1
|
Agosta L, Fiore L, Colozza N, Pérez-Ropero G, Lyubartsev A, Arduini F, Hermansson K. Adsorption of Glycine on TiO 2 in Water from On-the-fly Free-Energy Calculations and In Situ Electrochemical Impedance Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12009-12016. [PMID: 38771331 PMCID: PMC11171457 DOI: 10.1021/acs.langmuir.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
We report here an experimental-computational study of hydrated TiO2 anatase nanoparticles interacting with glycine, where we obtain quantitative agreement of the measured adsorption free energies. Ab initio simulations are performed within the tight binding and density functional theory in combination with enhanced free-energy sampling techniques, which exploit the thermodynamic integration of the unbiased mean forces collected on-the-fly along the molecular dynamics trajectories. The experiments adopt a new and efficient setup for electrochemical impedance spectroscopy measurements based on portable screen-printed gold electrodes, which allows fast and in situ signal assessment. The measured adsorption free energy is -30 kJ/mol (both from experiment and calculation), with preferential interaction of the charged NH3+ group which strongly adsorbs on the TiO2 bridging oxygens. This highlights the importance of the terminal amino groups in the adsorption mechanism of amino acids on hydrated metal oxides. The excellent agreement between computation and experiment for this amino acid opens the doors to the exploration of the interaction free energies for other moderately complex bionano systems.
Collapse
Affiliation(s)
- Lorenzo Agosta
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| | - Luca Fiore
- Department
of Science and Chemical Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Noemi Colozza
- Department
of Science and Chemical Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Guillermo Pérez-Ropero
- Department
of Chemistry-BMC, Uppsala University, Ridgeview
Instruments AB, Uppsala 752 37, Sweden
| | - Alexander Lyubartsev
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Fabiana Arduini
- Department
of Science and Chemical Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Kersti Hermansson
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 751 21, Sweden
| |
Collapse
|
2
|
Cencini A, Magro M. Special Issue "Bio-Nano Interactions 2.0". Int J Mol Sci 2024; 25:1667. [PMID: 38338952 PMCID: PMC10855373 DOI: 10.3390/ijms25031667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
In 1961, USA's blues legend Howlin' Wolf released the single entitled "Down in the Bottom" (Figure 1) [...].
Collapse
Affiliation(s)
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy;
| |
Collapse
|
3
|
Ferreira LMB, Cardoso VMO, Dos Santos Pedriz I, Souza MPC, Ferreira NN, Chorilli M, Gremião MPD, Zucolotto V. Understanding mucus modulation behavior of chitosan oligomers and dextran sulfate combining light scattering and calorimetric observations. Carbohydr Polym 2023; 306:120613. [PMID: 36746564 DOI: 10.1016/j.carbpol.2023.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
This study reports the fundamental understanding of mucus-modulatory strategies combining charged biopolymers with distinct molecular weights and surface charges. Here, key biophysical evidence supports that low-molecular-weight (Mw) polycation chitosan oligosaccharides (COSs) and high-Mw polyanion dextran sulfate (DS) exhibit distinct thermodynamic signatures upon interaction with mucin (MUC), the main protein of mucus. While the COS → MUC microcalorimetric titrations released ~14 kcal/mol and ~60 kcal/mol, the DS → MUC titrations released ~1200 and ~1450 kcal/mol at pH of 4.5 and 6.8, respectively. The MPT-2 titrations of COS → MUC and DS → MUC indicated a greater zeta potential variation at pH = 4.5 (relative variation = 815 % and 351 %, respectively) than at pH = 6.8 (relative variation = 282 % and 136 %, respectively). Further, the resultant binary (COS-MUC) and ternary (COS-DS-MUC) complexes showed opposite behavior (aggregation and charge inversion events) according to the pH environment. Most importantly, the results indicate that electrostatics could not be the driving force that governs COS-MUC interactions. To account for this finding, we proposed a two-level abstraction model. Macro features emerge collectively from individual interactions occurring at the molecular level. Therefore, to understand the outcomes of mucus modulatory strategy based on charged biopolymers it is necessary to integrate both visions into the same picture.
