1
|
Pittet L, Marinček P, Kosiński P, Wagner ND, Hörandl E. Hybrid zones in the European Alps impact the phylogeography of alpine vicariant willow species ( Salix L.). FRONTIERS IN PLANT SCIENCE 2025; 16:1507275. [PMID: 40182553 PMCID: PMC11966204 DOI: 10.3389/fpls.2025.1507275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
Introduction In the European Alps, Pleistocene climate oscillations resulted in geographical range expansions and restrictions of species. Postglacial recolonizations often result in secondary contact hybridization of vicariant species, thereby creating hybrid zones with patterns of introgression. Here, we compare the genetic structure of two secondary contact hybrid zones between two vicariant willow species pairs occurring in the European Alpine System. Supplemented by morphological and ecological data, we try to understand the factors shaping the hybrid zones and their influence on geographical range filling patterns. Methods RAD sequencing and morphometric data were used to characterize biogeographical history, genetic diversity and the hybrid zone of each species pair. Vegetation relevés and species distribution models provided ecological context and support. Key results Results suggest that recolonization of the Alps happened from peripheral glacial refugia, resulting in broad secondary contact zones in the Eastern Alps in both species pairs. Both hybrid zones show introgression, but differ in symmetry and intensity of gene flow, in the type of introgressed loci, and in the geographical range. Habitat preferences and species distribution models do not indicate ecological barriers to recolonization. Conclusions Hybrid zones do not only affect the genetic structure of species by gene flow and introgression, but also appear to impact the biogeographical patterns of species.
Collapse
Affiliation(s)
- Loïc Pittet
- Department of Systematics, Biodiversity, and Evolution of Plants (with Herbarium), University of Göttingen, Göttingen, Germany
- Georg-August University School of Science (GAUSS), University of Göttingen, Göttingen, Germany
| | - Pia Marinček
- Department of Systematics, Biodiversity, and Evolution of Plants (with Herbarium), University of Göttingen, Göttingen, Germany
| | - Piotr Kosiński
- Faculty of Agronomy, Horticulture and Biotechnology, University of Life Sciences, Poznań, Poland
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Natascha D. Wagner
- Department of Systematics, Biodiversity, and Evolution of Plants (with Herbarium), University of Göttingen, Göttingen, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity, and Evolution of Plants (with Herbarium), University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Konowalik K, Tomasello S, Urbaniak J. Genetic Diversity and Ecogeographical Niche Overlap Among Hybridising Ox-Eye Daisies (Leucanthemum, Asteraceae) in the Carpathian Mountains: The Impact of Anthropogenic Disturbances. Mol Ecol 2025; 34:e17581. [PMID: 39501404 DOI: 10.1111/mec.17581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/24/2024]
Abstract
Climate change and human influence are transforming mountain ecosystems, significantly impacting species distributions and biodiversity. Among these changes, the upward migration of lowland species into mountain regions stands out. This study examines the ecogeographical niche overlap and genetic diversity among three Leucanthemum species distributed along an altitudinal gradient in the Carpathian Mountains: the lowland L. ircutianum (4x), the montane L. rotundifolium (2x) and the alpine L. gaudinii (2x). By genotyping over 600 individuals using SNP analysis, followed by principal coordinate analysis (PCoA), Neighbour-Net Network and Structure clustering, we reveal not just distinct genetic groups but also hybridisation across all species, suggesting the potential for triple hybrids. Genetic admixture is further supported by environmental background and niche overlap analyses that reveal substantial overlap among species, particularly in line with their vertical distribution. Climate envelope plots indicate a likely reduction in available habitat for mountainous species due to climate change, leading to an increase in competition and an intensification of hybridisation. Anthropogenic influences are further intensifying these hybridisation trends. Among the studied species, L. gaudinii is most at risk of overwhelming hybridisation, whereas L. ircutianum may experience habitat expansion. By providing a comprehensive genetic and ecological overview, our research highlights the significance of hybridisation in biodiversity conservation and the challenges posed by environmental changes and anthropogenic activities in mountain environments. This study not only contributes to the understanding of genetic diversity in the Carpathians but also underscores the broader implications for molecular ecology and conservation strategies in mountain ecosystems.
Collapse
Affiliation(s)
- Kamil Konowalik
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| | - Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (With Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Jacek Urbaniak
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
3
|
Mimura M, Tang Z, Shigenobu S, Yamaguchi K, Yahara T. Genomic Introgression in the Hybrid zones at the Margins of the Species' Range Between Ecologically Distinct Rubus Species. Ecol Evol 2024; 14:e70476. [PMID: 39575144 PMCID: PMC11581777 DOI: 10.1002/ece3.70476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/24/2024] Open
Abstract
Populations in extreme environments at the margins of a species' range are often the most vulnerable to climate change, but they may also experience novel evolutionary processes, such as secondary contact and hybridization with their relatives. The range overlap resulting from secondary contact with related species that have adapted to different climatic zones may act as corridors for adaptive introgression. To test this hypothesis, we examined the hybrid zones along the altitude of two closely related Rubus species, one temperate and the other subtropical species, at their southern and northern limits on Yakushima Island, Japan. Genomic cline analysis revealed non-neutral introgression throughout the genome in both directions in the two species. Some of these genomic regions involve gene ontology terms related to the regulation of several biological processes. Our niche modeling suggests that, assuming niche conservatism, the temperate species are likely to lose their suitable habitat, and the backcrossed hybrids with the subtropical species are already expanding upslope on the island. Adaptive introgression through the hybrid zone may contribute to the persistence and expansion of the species in the southernmost and northernmost populations.
Collapse
Affiliation(s)
| | | | - Shuji Shigenobu
- Trans‐Omics FacilityNational Institute of Basic BiologyOkazakiJapan
| | | | | |
Collapse
|
4
|
Nevado B, Chapman MA, Brennan AC, Clark JW, Wong ELY, Batstone T, McCarthy SA, Tracey A, Torrance J, Sims Y, Abbott RJ, Filatov D, Hiscock SJ. Genomic changes and stabilization following homoploid hybrid speciation of the Oxford ragwort Senecio squalidus. Curr Biol 2024; 34:4412-4423.e5. [PMID: 39260362 DOI: 10.1016/j.cub.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Oxford ragwort (Senecio squalidus) is one of only two homoploid hybrid species known to have originated very recently, so it is a unique model for determining genomic changes and stabilization following homoploid hybrid speciation. Here, we provide a chromosome-level genome assembly of S. squalidus with 95% of the assembly contained in the 10 longest scaffolds, corresponding to its haploid chromosome number. We annotated 30,249 protein-coding genes and estimated that ∼62% of the genome consists of repetitive elements. We then characterized genome-wide patterns of linkage disequilibrium, polymorphism, and divergence in S. squalidus and its two parental species, finding that (1) linkage disequilibrium is highly heterogeneous, with a region on chromosome 4 showing increased values across all three species but especially in S. squalidus; (2) regions harboring genetic incompatibilities between the two parental species tend to be large, show reduced recombination, and have lower polymorphism in S. squalidus; (3) the two parental species have an unequal contribution (70:30) to the genome of S. squalidus, with long blocks of parent-specific ancestry supporting a very rapid stabilization of the hybrid lineage after hybrid formation; and (4) genomic regions with major parent ancestry exhibit an overrepresentation of loci with evidence for divergent selection occurring between the two parental species on Mount Etna. Our results show that both genetic incompatibilities and natural selection play a role in determining genome-wide reorganization following hybrid speciation and that patterns associated with homoploid hybrid speciation-typically seen in much older systems-can evolve very quickly following hybridization.
Collapse
Affiliation(s)
- Bruno Nevado
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; cE3c, Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal.
| | - Mark A Chapman
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Adrian C Brennan
- Biosciences Department, University of Durham, Durham DH1 3LE, UK
| | - James W Clark
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Edgar L Y Wong
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Tom Batstone
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | | | - Alan Tracey
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | | | - Ying Sims
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK
| | - Dmitry Filatov
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon J Hiscock
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; University of Oxford Botanic Garden and Arboretum, Rose Lane, Oxford OX1 4AZ, UK
| |
Collapse
|
5
|
Franzoni J, Astuti G, Peruzzi L. Weak Genetic Isolation and Putative Phenotypic Selection in the Wild Carnation Dianthus virgineus (Caryophyllaceae). BIOLOGY 2023; 12:1355. [PMID: 37887065 PMCID: PMC10604185 DOI: 10.3390/biology12101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
By relating genetic divergence at neutral loci, phenotypic variation, and geographic and environmental distances, it is possible to dissect micro-evolutionary scenarios involving natural selection and neutral evolution. In this work, we tested the patterns of intraspecific genetic and phenotypic variation along an elevational gradient, using Dianthus virgineus as study system. We genotyped genome-wide SNPs through ddRAD sequencing and quantified phenotypic variation through multivariate morphological variation. We assessed patterns of variation by testing the statistical association between genetic, phenotypic, geographic, and elevational distances and explored the role of genetic drift and selection by comparing the Fst and Pst of morphometric traits. We revealed a weak genetic structure related to geographic distance among populations, but we excluded the predominant role of genetic drift acting on phenotypic traits. A high degree of phenotypic differentiation with respect to genetic divergence at neutral loci allowed us to hypothesize the effect of selection, putatively fuelled by changing conditions at different sites, on morphological traits. Thus, natural selection acting despite low genetic divergence at neutral loci can be hypothesized as a putative driver explaining the observed patterns of variation.
