expression, orchestrated by a set of enhancers located at the 5' end of each cluster. Despite a detailed mechanistic understanding of mouse limb development, interpretation of Hox expression patterns and their regulation in fish has spawned multiple hypotheses as to the origin and function of "autopod" enhancers throughout evolution. Using phylogenetic footprinting, epigenetic profiling, and transgenic reporters, we have identified and functionally characterized hoxD and hoxA enhancers in the genomes of zebrafish and the spotted gar, Lepisosteus oculatus, a fish lacking the whole genome duplication of teleosts. Gar and zebrafish "autopod" enhancers drive expression in the distal portion of developing zebrafish pectoral fins, and respond to the same functional cues as their murine orthologs. Moreover, gar enhancers drive reporter gene expression in both the wrist and digits of mouse embryos in patterns that are nearly indistinguishable from their murine counterparts. These functional genomic data support the hypothesis that the distal radials of bony fish are homologous to the wrist and/or digits of tetrapods.
Collapse
|