Collapse
Affiliation(s)
- Leonardo M B Ferreira
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo (USP), 13566-590 São Carlos, Brazil.
| | - Valéria M O Cardoso
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo (USP), 13566-590 São Carlos, Brazil
| | - Igor Dos Santos Pedriz
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo (USP), 13566-590 São Carlos, Brazil
| | - Maurício P C Souza
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Natália N Ferreira
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo (USP), 13566-590 São Carlos, Brazil
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Maria P D Gremião
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo (USP), 13566-590 São Carlos, Brazil
| |
Collapse
|
4
|
The Future of Nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
5
|
Zhang W, Chetwynd AJ, Thorn JA, Lynch I, Ramautar R. Understanding the Significance of Sample Preparation in Studies of the Nanoparticle Metabolite Corona. ACS MEASUREMENT SCIENCE AU 2022; 2:251-260. [PMID: 35726252 PMCID: PMC9204816 DOI: 10.1021/acsmeasuresciau.2c00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 05/28/2023]
Abstract
The adsorption of metabolites to the surface of nanomaterials is a growing area of interest in the field of bionanointeractions. Like its more-established protein counterpart, it is thought that the metabolite corona has a key role in the uptake, distribution, and toxicity of nanomaterials in organisms. Previous research has demonstrated that nanomaterials obtain a unique metabolite fingerprint when exposed to biological matrices; however, there have been some concerns raised over the reproducibility of bionanointeraction research due to challenges in dispersion of nanomaterials and their stability. As such, this work investigates a much-overlooked aspect of this field, i.e., sample preparation, which is vital to the accurate, reproducible, and informative analysis of the metabolite corona. The impact of elution buffer pH, volume, and ionic strength on the metabolite corona composition acquired by uncapped and polyvinylpyrrolidone (PVP)-capped TiO2 from mixtures of cationic and anionic metabolites was studied. We demonstrate the temporal evolution of the TiO2 metabolite corona and the recovery of the metabolite corona, which resulted from a complex biological matrix, in this case human plasma. This work also demonstrates that it is vital to optimize sample preparation for each nanomaterial being investigated, as the metabolite recovery from Fe3O4 and Dispex-capped TiO2 nanomaterials is significantly reduced compared to the aforementioned uncapped and PVP-capped TiO2 nanomaterials. These are important findings for future bionanointeraction studies, which is a rapidly emerging area of research in nanoscience.
Collapse
Affiliation(s)
- Wei Zhang
- Leiden
Academic Centre for Drug Research, Leiden
University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Andrew J. Chetwynd
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Women’s and Children’s Health, Institute of Life
Course and Medical Sciences, University
of Liverpool, Liverpool L12 2AP, U.K.
| | - James A. Thorn
- AB
SCIEX UK Ltd., SCIEX UK Centre of Innovation, Suite 21F18, 21 Mereside, Alderley
Park, Macclesfield, Cheshire SK10 4TG, U.K.
| | - Iseult Lynch
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Rawi Ramautar
- Leiden
Academic Centre for Drug Research, Leiden
University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
6
|
The Future of Nanomedicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_24-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
7
|
Abstract
The field of bio-nano interfaces paves the way for a better understanding, development, and implementation of the advanced biotechnological process. Interfacing biomolecules with the nanomaterials will result in the development of new tools and techniques that, in turn, will enable to explore the fundamental process at the nano level and fabricate cost-effective portable devices. Fascinating biomolecules like DNA, RNA and proteins in the regime of nanoscale are intelligent materials that are capable of storing the information and controlling the basic structure and function of the complex biological systems. Following this concept, the current pandemic situation would be a natural selection process, where the selective pressure is on the ssRNA of Covid-19 to choose the suitable progeny for survival. Consequently, the interaction of human DNA invoking response with Covid-19 happens at the nanoscale and it could be a better candidate to provoke combat against the virus. The extent of this interaction would give us the insights at the nanotechnological level to tackle the prevention, diagnosis and treatment for Covid-19. Herein, the possible features and obstacles in Covid-19 and a probable solution from the advent of nanotechnology are discussed to address the current necessity. Moreover, the perspective sustainable green graph mask that can be prepared using green plant extract/graphene (Bio-Nano composite mask) is suggested for the possible protection of virus-like Covid-19. The composite material will not only effectively trap the virus but also inactivate the virus due to the presence of antiviral compounds in the plant extracts.