Collapse
Affiliation(s)
- Jacopo Franzoni
- PLANTSEED Lab, Department of Biology, University of Pisa, 56127 Pisa, Italy;
| | - Giovanni Astuti
- Botanic Garden and Museum, University of Pisa, 56126 Pisa, Italy;
| | - Lorenzo Peruzzi
- PLANTSEED Lab, Department of Biology, University of Pisa, 56127 Pisa, Italy;
| |
Collapse
|
6
|
Carscadden KA, Doak DF, Oldfather MF, Emery NC. Demographic responses of hybridizing cinquefoils to changing climate in the Colorado Rocky Mountains. Ecol Evol 2023; 13:e10097. [PMID: 37449020 PMCID: PMC10336340 DOI: 10.1002/ece3.10097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
Hybridization between taxa generates new pools of genetic variation that can lead to different environmental responses and demographic trajectories over time than seen in parental lineages. The potential for hybrids to have novel environmental tolerances may be increasingly important in mountainous regions, which are rapidly warming and drying due to climate change. Demographic analysis makes it possible to quantify within- and among-species responses to variation in climate and to predict population growth rates as those conditions change. We estimated vital rates and population growth in 13 natural populations of two cinquefoil taxa (Potentilla hippiana and P. pulcherrima) and their hybrid across elevation gradients in the Southern Rockies. Using three consecutive years of environmental and demographic data, we compared the demographic responses of hybrid and parental taxa to environmental variation across space and time. All three taxa had lower predicted population growth rates under warm, dry conditions. However, the magnitude of these responses varied among taxa and populations. Hybrids had consistently lower predicted population growth rates than P. hippiana. In contrast, hybrid performance relative to P. pulcherrima varied with population and climate, with the hybrid maintaining relatively stable growth rates while populations of P. pulcherrima shrank under warm, dry conditions. Our findings demonstrate that hybrids in this system are neither intrinsically unfit nor universally more vigorous than parents, suggesting that the demographic consequences of hybridization are context-dependent. Our results also imply that shifts to warmer and drier conditions could have particularly negative repercussions for P. pulcherrima, which is currently the most abundant taxon in the study area, possibly as a legacy of more favorable historical climates. More broadly, the distributions of these long-lived taxa are lagging behind their demographic trajectories, such that the currently less common P. hippiana could become the most abundant of the Potentilla taxa as this region continues to warm and dry.
Collapse
Affiliation(s)
- Kelly A. Carscadden
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Daniel F. Doak
- Department of Environmental StudiesUniversity of Colorado BoulderBoulderColoradoUSA
| | - Meagan F. Oldfather
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Nancy C. Emery
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
7
|
Grossfurthner LP, Milano ER, Hohenlohe PA, Waits LP, Richardson BA. Population structure and hybridization under contemporary and future climates in a heteroploid foundational shrub species ( Artemisia tridentata). FRONTIERS IN PLANT SCIENCE 2023; 14:1155868. [PMID: 37284723 PMCID: PMC10239881 DOI: 10.3389/fpls.2023.1155868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/20/2023] [Indexed: 06/08/2023]
Abstract
Current and past climatic changes can shift plant climatic niches, which may cause spatial overlap or separation between related taxa. The former often leads to hybridization and introgression, which may generate novel variation and influence the adaptive capacity of plants. An additional mechanism facilitating adaptations to novel environments and an important evolutionary driver in plants is polyploidy as the result of whole genome duplication. Artemisia tridentata (big sagebrush) is a landscape-dominating foundational shrub in the western United States which occupies distinct ecological niches, exhibiting diploid and tetraploid cytotypes. Tetraploids have a large impact on the species' landscape dominance as they occupy a preponderance of the arid spectrum of A. tridentata range. Three distinct subspecies are recognized, which co-occur in ecotones - the transition zone between two or more distinct ecological niches - allowing for hybridization and introgression. Here we assess the genomic distinctiveness and extent of hybridization among subspecies at different ploidies under both contemporary and predicted future climates. We sampled five transects throughout the western United States where a subspecies overlap was predicted using subspecies-specific climate niche models. Along each transect, we sampled multiple plots representing the parental and the potential hybrid habitats. We performed reduced representation sequencing and processed the data using a ploidy-informed genotyping approach. Population genomic analyses revealed distinct diploid subspecies and at least two distinct tetraploid gene pools, indicating independent origins of the tetraploid populations. We detected low levels of hybridization (2.5%) between the diploid subspecies, while we found evidence for increased admixture between ploidy levels (18%), indicating hybridization has an important role in the formation of tetraploids. Our analyses highlight the importance of subspecies co-occurrence within these ecotones to maintain gene exchange and potential formation of tetraploid populations. Genomic confirmations of subspecies in the ecotones support the subspecies overlap predicted by the contemporary climate niche models. However, future mid-century projections of subspecies niches predict a substantial loss in range and subspecies overlap. Thus, reductions in hybridization potential could affect new recruitment of genetically variable tetraploids that are vital to this species' ecological role. Our results underscore the importance of ecotone conservation and restoration.
Collapse
Affiliation(s)
- Lukas P. Grossfurthner
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Elizabeth R. Milano
- Rocky Mountain Research Station, United States Department of Agriculture (USDA) Forest Service, Moscow, ID, United States
| | - Paul A. Hohenlohe
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Lisette P. Waits
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, United States
| | - Bryce A. Richardson
- Rocky Mountain Research Station, United States Department of Agriculture (USDA) Forest Service, Moscow, ID, United States
| |
Collapse
|
8
|
Ye LJ, Möller M, Luo YH, Zou JY, Zheng W, Liu J, Li DZ, Gao LM. Variation in gene expression along an elevation gradient of Rhododendron sanguineum var. haemaleum assessed in a comparative transcriptomic analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1133065. [PMID: 37025136 PMCID: PMC10070981 DOI: 10.3389/fpls.2023.1133065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Selection along environmental gradients may play a vital role in driving adaptive evolution. Nevertheless, genomic variation and genetic adaptation along environmental clines remains largely unknown in plants in alpine ecosystems. To close this knowledge gap, we assayed transcriptomic profiles of late flower bud and early leaf bud of Rhododendron sanguineum var. haemaleum from four different elevational belts between 3,000 m and 3,800 m in the Gaoligong Mountains. By comparing differences in gene expression of these samples, a gene co-expression network (WGCNA) was constructed to identify candidate genes related to elevation. We found that the overall gene expression patterns are organ-specific for the flower and leaf. Differentially expressed unigenes were identified in these organs. In flowers, these were mainly related to terpenoid metabolism (RsHMGR, RsTPS), while in leaves mainly related to anthocyanin biosynthesis (RsCHS, RsF3'5'H). Terpenoids are the main components of flower scent (fragrance) likely attracting insects for pollination. In response to fewer pollinators at higher elevation zone, it seems relatively less scent is produced in flower organs to reduce energy consumption. Secondary metabolites in leaves such as anthocyanins determine the plants' alternative adaptive strategy to extreme environments, such as selective pressures of insect herbivory from environmental changes and substrate competition in biosynthesis pathways at high elevations. Our findings indicated that the gene expression profiles generated from flower and leaf organs showed parallel expression shifts but with different functionality, suggesting the existence of flexibility in response strategies of plants exposed to heterogeneous environments across elevational gradients. The genes identified here are likely to be involved in the adaptation of the plants to these varying mountainous environments. This study thus contributes to our understanding of the molecular mechanisms of adaptation in response to environmental change.
Collapse
Affiliation(s)
- Lin-Jiang Ye
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Key Laboratory of Plant Resources and Biodiversity of Jiangxi Province, Jingdezhen University, Jingdezhen, Jiangxi, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Michael Möller
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan, China
| | - Jia-Yun Zou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wei Zheng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan, China
| |
Collapse
|
9
|
Wong ELY, Nevado B, Hiscock SJ, Filatov DA. Rapid evolution of hybrid breakdown following recent divergence with gene flow in Senecio species on Mount Etna, Sicily. Heredity (Edinb) 2023; 130:40-52. [PMID: 36494489 PMCID: PMC9814926 DOI: 10.1038/s41437-022-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
How do nascent species evolve reproductive isolation during speciation with on-going gene flow? How do hybrid lineages become stabilised hybrid species? While commonly used genomic approaches provide an indirect way to identify species incompatibility factors, synthetic hybrids generated from interspecific crosses allow direct pinpointing of phenotypic traits involved in incompatibilities and the traits that are potentially adaptive in hybrid species. Here we report the analysis of phenotypic variation and hybrid breakdown in crosses between closely-related Senecio aethnensis and S. chrysanthemifolius, and their homoploid hybrid species, S. squalidus. The two former species represent a likely case of recent (<200 ky) speciation with gene flow driven by adaptation to contrasting conditions of high- and low-elevations on Mount Etna, Sicily. As these species form viable and fertile hybrids, it remains unclear whether they have started to evolve reproductive incompatibility. Our analysis represents the first study of phenotypic variation and hybrid breakdown involving multiple Senecio hybrid families. It revealed wide range of variation in multiple traits, including the traits previously unrecorded in synthetic hybrids. Leaf shape, highly distinct between S. aethnensis and S. chrysanthemifolius, was extremely variable in F2 hybrids, but more consistent in S. squalidus. Our study demonstrates that interspecific incompatibilities can evolve rapidly despite on-going gene flow between the species. Further work is necessary to understand the genetic bases of these incompatibilities and their role in speciation with gene flow.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,grid.507705.0Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Bruno Nevado
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,grid.9983.b0000 0001 2181 4263Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal
| | - Simon J. Hiscock
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,Oxford Botanic Garden and Arboretum, Oxford, UK
| | - Dmitry A. Filatov
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Bhargav VV, Freeland JR, Dorken ME. Evidence of hybrid breakdown among invasive hybrid cattails (Typha × glauca). Heredity (Edinb) 2022; 129:195-201. [PMID: 35933492 PMCID: PMC9411187 DOI: 10.1038/s41437-022-00557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Interspecific hybridization has varied consequences for offspring fitness, with implications for the maintenance of species integrity. Hybrid vigour, when it occurs, can peak in first-generation (F1) hybrids and then decline in advanced-generation (F2+) hybrids. This hybrid breakdown, together with the processes affecting patterns of hybridization and hybrid fitness, determine the evolutionary stability of hybrid zones. An extensive hybrid zone in North America involving the cattails Typha latifolia, T. angustifolia, and their invasive hybrid T. × glauca is characterized by hybrid vigour among F1s, but the fitness of advanced-generation hybrids has not been studied. We compared seed germination and plant growth of T. latifolia (parental L), F1 T. × glauca (F1), hybrid backcrosses to T. angustifolia (bcA) and T. latifolia (bcL), and advanced-generation (F2) hybrids. Consistent with expectations under hybrid breakdown, we found reduced plant growth for F2 hybrids in comparison with F1s (plant height and above-ground biomass) and parental Ls (above-ground biomass). Backcrossed hybrids had intermediate measures of plant growth and bcLs were characterized by reduced seed germination in comparison with parental Ls. Hybrid breakdown could make the formation of F1s in North America finite because (1) hybridization among cattails is asymmetric, with T. angustifolia but not T. latifolia subject to genetic swamping, and (2) T. angustifolia is less common and subject to competitive displacement by F1s. Hybrid breakdown is therefore expected to reduce hybrid frequencies over time, contributing to the long-term maintenance of T. latifolia - the only native cattail in the study region.
