1
|
Ghabban H, Albalawi DA, Al-otaibi AS, Alshehri D, Alenzi AM, Alatawy M, Alatawi HA, Alnagar DK, Bahieldin A. Investigating the bacterial community of gray mangroves ( Avicennia marina) in coastal areas of Tabuk region. PeerJ 2024; 12:e18282. [PMID: 39434799 PMCID: PMC11493069 DOI: 10.7717/peerj.18282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Mangrove vegetation, a threatened and unique inter-tidal ecosystem, harbours a complex and largely unexplored bacterial community crucial for nutrient cycling and the degradation of toxic pollutants in coastal areas. Despite its importance, the bacterial community composition of the gray mangrove (Avicennia marina) in the Red Sea coastal regions remains under-studied. This study aims to elucidate the structural and functional diversity of the microbiome in the bulk and rhizospheric soils associated with A. marina in the coastal areas of Ras Alshabaan-Umluj (Umluj) and Almunibrah-Al-Wajh (Al-Wajh) within the Tabuk region of Saudi Arabia. Amplicon sequencing targeting the 16S rRNA was performed using the metagenomic DNAs from the bulk and rhizospheric soil samples from Umluj and Al-Wajh. A total of 6,876 OTUs were recovered from all samples, of which 1,857 OTUs were common to all locations while the total number of OTUs unique to Al-wajh was higher (3,011 OTUs) than the total number of OTUs observed (1,324 OTUs) at Umluj site. Based on diversity indices, overall bacterial diversity was comparatively higher in rhizospheric soil samples of both sites. Comparing the diversity indices for the rhizosphere samples from the two sites revealed that the diversity was much higher in the rhizosphere samples from Al-Wajh as compared to those from Umluj. The most dominant genera in rhizosphere sample of Al-Wajh were Geminicoccus and Thermodesulfovibrio while the same habitat of the Umluj site was dominated by Propionibacterium, Corynebacterium and Staphylococcus. Bacterial functional potential prediction analyses showed that bacteria from two locations have almost similar patterns of functional genes including amino acids and carbohydrates metabolisms, sulfate reduction and C-1 compound metabolism and xenobiotics biodegradation. However, the rhizosphere samples of both sites harbour more genes involved in the utilization and assimilation of C-1 compounds. Our results reveal that bacterial communities inhabiting the rhizosphere of A. marina differed significantly from those in the bulk soil, suggesting a possible role of A. marina roots in shaping these bacterial communities. Additionally, not only vegetation but also geographical location appears to influence the overall bacterial composition at the two sites.
Collapse
Affiliation(s)
- Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Doha A. Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Amenah S. Al-otaibi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Asma Massad Alenzi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Hanan Ali Alatawi
- Department of Biological Sciences, University Collage of Haqel, University of Tabuk, Tabuk, Saudi Arabia
| | - Dalia Kamal Alnagar
- Department of Statistics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Sasi R, Vasu ST. Batch-mode degradation of high-strength phenolic pollutants by Pseudomonas aeruginosa strain STV1713 immobilized on single and hybrid matrices. Biodegradation 2024; 35:423-438. [PMID: 38310579 DOI: 10.1007/s10532-023-10067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Controlled environments are pivotal in all bioconversion processes, influencing the efficacy of biocatalysts. In this study, we designed a batch bioreactor system with a packed immobilization column and a decontamination chamber to enhance phenol and 2,4-dichlorophenol degradation using the hyper-tolerant bacterium Pseudomonas aeruginosa STV1713. When free cells were employed to degrade phenol and 2,4-DCP at a concentration of 1000 mg/L, the cells completely removed the pollutants within 28 h and 66 h, respectively. Simultaneous reductions in chemical oxygen demand and biological oxygen demand were observed (phenol: 30.21 mg/L/h and 16.92 mg/L/h, respectively; 2,4-dichlorophenol: 12.85 mg/L/h and 7.21 mg/L/h, respectively). After assessing the degradation capabilities, the bacterium was immobilized on various matrices (sodium alginate, alginate-chitosan-alginate and polyvinyl alcohol-alginate) to enhance pollutant removal. Hybrid immobilized cells exhibited greater tolerance and degradation capabilities than those immobilized in a single matrix. Among them, polyvinyl alcohol-alginate immobilized cells displayed the highest degradation capacities (up to 2000 mg/L for phenol and 2500 mg/L for 2,4-dichlorophenol). Morphological analysis of the immobilized cells revealed enhanced cell preservation in hybrid matrices. Furthermore, the elucidation of the metabolic pathway through the catechol dioxygenase enzyme assay indicated higher activity of the catechol 1,2-dioxygenase enzyme, suggesting that the bacterium employed an ortho-degradation mechanism for pollutant removal. Additionally, enzyme zymography confirmed the presence of catechol 1,2-dioxygenase, with the molecular weight of the enzyme determined as 245 kDa.
Collapse
Affiliation(s)
- Reshmi Sasi
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, 673601, India
| | - Suchithra Tharamel Vasu
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, 673601, India.
| |
Collapse
|
3
|
Dorner M, Lokesh S, Yang Y, Behrens S. Biochar-mediated abiotic and biotic degradation of halogenated organic contaminants - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158381. [PMID: 36055499 DOI: 10.1016/j.scitotenv.2022.158381] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Prevailing global increases in population, urbanization, and agricultural production are causing increased pressures on water resources, especially as the use of chemicals in agriculture, industry, and medicine provide new challenges for water treatment and reuse. Organohalogen compounds are persistent contaminants that often evade current wastewater treatment technologies, resulting in their accumulation in the environment and posing a serious threat to ecosystem health. Recent advances in understanding pyrogenic carbons as electron shuttling and storing materials have exposed their potential for enhancing the dehalogenation and overall degradation of organohalide contaminants in soil, sediment, surface water, and wastewater systems. Biochar is a porous carbonaceous material produced during the thermochemical decomposition of biomass feedstock in the presence of little or no oxygen (pyrolysis). Interest in biochar for application towards environmental remediation is largely based on its three distinct benefits: I) carbon sequestration to offset greenhouse gas emissions, II) adsorption of (in-) organic contaminants and nutrients, and III) a strong electron exchange capacity. Due to the innate complexity of biochar materials, several electron transfer mechanisms exist by which biochar may mediate contaminant degradation. These electron transfer pathways include electron-accepting and donating cycles through redox-active functional groups and direct electron transfer via conductive carbon matrices. These mechanisms are responsible for biochar's participation in multiple redox-driven biogeochemical transformations with proven consequences for effective organohalogen remediation. This literature review summarizes the current knowledge on the mechanisms and processes through which biochar can directly or indirectly mediate the transformation of organohalogen compounds under various environmental conditions. Perspectives and research directions for future application of biochars for targeted remediation strategies are also discussed.
Collapse
Affiliation(s)
- Mariah Dorner
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Srinidhi Lokesh
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - Sebastian Behrens
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
4
|
Guan S, Zhang R, Zhao Y, Meng Z, Lu J. 1,3-Dichloro-2-propanol induced ferroptosis through Nrf2/ARE signaling pathway in hepatocytes. ENVIRONMENTAL TOXICOLOGY 2022; 37:2515-2528. [PMID: 35870111 DOI: 10.1002/tox.23615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/16/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
1,3-Dichloro-2-propanol (1,3-DCP) is a representative chloropropane environmental contaminant with multiple toxicities. Ferroptosis is a novel iron-dependent form of regulated cell death that is closely associated with the accumulation of lipid peroxides, Fe2+ and reactive oxygen species (ROS). In this study, we found that 1,3-DCP could induce mouse liver injury via ferroptosis. Administrating of C57BL/6J mice with 12.5, 25, and 50 mg/kg 1,3-DCP for 4 weeks via oral gavage, the data showed that 1,3-DCP exposure led to the pathological changes in mouse livers, remarkably induced accumulation of malondialdehyde (MDA) and Iron, reduction of glutathione (GSH), and changed in the expression of ferroptosis marker proteins glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase-4 (ACSL4). Then, we also proved the results with HepG2 cells in vitro. The data showed that treatment 1,3-DCP significantly triggered the ferroptosis in vitro. Furthermore, we found that the ferroptosis-related signal pathways were significantly activated in mice livers and HepG2 cells in response to 1,3-DCP exposure. The data showed that 1,3-DCP induced ferroptosis by inhibiting nuclear factor erythroid 2-related factor 2 (Nrf2) translocation into nuclear and thereby suppressing the expression of its downstream target proteins including GPX4, ferritin heavy chain (FTH), ferroportin (FPN), cystine/glutamate transporter xCT (SLC7A11), and heme oxygenase 1 (HO-1). Taken together, our findings confirmed that 1,3-DCP induced ferroptosis via the Nrf2/ARE signaling pathway in hepatocytes. Our works provide new toxicity mechanisms of 1,3-DCP with ferroptosis on hepatocytes injury.
