1
|
Nesse RM, Labov JB, Madhavan G. Explanations for failures in designed and evolved systems. PNAS NEXUS 2025; 4:pgaf086. [PMID: 40309464 PMCID: PMC12041745 DOI: 10.1093/pnasnexus/pgaf086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 02/28/2025] [Indexed: 05/02/2025]
Abstract
Engineers have long studied the origins of design features that make machines prone to failure, but biologists have only recently begun investigating why organisms have traits that make them susceptible to disease. This article compares explanations for vulnerability to failure in machines with explanations for traits that make bodies vulnerable to disease. Some global explanations are relevant for both: design deficiencies, corrupted plans, assembly variations, incorrect operating environment, and trade-offs. These similarities suggest that a common framework for failure analysis could be valuable. However, a closer look at each of the 10 global categories reveals fundamental differences: machines are built to match an ideal blueprint, while species have no perfect genome or form. Design trade-offs in machines involve balancing multiple factors such as performance, robustness, and costs, while biological trade-offs maximize only gene transmission, often at the expense of health and lifespan. Detailed consideration of these and other differences reveals how the metaphor of body as a designed machine fosters tacit creationism that misrepresents the nature of organically complex systems.
Collapse
Affiliation(s)
- Randolph M Nesse
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jay B Labov
- National Academy of Engineering, Washington, DC 20001, USA
| | - Guru Madhavan
- National Academy of Engineering, Washington, DC 20001, USA
| |
Collapse
|
2
|
Ponzi D, Parmigiani S, Paterlini S, Bellantoni M, Palanza P. The relevance of the evolutionary approach for understanding health and disease of the human body and mind. Neurosci Biobehav Rev 2025; 169:106009. [PMID: 39805328 DOI: 10.1016/j.neubiorev.2025.106009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Ultimate and proximate levels of analysis offer synergistic explanations can improve the search for causes of disease and their cures. Here we review how several principles of evolutionary biology such as historical contingencies, mismatches, trade-offs, sexual selection and genomic conflict are applied to problems in medicine and psychiatry. The application of evolutionary principles to many other domains of medicine, among them mental disorders, have not received the same reception from preclinical and clinical researchers. The lack of a well-coordinated interdisciplinarity may be one reason for the slow application of evolutionary principles to biomedicine and psychiatry. This is exemplified by the case of ethopharmacology, an evolutionary approach to psychopharmacology strongly proposed and applied by ethologists but apparently unknown to many evolutionary minded scholars. Another reason has to do with the lack of efforts from many medical schools to integrate evolution and its principles in their curriculum studiorum. Interestingly, this Darwinian approach is generating an important evolutionary epistemology for the study of body and human mind health and diseases.
Collapse
Affiliation(s)
- Davide Ponzi
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, viale delle Scienze 11A, Parma 43124, Italy.
| | - Stefano Parmigiani
- Department of Chemistry, Life Sciences and Environmental Sustainability, Unit of Evolutionary Biology, University of Parma, viale delle Scienze 11A, Parma 43124, Italy.
| | - Silvia Paterlini
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, viale delle Scienze 11A, Parma 43124, Italy.
| | - Mariateresa Bellantoni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, viale delle Scienze 11A, Parma 43124, Italy.
| | - Paola Palanza
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, viale delle Scienze 11A, Parma 43124, Italy.