Collapse
Affiliation(s)
- V Vikram Bhargav
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Joanna R Freeland
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Marcel E Dorken
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
11
|
Tang X, Li J, Liu L, Jing H, Zuo W, Zeng Y. Transcriptome Analysis Provides Insights into Potentilla bifurca Adaptation to High Altitude. Life (Basel) 2022; 12:life12091337. [PMID: 36143374 PMCID: PMC9503701 DOI: 10.3390/life12091337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Potentilla bifurca is widely distributed in Eurasia, including the Tibetan Plateau. It is a valuable medicinal plant in the Tibetan traditional medicine system, especially for the treatment of diabetes. This study investigated the functional gene profile of Potentilla bifurca at different altitudes by RNA-sequencing technology, including de novo assembly of 222,619 unigenes from 405 million clean reads, 57.64% of which were annotated in Nr, GO, KEGG, Pfam, and Swiss-Prot databases. The most significantly differentially expressed top 50 genes in the high-altitude samples were derived from plants that responded to abiotic stress, such as peroxidase, superoxide dismutase protein, and the ubiquitin-conjugating enzyme. Pathway analysis revealed that a large number of DEGs encode key enzymes involved in secondary metabolites, including phenylpropane and flavonoids. In addition, a total of 298 potential genomic SSRs were identified in this study, which provides information on the development of functional molecular markers for genetic diversity assessment. In conclusion, this study provides the first comprehensive assessment of the Potentilla bifurca transcriptome. This provides new insights into coping mechanisms for non-model organisms surviving in harsh environments at high altitudes, as well as molecular evidence for the selection of superior medicinal plants.
Collapse
Affiliation(s)
- Xun Tang
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinping Li
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Likuan Liu
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Hui Jing
- Qinghai Agricultural Technology Extension Station, Xining 810007, China
| | - Wenming Zuo
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Yang Zeng
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- Correspondence:
| |
Collapse
|
12
|
Wu Z, Wang Z, Xie D, Zhang J, Cai P, Li X, Xu X, Li T, Zhao J. Extensive Sympatry and Frequent Hybridization of Ecologically Divergent Aquatic Plants on the Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:851151. [PMID: 35646042 PMCID: PMC9135455 DOI: 10.3389/fpls.2022.851151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Hybridization has fascinated biologists in recent centuries for its evolutionary importance, especially in plants. Hybrid zones are commonly located in regions across environmental gradients due to more opportunities to contact and ecological heterogeneity. For aquatic taxa, intrazonal character makes broad overlapping regions in intermediate environments between related species. However, we have limited information on the hybridization pattern of aquatic taxa in alpines, especially submerged macrophytes. In this study, we aimed to test the hypotheses that niche overlap and hybridization might be extensive in related aquatic plants across an altitudinal gradient. We evaluated the niche overlap in three related species pairs on the Qinghai-Tibetan Plateau and assessed the spatial pattern of hybrid populations. Obvious niche overlap and common hybridization were revealed in all three pairs of related aquatic plants. The plateau edge and river basins were broad areas for the sympatry of divergent taxa, where a large proportion of hybrid populations occurred. Hybrids are also discretely distributed in diverse habitats on the plateau. Differences in the extent of niche overlap, genetic incompatibility and phylogeographic history might lead to variation differences in hybridization patterns among the three species pairs. Our results suggested that plateau areas are a hotspot for ecologically divergent aquatic species to contact and mate and implied that hybridization may be important for the freshwater biodiversity of highlands.
Collapse
Affiliation(s)
- Zhigang Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhong Wang
- Department of Ecology, College of Life Science, Wuhan University, Wuhan, China
| | - Dong Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- National Wetland Ecosystem Field Station of Taihu Lake, National Forestry Administration, Suzhou, China
| | - Juan Zhang
- Department of Ecology, College of Life Science, Wuhan University, Wuhan, China
| | - Pengsen Cai
- Department of Ecology, College of Life Science, Wuhan University, Wuhan, China
| | - Xing Li
- Department of Ecology, College of Life Science, Wuhan University, Wuhan, China
| | - Xinwei Xu
- Department of Ecology, College of Life Science, Wuhan University, Wuhan, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jindong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
13
|
Do habitat and elevation promote hybridization during secondary contact between three genetically distinct groups of warbling vireo (Vireo gilvus)? Heredity (Edinb) 2022; 128:352-363. [PMID: 35396350 PMCID: PMC9076831 DOI: 10.1038/s41437-022-00529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Abstract
Following postglacial expansion, secondary contact can occur between genetically distinct lineages. These genetic lineages may be associated with specific habitat or environmental variables and therefore, their distributions in secondary contact could reflect such conditions within these areas. Here we used mtDNA, microsatellite, and morphological data to study three genetically distinct groups of warbling vireo (Vireo gilvus) and investigate the role that elevation and habitat play in their distributions. We studied two main contact zones and within each contact zone, we examined two separate transects. Across the Great Plains contact zone, we found that hybridization between eastern and western groups occurs along a habitat and elevational gradient, whereas hybridization across the Rocky Mountain contact zone was not as closely associated with habitat or elevation. Hybrids in the Great Plains contact zone were more common in transitional areas between deciduous and mixed-wood forests, and at lower elevations (<1000 m). Hybridization patterns were similar along both Great Plains transects indicating that habitat and elevation play a role in hybridization between distinct eastern and western genetic groups. The observed patterns suggest adaptation to different habitats, perhaps originating during isolation in multiple Pleistocene refugia, is facilitating hybridization in areas where habitat types overlap.
Collapse
|
14
|
Hörandl E. Novel Approaches for Species Concepts and Delimitation in Polyploids and Hybrids. PLANTS (BASEL, SWITZERLAND) 2022; 11:204. [PMID: 35050093 PMCID: PMC8781807 DOI: 10.3390/plants11020204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 05/08/2023]
Abstract
Hybridization and polyploidization are important processes for plant evolution. However, classification of hybrid or polyploid species has been notoriously difficult because of the complexity of processes and different evolutionary scenarios that do not fit with classical species concepts. Polyploid complexes are formed via combinations of allopolyploidy, autopolyploidy and homoploid hybridization with persisting sexual reproduction, resulting in many discrete lineages that have been classified as species. Polyploid complexes with facultative apomixis result in complicated net-work like clusters, or rarely in agamospecies. Various case studies illustrate the problems that apply to traditional species concepts to hybrids and polyploids. Conceptual progress can be made if lineage formation is accepted as an inevitable consequence of meiotic sex, which is established already in the first eukaryotes as a DNA restoration tool. The turnaround of the viewpoint that sex forms species as lineages helps to overcome traditional thinking of species as "units". Lineage formation and self-sustainability is the prerequisite for speciation and can also be applied to hybrids and polyploids. Species delimitation is aided by the improved recognition of lineages via various novel -omics methods, by understanding meiosis functions, and by recognizing functional phenotypes by considering morphological-physiological-ecological adaptations.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|
15
|
Wong ELY, Hiscock SJ, Filatov DA. The Role of Interspecific Hybridisation in Adaptation and Speciation: Insights From Studies in Senecio. FRONTIERS IN PLANT SCIENCE 2022; 13:907363. [PMID: 35812981 PMCID: PMC9260247 DOI: 10.3389/fpls.2022.907363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/03/2022] [Indexed: 05/08/2023]
Abstract
Hybridisation is well documented in many species, especially plants. Although hybrid populations might be short-lived and do not evolve into new lineages, hybridisaiton could lead to evolutionary novelty, promoting adaptation and speciation. The genus Senecio (Asteraceae) has been actively used to unravel the role of hybridisation in adaptation and speciation. In this article, we first briefly describe the process of hybridisation and the state of hybridisation research over the years. We then discuss various roles of hybridisation in plant adaptation and speciation illustrated with examples from different Senecio species, but also mention other groups of organisms whenever necessary. In particular, we focus on the genomic and transcriptomic consequences of hybridisation, as well as the ecological and physiological aspects from the hybrids' point of view. Overall, this article aims to showcase the roles of hybridisation in speciation and adaptation, and the research potential of Senecio, which is part of the ecologically and economically important family, Asteraceae.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- *Correspondence: Edgar L. Y. Wong,
| | - Simon J. Hiscock
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Oxford Botanic Garden and Arboretum, Oxford, United Kingdom
| | - Dmitry A. Filatov
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Bemmels JB, Mikkelsen EK, Haddrath O, Colbourne RM, Robertson HA, Weir JT. Demographic decline and lineage-specific adaptations characterize New Zealand kiwi. Proc Biol Sci 2021; 288:20212362. [PMID: 34905706 PMCID: PMC8670953 DOI: 10.1098/rspb.2021.2362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022] Open
Abstract
Small and fragmented populations may become rapidly differentiated due to genetic drift, making it difficult to distinguish whether neutral genetic structure is a signature of recent demographic events, or of long-term evolutionary processes that could have allowed populations to adaptively diverge. We sequenced 52 whole genomes to examine Holocene demographic history and patterns of adaptation in kiwi (Apteryx), and recovered 11 strongly differentiated genetic clusters corresponding to previously recognized lineages. Demographic models suggest that all 11 lineages experienced dramatic population crashes relative to early- or mid-Holocene levels. Small population size is associated with low genetic diversity and elevated genetic differentiation (FST), suggesting that population declines have strengthened genetic structure and led to the loss of genetic diversity. However, population size is not correlated with inbreeding rates. Eight lineages show signatures of lineage-specific selective sweeps (284 sweeps total) that are unlikely to have been caused by demographic stochasticity. Overall, these results suggest that despite strong genetic drift associated with recent bottlenecks, most kiwi lineages possess unique adaptations and should be recognized as separate adaptive units in conservation contexts. Our work highlights how whole-genome datasets can address longstanding uncertainty about the evolutionary and conservation significance of small and fragmented populations of threatened species.