Collapse
Affiliation(s)
- Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Ranran Zhang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Yanan Zhao
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Zhuoqun Meng
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
5
|
Jayapal M, Jagadeesan H, Krishnasamy V, Shanmugam G, Muniyappan V, Chidambaram D, Krishnamurthy S. Demonstration of a plant-microbe integrated system for treatment of real-time textile industry wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119009. [PMID: 35182656 DOI: 10.1016/j.envpol.2022.119009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The real-time textile dyes wastewater contains hazardous and recalcitrant chemicals that are difficult to degrade by conventional methods. Such pollutants, when released without proper treatment into the environment, impact water quality and usage. Hence, the textile dye effluent is considered a severe environmental pollutant. It contains mixed contaminants like dyes, sodium bicarbonate, acetic acid. The physico-chemical treatment of these wastewaters produces a large amount of sludge and costly. Acceptance of technology by the industry mandates that it should be efficient, cost-effective and the treated water is safe for reuse. A sequential anaerobic-aerobic plant-microbe system with acclimatized microorganisms and vetiver plants, was evaluated at a pilot-scale on-site. At the end of the sequential process, decolorization and total aromatic amine (TAA) removal were 78.8% and 69.2% respectively. Analysis of the treated water at various stages using Fourier Transform Infrared (FTIR), High Performance Liquid Chromatography (HPLC)) Gas Chromatography-Mass Spectrometry (GC-MS) Liquid Chromatography-Mass Spectrometry (LC-MS) indicated that the dyes were decolourized and the aromatic amine intermediates formed were degraded to give aliphatic compounds. Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM) analysis showed interaction of microbe with the roots of vetiver plants. Toxicity analysis with zebrafish indicated the removal of toxins and teratogens.
Collapse
Affiliation(s)
| | - Hema Jagadeesan
- PSG College of Technology, Coimbatore, Tamil Nadu, 641 004, India.
| | | | | | | | - Dinesh Chidambaram
- M/s.Dinesh Process, (Soft Flow Unit, Dyers of Knitted Fabrics), College Road, Analpalayam, Sirupuluvapatti, Tirupur, TamilNadu, 641603, India
| | - Satheesh Krishnamurthy
- School of Engineering and Innovation, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| |
Collapse
|
6
|
Bioremediation of river sediment polluted with polychlorinated biphenyls: A laboratory study. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2022. [DOI: 10.2298/jsc211217113z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Persistent organic pollutants (POPs) are lipophilic, constant and bioaccumulative toxic compounds. In general, they are considered resistant to biological, photolytic, and chemical degradation with polychlorinated biphenyls (PCBs) belonging to these chemicals. PCBs were never produced in Serbia, but they were imported and mainly used in electrical equipment, transformers, and capacitors. Our study aimed to analyse sequential multi-stage aerobic/anaerobic microbial biodegradation of PCBs present in the river sediment from the area known for long-term pollution with these chemicals. The study with an autochthonous natural microbial community (NMC model system) and NMC augmented with allochthonous hydrocarbon-degrading (AHD) microorganisms (isolated from location contaminated with petroleum products) (NMC-AHD model system) was performed in order to estimate the potential of these microorganisms for possible use in future bioremediation treatment of these sites. The laboratory biodegradation study lasted 70 days, after which an overall >33 % reduction in the concentration of total PCBs was observed. This study confirmed the strong potential of the NMC for the reduction of the level of PCBs in the river sediment under alternating multi-stage aerobic/anaerobic conditions.
Collapse
|
7
|
|
8
|
Reconfiguration of metabolic fluxes in Pseudomonas putida as a response to sub-lethal oxidative stress. THE ISME JOURNAL 2021; 15:1751-1766. [PMID: 33432138 PMCID: PMC8163872 DOI: 10.1038/s41396-020-00884-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023]
Abstract
As a frequent inhabitant of sites polluted with toxic chemicals, the soil bacterium and plant-root colonizer Pseudomonas putida can tolerate high levels of endogenous and exogenous oxidative stress. Yet, the ultimate reason of such phenotypic property remains largely unknown. To shed light on this question, metabolic network-wide routes for NADPH generation-the metabolic currency that fuels redox-stress quenching mechanisms-were inspected when P. putida KT2440 was challenged with a sub-lethal H2O2 dose as a proxy of oxidative conditions. 13C-tracer experiments, metabolomics, and flux analysis, together with the assessment of physiological parameters and measurement of enzymatic activities, revealed a substantial flux reconfiguration in oxidative environments. In particular, periplasmic glucose processing was rerouted to cytoplasmic oxidation, and the cyclic operation of the pentose phosphate pathway led to significant NADPH-forming fluxes, exceeding biosynthetic demands by ~50%. The resulting NADPH surplus, in turn, fueled the glutathione system for H2O2 reduction. These properties not only account for the tolerance of P. putida to environmental insults-some of which end up in the formation of reactive oxygen species-but they also highlight the value of this bacterial host as a platform for environmental bioremediation and metabolic engineering.
Collapse
|
9
|
Liu N, Li D, Li K, Wang L, Xu R, Zhang J, Yang B. Enhanced biodegradation of chlorobenzene via combined Fe 3+ and Zn 2+ based on rhamnolipid solubilisation. J Environ Sci (China) 2021; 103:108-118. [PMID: 33743893 DOI: 10.1016/j.jes.2020.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Biotrickling filters (BTFs) for hydrophobic chlorobenzene (CB) purification are limited by mass transfer and biodegradation. The CB mass transfer rate could be improved by 150 mg/L rhamnolipids. This study evaluated the combined use of Fe3+ and Zn2+ to enhance biodegradation in a BTF over 35 day. The effects of these trace elements were analysed under different inlet concentrations (250, 600, 900, and 1200 mg/L) and empty bed residence times (EBRTs; 60, 45, and 32 sec). Batch experiments showed that the promoting effects of Fe3+/Zn2+ on microbial growth and metabolism were highest for 3 mg/L Fe3+ and 2 mg/L Zn2+, followed by 2 mg/L Zn2+, and lowest at 3 mg/L Fe3+. Compared to BTF in the absence of Fe3+ and Zn2+, the average CB elimination capacity and removal efficiency in the presence of Fe3+ and Zn2+ increased from 61.54 to 65.79 g/(m3⋅hr) and from 80.93% to 89.37%, respectively, at an EBRT of 60 sec. The average removal efficiency at EBRTs of 60, 45, and 32 sec increased by 2.89%, 5.63%, and 11.61%, respectively. The chemical composition (proteins (PN), polysaccharides (PS)) and functional groups of the biofilm were analysed at 60, 81, and 95 day. Fe3+ and Zn2+ significantly enhanced PN and PS secretion, which may have promoted CB adsorption and biodegradation. High-throughput sequencing revealed the promoting effect of Fe3+ and Zn2+ on bacterial populations. The combination of Fe3+ and Zn2+ with rhamnolipids was an efficient method for improving CB biodegradation in BTFs.
Collapse
Affiliation(s)
- Na Liu
- Engineering Research Center of Mine Ecological Construction, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
| | - Dan Li
- Engineering Research Center of Mine Ecological Construction, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
| | - Kang Li
- Engineering Research Center of Mine Ecological Construction, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
| | - Liping Wang
- Engineering Research Center of Mine Ecological Construction, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China.
| | - Ruiwei Xu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiaming Zhang
- Engineering Research Center of Mine Ecological Construction, Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
10
|
Lokesh S, Kim J, Zhou Y, Wu D, Pan B, Wang X, Behrens S, Huang CH, Yang Y. Anaerobic Dehalogenation by Reduced Aqueous Biochars. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15142-15150. [PMID: 33170651 DOI: 10.1021/acs.est.0c05940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dehalogenation is one of the most important reactions for eliminating trace organic pollutants in natural and engineering systems. This study investigated the dehalogenation of a model organohalogen compound, triclosan (TCS), by aqueous biochars (a-BCs) (<450 nm). We found that TCS can be anaerobically degraded by reduced a-BCs with a pseudo first-order degradation rate constant of 0.0011-0.011 h-1. The 288 h degradation fraction of TCS correlated significantly with the amount of a-BC-bound electrons (0.055 ± 0.00024 to 0.11 ± 0.0016 mol e-/mol C) available for donation after 24 h of pre-reduction by Shewanella putrefaciens CN32. Within the reduction period, the recovery of chlorine based on residual TCS and generated Cl- ranged from 73.6 to 85.2%, implying that a major fraction of TCS was fully dechlorinated, together with mass spectroscopic analysis of possible degradation byproducts. Least-squares numerical fitting, accounting for the reactions of hydroquinones/semiquinones in a-BCs with TCS and byproducts, can simulate the reaction kinetics well (R2 > 0.76) and suggest the first-step dechlorination as the rate-limiting step among the possible pathways. These results showcased that the reduced a-BCs can reductively degrade organohalogens with potential applications for wastewater treatment and groundwater remediation. While TCS was used as a model compound in this study, a-BC-based degradation can be likely applied to a range of redox-sensitive trace organic compounds.