| |
Collapse
|
3
|
Leeks A, Bono LM, Ampolini EA, Souza LS, Höfler T, Mattson CL, Dye AE, Díaz-Muñoz SL. Open questions in the social lives of viruses. J Evol Biol 2023; 36:1551-1567. [PMID: 37975507 PMCID: PMC11281779 DOI: 10.1111/jeb.14203] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 11/19/2023]
Abstract
Social interactions among viruses occur whenever multiple viral genomes infect the same cells, hosts, or populations of hosts. Viral social interactions range from cooperation to conflict, occur throughout the viral world, and affect every stage of the viral lifecycle. The ubiquity of these social interactions means that they can determine the population dynamics, evolutionary trajectory, and clinical progression of viral infections. At the same time, social interactions in viruses raise new questions for evolutionary theory, providing opportunities to test and extend existing frameworks within social evolution. Many opportunities exist at this interface: Insights into the evolution of viral social interactions have immediate implications for our understanding of the fundamental biology and clinical manifestation of viral diseases. However, these opportunities are currently limited because evolutionary biologists only rarely study social evolution in viruses. Here, we bridge this gap by (1) summarizing the ways in which viruses can interact socially, including consequences for social evolution and evolvability; (2) outlining some open questions raised by viruses that could challenge concepts within social evolution theory; and (3) providing some illustrative examples, data sources, and conceptual questions, for studying the natural history of social viruses.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, USA
| | - Lisa M. Bono
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Elizabeth A. Ampolini
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lucas S. Souza
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Thomas Höfler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Courtney L. Mattson
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, USA
| | - Anna E. Dye
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Samuel L. Díaz-Muñoz
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, USA
- Genome Center, University of California Davis, Davis, California, USA
| |
Collapse
|
4
|
Crespi B, Yang N. Three laws of teleonometrics. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
We define teleonometrics as the theoretical and empirical study of teleonomy. We propose three laws for teleonometrics. The first law describes the hierarchical organization of teleonomic functions across biological levels from genes to individuals. According to this law, the number of goal-directed functions increases from individuals (one goal, maximizing inclusive fitness) to intermediate levels and to genes and alleles (myriad time-, space- and context-dependent goals, depending upon degrees and patterns of pleiotropy). The second law describes the operation of teleonomic functions under trade-offs, coadaptations and negative and positive pleiotropies, which are universal in biological systems. According to this law, the functions of an allele, gene or trait are described and defined by patterns of antagonistic (trading off) and compatible (coadapted) functions. The third law of teleonometrics is that the major transitions in evolution are driven by the origins of novel, emergent goals associated with functional changes and by the breaking and reshaping of trade-offs, especially by mechanisms involving increases in resources or time, and new divisions of labour or function. We illustrate the application of these laws using data from three empirical vignettes, which help to show the usefulness of teleonometric viewpoints for understanding the interfaces between function, trade-offs and dysfunctions manifest as disease.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University , Burnaby, British Columbia, V5A 1S6 , Canada
| | - Nancy Yang
- Department of Biological Sciences, Simon Fraser University , Burnaby, British Columbia, V5A 1S6 , Canada
| |
Collapse
|
5
|
Simonet C, McNally L. Kin selection explains the evolution of cooperation in the gut microbiota. Proc Natl Acad Sci U S A 2021; 118:e2016046118. [PMID: 33526674 PMCID: PMC8017935 DOI: 10.1073/pnas.2016046118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Through the secretion of "public goods" molecules, microbes cooperatively exploit their habitat. This is known as a major driver of the functioning of microbial communities, including in human disease. Understanding why microbial species cooperate is therefore crucial to achieve successful microbial community management, such as microbiome manipulation. A leading explanation is that of Hamilton's inclusive-fitness framework. A cooperator can indirectly transmit its genes by helping the reproduction of an individual carrying similar genes. Therefore, all else being equal, as relatedness among individuals increases, so should cooperation. However, the predictive power of relatedness, particularly in microbes, is surrounded by controversy. Using phylogenetic comparative analyses across the full diversity of the human gut microbiota and six forms of cooperation, we find that relatedness is predictive of the cooperative gene content evolution in gut-microbe genomes. Hence, relatedness is predictive of cooperation over broad microbial taxonomic levels that encompass variation in other life-history and ecology details. This supports the generality of Hamilton's central insights and the relevance of relatedness as a key parameter of interest to advance microbial predictive and engineering science.