Collapse
|
8
|
Precupas A, Gheorghe D, Botea-Petcu A, Leonties AR, Sandu R, Popa VT, Mariussen E, Naouale EY, Rundén-Pran E, Dumit V, Xue Y, Cimpan MR, Dusinska M, Haase A, Tanasescu S. Thermodynamic Parameters at Bio-Nano Interface and Nanomaterial Toxicity: A Case Study on BSA Interaction with ZnO, SiO 2, and TiO 2. Chem Res Toxicol 2020; 33:2054-2071. [PMID: 32600046 DOI: 10.1021/acs.chemrestox.9b00468] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding nanomaterial (NM)-protein interactions is a key issue in defining the bioreactivity of NMs with great impact for nanosafety. In the present work, the complex phenomena occurring at the bio/nano interface were evaluated in a simple case study focusing on NM-protein binding thermodynamics and protein stability for three representative metal oxide NMs, namely, zinc oxide (ZnO; NM-110), titanium dioxide (TiO2; NM-101), and silica (SiO2; NM-203). The thermodynamic signature associated with the NM interaction with an abundant protein occurring in most cell culture media, bovine serum albumin (BSA), has been investigated by isothermal titration and differential scanning calorimetry. Circular dichroism spectroscopy offers additional information concerning adsorption-induced protein conformational changes. The BSA adsorption onto NMs is enthalpy-controlled, with the enthalpic character (favorable interaction) decreasing as follows: ZnO (NM-110) > SiO2 (NM-203) > TiO2 (NM-101). The binding of BSA is spontaneous, as revealed by the negative free energy, ΔG, for all systems. The structural stability of the protein decreased as follows: TiO2 (NM-101) > SiO2 (NM-203) > ZnO (NM-110). As protein binding may alter NM reactivity and thus the toxicity, we furthermore assessed its putative influence on DNA damage, as well as on the expression of target genes for cell death (RIPK1, FAS) and oxidative stress (SOD1, SOD2, CAT, GSTK1) in the A549 human alveolar basal epithelial cell line. The enthalpic component of the BSA-NM interaction, corroborated with BSA structural stability, matched the ranking for the biological alterations, i.e., DNA strand breaks, oxidized DNA lesions, cell-death, and antioxidant gene expression in A549 cells. The relative and total content of BSA in the protein corona was determined using mass-spectrometry-based proteomics. For the present case study, the thermodynamic parameters at bio/nano interface emerge as key descriptors for the dominant contributions determining the adsorption processes and NMs toxicological effect.
Collapse
Affiliation(s)
- Aurica Precupas
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Daniela Gheorghe
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Alina Botea-Petcu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Anca Ruxandra Leonties
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Romica Sandu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Vlad Tudor Popa
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Espen Mariussen
- NILU-Norwegian Institute for Air Research, Kjeller 2027, Norway
| | | | | | - Veronica Dumit
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin 10589, Germany
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen 5020, Norway
| | - Mihaela Roxana Cimpan
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen 5020, Norway
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Kjeller 2027, Norway
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin 10589, Germany
| | - Speranta Tanasescu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| |
Collapse
|
9
|
Platelet-inspired therapeutics: current status, limitations, clinical implications, and future potential. Drug Deliv Transl Res 2020; 11:24-48. [PMID: 32323161 DOI: 10.1007/s13346-020-00751-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent research has been successful in demonstrating the importance of the addition of platelets to the field of cell-mediated therapeutics, by making use of different platelet forms to design modalities able to positively impact a wide range of diseases. A key obstacle hindering the success of conventional therapeutic interventions is their inability to produce targeted treatment, resulting in a number of systemic side effects and a longer duration for the onset of action to occur. An additional challenge facing current popular therapeutic interventions is biocompatibility of the system, resulting in the decline of patient compliance to treatment. In an attempt to address these challenges, the past few decades have been witness to the discovery and innovation of precision therapy, in order to achieve targeted treatment for an array of conditions, thereby superseding alternative mechanisms of treatment. Platelet-mediated therapeutics, as well as employing platelets as drug delivery vehicles, are key components in advancing precision therapy within research and in clinical settings. This novel approach is designed with the objective that the platelets retain their original structure and functions within the body, thereby mitigating biocompatibility challenges. In this article, we review the current significant impact that the addition of platelet-inspired systems has made on the field of therapeutics; explore certain limitations of each system, together with ideas on how to overcome them; and discuss the clinical implications and future potential of platelet-inspired therapeutics. Graphical abstract.