Collapse
Affiliation(s)
- Srinidhi Lokesh
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Juhee Kim
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| | - Yuwei Zhou
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Danping Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, P.R. China
| | - Sebastian Behrens
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota 55455-0116, United States
| | - Ching-Hua Huang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| |
Collapse
|
11
|
Biodegradation of 3-chlorobenzoic acid with electron shuttle systems: pathways and molecular identification. Arch Microbiol 2020; 202:2471-2480. [PMID: 32613418 DOI: 10.1007/s00203-020-01965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/28/2020] [Accepted: 06/24/2020] [Indexed: 10/24/2022]
Abstract
A synergy of biodegradation and electron shuttle systems is a promising strategy for eliminating pollutants including chlorinated aromatic compounds. The present work studies the degradation products of 3-chlorobenzoic acid by Pseudomonas putida in the presence of an electron shuttle system (ESS) composed of citrate and pyruvate as electron donors and the pollutant as an electron acceptor. Chromatographic results showed different pathways involved in the biodegradation process under the influence of electron shuttle systems. These routes depend on oxidation and reduction reactions for output byproducts to be easily mineralized by the bacterium under investigation. A nucleotide sequence with about 380 bp of a ton B gene was detected in P. putida and it resembles Escherichia coli Ton B. The relatedness tree of the selected gene reveals a high similarity and is comparable to P. aeruginosa (100%) and the highest variation with that of P. citronellolis (21.99%). Accordingly, in the presence of electron shuttle systems, the genes responsible for bacterial influx were activated to ease the biodegradation process. In an application model, the remediated-water samples were handled by two recycling processes using Scenedesmus obliquus and Trigonella foenum-graecum to evaluate the efficiency of this non-conventional treatment. In conclusion, this strategy succeeded in remediating the polluted water with chlorinated aromatic compounds for further applications.
Collapse
|
12
|
Nieto-Domínguez M, Nikel PI. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. Chembiochem 2020; 21:2551-2571. [PMID: 32274875 DOI: 10.1002/cbic.202000091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism - yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
13
|
Volke DC, Friis L, Wirth NT, Turlin J, Nikel PI. Synthetic control of plasmid replication enables target- and self-curing of vectors and expedites genome engineering of Pseudomonas putida. Metab Eng Commun 2020; 10:e00126. [PMID: 32215253 PMCID: PMC7090339 DOI: 10.1016/j.mec.2020.e00126] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/23/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
Genome engineering of non-conventional microorganisms calls for the development of dedicated synthetic biology tools. Pseudomonas putida is a Gram-negative, non-pathogenic soil bacterium widely used for metabolic engineering owing to its versatile metabolism and high levels of tolerance to different types of stress. Genome editing of P. putida largely relies on homologous recombination events, assisted by helper plasmid-based expression of genes encoding DNA modifying enzymes. Plasmid curing from selected isolates is the most tedious and time-consuming step of this procedure, and implementing commonly used methods to this end in P. putida (e.g. temperature-sensitive replicons) is often impractical. To tackle this issue, we have developed a toolbox for both target- and self-curing of plasmid DNA in Pseudomonas species. Our method enables plasmid-curing in a simple cultivation step by combining in vivo digestion of vectors by the I-SceI homing nuclease with synthetic control of plasmid replication, triggered by the addition of a cheap chemical inducer (3-methylbenzoate) to the medium. The system displays an efficiency of vector curing >90% and the screening of plasmid-free clones is greatly facilitated by the use of fluorescent markers that can be selected according to the application intended. Furthermore, quick genome engineering of P. putida using self-curing plasmids is demonstrated through genome reduction of the platform strain EM42 by eliminating all genes encoding β-lactamases, the catabolic ben gene cluster, and the pyoverdine synthesis machinery. Physiological characterization of the resulting streamlined strain, P. putida SEM10, revealed advantageous features that could be exploited for metabolic engineering. Plasmid-curing is the most time-consuming step in genome engineering approaches. We have developed a system for easy target- and self-curing of plasmid DNA. Synthetic control of replication and highly-specific in vivo DNA digestion were used. Plasmid curing with this system displays an efficiency >90% in a 24-h cultivation. Quick genome engineering facilitated genome reduction of P. putida.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Laura Friis
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Justine Turlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
14
|
Batianis C, Kozaeva E, Damalas SG, Martín‐Pascual M, Volke DC, Nikel PI, Martins dos Santos VA. An expanded CRISPRi toolbox for tunable control of gene expression in Pseudomonas putida. Microb Biotechnol 2020; 13:368-385. [PMID: 32045111 PMCID: PMC7017828 DOI: 10.1111/1751-7915.13533] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 01/15/2023] Open
Abstract
Owing to its wide metabolic versatility and physiological robustness, together with amenability to genetic manipulations and high resistance to stressful conditions, Pseudomonas putida is increasingly becoming the organism of choice for a range of applications in both industrial and environmental applications. However, a range of applied synthetic biology and metabolic engineering approaches are still limited by the lack of specific genetic tools to effectively and efficiently regulate the expression of target genes. Here, we present a single-plasmid CRISPR-interference (CRISPRi) system expressing a nuclease-deficient cas9 gene under the control of the inducible XylS/Pm expression system, along with the option of adopting constitutively expressed guide RNAs (either sgRNA or crRNA and tracrRNA). We showed that the system enables tunable, tightly controlled gene repression (up to 90%) of chromosomally expressed genes encoding fluorescent proteins, either individually or simultaneously. In addition, we demonstrate that this method allows for suppressing the expression of the essential genes pyrF and ftsZ, resulting in significantly low growth rates or morphological changes respectively. This versatile system expands the capabilities of the current CRISPRi toolbox for efficient, targeted and controllable manipulation of gene expression in P. putida.