Collapse
Affiliation(s)
- Camille Simonet
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| | - Luke McNally
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
6
|
Heng J, Heng HH. Genome chaos: Creating new genomic information essential for cancer macroevolution. Semin Cancer Biol 2020; 81:160-175. [PMID: 33189848 DOI: 10.1016/j.semcancer.2020.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Cancer research has traditionally focused on the characterization of individual molecular mechanisms that can contribute to cancer. Due to the multiple levels of genomic and non-genomic heterogeneity, however, overwhelming molecular mechanisms have been identified, most with low clinical predictability. It is thus necessary to search for new concepts to unify these diverse mechanisms and develop better strategies to understand and treat cancer. In recent years, two-phased cancer evolution (comprised of the genome reorganization-mediated punctuated phase and gene mutation-mediated stepwise phase), initially described by tracing karyotype evolution, was confirmed by the Cancer Genome Project. In particular, genome chaos, the process of rapid and massive genome reorganization, has been commonly detected in various cancers-especially during key phase transitions, including cellular transformation, metastasis, and drug resistance-suggesting the importance of genome-level changes in cancer evolution. In this Perspective, genome chaos is used as a discussion point to illustrate new genome-mediated somatic evolutionary frameworks. By rephrasing cancer as a new system emergent from normal tissue, we present the multiple levels (or scales) of genomic and non-genomic information. Of these levels, evolutionary studies at the chromosomal level are determined to be of ultimate importance, since altered genomes change the karyotype coding and karyotype change is the key event for punctuated cellular macroevolution. Using this lens, we differentiate and analyze developmental processes and cancer evolution, as well as compare the informational relationship between genome chaos and its various subtypes in the context of macroevolution under crisis. Furthermore, the process of deterministic genome chaos is discussed to interpret apparently random events (including stressors, chromosomal variation subtypes, surviving cells with new karyotypes, and emergent stable cellular populations) as nonrandom patterns, which supports the new cancer evolutionary model that unifies genome and gene contributions during different phases of cancer evolution. Finally, the new perspective of using cancer as a model for organismal evolution is briefly addressed, emphasizing the Genome Theory as a new and necessary conceptual framework for future research and its practical implications, not only in cancer but evolutionary biology as a whole.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
7
|
Crespi BJ. Evolutionary and genetic insights for clinical psychology. Clin Psychol Rev 2020; 78:101857. [DOI: 10.1016/j.cpr.2020.101857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
|
8
|
Hitchcock TJ, Paracchini S, Gardner A. Genomic Imprinting As a Window into Human Language Evolution. Bioessays 2020; 41:e1800212. [PMID: 31132171 DOI: 10.1002/bies.201800212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/22/2019] [Indexed: 01/20/2023]
Abstract
Humans spend large portions of their time and energy talking to one another, yet it remains unclear whether this activity is primarily selfish or altruistic. Here, it is shown how parent-of-origin specific gene expression-or "genomic imprinting"-may provide an answer to this question. First, it is shown why, regarding language, only altruistic or selfish scenarios are expected. Second, it is pointed out that an individual's maternal-origin and paternal-origin genes may have different evolutionary interests regarding investment into language, and that this intragenomic conflict may drive genomic imprinting which-as the direction of imprint depends upon whether investment into language is relatively selfish or altruistic-may be used to discriminate between these two possibilities. Third, predictions concerning the impact of various mutations and epimutations at imprinted loci on language pathologies are derived. In doing so, a framework is developed that highlights avenues for using intragenomic conflicts to investigate the evolutionary drivers of language.
Collapse
Affiliation(s)
- Thomas J Hitchcock
- School of Biology, University of St Andrews, Dyers Brae, St Andrews, KY16 9TH, UK
| | - Silvia Paracchini
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - Andy Gardner
- School of Biology, University of St Andrews, Dyers Brae, St Andrews, KY16 9TH, UK
| |
Collapse
|
9
|
|
10
|
Tekwa EW, Nguyen D, Loreau M, Gonzalez A. Defector clustering is linked to cooperation in a pathogenic bacterium. Proc Biol Sci 2018; 284:rspb.2017.2001. [PMID: 29118137 DOI: 10.1098/rspb.2017.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/11/2017] [Indexed: 01/23/2023] Open
Abstract
Spatial clustering is thought to favour the evolution of cooperation because it puts cooperators in a position to help each other. However, clustering also increases competition. The fate of cooperation may depend on how much cooperators cluster relative to defectors, but these clustering differences have not been the focus of previous models and experiments. By competing siderophore-producing cooperator and defector strains of the opportunistic pathogen Pseudomonas aeruginosa in experimental microhabitats, we found that at the spatial scale of individual interactions, cooperator clustering lowers cooperation, but defector clustering favours cooperation. A theoretical model and individual-based simulations show these counterintuitive effects can arise when competition and cooperation occur at a single resource-determined scale, with population dynamics crucially allowing cooperators and defectors to cluster differently. The results suggest that cooperation relies on the regulation of sufficient defector clustering relative to cooperator clustering, which may be important in bacteria, social amoeba and cancer inhibition.