Collapse
|
10
|
Khan AO, Di Maio A, Guggenheim EJ, Chetwynd AJ, Pencross D, Tang S, Belinga-Desaunay MFA, Thomas SG, Rappoport JZ, Lynch I. Surface Chemistry-Dependent Evolution of the Nanomaterial Corona on TiO 2 Nanomaterials Following Uptake and Sub-Cellular Localization. NANOMATERIALS 2020; 10:nano10030401. [PMID: 32106393 PMCID: PMC7152854 DOI: 10.3390/nano10030401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Nanomaterial (NM) surface chemistry has an established and significant effect on interactions at the nano-bio interface, with important toxicological consequences for manufactured NMs, as well as potent effects on the pharmacokinetics and efficacy of nano-therapies. In this work, the effects of different surface modifications (PVP, Dispex AA4040, and Pluronic F127) on the uptake, cellular distribution, and degradation of titanium dioxide NMs (TiO2 NMs, ~10 nm core size) are assessed and correlated with the localization of fluorescently-labeled serum proteins forming their coronas. Imaging approaches with an increasing spatial resolution, including automated high throughput live cell imaging, correlative confocal fluorescence and reflectance microscopy, and dSTORM super-resolution microscopy, are used to explore the cellular fate of these NMs and their associated serum proteins. Uncoated TiO2 NMs demonstrate a rapid loss of corona proteins, while surface coating results in the retention of the corona signal after internalization for at least 24 h (varying with coating composition). Imaging with two-color super-resolution dSTORM revealed that the apparent TiO2 NM single agglomerates observed in diffraction-limited confocal microscopy are actually adjacent smaller agglomerates, and provides novel insights into the spatial arrangement of the initial and exchanged coronas adsorbed at the NM surfaces.
Collapse
Affiliation(s)
- Abdullah O. Khan
- Institute of Cardiovascular Science, College of Medical Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.O.K.); (D.P.); (S.G.T.)
| | - Alessandro Di Maio
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Emily J. Guggenheim
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (E.J.G.); (A.J.C.); (M.-F.A.B.-D.)
| | - Andrew J. Chetwynd
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (E.J.G.); (A.J.C.); (M.-F.A.B.-D.)
| | - Dan Pencross
- Institute of Cardiovascular Science, College of Medical Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.O.K.); (D.P.); (S.G.T.)
| | - Selina Tang
- Promethean Particles Ltd., 1-3 Genesis Park, Midland Way, Nottingham NG7 3EF, UK;
| | - Marie-France A. Belinga-Desaunay
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (E.J.G.); (A.J.C.); (M.-F.A.B.-D.)
| | - Steven G. Thomas
- Institute of Cardiovascular Science, College of Medical Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.O.K.); (D.P.); (S.G.T.)
| | - Joshua Z. Rappoport
- Boston College, Higgins 644A, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (E.J.G.); (A.J.C.); (M.-F.A.B.-D.)