Collapse
Affiliation(s)
- Christos Batianis
- Laboratory of Systems and Synthetic BiologyWageningen & Research University6708WageningenThe Netherlands
| | - Ekaterina Kozaeva
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kgs. LyngbyDenmark
| | - Stamatios G. Damalas
- Laboratory of Systems and Synthetic BiologyWageningen & Research University6708WageningenThe Netherlands
| | - María Martín‐Pascual
- Laboratory of Systems and Synthetic BiologyWageningen & Research University6708WageningenThe Netherlands
| | - Daniel C. Volke
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kgs. LyngbyDenmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kgs. LyngbyDenmark
| | - Vitor A.P. Martins dos Santos
- Laboratory of Systems and Synthetic BiologyWageningen & Research University6708WageningenThe Netherlands
- Lifeglimmer GmbH12163BerlinGermany
| |
Collapse
|
15
|
Sánchez-Pascuala A, Fernández-Cabezón L, de Lorenzo V, Nikel PI. Functional implementation of a linear glycolysis for sugar catabolism in Pseudomonas putida. Metab Eng 2019; 54:200-211. [DOI: 10.1016/j.ymben.2019.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/23/2023]
|
16
|
Optical enzymatic biosensor membrane for rapid in situ detection of organohalide in water samples. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Atashgahi S, Liebensteiner MG, Janssen DB, Smidt H, Stams AJM, Sipkema D. Microbial Synthesis and Transformation of Inorganic and Organic Chlorine Compounds. Front Microbiol 2018; 9:3079. [PMID: 30619161 PMCID: PMC6299022 DOI: 10.3389/fmicb.2018.03079] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
Organic and inorganic chlorine compounds are formed by a broad range of natural geochemical, photochemical and biological processes. In addition, chlorine compounds are produced in large quantities for industrial, agricultural and pharmaceutical purposes, which has led to widespread environmental pollution. Abiotic transformations and microbial metabolism of inorganic and organic chlorine compounds combined with human activities constitute the chlorine cycle on Earth. Naturally occurring organochlorines compounds are synthesized and transformed by diverse groups of (micro)organisms in the presence or absence of oxygen. In turn, anthropogenic chlorine contaminants may be degraded under natural or stimulated conditions. Here, we review phylogeny, biochemistry and ecology of microorganisms mediating chlorination and dechlorination processes. In addition, the co-occurrence and potential interdependency of catabolic and anabolic transformations of natural and synthetic chlorine compounds are discussed for selected microorganisms and particular ecosystems.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Dick B. Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
18
|
Akkaya Ö, Nikel PI, Pérez-Pantoja D, de Lorenzo V. Evolving metabolism of 2,4-dinitrotoluene triggers SOS-independent diversification of host cells. Environ Microbiol 2018; 21:314-326. [DOI: 10.1111/1462-2920.14459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/12/2018] [Accepted: 10/21/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Özlem Akkaya
- Department of Molecular Biology and Genetics; Gebze Technical University; Kocaeli Turkey
- Centro Nacional de Biotecnología-CSIC; Campus de Cantoblanco; Madrid 28049 Spain
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kgs Lyngby Denmark
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación; Universidad Tecnológica Metropolitana; Ignacio Valdivieso 2409, San Joaquín, Santiago Chile
| | - Víctor de Lorenzo
- Centro Nacional de Biotecnología-CSIC; Campus de Cantoblanco; Madrid 28049 Spain
| |
Collapse
|
19
|
Akkaya Ö, Pérez-Pantoja DR, Calles B, Nikel PI, de Lorenzo V. The Metabolic Redox Regime of Pseudomonas putida Tunes Its Evolvability toward Novel Xenobiotic Substrates. mBio 2018; 9:e01512-18. [PMID: 30154264 PMCID: PMC6113623 DOI: 10.1128/mbio.01512-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/28/2022] Open
Abstract
During evolution of biodegradation pathways for xenobiotic compounds involving Rieske nonheme iron oxygenases, the transition toward novel substrates is frequently associated with faulty reactions. Such events release reactive oxygen species (ROS), which are endowed with high mutagenic potential. In this study, we evaluated how the operation of the background metabolic network by an environmental bacterium may either foster or curtail the still-evolving pathway for 2,4-dinitrotoluene (2,4-DNT) catabolism. To this end, the genetically tractable strain Pseudomonas putida EM173 was implanted with the whole genetic complement necessary for the complete biodegradation of 2,4-DNT (recruited from the environmental isolate Burkholderia sp. R34). By using reporter technology and direct measurements of ROS formation, we observed that the engineered P. putida strain experienced oxidative stress when catabolizing the nitroaromatic substrate. However, the formation of ROS was neither translated into significant activation of the SOS response to DNA damage nor did it result in a mutagenic regime (unlike what has been observed in Burkholderia sp. R34, the original host of the pathway). To inspect whether the tolerance of P. putida to oxidative challenges could be traced to its characteristic reductive redox regime, we artificially altered the NAD(P)H pool by means of a water-forming, NADH-specific oxidase. Under the resulting low-NAD(P)H status, catabolism of 2,4-DNT triggered a conspicuous mutagenic and genomic diversification scenario. These results indicate that the background biochemical network of environmental bacteria ultimately determines the evolvability of metabolic pathways. Moreover, the data explain the efficacy of some bacteria (e.g., pseudomonads) to host and evolve with new catabolic routes.IMPORTANCE Some environmental bacteria evolve with new capacities for the aerobic biodegradation of chemical pollutants by adapting preexisting redox reactions to novel compounds. The process typically starts by cooption of enzymes from an available route to act on the chemical structure of the substrate-to-be. The critical bottleneck is generally the first biochemical step, and most of the selective pressure operates on reshaping the initial reaction. The interim uncoupling of the novel substrate to preexisting Rieske nonheme iron oxygenases usually results in formation of highly mutagenic ROS. In this work, we demonstrate that the background metabolic regime of the bacterium that hosts an evolving catabolic pathway (e.g., biodegradation of the xenobiotic 2,4-DNT) determines whether the cells either adopt a genetic diversification regime or a robust ROS-tolerant status. Furthermore, our results offer new perspectives to the rational design of efficient whole-cell biocatalysts, which are pursued in contemporary metabolic engineering.
Collapse
Affiliation(s)
- Özlem Akkaya
- Department of Molecular Biology and Genetics, Faculty of Sciences, Gebze Technical University, Kocaeli, Turkey
| | - Danilo R Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago de Chile, Chile
| | - Belén Calles
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Madrid, Spain
| | - Pablo I Nikel
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Madrid, Spain
| |
Collapse
|
20
|
Volke DC, Nikel PI. Getting Bacteria in Shape: Synthetic Morphology Approaches for the Design of Efficient Microbial Cell Factories. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800111] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel C. Volke
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| |
Collapse
|
21
|
Ang TF, Maiangwa J, Salleh AB, Normi YM, Leow TC. Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications. Molecules 2018; 23:E1100. [PMID: 29735886 PMCID: PMC6100074 DOI: 10.3390/molecules23051100] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022] Open
Abstract
The variety of halogenated substances and their derivatives widely used as pesticides, herbicides and other industrial products is of great concern due to the hazardous nature of these compounds owing to their toxicity, and persistent environmental pollution. Therefore, from the viewpoint of environmental technology, the need for environmentally relevant enzymes involved in biodegradation of these pollutants has received a great boost. One result of this great deal of attention has been the identification of environmentally relevant bacteria that produce hydrolytic dehalogenases—key enzymes which are considered cost-effective and eco-friendly in the removal and detoxification of these pollutants. These group of enzymes catalyzing the cleavage of the carbon-halogen bond of organohalogen compounds have potential applications in the chemical industry and bioremediation. The dehalogenases make use of fundamentally different strategies with a common mechanism to cleave carbon-halogen bonds whereby, an active-site carboxylate group attacks the substrate C atom bound to the halogen atom to form an ester intermediate and a halide ion with subsequent hydrolysis of the intermediate. Structurally, these dehalogenases have been characterized and shown to use substitution mechanisms that proceed via a covalent aspartyl intermediate. More so, the widest dehalogenation spectrum of electron acceptors tested with bacterial strains which could dehalogenate recalcitrant organohalides has further proven the versatility of bacterial dehalogenators to be considered when determining the fate of halogenated organics at contaminated sites. In this review, the general features of most widely studied bacterial dehalogenases, their structural properties, basis of the degradation of organohalides and their derivatives and how they have been improved for various applications is discussed.
Collapse
Affiliation(s)
- Thiau-Fu Ang
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Enzyme and Microbial Technology Research Centre, Centre of Excellence, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Jonathan Maiangwa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Enzyme and Microbial Technology Research Centre, Centre of Excellence, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Centre, Centre of Excellence, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Yahaya M Normi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Enzyme and Microbial Technology Research Centre, Centre of Excellence, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Enzyme and Microbial Technology Research Centre, Centre of Excellence, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
22
|
Padalkar AV, Kumar R. Removal mechanisms of volatile organic compounds (VOCs) from effluent of common effluent treatment plant (CETP). CHEMOSPHERE 2018; 199:569-584. [PMID: 29455126 DOI: 10.1016/j.chemosphere.2018.01.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the occurrence, removal and influence of plant-operating conditions on removal mechanisms of 83 VOCs in different treatment units of a CETP in Mumbai, treating industrial waste on primary and secondary level. A mass balance approach was used to predict VOC removal by volatilization, stripping, weir drop, adsorption, and biodegradation. Results indicate that ∼17% of VOCs were removed by stripping in equalization tank and ∼8% were removed by weir drop in primary clari-flocculator respectively. Biodegradation was the dominant mechanism in aeration tank and was relatively poor for hydrophobic compounds which were more vulnerable to removal by stripping. Stripping rates could be reduced by increasing the active biomass concentration and using fine pore diffusers to reduce the air/effluent ratio. Decrease in Henry's constant and compound concentration can shift the main removal mechanism from stripping to biodegradation. Results also show considerable agreement between measured (71.2%) and predicted (67.1%) total removal, especially in aeration tanks. Equalization tanks (actual, 20.5%, predicted, 16.9%), primary clari-flocculator (actual, 14.2%, predicted, 7.7%), and secondary clarifier units (actual, 29.5%, predicted, 16.8%) showed fairly acceptable differences in measured and predicted removal. The effect of other mechanisms on VOC removal need to be further explored owing to their major contribution to VOC removal. This study is the first attempt in understanding the mechanisms behind the removal of VOCs in each treatment unit, especially equalization tanks and clarifier units, which have been severely underestimated till date.