Collapse
Affiliation(s)
- Edward W Tekwa
- Department of Biology, McGill University, 1205 Dr Penfield, Montreal, Quebec, Canada H3A 1B1 .,Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, USA
| | - Dao Nguyen
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada H4A 3J1.,Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada H4A 3J1
| | - Michel Loreau
- Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, 09200 Moulis, France
| | - Andrew Gonzalez
- Department of Biology, McGill University, 1205 Dr Penfield, Montreal, Quebec, Canada H3A 1B1
| |
Collapse
|
11
|
Abstract
Generation of intratumoral phenotypic and genetic heterogeneity has been attributed to clonal evolution and cancer stem cells that together give rise to a tumor with complex ecosystems. Each ecosystem contains various tumor cell subpopulations and stromal entities, which, depending upon their composition, can influence survival, therapy responses, and global growth of the tumor. Despite recent advances in breast cancer management, the disease has not been completely eradicated as tumors recur despite initial response to treatment. In this review, using data from clinically relevant breast cancer models, we show that the fates of tumor stem cells/progenitor cells in the individual tumor ecosystems comprising a tumor are predetermined to follow a limited (unipotent) and/or unlimited (multipotent) path of differentiation which create conditions for active generation and maintenance of heterogeneity. The resultant dynamic systems respond differently to treatments, thus disrupting the delicate stability maintained in the heterogeneous tumor. This raises the question whether it is better then to preserve stability by preventing takeover by otherwise dormant ecosystems in the tumor following therapy. The ultimate strategy for personalized therapy would require serial assessments of the patient's tumor for biomarker validation during the entire course of treatment that is combined with their three-dimensional mapping to the tumor architecture and landscape.
Collapse
|
12
|
Lindsay RJ, Pawlowska BJ, Gudelj I. When increasing population density can promote the evolution of metabolic cooperation. ISME JOURNAL 2018; 12:849-859. [PMID: 29330534 DOI: 10.1038/s41396-017-0016-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/13/2017] [Accepted: 10/30/2017] [Indexed: 11/09/2022]
Abstract
Microbial cooperation drives ecological and epidemiological processes and is affected by the ecology and demography of populations. Population density influences the selection for cooperation, with spatial structure and the type of social dilemma, namely public-goods production or self-restraint, shaping the outcome. While existing theories predict that in spatially structured environments increasing population density can select either for or against cooperation, experimental studies with both public-goods production and self-restraint systems have only ever shown that increasing population density favours cheats. We suggest that the disparity between theory and empirical studies results from experimental procedures not capturing environmental conditions predicted by existing theories to influence the outcome. Our study resolves this issue and provides the first experimental evidence that high population density can favour cooperation in spatially structured environments for both self-restraint and public-goods production systems. Moreover, using a multi-trait mathematical model supported by laboratory experiments we extend this result to systems where the self-restraint and public-goods social dilemmas interact. We thus provide a systematic understanding of how the strength of interaction between the two social dilemmas and the degree of spatial structure within an environment affect selection for cooperation. These findings help to close the current gap between theory and experiments.
Collapse
|
13
|
Gardner A, Úbeda F. The meaning of intragenomic conflict. Nat Ecol Evol 2017; 1:1807-1815. [PMID: 29109471 DOI: 10.1038/s41559-017-0354-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/22/2017] [Indexed: 01/30/2023]
Abstract
Recent years have seen an explosion of interest in genes that function for their own good and to the detriment of other genes that reside in the same genome. Such intragenomic conflicts are increasingly recognized to underpin maladaptation and disease. However, progress has been impeded by a lack of clear understanding regarding what intragenomic conflict actually means, and an associated obscurity concerning its fundamental drivers. Here we develop a general theory of intragenomic conflict in which genes are viewed as inclusive-fitness-maximizing agents that come into conflict when their inclusive-fitness interests disagree. This yields a classification of all intragenomic conflicts into three categories according to whether genes disagree about where they have come from, where they are going, or where they currently are. We illustrate each of these three basic categories, survey and classify all known forms of intragenomic conflict, and discuss the implications for organismal maladaptation and human disease.