- Correspondence:
| |
Collapse
|
11
|
Improved Sampling in Ab Initio Free Energy Calculations of Biomolecules at Solid–Liquid Interfaces: Tight-Binding Assessment of Charged Amino Acids on TiO2 Anatase (101). COMPUTATION 2020. [DOI: 10.3390/computation8010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atomistic simulations can complement the scarce experimental data on free energies of molecules at bio-inorganic interfaces. In molecular simulations, adsorption free energy landscapes are efficiently explored with advanced sampling methods, but classical dynamics is unable to capture charge transfer and polarization at the solid–liquid interface. Ab initio simulations do not suffer from this flaw, but only at the expense of an overwhelming computational cost. Here, we introduce a protocol for adsorption free energy calculations that improves sampling on the timescales relevant to ab initio simulations. As a case study, we calculate adsorption free energies of the charged amino acids Lysine and Aspartate on the fully hydrated anatase (101) TiO2 surface using tight-binding forces. We find that the first-principle description of the system significantly contributes to the adsorption free energies, which is overlooked by calculations with previous methods.
Collapse
|
12
|
Ferreira LM, Alonso JD, Kiill CP, Ferreira NN, Buzzá HH, Martins de Godoi DR, de Britto D, Assis OBG, Seraphim TV, Borges JC, Gremião MPD. Exploiting supramolecular interactions to produce bevacizumab-loaded nanoparticles for potential mucosal delivery. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Lichtenstein D, Meyer T, Böhmert L, Juling S, Fahrenson C, Selve S, Thünemann A, Meijer J, Estrela-Lopis I, Braeuning A, Lampen A. Dosimetric Quantification of Coating-Related Uptake of Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13087-13097. [PMID: 28918629 DOI: 10.1021/acs.langmuir.7b01851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The elucidation of mechanisms underlying the cellular uptake of nanoparticles (NPs) is an important topic in nanotoxicological research. Most studies dealing with silver NP uptake provide only qualitative data about internalization efficiency and do not consider NP-specific dosimetry. Therefore, we performed a comprehensive comparison of the cellular uptake of differently coated silver NPs of comparable size in different human intestinal Caco-2 cell-derived models to cover also the influence of the intestinal mucus barrier and uptake-specialized M-cells. We used a combination of the Transwell system, transmission electron microscopy, atomic absorption spectroscopy, and ion beam microscopy techniques. The computational in vitro sedimentation, diffusion, and dosimetry (ISDD) model was used to determine the effective dose of the particles in vitro based on their individual physicochemical characteristics. Data indicate that silver NPs with a similar size and shape show coating-dependent differences in their uptake into Caco-2 cells. The internalization of silver NPs was enhanced in uptake-specialized M-cells while the mucus did not provide a substantial barrier for NP internalization. ISDD modeling revealed a fivefold underestimation of dose-response relationships of NPs in in vitro assays. In summary, the present study provides dosimetry-adjusted quantitative data about the influence of NP coating materials in cellular uptake into human intestinal cells. Underestimation of particle effects in vitro might be prevented by using dosimetry models and by considering cell models with greater proximity to the in vivo situation, such as the M-cell model.
Collapse
Affiliation(s)
- Dajana Lichtenstein
- Department of Food Safety, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Thomas Meyer
- Institute for Medical Physics and Biophysics, Leipzig University , Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Linda Böhmert
- Department of Food Safety, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Sabine Juling
- Department of Food Safety, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Christoph Fahrenson
- ZELMI, Technical University Berlin , Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Sören Selve
- ZELMI, Technical University Berlin , Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Andreas Thünemann
- German Federal Institute for Materials Research and Testing , Unter den Eichen 87, 12205 Berlin, Germany
| | - Jan Meijer
- Nuclear Solid State Physics, Leipzig University , Linnéstraße 5, 04103 Leipzig, Germany
| | - Irina Estrela-Lopis
- Institute for Medical Physics and Biophysics, Leipzig University , Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
14
|
Abstract
Engineering functional cardiac tissues remains an ongoing significant challenge due to the complexity of the native environment. However, our growing understanding of key parameters of the in vivo cardiac microenvironment and our ability to replicate those parameters in vitro are resulting in the development of increasingly sophisticated models of engineered cardiac tissues (ECT). This review examines some of the most relevant parameters that may be applied in culture leading to higher fidelity cardiac tissue models. These include the biochemical composition of culture media and cardiac lineage specification, co-culture conditions, electrical and mechanical stimulation, and the application of hydrogels, various biomaterials, and scaffolds. The review will also summarize some of the recent functional human tissue models that have been developed for in vivo and in vitro applications. Ultimately, the creation of sophisticated ECT that replicate native structure and function will be instrumental in advancing cell-based therapeutics and in providing advanced models for drug discovery and testing.