Collapse
Affiliation(s)
- Ashwini V Padalkar
- CSIR-National Environmental Engineering Research Institute (NEERI), Worli, Mumbai, India
| | - Rakesh Kumar
- CSIR-National Environmental Engineering Research Institute (NEERI), Worli, Mumbai, India.
| |
Collapse
|
23
|
Cipullo S, Prpich G, Campo P, Coulon F. Assessing bioavailability of complex chemical mixtures in contaminated soils: Progress made and research needs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:708-723. [PMID: 28992498 DOI: 10.1016/j.scitotenv.2017.09.321] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 05/13/2023]
Abstract
Understanding the distribution, behaviour and interactions of complex chemical mixtures is key for providing the evidence necessary to make informed decisions and implement robust remediation strategies. Much of the current risk assessment frameworks applied to manage land contamination are based on total contaminant concentrations and the exposure assessments embedded within them do not explicitly address the partitioning and bioavailability of chemical mixtures. These oversights may contribute to an overestimation of both the eco-toxicological effects of the fractions and the mobility of contaminants. In turn, this may limit the efficacy of risk frameworks to inform targeted and proportionate remediation strategies. In this review we analyse the science surrounding bioavailability, its regulatory inclusion and the challenges of incorporating bioavailability in decision making process. While a number of physical and chemical techniques have proven to be valuable tools for estimating bioavailability of organic and inorganic contaminants in soils, doubts have been cast on its implementation into risk management soil frameworks mainly due to a general disagreement on the interchangeable use of bioavailability and bioaccessibility, and the associated methods which are still not standardised. This review focuses on the role of biotic and abiotic factors affecting bioavailability along with soil physicochemical properties and contaminant composition. We also included advantages and disadvantages of different extraction techniques and their implications for bioavailability quantitative estimation. In order to move forward the integration of bioavailability into site-specific risk assessments we should (1) account for soil and contaminant physicochemical characteristics and their effect on bioavailability; (2) evaluate receptor's potential exposure and uptake based on mild-extraction; (3) adopt a combined approach where chemical-techniques are used along with biological methods; (4) consider a simplified and cost-effective methodology to apply at regulatory and industry setting; (5) use single-contaminant exposure assessments to inform and predict complex chemical mixture behaviour and bioavailability.
Collapse
Affiliation(s)
- S Cipullo
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - G Prpich
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - P Campo
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK
| | - F Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK43 0AL, UK.
| |
Collapse
|
24
|
Dvořák P, Nikel PI, Damborský J, de Lorenzo V. Bioremediation 3 . 0 : Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol Adv 2017; 35:845-866. [DOI: 10.1016/j.biotechadv.2017.08.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 01/07/2023]
|
25
|
Sánchez-Pascuala A, de Lorenzo V, Nikel PI. Refactoring the Embden-Meyerhof-Parnas Pathway as a Whole of Portable GlucoBricks for Implantation of Glycolytic Modules in Gram-Negative Bacteria. ACS Synth Biol 2017; 6:793-805. [PMID: 28121421 PMCID: PMC5440799 DOI: 10.1021/acssynbio.6b00230] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The
Embden–Meyerhof–Parnas (EMP) pathway is generally
considered to be the biochemical standard for glucose catabolism.
Alas, its native genomic organization and the control of gene expression
in Escherichia coli are both very intricate, which
limits the portability of the EMP pathway to other biotechnologically
important bacterial hosts that lack the route. In this work, the genes
encoding all the enzymes of the linear EMP route have been individually
recruited from the genome of E. coli K-12, edited in silico to remove their endogenous regulatory signals,
and synthesized de novo following a standard (GlucoBrick)
that enables their grouping in the form of functional modules at the
user’s will. After verifying their activity in several glycolytic
mutants of E. coli, the versatility of these
GlucoBricks was demonstrated in quantitative physiology tests and
biochemical assays carried out in Pseudomonas putida KT2440 and P. aeruginosa PAO1 as the heterologous
hosts. Specific configurations of GlucoBricks were also adopted to
streamline the downward circulation of carbon from hexoses to pyruvate
in E. coli recombinants, thereby resulting in
a 3-fold increase of poly(3-hydroxybutyrate) synthesis from glucose.
Refactoring whole metabolic blocks in the fashion described in this
work thus eases the engineering of biochemical processes where the
optimization of carbon traffic is facilitated by the operation of
the EMP pathway—which yields more ATP than other glycolytic
routes such as the Entner–Doudoroff pathway.
Collapse
Affiliation(s)
- Alberto Sánchez-Pascuala
- Systems and Synthetic Biology
Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology
Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pablo I. Nikel
- Systems and Synthetic Biology
Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
26
|
A Metabolic Widget Adjusts the Phosphoenolpyruvate-Dependent Fructose Influx in Pseudomonas putida. mSystems 2016; 1:mSystems00154-16. [PMID: 27933319 PMCID: PMC5141268 DOI: 10.1128/msystems.00154-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022] Open
Abstract
Fructose uptake in the soil bacterium Pseudomonas putida occurs through a canonical phosphoenolpyruvate (PEP)-dependent sugar transport system (PTSFru). The logic of the genetic circuit that rules its functioning is puzzling: the transcription of the fruBKA operon, encoding all the components of PTSFru, can escape the repression exerted by the catabolite repressor/activator protein Cra solely in the presence of intracellular fructose-1-P, an agonist formed only when fructose has been already transported. To study this apparently incongruous regulatory architecture, the changes in the transcriptome brought about by a seamless Δcra deletion in P. putida strain KT2440 were inspected under different culture conditions. The few genes found to be upregulated in the cra mutant unexpectedly included PP_3443, encoding a bona fide glyceraldehyde-3-P dehydrogenase. An in silico model was developed to explore emergent properties that could result from such connections between sugar uptake with Cra and PEP. Simulation of fructose transport revealed that sugar uptake called for an extra supply of PEP (obtained through the activity of PP_3443) that was kept (i.e., memorized) even when the carbohydrate disappeared from the medium. This feature was traced to the action of two sequential inverters that connect the availability of exogenous fructose to intracellular PEP levels via Cra/PP_3443. The loss of such memory caused a much longer lag phase in cells shifted from one growth condition to another. The term "metabolic widget" is proposed to describe a merged biochemical and regulatory patch that tailors a given node of the cell molecular network to suit species-specific physiological needs. IMPORTANCE The regulatory nodes that govern metabolic traffic in bacteria often show connectivities that could be deemed unnecessarily complex at a first glance. Being a soil dweller and plant colonizer, Pseudomonas putida frequently encounters fructose in the niches that it inhabits. As is the case with many other sugars, fructose is internalized by a dedicated phosphoenolpyruvate (PEP)-dependent transport system (PTSFru), the expression of which is repressed by the fructose-1-P-responding Cra regulatory protein. However, Cra also controls a glyceraldehyde-3-P dehydrogenase that fosters accumulation of PEP (i.e., the metabolic fuel for PTSFru). A simple model representing this metabolic and regulatory device revealed that such an unexpected connectivity allows cells to shift smoothly between fructose-rich and fructose-poor conditions. Therefore, although the metabolic networks that handle sugar (i.e., fructose) consumption look very similar in most eubacteria, the way in which their components are intertwined endows given microorganisms with emergent properties for meeting species-specific and niche-specific needs.
Collapse
|
27
|
Nikel PI, Pérez-Pantoja D, de Lorenzo V. Pyridine nucleotide transhydrogenases enable redox balance of Pseudomonas putida during biodegradation of aromatic compounds. Environ Microbiol 2016; 18:3565-3582. [PMID: 27348295 DOI: 10.1111/1462-2920.13434] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/23/2016] [Indexed: 11/26/2022]
Abstract
The metabolic versatility of the soil bacterium Pseudomonas putida is reflected by its ability to execute strong redox reactions (e.g., mono- and di-oxygenations) on aromatic substrates. Biodegradation of aromatics occurs via the pathway encoded in the archetypal TOL plasmid pWW0, yet the effect of running such oxidative route on redox balance against the background metabolism of P. putida remains unexplored. To answer this question, the activity of pyridine nucleotide transhydrogenases (that catalyze the reversible interconversion of NADH and NADPH) was inspected under various physiological and oxidative stress regimes. The genome of P. putida KT2440 encodes a soluble transhydrogenase (SthA) and a membrane-bound, proton-pumping counterpart (PntAB). Mutant strains, lacking sthA and/or pntAB, were subjected to a panoply of genetic, biochemical, phenomic and functional assays in cells grown on customary carbon sources (e.g., citrate) versus difficult-to-degrade aromatic substrates. The results consistently indicated that redox homeostasis is compromised in the transhydrogenases-defective variant, rendering the mutant sensitive to oxidants. This metabolic deficiency was, however, counteracted by an increase in the activity of NADP+ -dependent dehydrogenases in central carbon metabolism. Taken together, these observations demonstrate that transhydrogenases enable a redox-adjusting mechanism that comes into play when biodegradation reactions are executed to metabolize unusual carbon compounds.