Collapse
Affiliation(s)
- Jordan B. Bemmels
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada ON M1C 1A4
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada ON M5S 3B2
| | - Else K. Mikkelsen
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada ON M1C 1A4
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada ON M5S 3B2
| | - Oliver Haddrath
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada ON M5S 3B2
- Department of Natural History, Royal Ontario Museum, Toronto, Canada ON M5S 2C6
| | | | | | - Jason T. Weir
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada ON M1C 1A4
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada ON M5S 3B2
- Department of Natural History, Royal Ontario Museum, Toronto, Canada ON M5S 2C6
| |
Collapse
|
17
|
Zheng W, Yan LJ, Burgess KS, Luo YH, Zou JY, Qin HT, Wang JH, Gao LM. Natural hybridization among three Rhododendron species (Ericaceae) revealed by morphological and genomic evidence. BMC PLANT BIOLOGY 2021; 21:529. [PMID: 34763662 PMCID: PMC8582147 DOI: 10.1186/s12870-021-03312-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/02/2021] [Indexed: 06/08/2023]
Abstract
BACKGROUND Natural hybridization can influence the adaptive response to selection and accelerate species diversification. Understanding the composition and structure of hybrid zones may elucidate patterns of hybridization processes that are important to the formation and maintenance of species, especially for taxa that have experienced rapidly adaptive radiation. Here, we used morphological traits, ddRAD-seq and plastid DNA sequence data to investigate the structure of a Rhododendron hybrid zone and uncover the hybridization patterns among three sympatric and closely related species. RESULTS Our results show that the hybrid zone is complex, where bi-directional hybridization takes place among the three sympatric parental species: R. spinuliferum, R. scabrifolium, and R. spiciferum. Hybrids between R. spinuliferum and R. spiciferum (R. ×duclouxii) comprise multiple hybrid classes and a high proportion of F1 generation hybrids, while a novel hybrid taxon between R. spinuliferum and R. scabrifolium dominated the F2 generation, but no backcross individuals were detected. The hybrid zone showed basically coincident patterns of population structure between genomic and morphological data. CONCLUSIONS Natural hybridization exists among the three Rhododendron species in the hybrid zone, although patterns of hybrid formation vary between hybrid taxa, which may result in different evolutionary outcomes. This study represents a unique opportunity to dissect the ecological and evolutionary mechanisms associated with adaptive radiation of Rhododendron species in a biodiversity hotspot.
Collapse
Affiliation(s)
- Wei Zheng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Li-Jun Yan
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
- College of Vocational and Technical Education, Yunnan Normal University, 650092, Kunming, Yunnan, China
| | - Kevin S Burgess
- Department of Biology, Columbus State University, University System of Georgia, 31907-5645, Columbus, GA, USA
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Jia-Yun Zou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Han-Tao Qin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, 10049, Beijing, China
| | - Ji-Hua Wang
- The Flower Research Institute, Yunnan Academy of Agricultural Sciences, 650205, Kunming, China.
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China.
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, 674100, Lijiang, Yunnan, China.
| |
Collapse
|
18
|
Ghimire P, Dahal N, Karna AK, Karki S, Lamichhaney S. Exploring potentialities of avian genomic research in Nepalese Himalayas. AVIAN RESEARCH 2021; 12:57. [PMID: 34745641 PMCID: PMC8556808 DOI: 10.1186/s40657-021-00290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Nepal, a small landlocked country in South Asia, holds about 800 km of Himalayan Mountain range including the Earth's highest mountain. Within such a mountain range in the north and plain lowlands in the south, Nepal provides a habitat for about 9% of global avian fauna. However, this diversity is underrated because of the lack of enough studies, especially using molecular tools to quantify and understand the distribution patterns of diversity. In this study, we reviewed the studies in the last two decades (2000‒2019) that used molecular methods to study the biodiversity in Nepal to examine the ongoing research trend and focus. Although Nepalese Himalaya has many opportunities for cutting-edge molecular research, our results indicated that the rate of genetic/genomic studies is much slower compared to the regional trends. We found that genetic research in Nepal heavily relies on resources from international institutes and that too is mostly limited to research on species monitoring, distribution, and taxonomic validations. Local infrastructures to carry out cutting-edge genomic research in Nepal are still in their infancy and there is a strong need for support from national/international scientists, universities, and governmental agencies to expand such genomic infrastructures in Nepal. We particularly highlight avian fauna as a potential future study system in this region that can be an excellent resource to explore key biological questions such as understanding eco-physiology and molecular basis of organismal persistence to changing environment, evolutionary processes underlying divergence and speciation, or mechanisms of endemism and restrictive distribution of species. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40657-021-00290-5.
Collapse
Affiliation(s)
- Prashant Ghimire
- Department of Biological Sciences, Kent State University, Kent, OH USA
| | - Nishma Dahal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP India
| | - Ajit K. Karna
- Center for Health and Disease Studies-Nepal, Kathmandu, Nepal
- Institute of Agriculture and Animal Sciences, Tribhuvan University, Kathmandu, Nepal
| | - Surendra Karki
- Emergency Centre for Transboundary Animal Diseases, Food & Agricultural Organization of the UN, Kathmandu, Nepal
| | - Sangeet Lamichhaney
- Department of Biological Sciences, Kent State University, Kent, OH USA
- School of Biomedical Sciences, Kent State University, Kent, OH USA
| |
Collapse
|
19
|
Bersweden L, Viruel J, Schatz B, Harland J, Gargiulo R, Cowan RS, Calevo J, Juan A, Clarkson JJ, Leitch AR, Fay MF. Microsatellites and petal morphology reveal new patterns of admixture in Orchis hybrid zones. AMERICAN JOURNAL OF BOTANY 2021; 108:1388-1404. [PMID: 34418070 DOI: 10.1002/ajb2.1710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 05/23/2023]
Abstract
PREMISE The genetic structure of hybrid zones provides insight into the potential for gene flow to occur between plant taxa. Four closely related European orchid species (Orchis anthropophora, O. militaris, O. purpurea, and O. simia) hybridize when they co-occur. We aimed to characterize patterns of hybridization in O. militaris-O. purpurea, O. purpurea-O. simia, and O. anthropophora-O. simia hybrid zones using molecular and morphological data. METHODS We used 11 newly isolated nuclear microsatellites to genotype 695 individuals collected from seven hybrid zones and six allopatric parental populations in France. Geometric morphometric analysis was conducted using 15 labellum landmarks to capture the main aspects of petal shape. RESULTS Backcrossing was asymmetric toward O. militaris in multiple O. militaris-O. purpurea hybrid zones. Hybrids in O. purpurea-O. simia and O. anthropophora-O. simia hybrid zones were largely limited to F1 and F2 generations, but further admixture had occurred. These patterns were reflected in labellum geometric morphometric data, which correlated strongly with nuclear microsatellite data in all three species combinations. CONCLUSIONS The coexistence of parental and admixed individuals in these Orchis hybrid zones implies they are likely to be tension zones being maintained by a balance between gene flow into the hybrid zone and selection acting against admixed individuals. The pattern of admixture in the three species combinations suggests intrinsic selection acting on the hybrids is weaker in more closely related taxa.
Collapse
Affiliation(s)
- Leif Bersweden
- Jodrell Laboratory, Royal Botanic Gardens, Kew TW9 3DS, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Juan Viruel
- Jodrell Laboratory, Royal Botanic Gardens, Kew TW9 3DS, UK
| | - Bertrand Schatz
- Centre for Ecology and Evolution, University of Montpellier, Montpellier 34090, France
| | - Joanna Harland
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | - Robyn S Cowan
- Jodrell Laboratory, Royal Botanic Gardens, Kew TW9 3DS, UK
| | - Jacopo Calevo
- Department of Life Sciences and Systems Biology, University of Turin, Turin 10125, Italy
| | - Ana Juan
- Department of Environmental Sciences & Natural Resources, University of Alicante, San Vicente, Alicante 03690, Spain
| | | | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Michael F Fay
- Jodrell Laboratory, Royal Botanic Gardens, Kew TW9 3DS, UK
- School of Plant Biology, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
20
|
Wambulwa MC, Milne R, Wu Z, Spicer RA, Provan J, Luo Y, Zhu G, Wang W, Wang H, Gao L, Li D, Liu J. Spatiotemporal maintenance of flora in the Himalaya biodiversity hotspot: Current knowledge and future perspectives. Ecol Evol 2021; 11:10794-10812. [PMID: 34429882 PMCID: PMC8366862 DOI: 10.1002/ece3.7906] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
Mountain ecosystems support a significant one-third of all terrestrial biodiversity, but our understanding of the spatiotemporal maintenance of this high biodiversity remains poor, or at best controversial. The Himalaya hosts a complex mountain ecosystem with high topographic and climatic heterogeneity and harbors one of the world's richest floras. The high species endemism, together with increasing anthropogenic threats, has qualified the Himalaya as one of the most significant global biodiversity hotspots. The topographic and climatic complexity of the Himalaya makes it an ideal natural laboratory for studying the mechanisms of floral exchange, diversification, and spatiotemporal distributions. Here, we review literature pertaining to the Himalaya in order to generate a concise synthesis of the origin, distribution, and climate change responses of the Himalayan flora. We found that the Himalaya supports a rich biodiversity and that the Hengduan Mountains supplied the majority of the Himalayan floral elements, which subsequently diversified from the late Miocene onward, to create today's relatively high endemicity in the Himalaya. Further, we uncover links between this Miocene diversification and the joint effect of geological and climatic upheavals in the Himalaya. There is marked variance regarding species dispersal, elevational gradients, and impact of climate change among plant species in the Himalaya, and our review highlights some of the general trends and recent advances on these aspects. Finally, we provide some recommendations for conservation planning and future research. Our work could be useful in guiding future research in this important ecosystem and will also provide new insights into the maintenance mechanisms underpinning other mountain systems.
Collapse
Affiliation(s)
- Moses C. Wambulwa
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Department of Life SciencesSchool of Pure and Applied SciencesSouth Eastern Kenya UniversityKituiKenya
| | - Richard Milne
- Institute of Molecular Plant SciencesSchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Zeng‐Yuan Wu
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Robert A. Spicer
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesXishuangbannaChina
- School of Environment, Earth and Ecosystem SciencesThe Open UniversityMilton KeynesUK
| | - Jim Provan
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Ya‐Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Guang‐Fu Zhu
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of the Chinese Academy of SciencesBeijingChina
- Kunming College of Life SciencesUniversity of Chinese Academy of SciencesKunmingChina
| | - Wan‐Ting Wang
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of the Chinese Academy of SciencesBeijingChina
- Kunming College of Life SciencesUniversity of Chinese Academy of SciencesKunmingChina
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Lian‐Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - De‐Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Kunming College of Life SciencesUniversity of Chinese Academy of SciencesKunmingChina
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingChina
| |
Collapse
|
21
|
The Evolutionary History, Diversity, and Ecology of Willows (Salix L.) in the European Alps. DIVERSITY-BASEL 2021. [DOI: 10.3390/d13040146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The genus Salix (willows), with 33 species, represents the most diverse genus of woody plants in the European Alps. Many species dominate subalpine and alpine types of vegetation. Despite a long history of research on willows, the evolutionary and ecological factors for this species richness are poorly known. Here we will review recent progress in research on phylogenetic relationships, evolution, ecology, and speciation in alpine willows. Phylogenomic reconstructions suggest multiple colonization of the Alps, probably from the late Miocene onward, and reject hypotheses of a single radiation. Relatives occur in the Arctic and in temperate Eurasia. Most species are widespread in the European mountain systems or in the European lowlands. Within the Alps, species differ ecologically according to different elevational zones and habitat preferences. Homoploid hybridization is a frequent process in willows and happens mostly after climatic fluctuations and secondary contact. Breakdown of the ecological crossing barriers of species is followed by introgressive hybridization. Polyploidy is an important speciation mechanism, as 40% of species are polyploid, including the four endemic species of the Alps. Phylogenomic data suggest an allopolyploid origin for all taxa analyzed so far. Further studies are needed to specifically analyze biogeographical history, character evolution, and genome evolution of polyploids.