Collapse
Affiliation(s)
- Andy Gardner
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK.
| | - Francisco Úbeda
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| |
Collapse
|
14
|
Daru J, Allotey J, Peña-Rosas JP, Khan KS. Serum ferritin thresholds for the diagnosis of iron deficiency in pregnancy: a systematic review. Transfus Med 2017; 27:167-174. [PMID: 28425182 PMCID: PMC5763396 DOI: 10.1111/tme.12408] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/21/2022]
Abstract
The aim of this review was to understand the landscape of serum ferritin in diagnosing iron deficiency in the aetiology of anaemia in pregnancy. Iron deficiency in pregnancy is a major public health problem leading to the development of anaemia. Reducing the global prevalence of anaemia in women of reproductive age is a 2025 global nutrition target. Bone marrow aspiration is the gold standard test for iron deficiency but requires an invasive procedure; therefore, serum ferritin is the most clinically useful test. We undertook a systematic search of electronic databases and trial registers from inception to January 2016. Studies of iron or micronutrient supplementation in pregnancy with pre‐defined serum ferritin thresholds were included. Two independent reviewers selected studies, extracted data and assessed quality. There were 76 relevant studies mainly of observational study design (57%). The most commonly used thresholds of serum ferritin for the diagnosis of iron deficiency were <12 and <15 ng mL−1 (68%). Most primary studies provided no justification for the choice of serum ferritin threshold used, but 25 studies (33%) used thresholds defined by expert consensus in a guideline development process. There were five studies (7%) using a serum ferritin threshold defining iron deficiency derived from primary studies of bone marrow aspiration. Unified international thresholds of iron deficiency for women throughout pregnancy are required for accurate assessments of the global disease burden and for evaluating effectiveness of interventions addressing this problem.
Collapse
Affiliation(s)
- J Daru
- Women's Health Research Unit, Centre for Primary Care and Public Health, Queen Mary University of London, London, UK
| | - J Allotey
- Women's Health Research Unit, Centre for Primary Care and Public Health, Queen Mary University of London, London, UK
| | - J P Peña-Rosas
- Evidence and Programme Guidance, Department of Nutrition for Health and Development, World Health Organization, Geneva, Switzerland
| | - K S Khan
- Women's Health Research Unit, Centre for Primary Care and Public Health, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Connelly BD, Bruger EL, McKinley PK, Waters CM. Resource abundance and the critical transition to cooperation. J Evol Biol 2017; 30:750-761. [PMID: 28036143 DOI: 10.1111/jeb.13039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/27/2016] [Indexed: 01/06/2023]
Abstract
Cooperation is abundant in nature, occurring at all levels of biological complexity. Yet cooperation is continually threatened by subversion from noncooperating cheaters. Previous studies have shown that cooperation can nevertheless be maintained when the benefits that cooperation provides to relatives outweigh the associated costs. These fitness costs and benefits are not fixed properties, but can be affected by the environment in which populations reside. Here, we describe how one environmental factor, resource abundance, decisively affects the evolution of cooperative public goods production in two independent evolving systems. In the Avida digital evolution platform, populations evolved in environments with different levels of a required resource, whereas populations of Vibrio cholerae evolved in the presence of different nutrient concentrations. In both systems, cooperators and cheaters co-existed stably in resource-rich environments, whereas cheaters dominated in resource-poor environments. These two outcomes were separated by a sharp transition that occurred at a critical level of resource. These results offer new insights into how the environment affects the evolution of cooperation and highlight the challenges that populations of cooperators face when they experience environmental change.
Collapse
Affiliation(s)
- B D Connelly
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| | - E L Bruger
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - P K McKinley
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| | - C M Waters
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Lindsay RJ, Kershaw MJ, Pawlowska BJ, Talbot NJ, Gudelj I. Harbouring public good mutants within a pathogen population can increase both fitness and virulence. eLife 2016; 5:e18678. [PMID: 28029337 PMCID: PMC5193496 DOI: 10.7554/elife.18678] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/14/2016] [Indexed: 01/27/2023] Open
Abstract
Existing theory, empirical, clinical and field research all predict that reducing the virulence of individuals within a pathogen population will reduce the overall virulence, rendering disease less severe. Here, we show that this seemingly successful disease management strategy can fail with devastating consequences for infected hosts. We deploy cooperation theory and a novel synthetic system involving the rice blast fungus Magnaporthe oryzae. In vivo infections of rice demonstrate that M. oryzae virulence is enhanced, quite paradoxically, when a public good mutant is present in a population of high-virulence pathogens. We reason that during infection, the fungus engages in multiple cooperative acts to exploit host resources. We establish a multi-trait cooperation model which suggests that the observed failure of the virulence reduction strategy is caused by the interference between different social traits. Multi-trait cooperative interactions are widespread, so we caution against the indiscriminant application of anti-virulence therapy as a disease-management strategy.