Collapse
Affiliation(s)
- Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Danilo Pérez-Pantoja
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, 4030000 Concepción, Chile
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| |
Collapse
|
28
|
Benedetti I, de Lorenzo V, Nikel PI. Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metab Eng 2016; 33:109-118. [DOI: 10.1016/j.ymben.2015.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/02/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022]
|
29
|
Dvorak P, Chrast L, Nikel PI, Fedr R, Soucek K, Sedlackova M, Chaloupkova R, de Lorenzo V, Prokop Z, Damborsky J. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microb Cell Fact 2015; 14:201. [PMID: 26691337 PMCID: PMC4687329 DOI: 10.1186/s12934-015-0393-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/05/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Heterologous expression systems based on promoters inducible with isopropyl-β-D-1-thiogalactopyranoside (IPTG), e.g., Escherichia coli BL21(DE3) and cognate LacI(Q)/P(lacUV5)-T7 vectors, are commonly used for production of recombinant proteins and metabolic pathways. The applicability of such cell factories is limited by the complex physiological burden imposed by overexpression of the exogenous genes during a bioprocess. This burden originates from a combination of stresses that may include competition for the expression machinery, side-reactions due to the activity of the recombinant proteins, or the toxicity of their substrates, products and intermediates. However, the physiological impact of IPTG-induced conditional expression on the recombinant host under such harsh conditions is often overlooked. RESULTS The physiological responses to IPTG of the E. coli BL21(DE3) strain and three different recombinants carrying a synthetic metabolic pathway for biodegradation of the toxic anthropogenic pollutant 1,2,3-trichloropropane (TCP) were investigated using plating, flow cytometry, and electron microscopy. Collected data revealed unexpected negative synergistic effect of inducer of the expression system and toxic substrate resulting in pronounced physiological stress. Replacing IPTG with the natural sugar effector lactose greatly reduced such stress, demonstrating that the effect was due to the original inducer's chemical properties. CONCLUSIONS IPTG is not an innocuous inducer; instead, it exacerbates the toxicity of haloalkane substrate and causes appreciable damage to the E. coli BL21(DE3) host, which is already bearing a metabolic burden due to its content of plasmids carrying the genes of the synthetic metabolic pathway. The concentration of IPTG can be effectively tuned to mitigate this negative effect. Importantly, we show that induction with lactose, the natural inducer of P lac , dramatically lightens the burden without reducing the efficiency of the synthetic TCP degradation pathway. This suggests that lactose may be a better inducer than IPTG for the expression of heterologous pathways in E. coli BL21(DE3).
Collapse
Affiliation(s)
- Pavel Dvorak
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Lukas Chrast
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CNB-CSIC, Cantoblanco, 28049, Madrid, Spain.
| | - Radek Fedr
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65, Brno, Czech Republic.
| | - Karel Soucek
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65, Brno, Czech Republic.
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
| | - Miroslava Sedlackova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CNB-CSIC, Cantoblanco, 28049, Madrid, Spain.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
30
|
The CreC Regulator of Escherichia coli, a New Target for Metabolic Manipulations. Appl Environ Microbiol 2015; 82:244-54. [PMID: 26497466 DOI: 10.1128/aem.02984-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/15/2015] [Indexed: 11/20/2022] Open
Abstract
The CreBC (carbon source-responsive) two-component regulation system of Escherichia coli affects a number of functions, including intermediary carbon catabolism. The impacts of different creC mutations (a ΔcreC mutant and a mutant carrying the constitutive creC510 allele) on bacterial physiology were analyzed in glucose cultures under three oxygen availability conditions. Differences in the amounts of extracellular metabolites produced were observed in the null mutant compared to the wild-type strain and the mutant carrying creC510 and shown to be affected by oxygen availability. The ΔcreC strain secreted more formate, succinate, and acetate but less lactate under low aeration. These metabolic changes were associated with differences in AckA and LdhA activities, both of which were affected by CreC. Measurement of the NAD(P)H/NAD(P)(+) ratios showed that the creC510 strain had a more reduced intracellular redox state, while the opposite was observed for the ΔcreC mutant, particularly under intermediate oxygen availability conditions, indicating that CreC affects redox balance. The null mutant formed more succinate than the wild-type strain under both low aeration and no aeration. Overexpression of the genes encoding phosphoenolpyruvate carboxylase from E. coli and a NADH-forming formate dehydrogenase from Candida boidinii in the ΔcreC mutant further increased the yield of succinate on glucose. Interestingly, the elimination of ackA and adhE did not significantly improve the production of succinate. The diverse metabolic effects of this regulator on the central biochemical network of E. coli make it a good candidate for metabolic-engineering manipulations to enhance the formation of bioproducts, such as succinate.
Collapse
|
31
|
Nikel PI, Chavarría M, Fuhrer T, Sauer U, de Lorenzo V. Pseudomonas putida KT2440 Strain Metabolizes Glucose through a Cycle Formed by Enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and Pentose Phosphate Pathways. J Biol Chem 2015; 290:25920-32. [PMID: 26350459 DOI: 10.1074/jbc.m115.687749] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Indexed: 01/28/2023] Open
Abstract
The soil bacterium Pseudomonas putida KT2440 lacks a functional Embden-Meyerhof-Parnas (EMP) pathway, and glycolysis is known to proceed almost exclusively through the Entner-Doudoroff (ED) route. To investigate the raison d'être of this metabolic arrangement, the distribution of periplasmic and cytoplasmic carbon fluxes was studied in glucose cultures of this bacterium by using (13)C-labeled substrates, combined with quantitative physiology experiments, metabolite quantification, and in vitro enzymatic assays under both saturating and non-saturating, quasi in vivo conditions. Metabolic flux analysis demonstrated that 90% of the consumed sugar was converted into gluconate, entering central carbon metabolism as 6-phosphogluconate and further channeled into the ED pathway. Remarkably, about 10% of the triose phosphates were found to be recycled back to form hexose phosphates. This set of reactions merges activities belonging to the ED, the EMP (operating in a gluconeogenic fashion), and the pentose phosphate pathways to form an unforeseen metabolic architecture (EDEMP cycle). Determination of the NADPH balance revealed that the default metabolic state of P. putida KT2440 is characterized by a slight catabolic overproduction of reducing power. Cells growing on glucose thus run a biochemical cycle that favors NADPH formation. Because NADPH is required not only for anabolic functions but also for counteracting different types of environmental stress, such a cyclic operation may contribute to the physiological heftiness of this bacterium in its natural habitats.
Collapse
Affiliation(s)
- Pablo I Nikel
- From the Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Max Chavarría
- the Escuela de Química, Universidad de Costa Rica, 2060 San José, Costa Rica, and
| | - Tobias Fuhrer
- the Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Uwe Sauer
- the Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Víctor de Lorenzo
- From the Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain,
| |
Collapse
|
32
|
Booth SC, Weljie AM, Turner RJ. Metabolomics reveals differences of metal toxicity in cultures of Pseudomonas pseudoalcaligenes KF707 grown on different carbon sources. Front Microbiol 2015; 6:827. [PMID: 26347721 PMCID: PMC4538868 DOI: 10.3389/fmicb.2015.00827] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022] Open
Abstract
Co-contamination of metals and organic pollutants is a global problem as metals interfere with the metabolism of complex organics by bacteria. Based on a prior observation that metal tolerance was altered by the sole carbon source being used for growth, we sought to understand how metal toxicity specifically affects bacteria using an organic pollutant as their sole carbon source. To this end metabolomics was used to compare cultures of Pseudomonas pseudoalcaligenes KF707 grown on either biphenyl (Bp) or succinate (Sc) as the sole carbon source in the presence of either aluminum (Al) or copper (Cu). Using multivariate statistical analysis it was found that the metals caused perturbations to more cellular processes in the cultures grown on Bp than those grown on Sc. Al induced many changes that were indicative of increased oxidative stress as metabolites involved in DNA damage and protection, the Krebs cycle and anti-oxidant production were altered. Cu also caused metabolic changes that were indicative of similar stress, as well as appearing to disrupt other key enzymes such as fumarase. Additionally, both metals caused the accumulation of Bp degradation intermediates indicating that they interfered with Bp metabolism. Together these results provide a basic understanding of how metal toxicity specifically affects bacteria at a biochemical level during the degradation of an organic pollutant and implicate the catabolism of this carbon source as a major factor that exacerbates metal toxicity.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| | - Aalim M Weljie
- Department of Biological Sciences, University of Calgary, Calgary AB, Canada ; Department of Systems Pharmacology and Translational Therapeutics, Smilow Centre for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary AB, Canada ; Biofilm Research Group, University of Calgary, Calgary AB, Canada
| |
Collapse
|
33
|
Yarrowia lipolytica NCIM 3589, a tropical marine yeast, degrades bromoalkanes by an initial hydrolytic dehalogenation step. Biodegradation 2015; 26:127-38. [DOI: 10.1007/s10532-015-9721-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
|
34
|
Im J, Walshe-Langford GE, Moon JW, Löffler FE. Environmental fate of the next generation refrigerant 2,3,3,3-tetrafluoropropene (HFO-1234yf). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13181-13187. [PMID: 25329364 DOI: 10.1021/es5032147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The hydrofluoroolefin 2,3,3,3-tetrafluoropropene (HFO-1234yf) has been introduced to replace 1,1,1,2-tetrafluoroethane (HFC-134a) as refrigerant in mobile, including vehicle, air conditioning systems because of its lower global warming potential. HFO-1234yf is volatile at ambient temperatures; however, high production volumes and widespread handling are expected to release this fluorocarbon into terrestrial and aquatic environments, including groundwater. Laboratory experiments explored HFO-1234yf degradation by (i) microbial processes under oxic and anoxic conditions, (ii) abiotic processes mediated by reactive mineral phases and zerovalent iron (Fe(0), ZVI), and (iii) cobalamin-catalyzed biomimetic transformation. These investigations demonstrated that HFO-1234yf was recalcitrant to microbial (co)metabolism and no transformation was observed in incubations with ZVI, makinawite (FeS), sulfate green rust (GR(SO4)), magnetite (Fe(3)O(4)), and manganese oxide (MnO2). Sequential reductive defluorination of HFO-1234yf to 3,3,3-trifluoropropene and 3,3-dichloropropene with concomitant stoichiometric release of fluoride occurred in incubations with reduced cobalamins (e.g., vitamin B12) indicating that biomolecules can transform HFO-1234yf at circumneutral pH and at ambient temperature. Taken together, these findings suggest that HFO-1234yf recalcitrance in aquifers should be expected; however, HFO-1234yf is not inert and a biomolecule may mediate reductive transformation in low redox environments, albeit at low rates.