Collapse
|
22
|
Fabritzek AG, Griebeler EM, Kadereit JW. Hybridization, ecogeographical displacement and the emergence of new lineages - A genotyping-by-sequencing and ecological niche and species distribution modelling study of Sempervivum tectorum L. (Houseleek). J Evol Biol 2021; 34:830-844. [PMID: 33714223 DOI: 10.1111/jeb.13784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022]
Abstract
Ecogeographical displacement of homoploid hybrid lineages from their parents is well documented and considered an important mechanism to achieve reproductive isolation. In this study, we investigated the origin of the flowering plant species Sempervivum tectorum in the Massif Central (France) through homoploid hybridization between lineages of the species from the Rhine Gorge area (Germany) and the Pyrenees (France). We used genotyping-by-sequencing genetic data as evidence for the hybrid origin of the Massif Central lineage, and WorldClim climatic data and soil pH and soil temperature data collected by us for ecological niche and species distribution modelling. We could show that the Massif Central lineage shows hybrid admixture and that the niche of this lineage is significantly different from those of the parental lineages. In comparison with the parental niches, different variables of the niche of the hybrid lineage are intermediate, parental-combined or extreme. The different niche of the Massif Central populations thus can plausibly be interpreted as hybridization-derived. Our species distribution modelling for the Last Glacial Maximum and Mid-Holocene showed that the potential distribution of the hybrid lineage at the likely time of its origin in the Quaternary possibly was parapatric in relation to the largely sympatric distributions of the parental lineages. We hypothesize that reproductive isolation of the hybrid lineage from the parental lineages resulted from the segregation of distribution ranges by a differential response of the three lineages to a warming climate.
Collapse
Affiliation(s)
- Armin G Fabritzek
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Eva Maria Griebeler
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Joachim W Kadereit
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| |
Collapse
|
23
|
Pfennig KS. Biased Hybridization and Its Impact on Adaptive Introgression. Trends Ecol Evol 2021; 36:488-497. [PMID: 33752896 DOI: 10.1016/j.tree.2021.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Gene exchange between species can influence ecological and evolutionary processes ranging from population rescue to adaptive radiation. Genomic tools have provided new insights into the prevalence and nature of gene exchange between species. However, much remains unknown of how ecological, behavioral, and evolutionary factors determine what genetic variation moves between species in the first place. In particular, more research is needed that evaluates whether such factors bias gene flow from one species to another, and whether any such biases affect how genetic variation from another species is ultimately retained in the genome of a given species. Addressing this issue is crucial in a changing world where hybridization and introgression might determine which species succeed and which become extinct.
Collapse
Affiliation(s)
- Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
24
|
Fu PC, Twyford AD, Sun SS, Wang HY, Xia MZ, Tan CX, Zhou XJ, Chen SL. Recurrent hybridization underlies the evolution of novelty in Gentiana (Gentianaceae) in the Qinghai-Tibetan Plateau. AOB PLANTS 2021; 13:plaa068. [PMID: 33510891 PMCID: PMC7821390 DOI: 10.1093/aobpla/plaa068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/30/2020] [Indexed: 05/31/2023]
Abstract
The Qinghai-Tibetan Plateau (QTP) and adjacent areas are centres of diversity for several alpine groups. Although it is known that the QTP acted as a source area for diversification of the alpine genus Gentiana, the evolutionary processes underlying diversity in this genus, especially the formation of narrow endemics, are still poorly understood. Hybridization has been proposed as a driver of plant endemism in the QTP but few cases have been documented with genetic data. Here, we describe a new endemic species in Gentiana section Cruciata as G. hoae sp. nov., and explore its evolutionary history with complete plastid genomes and nuclear ribosomal internal transcribed spacer sequence data. Genetic divergence within G. hoae ~3 million years ago was followed by postglacial expansion on the QTP, suggesting Pleistocene glaciations as a key factor shaping the population history of G. hoae. Furthermore, a mismatch between plastid and nuclear data suggest that G. hoae participated in historical hybridization, while population sequencing show this species continues to hybridize with the co-occurring congener G. straminea in three locations. Our results indicate that hybridization may be a common process in the evolution of Gentiana and may be widespread among recently diverged taxa of the QTP.
Collapse
Affiliation(s)
- Peng-Cheng Fu
- School of Life Science, Luoyang Normal University, Luoyang, P.R. China
| | - Alex D Twyford
- Ashworth Laboratories, Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, UK
| | - Shan-Shan Sun
- School of Life Science, Luoyang Normal University, Luoyang, P.R. China
| | - Hong-Yu Wang
- School of Life Science, Luoyang Normal University, Luoyang, P.R. China
| | - Ming-Ze Xia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Cheng-Xi Tan
- School of Life Science, Luoyang Normal University, Luoyang, P.R. China
| | - Xiao-Jun Zhou
- School of Life Science, Luoyang Normal University, Luoyang, P.R. China
| | - Shi-Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P.R. China
| |
Collapse
|
25
|
Arida BL, Scopece G, Machado RM, Moraes AP, Forni-Martins E, Pinheiro F. Reproductive barriers and fertility of two neotropical orchid species and their natural hybrid. Evol Ecol 2021. [DOI: 10.1007/s10682-020-10095-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Nevado B, Harris SA, Beaumont MA, Hiscock SJ. Rapid homoploid hybrid speciation in British gardens: The origin of Oxford ragwort (
Senecio squalidus
). Mol Ecol 2020; 29:4221-4233. [DOI: 10.1111/mec.15630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Bruno Nevado
- Department of Plant Sciences University of Oxford Oxford UK
| | | | | | - Simon J. Hiscock
- Department of Plant Sciences University of Oxford Oxford UK
- Oxford Botanic Garden and Arboretum Oxford UK
| |
Collapse
|
27
|
Hamilton K, Goulet CT, Drummond EM, Senior AF, Schroder M, Gardner MG, While GM, Chapple DG. Decline in lizard species diversity, abundance and ectoparasite load across an elevational gradient in the Australian alps. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katelyn Hamilton
- School of Biological Sciences Monash University Clayton VictoriaAustralia
| | - Celine T. Goulet
- School of Biological Sciences Monash University Clayton VictoriaAustralia
| | - Emily M. Drummond
- School of Biological Sciences Monash University Clayton VictoriaAustralia
| | - Anna F. Senior
- School of Biological Sciences Monash University Clayton VictoriaAustralia
| | - Mellesa Schroder
- NSW National Parks and Wildlife Service Southern Range Branch Jindabyne New South WalesAustralia
| | - Michael G. Gardner
- College of Science and Engineering Flinders University Bedford Park South AustraliaAustralia
- Evolutionary Biology Unit South Australian Museum North Terrace Adelaide South AustraliaAustralia
| | - Geoffrey M. While
- School of Biological Sciences University of Tasmania Hobart Tasmania Australia
| | - David G. Chapple
- School of Biological Sciences Monash University Clayton VictoriaAustralia
| |
Collapse
|
28
|
Marin S, Gibert A, Archambeau J, Bonhomme V, Lascoste M, Pujol B. Potential adaptive divergence between subspecies and populations of snapdragon plants inferred from Q ST -F ST comparisons. Mol Ecol 2020; 29:3010-3021. [PMID: 32652730 PMCID: PMC7540467 DOI: 10.1111/mec.15546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
Abstract
Phenotypic divergence among natural populations can be explained by natural selection or by neutral processes such as drift. Many examples in the literature compare putatively neutral (FST ) and quantitative genetic (QST ) differentiation in multiple populations to assess their evolutionary signature and identify candidate traits involved with local adaptation. Investigating these signatures in closely related or recently diversified species has the potential to shed light on the divergence processes acting at the interspecific level. Here, we conducted this comparison in two subspecies of snapdragon plants (eight populations of Antirrhinum majus pseudomajus and five populations of A. m. striatum) in a common garden experiment. We also tested whether altitude was involved with population phenotypic divergence. Our results identified candidate phenological and morphological traits involved with local adaptation. Most of these traits were identified in one subspecies but not the other. Phenotypic divergence increased with altitude for a few biomass-related traits, but only in A. m. striatum. These traits therefore potentially reflect A. m. striatum adaptation to altitude. Our findings imply that adaptive processes potentially differ at the scale of A. majus subspecies.
Collapse
Affiliation(s)
- Sara Marin
- PSL Université Paris, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France.,Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, Toulouse, France
| | - Anaïs Gibert
- PSL Université Paris, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | | | - Vincent Bonhomme
- Institut des Sciences de l'Évolution (ISEM), Montpellier Cedex, France
| | - Mylène Lascoste
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, Toulouse, France
| | - Benoit Pujol
- PSL Université Paris, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France.,Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, Toulouse, France
| |
Collapse
|
29
|
Šmíd J, Douda J, Krak K, Mandák B. Analyses of Hybrid Viability across a Hybrid Zone between Two Alnus Species Using Microsatellites and cpDNA Markers. Genes (Basel) 2020; 11:E770. [PMID: 32659930 PMCID: PMC7397206 DOI: 10.3390/genes11070770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/09/2023] Open
Abstract
Diploid Alnus glutinosa s. str. and autotetraploid A. rohlenae form a narrow hybrid zone in a study area in southern Serbia, which results in triploid hybrid formation. The vast majority of previous studies have been focused on studies of maternal plants, but the offspring resulting from their crossing have not been much studied. Here, we use the variability of microsatellites and chloroplast DNA between these species and their putative hybrids to create an overall picture of the development of the hybrid zone and its predicted type. To elucidate the gene transfer within both species, the origins of individual ploidies and especially the role of triploid hybrids, a germination experiment was carried out linked with a flow cytometry study of the resulting seedlings. The tension zone model seems to offer the most adequate explanation of our observations, with selection against triploid hybrids and the spatial positioning of the hybrid zone. Despite selection against them, the triploid hybrids play an important role in the exchange of genes between the two species and therefore serve as a bridge for introgression. The presence of fertile triploids is essential for enriching the haplotype diversity between these species and for the development of new genetic lineages.