Collapse
Affiliation(s)
| | | | | | | | - Ivana Gudelj
- School of Biosciences, University of Exeter, Exeter, United Kingdom,
| |
Collapse
|
17
|
Bashey F. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140301. [PMID: 26150667 PMCID: PMC4528499 DOI: 10.1098/rstb.2014.0301] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 12/11/2022] Open
Abstract
Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases.
Collapse
Affiliation(s)
- Farrah Bashey
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
18
|
Abstract
Although it is widely accepted that most cancers exhibit some degree of intratumour heterogeneity, we are far from understanding the dynamics that operate among subpopulations within tumours. There is growing evidence that cancer cells behave as communities, and increasing attention is now being directed towards the cooperative behaviour of subclones that can influence disease progression. As expected, these interactions can add a greater layer of complexity to therapeutic interventions in heterogeneous tumours, often leading to a poor prognosis. In this Review, we highlight studies that demonstrate such interactions in cancer and postulate ways to overcome them with better-designed therapeutic strategies.
Collapse
Affiliation(s)
- Doris P Tabassum
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. [2] BBS Program, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kornelia Polyak
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. [2] BBS Program, Harvard Medical School, Boston, Massachusetts 02115, USA. [3] Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. [4] Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
19
|
Kappeler PM, Cremer S, Nunn CL. Sociality and health: impacts of sociality on disease susceptibility and transmission in animal and human societies. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140116. [PMID: 25870402 PMCID: PMC4410382 DOI: 10.1098/rstb.2014.0116] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2015] [Indexed: 02/06/2023] Open
Abstract
This paper introduces a theme issue presenting the latest developments in research on the impacts of sociality on health and fitness. The articles that follow cover research on societies ranging from insects to humans. Variation in measures of fitness (i.e. survival and reproduction) has been linked to various aspects of sociality in humans and animals alike, and variability in individual health and condition has been recognized as a key mediator of these relationships. Viewed from a broad evolutionary perspective, the evolutionary transitions from a solitary lifestyle to group living have resulted in several new health-related costs and benefits of sociality. Social transmission of parasites within groups represents a major cost of group living, but some behavioural mechanisms, such as grooming, have evolved repeatedly to reduce this cost. Group living also has created novel costs in terms of altered susceptibility to infectious and non-infectious disease as a result of the unavoidable physiological consequences of social competition and integration, which are partly alleviated by social buffering in some vertebrates. Here, we define the relevant aspects of sociality, summarize their health-related costs and benefits, and discuss possible fitness measures in different study systems. Given the pervasive effects of social factors on health and fitness, we propose a synthesis of existing conceptual approaches in disease ecology, ecological immunology and behavioural neurosciences by adding sociality as a key factor, with the goal to generate a broader framework for organismal integration of health-related research.
Collapse
Affiliation(s)
- Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany Department of Sociobiology/Anthropology, University of Göttingen, Göttingen, Germany
| | - Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA Duke Global Health Institute, Duke University, Durham, NC, USA
| |
Collapse
|
20
|
Koskella B. Research highlights for issue 5: the role of the microbiome in shaping evolution. Evol Appl 2014; 7:519-20. [PMID: 24944565 PMCID: PMC4055173 DOI: 10.1111/eva.12167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Abstract
Natural selection defined by differential survival and reproduction of individuals in populations is influenced by genetic, developmental, and environmental factors operating at every age and stage in human life history: generation of gametes, conception, birth, maturation, reproduction, senescence, and death. Biological systems are built upon a hierarchical organization nesting subcellular organelles, cells, tissues, and organs within individuals, individuals within families, and families within populations, and the latter among other populations. Natural selection often acts simultaneously at more than one level of biological organization and on specific traits, which we define as multilevel selection. Under this model, the individual is a fundamental unit of biological organization and also of selection, imbedded in a larger evolutionary context, just as it is a unit of medical intervention imbedded in larger biological, cultural, and environmental contexts. Here, we view human health and life span as necessary consequences of natural selection, operating at all levels and phases of biological hierarchy in human life history as well as in sociological and environmental milieu. An understanding of the spectrum of opportunities for natural selection will help us develop novel approaches to improving healthy life span through specific and global interventions that simultaneously focus on multiple levels of biological organization. Indeed, many opportunities exist to apply multilevel selection models employed in evolutionary biology and biodemography to improving human health at all hierarchical levels. Multilevel selection perspective provides a rational theoretical foundation for a synthesis of medicine and evolution that could lead to discovering effective predictive, preventive, palliative, potentially curative, and individualized approaches in medicine and in global health programs.
Collapse
|