Collapse
Affiliation(s)
- Jeongdae Im
- Center for Environmental Biotechnology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | | | | | | |
Collapse
|
35
|
Martínez-García E, Nikel PI, Aparicio T, de Lorenzo V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Fact 2014; 13:159. [PMID: 25384394 PMCID: PMC4230525 DOI: 10.1186/s12934-014-0159-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background Because of its adaptability to sites polluted with toxic chemicals, the model soil bacterium Pseudomonas putida is naturally endowed with a number of metabolic and stress-endurance qualities which have considerable value for hosting energy-demanding and redox reactions thereof. The growing body of knowledge on P. putida strain KT2440 has been exploited for the rational design of a derivative strain in which the genome has been heavily edited in order to construct a robust microbial cell factory. Results Eleven non-adjacent genomic deletions, which span 300 genes (i.e., 4.3% of the entire P. putida KT2440 genome), were eliminated; thereby enhancing desirable traits and eliminating attributes which are detrimental in an expression host. Since ATP and NAD(P)H availability – as well as genetic instability, are generally considered to be major bottlenecks for the performance of platform strains, a suite of functions that drain high-energy phosphate from the cells and/or consume NAD(P)H were targeted in particular, the whole flagellar machinery. Four prophages, two transposons, and three components of DNA restriction-modification systems were eliminated as well. The resulting strain (P. putida EM383) displayed growth properties (i.e., lag times, biomass yield, and specific growth rates) clearly superior to the precursor wild-type strain KT2440. Furthermore, it tolerated endogenous oxidative stress, acquired and replicated exogenous DNA, and survived better in stationary phase. The performance of a bi-cistronic GFP-LuxCDABE reporter system as a proxy of combined metabolic vitality, revealed that the deletions in P. putida strain EM383 brought about an increase of >50% in the overall physiological vigour. Conclusion The rationally modified P. putida strain allowed for the better functional expression of implanted genes by directly improving the metabolic currency that sustains the gene expression flow, instead of resorting to the classical genetic approaches (e.g., increasing the promoter strength in the DNA constructs of interest). Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0159-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Tomás Aparicio
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
36
|
Martínez-García E, Nikel PI, Aparicio T, de Lorenzo V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Fact 2014. [PMID: 25384394 DOI: 10.1186/s12934-014-0159-3.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Because of its adaptability to sites polluted with toxic chemicals, the model soil bacterium Pseudomonas putida is naturally endowed with a number of metabolic and stress-endurance qualities which have considerable value for hosting energy-demanding and redox reactions thereof. The growing body of knowledge on P. putida strain KT2440 has been exploited for the rational design of a derivative strain in which the genome has been heavily edited in order to construct a robust microbial cell factory. RESULTS Eleven non-adjacent genomic deletions, which span 300 genes (i.e., 4.3% of the entire P. putida KT2440 genome), were eliminated; thereby enhancing desirable traits and eliminating attributes which are detrimental in an expression host. Since ATP and NAD(P)H availability - as well as genetic instability, are generally considered to be major bottlenecks for the performance of platform strains, a suite of functions that drain high-energy phosphate from the cells and/or consume NAD(P)H were targeted in particular, the whole flagellar machinery. Four prophages, two transposons, and three components of DNA restriction-modification systems were eliminated as well. The resulting strain (P. putida EM383) displayed growth properties (i.e., lag times, biomass yield, and specific growth rates) clearly superior to the precursor wild-type strain KT2440. Furthermore, it tolerated endogenous oxidative stress, acquired and replicated exogenous DNA, and survived better in stationary phase. The performance of a bi-cistronic GFP-LuxCDABE reporter system as a proxy of combined metabolic vitality, revealed that the deletions in P. putida strain EM383 brought about an increase of >50% in the overall physiological vigour. CONCLUSION The rationally modified P. putida strain allowed for the better functional expression of implanted genes by directly improving the metabolic currency that sustains the gene expression flow, instead of resorting to the classical genetic approaches (e.g., increasing the promoter strength in the DNA constructs of interest).
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Tomás Aparicio
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
37
|
Dvorak P, Bidmanova S, Damborsky J, Prokop Z. Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1,2,3-trichloropropane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6859-6866. [PMID: 24787668 DOI: 10.1021/es500396r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The anthropogenic compound 1,2,3-trichloropropane (TCP) has recently drawn attention as an emerging groundwater contaminant. No living organism, natural or engineered, is capable of the efficient aerobic utilization of this toxic industrial waste product. We describe a novel biotechnology for transforming TCP based on an immobilized synthetic pathway. The pathway is composed of three enzymes from two different microorganisms: engineered haloalkane dehalogenase from Rhodococcus rhodochrous NCIMB 13064, and haloalcohol dehalogenase and epoxide hydrolase from Agrobacterium radiobacter AD1. Together, they catalyze consecutive reactions converting toxic TCP to harmless glycerol. The pathway was immobilized in the form of purified enzymes or cell-free extracts, and its performance was tested in batch and continuous systems. Using a packed bed reactor filled with the immobilized biocatalysts, 52.6 mmol of TCP was continuously converted into glycerol within 2.5 months of operation. The efficiency of the TCP conversion to the intermediates was 97%, and the efficiency of conversion to the final product glycerol was 78% during the operational period. Immobilized biocatalysts are suitable for removing TCP from contaminated water up to a 10 mM solubility limit, which is an order of magnitude higher than the concentration tolerated by living microorganisms.
Collapse
Affiliation(s)
- Pavel Dvorak
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University , Kamenice 5/A13, 625 00 Brno, Czech Republic
| | | | | | | |
Collapse
|
38
|
Krzmarzick MJ, Novak PJ. Removal of chlorinated organic compounds during wastewater treatment: achievements and limits. Appl Microbiol Biotechnol 2014; 98:6233-42. [DOI: 10.1007/s00253-014-5800-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 11/29/2022]
|
39
|
|
40
|
Kurumbang NP, Dvorak P, Bendl J, Brezovsky J, Prokop Z, Damborsky J. Computer-assisted engineering of the synthetic pathway for biodegradation of a toxic persistent pollutant. ACS Synth Biol 2014; 3:172-81. [PMID: 24313542 DOI: 10.1021/sb400147n] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Anthropogenic halogenated compounds were unknown to nature until the industrial revolution, and microorganisms have not had sufficient time to evolve enzymes for their degradation. The lack of efficient enzymes and natural pathways can be addressed through a combination of protein and metabolic engineering. We have assembled a synthetic route for conversion of the highly toxic and recalcitrant 1,2,3-trichloropropane to glycerol in Escherichia coli, and used it for a systematic study of pathway bottlenecks. Optimal ratios of enzymes for the maximal production of glycerol, and minimal toxicity of metabolites were predicted using a mathematical model. The strains containing the expected optimal ratios of enzymes were constructed and characterized for their viability and degradation efficiency. Excellent agreement between predicted and experimental data was observed. The validated model was used to quantitatively describe the kinetic limitations of currently available enzyme variants and predict improvements required for further pathway optimization. This highlights the potential of forward engineering of microorganisms for the degradation of toxic anthropogenic compounds.