Collapse
Affiliation(s)
- Jan Šmíd
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic; (J.Š.); (J.D.); (K.K.)
| | - Jan Douda
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic; (J.Š.); (J.D.); (K.K.)
| | - Karol Krak
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic; (J.Š.); (J.D.); (K.K.)
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Bohumil Mandák
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic; (J.Š.); (J.D.); (K.K.)
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| |
Collapse
|
30
|
Mimura M, Suga M. Ambiguous species boundaries: Hybridization and morphological variation in two closely related Rubus species along altitudinal gradients. Ecol Evol 2020; 10:7476-7486. [PMID: 32760542 PMCID: PMC7391560 DOI: 10.1002/ece3.6473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 11/23/2022] Open
Abstract
Although hybridization frequently occurs among plant species, hybrid zones of divergent lineages formed at species boundaries are less common and may not be apparent in later generations of hybrids with more parental-like phenotypes, as a consequence of backcrossing. To determine the effects of dispersal and selection on species boundaries, we compared clines in leaf traits and molecular hybrid index along two hybrid zones on Yakushima Island, Japan, in which a temperate (Rubus palmatus) and subtropical (Rubus grayanus) species of wild raspberry are found. Leaf sinus depth in the two hybrid zones had narrower clines at 600 m a.s.l. than the molecular hybrid index and common garden tests confirmed that some leaf traits, including leaf sinus depth that is a major trait used in species identification, are genetically divergent between these closely related species. The sharp transition in leaf phenotypic traits compared to molecular markers indicated divergent selection pressure on the hybrid zone structure. We suggest that species boundaries based on neutral molecular data may differ from those based on observed morphological traits.
Collapse
Affiliation(s)
- Makiko Mimura
- Department of BiologyGraduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan
| | - Mihoko Suga
- Graduate School of AgricultureTamagawa UniversityTokyoJapan
- Present address:
Sacred Heart SchoolTokyoJapan
| |
Collapse
|
31
|
Ball JW, Robinson TP, Wardell-Johnson GW, Bovill J, Byrne M, Nevill PG. Fine-scale species distribution modelling and genotyping by sequencing to examine hybridisation between two narrow endemic plant species. Sci Rep 2020; 10:1562. [PMID: 32005887 PMCID: PMC6994521 DOI: 10.1038/s41598-020-58525-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
Hybridization has an important and often positive role in plant evolution. However, it can also have negative consequences for species. Two closely related species of Ornduffia are endemic to the Porongurup Range in the South West Australian Global Biodiversity Hotspot. The rare Ornduffia calthifolia is found exclusively on the summits, while O. marchantii is more widely dispersed across a greater range of elevation and is not considered threatened. Hybridisation in suitable overlapping habitat has been suspected between them for decades. Here we combine genotyping by sequencing to verify hybridisation genetically, and fine scale (2 m resolution) species distribution modelling (SDM) to test if hybrids occur in suitable intersecting habitat. From a study area of c. 4700 ha, SDM identified c. 275 ha and c. 322 ha of suitable habitat for O. calthifolia and O. marchantii, respectively. We identified range overlap between species of c. 59 ha), which enveloped 32 individuals confirmed to be hybrids. While the hybrids were at the margin of suitable habitat for O. marchantii, their preference for elevated habitat was closer to the more narrowly distributed O. calthifolia. The combination of genetic data and fine scale spatial modelling approaches enabled a better understanding of hybridisation among taxa of conservation significance. However, the level to which hybrid proliferation and competition for habitat presents as a threat to O. calthifolia is currently unknown and requires priority in conservation management given the threats from global warming and disturbance by tourism.
Collapse
Affiliation(s)
- J W Ball
- School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.,ARC Centre for Mine Site Restoration and School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - T P Robinson
- School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - G W Wardell-Johnson
- ARC Centre for Mine Site Restoration and School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - J Bovill
- Centre for Australian National Biodiversity Research, National Research Collections Australia, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - M Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Perth, WA, 6983, Australia.,School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - P G Nevill
- ARC Centre for Mine Site Restoration and School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| |
Collapse
|
32
|
Maier PA, Vandergast AG, Ostoja SM, Aguilar A, Bohonak AJ. Pleistocene glacial cycles drove lineage diversification and fusion in the Yosemite toad (
Anaxyrus canorus
). Evolution 2019; 73:2476-2496. [DOI: 10.1111/evo.13868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/18/2019] [Accepted: 10/14/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Paul A. Maier
- Department of BiologySan Diego State University 5500 Campanile Dr. San Diego CA 92182
- FamilyTreeDNA Gene by Gene, 1445 N Loop W Houston TX 77008
| | - Amy G. Vandergast
- U.S. Geological Survey, Western Ecological Research CenterSan Diego Field Station 4165 Spruance Road, Suite 200 San Diego CA 92101
| | - Steven M. Ostoja
- USDA California Climate Hub, Agricultural Research Service, John Muir Institute of the EnvironmentUniversity of California, Davis 1 Shields Ave. Davis CA 95616
| | - Andres Aguilar
- Department of Biological SciencesCalifornia State University, Los Angeles 5151 State University Dr Los Angeles CA 90032
| | - Andrew J. Bohonak
- Department of BiologySan Diego State University 5500 Campanile Dr. San Diego CA 92182
| |
Collapse
|
33
|
Mäder G, Freitas LB. Biogeographical, ecological, and phylogenetic analyses clarifying the evolutionary history of Calibrachoa in South American grasslands. Mol Phylogenet Evol 2019; 141:106614. [PMID: 31518694 DOI: 10.1016/j.ympev.2019.106614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 11/29/2022]
Abstract
Calibrachoa is a charismatic South American genus of Solanaceae, closely related to Petunia, which encompasses approximately 30 species. Studies that were based solely on plastid molecular markers indicated the monophyly of the genus and distributed its species in two subgenera; to date no phylogeny has included a broad morphological variants and nuclear markers. Here, we present a phylogenetic analysis based on eight plastid and eight nuclear markers that cover the most extensive geographic distribution for the genus. We use this phylogeny to infer the biogeographic history of the genus and to understand the primary drivers for species diversification. Our results yield a fully supported tree where monophyly is confirmed to genus and subgenera. The species of Stimomphis subgenus that were previously considered uncertain, here emerge in four highly supported clades. The hypothesis of niche conservatism is confirmed, and adaptive radiation explains the species diversification. The lowlands are the most likely ancestral area of the genus, subgenera, and two clades of Stimomphis subgenus. Our results constitute an excellent starting point for further evolutionary and taxonomic studies and explain several uncertain evolutionary relationships in the group and the evolution of their distribution.
Collapse
Affiliation(s)
- Geraldo Mäder
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Loreta B Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil.
| |
Collapse
|
34
|
Burge DO, Parker VT, Mulligan M, Sork VL. Influence of a climatic gradient on genetic exchange between two oak species. AMERICAN JOURNAL OF BOTANY 2019; 106:864-878. [PMID: 31216071 DOI: 10.1002/ajb2.1315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
PREMISE In plant groups with limited intrinsic barriers to gene flow, it is thought that environmental conditions can modulate interspecific genetic exchange. Oaks are known for limited barriers to gene flow among closely related species. Here, we use Quercus as a living laboratory in which to pursue a fundamental question in plant evolution: Do environmental gradients restrict or promote genetic exchange between species? METHODS We focused on two North American oaks, the rare Quercus dumosa and the widespread Q. berberidifolia. We sampled intensively along a contact zone in California, USA. We sequenced restriction site-associated DNA markers and measured vegetative phenotype. We tested for genetic exchange, the association with climate, and the effect on phenotype. RESULTS There is evidence for genetic exchange between the species. Admixed plants are found in areas of intermediate climate, while less admixed plants are found at the extremes of the climatic gradient. Genetic and phenotypic patterns are out of phase in the contact zone; some plants display the phenotype of one species but are genetically associated with another. CONCLUSIONS Our results support the hypothesis that a strong climatic gradient can promote genetic exchange between species. The overall weak correlation between genotype and phenotype in the contact zone between the species suggests that genetic exchange can lead to the breakdown of trait combinations used to define species. This incongruency predicts ongoing problems for conservation of Q. dumosa, with implications for conservation of other oaks.
Collapse
Affiliation(s)
- Dylan O Burge
- Department of Ecology and Evolutionary Biology, University of California, Box 957239, Los Angeles, California, 90095-7239, USA
- 554 Vallombrosa Avenue, P.O. Box 418, Chico, California, 95927, USA
| | - V Thomas Parker
- San Francisco State University, 1600 Holloway Avenue, San Francisco, California, 94132, USA
| | - Margaret Mulligan
- San Diego Natural History Museum, Balboa Park, 1788 El Prado, San Diego, California, 92101, USA
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Box 957239, Los Angeles, California, 90095-7239, USA
| |
Collapse
|
35
|
Yan LJ, Burgess KS, Zheng W, Tao ZB, Li DZ, Gao LM. Incomplete reproductive isolation between Rhododendron taxa enables hybrid formation and persistence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:433-448. [PMID: 30192058 DOI: 10.1111/jipb.12718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
The evolutionary consequences of hybridization ultimately depend on the magnitude of reproductive isolation between hybrids and their parents. We evaluated the relative contributions of pre- and post-zygotic barriers to reproduction for hybrid formation, hybrid persistence and potential for reproductive isolation of hybrids formed between two Rhododendron species, R. spiciferum and R. spinuliferum. Our study established that incomplete reproductive isolation promotes hybrid formation and persistence and delays hybrid speciation. All pre-zygotic barriers to reproduction leading to hybrid formation are incomplete: parental species have overlapping flowering; they share the same pollinators; reciprocal assessments of pollen tube germination and growth do not differ among parents. The absence of post-zygotic barriers between parental taxa indicates that the persistence of hybrids is likely. Reproductive isolation was incomplete between hybrids and parents in all cases studied, although asymmetric differences in reproductive fitness were prevalent and possibly explain the genetic structure of natural hybrid swarms where hybridization is known to be bidirectional but asymmetric. Introgression, rather than speciation, is a probable evolutionary outcome of hybridization between the two Rhododendron taxa. Our study provides insights into understanding the evolutionary implications of natural hybridization in woody plants.
Collapse
Affiliation(s)
- Li-Jun Yan
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650201, China
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Kevin S Burgess
- Department of Biology, College of Letters & Sciences, Columbus State University, University System of Georgia, 31907-5645 Columbus, GA, USA
| | - Wei Zheng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650201, China
| | - Zhi-Bin Tao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650201, China
| | - De-Zhu Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650201, China
| | - Lian-Ming Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
36
|
Gao YD, Gao XF, Harris A. Species Boundaries and Parapatric Speciation in the Complex of Alpine Shrubs, Rosa sericea (Rosaceae), Based on Population Genetics and Ecological Tolerances. FRONTIERS IN PLANT SCIENCE 2019; 10:321. [PMID: 30936888 PMCID: PMC6432857 DOI: 10.3389/fpls.2019.00321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/27/2019] [Indexed: 06/01/2023]
Abstract
Discerning species boundaries among closely related taxa is fundamental to studying evolution and biodiversity. However, species boundaries can be difficult to access in plants because ongoing divergence and speciation may leave an evolutionary footprint similar to introgression, which occurs frequently among species and genera. In this study, we sought to determine species boundaries between two closely related alpine shrubs, Rosa sericea and Rosa omeiensis, using population genetics, environmental data and ecological niche modeling, and morphological traits. We analyzed populations of R. sericea and R. omeiensis using genetic markers comprising a fragment of the single-copy nuclear gene, LEAFY, micro-satellites (EST-SSR), and plastid DNA sequences. The DNA sequence data suggested clusters of populations consistent with geography but not with previously proposed species boundaries based on morphology. Nevertheless, we found that the ecological niches of the previously proposed species only partially overlap. Thus, we suspect that these species are in the process of parapatric speciation; that is, differentiating along an ecological gradient, so that they exhibit differing morphology. Morphology has previously been the basis of recognizing the species R. sericea and R. omeiensis, which are the most widely distributed species within a broader R. sericea complex that includes several other narrow endemics. Here, we recognize R. sericea and R. omeiensis as independent species based on morphological and ecological data under the unified species concept, which emphasizes that these data types are of equal value to DNA for determining species boundaries and refining taxonomic treatments. While the DNA data did not delimit species within the R. sericea complex, we expect to develop and utilize new, robust DNA tools for understanding speciation within this group in future studies.
Collapse
Affiliation(s)
- Yun-Dong Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xin-Fen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Aj Harris
- Oberlin College and Conservatory, Department of Biology, Oberlin, OH, United States
| |
Collapse
|
37
|
Ma X, Hu W, Smilauer P, Yin M, Wolinska J. Daphnia galeata
and D. dentifera
are geographically and ecologically separated whereas their hybrids occur in intermediate habitats: A survey of 44 Chinese lakes. Mol Ecol 2019; 28:785-802. [DOI: 10.1111/mec.14991] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/21/2018] [Accepted: 12/14/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaolin Ma
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science; Fudan University; Shanghai China
| | - Wei Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science; Fudan University; Shanghai China
| | - Petr Smilauer
- Department of Ecosystem Biology, Faculty of Science; University of South Bohemia; Ceske Budejovice Czech Republic
| | - Mingbo Yin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science; Fudan University; Shanghai China
| | - Justyna Wolinska
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries; Berlin Germany
- Department of Biology, Chemistry, Institute of Biology; Freie Universität Berlin; Berlin Germany
| |
Collapse
|
38
|
Luquet E, Rödin Mörch P, Cortázar‐Chinarro M, Meyer‐Lucht Y, Höglund J, Laurila A. Post‐glacial colonization routes coincide with a life‐history breakpoint along a latitudinal gradient. J Evol Biol 2019; 32:356-368. [DOI: 10.1111/jeb.13419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Emilien Luquet
- Univ LyonUniversité Claude Bernard Lyon 1CNRSENTPEUMR5023 LEHNA Villeurbanne France
| | - Patrik Rödin Mörch
- Animal Ecology/Department of Ecology and GeneticsEvolutionary Biology CentreUppsala University Uppsala Sweden
| | - Maria Cortázar‐Chinarro
- Animal Ecology/Department of Ecology and GeneticsEvolutionary Biology CentreUppsala University Uppsala Sweden
| | - Yvonne Meyer‐Lucht
- Animal Ecology/Department of Ecology and GeneticsEvolutionary Biology CentreUppsala University Uppsala Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and GeneticsEvolutionary Biology CentreUppsala University Uppsala Sweden
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and GeneticsEvolutionary Biology CentreUppsala University Uppsala Sweden
| |
Collapse
|
39
|
Xia M, Tian Z, Zhang F, Khan G, Gao Q, Xing R, Zhang Y, Yu J, Chen S. Deep Intraspecific Divergence in the Endemic Herb Lancea tibetica (Mazaceae) Distributed Over the Qinghai-Tibetan Plateau. Front Genet 2018; 9:492. [PMID: 30429869 PMCID: PMC6220444 DOI: 10.3389/fgene.2018.00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/03/2018] [Indexed: 11/18/2022] Open
Abstract
Qinghai-Tibetan Plateau (QTP) is an important biodiversity hub, which is very sensitive to climate change. Here in this study, we investigated genetic diversity and past population dynamics of Lancea tibetica (Mazaceae), an endemic herb to QTP and adjacent highlands. We sequenced chloroplast and nuclear ribosomal DNA fragments for 429 individuals, collected from 29 localities, covering their major distribution range at the QTP. A total of 19 chloroplast haplotypes and 13 nuclear genotypes in two well-differentiated lineages, corresponding to populations into two groups isolated by Tanggula and Bayangela Mountains. Meanwhile, significant phylogeographical structure was detected among sampling range of L. tibetica, and 61.50% of genetic variations was partitioned between groups. Gene flow across the whole region appears to be restricted by high mountains, suggesting a significant role of geography in the genetic differences between the two groups. Divergence time between the two lineages dated to 8.63 million years ago, which corresponded to the uplifting of QTP during the late Miocene and Pliocene. Ecological differences were found between both the lineages represent species-specific characteristics, sufficient to keep the lineages separated to a high degree. The simulated distribution from the last interglacial period to the current period showed that the distribution of L. tibetica experienced shrinkage and expansion. Climate changes during the Pleistocene glacial-interglacial cycles had a dramatic effect on L. tibetica distribution ranges. Multiple refugia of L. tibetica might have remained during the species history, to south of the Tanggula and north of Bayangela Mountains, both appeared as topological barrier and contributed to restricting gene flow between the two lineages. Together, geographic isolation and climatic factors have played a fundamental role in promoting diversification and evolution of L. tibetica.
Collapse
Affiliation(s)
- Mingze Xia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zunzhe Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Faqi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, China
| | - Gulzar Khan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qingbo Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Rui Xing
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Yu Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jingya Yu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, China
| |
Collapse
|
40
|
Simon A, Bierne N, Welch JJ. Coadapted genomes and selection on hybrids: Fisher's geometric model explains a variety of empirical patterns. Evol Lett 2018; 2:472-498. [PMID: 30283696 PMCID: PMC6145440 DOI: 10.1002/evl3.66] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
Natural selection plays a variety of roles in hybridization, speciation, and admixture. Most research has focused on two extreme cases: crosses between closely related inbred lines, where hybrids are fitter than their parents, or crosses between effectively isolated species, where hybrids suffer severe breakdown. But many natural populations must fall into intermediate regimes, with multiple types of gene interaction, and these are more difficult to study. Here, we develop a simple fitness landscape model, and show that it naturally interpolates between previous modeling approaches, which were designed for the extreme cases, and invoke either mildly deleterious recessives, or discrete hybrid incompatibilities. Our model yields several new predictions, which we test with genomic data from Mytilus mussels, and published data from plants (Zea, Populus, and Senecio) and animals (Mus, Teleogryllus, and Drosophila). The predictions are generally supported, and the model explains a number of surprising empirical patterns. Our approach enables novel and complementary uses of genome-wide datasets, which do not depend on identifying outlier loci, or "speciation genes" with anomalous effects. Given its simplicity and flexibility, and its predictive successes with a wide range of data, the approach should be readily extendable to other outstanding questions in the study of hybridization.
Collapse
Affiliation(s)
- Alexis Simon
- Institut des Sciences de l'Évolution UMR5554, Université de MontpellierCNRS‐IRD‐EPHE‐UMFrance
- Department of GeneticsUniversity of CambridgeDowning St. CambridgeCB23EHUnited Kingdom
| | - Nicolas Bierne
- Institut des Sciences de l'Évolution UMR5554, Université de MontpellierCNRS‐IRD‐EPHE‐UMFrance
- Department of GeneticsUniversity of CambridgeDowning St. CambridgeCB23EHUnited Kingdom
| | - John J. Welch
- Department of GeneticsUniversity of CambridgeDowning St. CambridgeCB23EHUnited Kingdom
| |
Collapse
|
41
|
Riesch R, Martin RA, Diamond SE, Jourdan J, Plath M, Brian Langerhans R. Thermal regime drives a latitudinal gradient in morphology and life history in a livebearing fish. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rüdiger Riesch
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - R Brian Langerhans
- Department of Biological Sciences & W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
42
|
Yang J, Zhou S, Huang D, He X. Phylogeography of two closely related species of Allium endemic to East Asia: Population evolution in response to climate oscillations. Ecol Evol 2018; 8:7986-7999. [PMID: 30250678 PMCID: PMC6145274 DOI: 10.1002/ece3.4338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 11/30/2022] Open
Abstract
This study investigated the effects of climate oscillations on the evolution of two closely related Allium species, A. neriniflorum and A. tubiflorum. We sequenced three cp DNA (cpDNA) fragments (rps16, rpl32-trnL, and trnD-trnT, together approximately 2,500 bp in length) of two closely related Allium species, with samples from 367 individuals in 47 populations distributed across the total range of these species. The interspecific and intraspecific divergence times of the two species were in the Quaternary glaciation. The population divergence was high for the cpDNA variation, suggesting a significant phylogeographic structure (NST = 0.844, GST = 0.798, p < 0.05). Remarkable ecological differentiation was also revealed by Niche models and statistical analyses. Our results suggest the speciation event of the two species was triggered by violent climatic changes during the Quaternary glaciation.