Collapse
Affiliation(s)
- Nagendra Prasad Kurumbang
- Loschmidt Laboratories, Department of Experimental Biology
and Research Centre for Toxic
Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Pavel Dvorak
- Loschmidt Laboratories, Department of Experimental Biology
and Research Centre for Toxic
Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska
53, 656 91 Brno, Czech Republic
| | - Jaroslav Bendl
- Loschmidt Laboratories, Department of Experimental Biology
and Research Centre for Toxic
Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- Department
of Information Systems, Faculty of Information Technology, Brno University of Technology, Bozetechova 1, 612 00 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology
and Research Centre for Toxic
Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology
and Research Centre for Toxic
Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska
53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology
and Research Centre for Toxic
Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska
53, 656 91 Brno, Czech Republic
| |
Collapse
|
41
|
Nikel PI, de Lorenzo V. Robustness of Pseudomonas putida KT2440 as a host for ethanol biosynthesis. N Biotechnol 2014; 31:562-71. [PMID: 24572656 DOI: 10.1016/j.nbt.2014.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 12/01/2022]
Abstract
Expansion of the burgeoning biofuels agenda involves not only the design of suitable genetic and metabolic devices but also their deployment into suitable hosts that can endure the stress brought about by the products themselves. The microorganisms that are easiest to genetically manipulate for these endeavors (e.g. Escherichia coli) are often afflicted by an undesirable sensitivity to the very product that they are engineered to synthesize. In this context, we have examined the resistance to the stress arising from ethanol synthesis and/or its addition to cultures of recombinant Pseudomonas putida, using as a benchmark the same trait in an E. coli strain. To this end, ethanologenic strains of these two species were constructed by functionally expressing pdc (pyruvate decarboxylase) and adhB (alcohol dehydrogenase) from Zymomonas mobilis. Recombinants were compared under anoxic conditions as ethanol producers, and cell survival, stress resistance, and phenotypic stability were quantified in each case. P. putida consistently outperformed E. coli in every ethanol tolerance test conducted - whether the alcohol was produced endogenously or added exogenously. These results highlight the value of this bacterium as a microbial cell factory for the production of biofuels owing to its naturally pre-evolved ability to withstand different kinds of chemical stresses.
Collapse
Affiliation(s)
- Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain.
| |
Collapse
|
42
|
Pérez-Pantoja D, Nikel PI, Chavarría M, de Lorenzo V. Endogenous stress caused by faulty oxidation reactions fosters evolution of 2,4-dinitrotoluene-degrading bacteria. PLoS Genet 2013; 9:e1003764. [PMID: 24009532 PMCID: PMC3757077 DOI: 10.1371/journal.pgen.1003764] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/16/2013] [Indexed: 01/13/2023] Open
Abstract
Environmental strain Burkholderia sp. DNT mineralizes the xenobiotic compound 2,4-dinitrotoluene (DNT) owing to the catabolic dnt genes borne by plasmid DNT, but the process fails to promote significant growth. To investigate this lack of physiological return of such an otherwise complete metabolic route, cells were exposed to DNT under various growth conditions and the endogenous formation of reactive oxygen species (ROS) monitored in single bacteria. These tests revealed the buildup of a strong oxidative stress in the population exposed to DNT. By either curing the DNT plasmid or by overproducing the second activity of the biodegradation route (DntB) we could trace a large share of ROS production to the first reaction of the route, which is executed by the multicomponent dioxygenase encoded by the dntA gene cluster. Naphthalene, the ancestral substrate of the dioxygenase from which DntA has evolved, also caused significant ROS formation. That both the old and the new substrate brought about a considerable cellular stress was indicative of a still-evolving DntA enzyme which is neither optimal any longer for naphthalene nor entirely advantageous yet for growth of the host strain on DNT. We could associate endogenous production of ROS with likely error-prone repair mechanisms of DNA damage, and the ensuing stress-induced mutagenesis in cells exposed to DNT. It is thus plausible that the evolutionary roadmap for biodegradation of xenobiotic compounds like DNT was largely elicited by mutagenic oxidative stress caused by faulty reactions of precursor enzymes with novel but structurally related substrates-to-be. Many bacteria have acquired the capacity of metabolizing chemical compounds that have never been in the Biosphere before the onset of contemporary synthetic chemistry. However, the factors that shape the new metabolic properties of such microorganisms remain obscure. We examined the performance of a still-evolving metabolic pathway for biodegradation of 2,4-dinitrotoluene (DNT, an archetypal xenobiotic compound) borne by a Burkholderia strain isolated from soil in an ammunition plant. The biodegradation pathway likely arose from a precursor set of genes for catabolism of naphthalene (although Burkholderia does not degrade this compound any longer), and is now advancing towards the new substrate, DNT. We found that the action of the first enzyme of the biodegradation pathway, a Rieske-type dioxygenase, on the still-suboptimal substrate (DNT) generates a high level of endogenous reactive oxygen species. This, in turn, damages DNA and increases mutagenesis, ultimately resulting in the creation of novelty that may foster evolution of xenobiotic-degrading variants of the strain hosting the biodegradation pathway. The very metabolic problem thus somehow seems to stimulate the exploration of the solution space. Our data is fully consistent with the notion that stress caused by faulty dioxygenation of DNT accelerates the rate of bacterial evolution.
Collapse
Affiliation(s)
- Danilo Pérez-Pantoja
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Pablo I. Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Max Chavarría
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
43
|
Nikel PI, Chavarría M, Martínez-García E, Taylor AC, de Lorenzo V. Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in Pseudomonas putida KT2440. Microb Cell Fact 2013; 12:50. [PMID: 23687963 PMCID: PMC3673903 DOI: 10.1186/1475-2859-12-50] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/15/2013] [Indexed: 11/25/2022] Open
Abstract
Background Accumulation of inorganic polyphosphate (polyP), a persistent trait throughout the whole Tree of Life, is claimed to play a fundamental role in enduring environmental insults in a large variety of microorganisms. The share of polyP in the tolerance of the soil bacterium Pseudomonas putida KT2440 to a suite of physicochemical stresses has been studied on the background of its capacity as a host of oxidative biotransformations. Results Cells lacking polyphosphate kinase (Ppk), which expectedly presented a low intracellular polyP level, were more sensitive to a number of harsh external conditions such as ultraviolet irradiation, addition of β-lactam antibiotics and heavy metals (Cd2+ and Cu2+). Other phenotypes related to a high-energy phosphate load (e.g., swimming) were substantially weakened as well. Furthermore, the ppk mutant was consistently less tolerant to solvents and its survival in stationary phase was significantly affected. In contrast, the major metabolic routes were not significantly influenced by the loss of Ppk as diagnosed from respiration patterns of the mutant in phenotypic microarrays. However, the catalytic vigour of the mutant decreased to about 50% of that in the wild-type strain as estimated from the specific growth rate of cells carrying the catabolic TOL plasmid pWW0 for m-xylene biodegradation. The catalytic phenotype of the mutant was restored by over-expressing ppk in trans. Some of these deficits could be explained by the effect of the ppk mutation on the expression profile of the rpoS gene, the stationary phase sigma factor, which was revealed by the analysis of a PrpoS → rpoS‘-’lacZ translational fusion. Still, every stress-related effect of lacking Ppk in P. putida was relatively moderate as compared to some of the conspicuous phenotypes reported for other bacteria. Conclusions While polyP can be involved in a myriad of cellular functions, the polymer seems to play a relatively secondary role in the genetic and biochemical networks that ultimately enable P. putida to endure environmental stresses. Instead, the main value of polyP could be ensuring a reservoire of energy during prolonged starvation. This is perhaps one of the reasons for polyP persistence in live systems despite its apparent lack of essentiality.
Collapse
Affiliation(s)
- Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
44
|
Leys D, Adrian L, Smidt H. Organohalide respiration: microbes breathing chlorinated molecules. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120316. [PMID: 23479746 DOI: 10.1098/rstb.2012.0316] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial respiration has taken advantage of almost every redox couple present in the environment. The reduction of organohalide compounds to release the reduced halide ion drives energy production in organohalide respiring bacteria. This process is centred around the reductive dehalogenases, an iron-sulfur and corrinoid containing family of enzymes. These enzymes, transcriptional regulators and the bacteria themselves have potential to contribute to future bioremediation solutions that address the pollution of the environment by halogenated organic compounds.
Collapse
Affiliation(s)
- David Leys
- Manchester Institute of Biotechnology, University of Manchester, MIB 131 Princess Street, Manchester, UK.
| | | | | |
Collapse
|