Collapse
Affiliation(s)
- Jingtian Yang
- Key Laboratory of Bio‐Resources and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Songdong Zhou
- Key Laboratory of Bio‐Resources and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Deqing Huang
- Key Laboratory of Bio‐Resources and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Xingjin He
- Key Laboratory of Bio‐Resources and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
43
|
Mixing It Up: The Role of Hybridization in Forest Management and Conservation under Climate Change. FORESTS 2017. [DOI: 10.3390/f8070237] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
|
45
|
Bog M, Bässler C, Oberprieler C. Lost in the hybridisation vortex: high-elevation Senecio hercynicus (Compositae, Senecioneae) is genetically swamped by its congener S. ovatus in the Bavarian Forest National Park (SE Germany). Evol Ecol 2017. [DOI: 10.1007/s10682-017-9890-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
46
|
Gramlich S, Hörandl E. Fitness of natural willow hybrids in a pioneer mosaic hybrid zone. Ecol Evol 2016; 6:7645-7655. [PMID: 30128118 PMCID: PMC6093150 DOI: 10.1002/ece3.2470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 01/20/2023] Open
Abstract
Hybrid fitness is an important parameter to predict the evolutionary consequences of a hybridization event and to characterize hybrid zones. We studied fitness parameters of F1 and later-generation hybrids between the lowland species Salix purpurea and the alpine S. helvetica that have recently emerged during colonization of an alpine glacier forefield. Fruit production (number of capsules per catkin and fruit set) did not differ between hybrids and parents, but the number of seeds per capsule of F1 hybrids was slightly lower than that of later-generation hybrids and of the parents. Germination rates and seedling growth were tested on three substrates (pH 4.5, 7.0, and 8.0). Germination rates of seeds collected from F1 hybrids were lower on acid and neutral substrates, but equal at pH 8.0 compared to all other groups, while the seeds from later-generation hybrids performed as well as the parents on all three substrates. In seedling growth, the colonizer S. purpurea performed better than all other taxa on all three substrates, while hybrids resembled the subalpine species S. helvetica. Results suggest that endogenous selection acts against F1 hybrids, but favors fitter genotypes in later-generation hybrids. Exogenous selection via soil pH appears to be weak during seedling establishment. The pioneer vegetation on the glacier forefield may offer sufficient niche space for hybrid seedlings. Owing to the relatively high fitness of the hybrids and the scattered distribution of hybrids and parental individuals on the glacier forefield, this hybrid zone can be assigned to a mosaic model, probably facilitating gene flow and introgression between the parental species. As establishment of the hybrid zone appears to be linked to a colonization process, we propose to call it a pioneer mosaic hybrid zone.
Collapse
Affiliation(s)
- Susanne Gramlich
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)Georg August University GöttingenGöttingenGermany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)Georg August University GöttingenGöttingenGermany
| |
Collapse
|
47
|
Genomics of Natural Populations: How Differentially Expressed Genes Shape the Evolution of Chromosomal Inversions in Drosophila pseudoobscura. Genetics 2016; 204:287-301. [PMID: 27401754 PMCID: PMC5012393 DOI: 10.1534/genetics.116.191429] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/05/2016] [Indexed: 01/13/2023] Open
Abstract
Chromosomal rearrangements can shape the structure of genetic variation in the genome directly through alteration of genes at breakpoints or indirectly by holding combinations of genetic variants together due to reduced recombination. The third chromosome of Drosophila pseudoobscura is a model system to test hypotheses about how rearrangements are established in populations because its third chromosome is polymorphic for >30 gene arrangements that were generated by a series of overlapping inversion mutations. Circumstantial evidence has suggested that these gene arrangements are selected. Despite the expected homogenizing effects of extensive gene flow, the frequencies of arrangements form gradients or clines in nature, which have been stable since the system was first described >80 years ago. Furthermore, multiple arrangements exist at appreciable frequencies across several ecological niches providing the opportunity for heterokaryotypes to form. In this study, we tested whether genes are differentially expressed among chromosome arrangements in first instar larvae, adult females and males. In addition, we asked whether transcriptional patterns in heterokaryotypes are dominant, semidominant, overdominant, or underdominant. We find evidence for a significant abundance of differentially expressed genes across the inverted regions of the third chromosome, including an enrichment of genes involved in sensory perception for males. We find the majority of loci show additivity in heterokaryotypes. Our results suggest that multiple genes have expression differences among arrangements that were either captured by the original inversion mutation or accumulated after it reached polymorphic frequencies, providing a potential source of genetic variation for selection to act upon. These data suggest that the inversions are favored because of their indirect effect of recombination suppression that has held different combinations of differentially expressed genes together in the various gene arrangement backgrounds.
Collapse
|
48
|
Brennan AC, Hiscock SJ, Abbott RJ. Genomic architecture of phenotypic divergence between two hybridizing plant species along an elevational gradient. AOB PLANTS 2016; 8:plw022. [PMID: 27083198 PMCID: PMC4887755 DOI: 10.1093/aobpla/plw022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 03/19/2016] [Indexed: 05/03/2023]
Abstract
Knowledge of the genetic basis of phenotypic divergence between species and how such divergence is caused and maintained is crucial to an understanding of speciation and the generation of biodiversity. The hybrid zone between Senecio aethnensis and S. chrysanthemifolius on Mount Etna, Sicily, provides a well-studied example of species divergence in response to conditions at different elevations, despite hybridization and gene flow. Here, we investigate the genetic architecture of divergence between these two species using a combination of quantitative trait locus (QTL) mapping and genetic differentiation measures based on genetic marker analysis. A QTL architecture characterized by physical QTL clustering, epistatic interactions between QTLs, and pleiotropy was identified, and is consistent with the presence of divergent QTL complexes resistant to gene flow. A role for divergent selection between species was indicated by significant negative associations between levels of interspecific genetic differentiation at mapped marker gene loci and map distance from QTLs and hybrid incompatibility loci. Within-species selection contributing to interspecific differentiation was evidenced by negative associations between interspecific genetic differentiation and genetic diversity within species. These results show that the two Senecio species, while subject to gene flow, maintain divergent genomic regions consistent with local selection within species and selection against hybrids between species which, in turn, contribute to the maintenance of their distinct phenotypic differences.
Collapse
Affiliation(s)
- Adrian C Brennan
- School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews, Fife KY16 9TH, UK Estación Biológica de Doñana (EBD-CSIC), Avenida Américo Vespucio s/n, 41092 Sevilla, Spain Present address: School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Simon J Hiscock
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews, Fife KY16 9TH, UK
| |
Collapse
|
49
|
Filatov DA, Osborne OG, Papadopulos AST. Demographic history of speciation in a Senecio altitudinal hybrid zone on Mt. Etna. Mol Ecol 2016; 25:2467-81. [PMID: 26994342 DOI: 10.1111/mec.13618] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 01/16/2023]
Abstract
Hybrid zones typically form as a result of species coming into secondary contact, but can also be established in situ as an ecotonal hybrid zone, a situation which has been reported far less frequently. An altitudinal hybrid zone on Mount Etna between two ragwort species (the low elevation Senecio chrysanthemifolius and high elevation S. aethnensis) could potentially represent either of these possibilities. However, a scenario of secondary contact vs. speciation with gene flow has not been explicitly tested. Here, we test these alternatives and demonstrate that the data do not support secondary contact. Furthermore, we report that the previous analyses of speciation history of these species were based on admixed populations, which has led to inflated estimates of ongoing, interspecific gene flow. Our new analyses, based on 'pure' S. aethnensis and S. chrysanthemifolius populations, reveal gene exchange of less than one effective migrant per generation, a level low enough to allow the species to accumulate neutral, genomewide differences. Overall, our results are consistent with a scenario of speciation with gene flow and a divergence time which coincides with the rise of Mt. Etna to altitudes above 2000 m (~150 KY). Further work to quantify the role of adaptation to contrasting environments of high and low altitudes will be needed to support the scenario of recent ecological speciation in this system.
Collapse
Affiliation(s)
- Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Owen G Osborne
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Alexander S T Papadopulos
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.,Royal Botanic Gardens, Kew, Richmond, TW9 3AB, UK
| |
Collapse
|
50
|
Jiang D, Feng J, Dong M, Wu G, Mao K, Liu J. Genetic origin and composition of a natural hybrid poplar Populus × jrtyschensis from two distantly related species. BMC PLANT BIOLOGY 2016; 16:89. [PMID: 27091174 PMCID: PMC4836070 DOI: 10.1186/s12870-016-0776-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/13/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND The factors that contribute to and maintain hybrid zones between distinct species are highly variable, depending on hybrid origins, frequencies and fitness. In this study, we aimed to examine genetic origins, compositions and possible maintenance of Populus × jrtyschensis, an assumed natural hybrid between two distantly related species. This hybrid poplar occurs mainly on the floodplains along the river valleys between the overlapping distributions of the two putative parents. RESULTS We collected 566 individuals from 45 typical populations of P. × jrtyschensis, P. nigra and P. laurifolia. We genotyped them based on the sequence variations of one maternally inherited chloroplast DNA (cpDNA) fragment and genetic polymorphisms at 20 SSR loci. We further sequenced eight nuclear genes for 168 individuals from 31 populations. Two groups of cpDNA haplotypes characteristic of P. nigra and P. laurifolia respectively were both recovered for P. × jrtyschensis. Genetic structures and coalescent tests of two sets of nuclear population genetic data suggested that P. × jrtyschensis originated from hybridizations between the two assumed parental species. All examined populations of P. × jrtyschensis comprise mainly F1 hybrids from interspecific hybridizations between P. nigra and P. laurifolia. In the habitats of P. × jrtyschensis, there are lower concentrations of soil nitrogen than in the habitats occupied by the other two species. CONCLUSIONS Our extensive examination of the genetic composition of P. × jrtyschensis suggested that it is typical of F1-dominated hybrid zones. This finding plus the low concentration of soil nitrogen in the floodplain soils support the F1-dominated bounded hybrid superiority hypothesis of hybrid zone maintenance for this particular hybrid poplar.
Collapse
Affiliation(s)
- Dechun Jiang
- />State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Jianju Feng
- />State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
- />College of Plant Sciences, Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarimu University, Alar, Xinjiang People’s Republic of China
| | - Miao Dong
- />State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Guili Wu
- />State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Kangshan Mao
- />State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Jianquan Liu
- />State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| |
Collapse
|