Collapse
|
15
|
Wang B, Pilkington EH, Sun Y, Davis TP, Ke PC, Ding F. Modulating protein amyloid aggregation with nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2017; 4:1772-1783. [PMID: 29230295 PMCID: PMC5722024 DOI: 10.1039/c7en00436b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Direct exposure or intake of nanopaticles (NPs) to the human body can invoke a series of biological responses, some of which are deleterious, and as such the role of NPs in vivo requires thorough examination. Over the past decade, it has been established that biomolecules such as proteins can bind NPs to form a 'corona', where the structures and dynamics of NP-associated proteins can assign new functionality, systemic distribution and toxicity. However, the behavior and fate of NPs in biological systems are still far from being fully understood. Growing evidence has shown that some natural or artificial NPs could either up- or down-regulate protein amyloid aggregation, which is associated with neurodegenerative diseases like Alzheimer's and Parkinson's diseases, as well as metabolic diseases such as type 2 diabetes. These effects can be either indirect (e.g., through a crowding effect) or direct, depending on the NP composition, size, shape and surface chemistry. However, efforts to design anti-amyloid NPs for biomedical applications have been largely hindered by insufficient understanding of the complex processes, even though proof-of-concept experiments have been conducted. Therefore, exploring the general mechanisms of NP-meditated protein aggregation marks an emerging field in bio-nano research and a new stage of handling nanotechnology that not only aids in elucidating the origin of nanotoxicity, but also provides a foundation for engineering de novo anti-amyloid nanomedicines. In this review, we summarize research on NP-mediated protein amyloid aggregation, with the goal of contributing to sustained nanotechnology and safe nanomedicine against amyloid diseases.
Collapse
Affiliation(s)
- Bo Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| |
Collapse
|
16
|
Ivask A, Mitchell AJ, Malysheva A, Voelcker NH, Lombi E. Methodologies and approaches for the analysis of cell-nanoparticle interactions. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1486. [DOI: 10.1002/wnan.1486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Angela Ivask
- Laboratory of Environmental Toxicology; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| | - Andrew J. Mitchell
- Materials Characterisation and Fabrication Platform; University of Melbourne; Melbourne Australia
| | - Anzhela Malysheva
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Australia
| | - Enzo Lombi
- Future Industries Institute; University of South Australia; Mawson Lakes Australia
| |
Collapse
|
17
|
|
18
|
Marchese Robinson RL, Lynch I, Peijnenburg W, Rumble J, Klaessig F, Marquardt C, Rauscher H, Puzyn T, Purian R, Åberg C, Karcher S, Vriens H, Hoet P, Hoover MD, Hendren CO, Harper SL. How should the completeness and quality of curated nanomaterial data be evaluated? NANOSCALE 2016; 8:9919-43. [PMID: 27143028 PMCID: PMC4899944 DOI: 10.1039/c5nr08944a] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials' behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated?
Collapse
Affiliation(s)
- Richard L. Marchese Robinson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - John Rumble
- R&R Data Services, 11 Montgomery Avenue, Gaithersburg MD 20877 USA
| | - Fred Klaessig
- Pennsylvania Bio Nano Systems LLC, 3805 Old Easton Road, Doylestown, PA 18902
| | - Clarissa Marquardt
- Institute of Applied Computer Sciences (IAI), Karlsruhe Institute of Technology (KIT), Hermann v. Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hubert Rauscher
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Via Fermi 2749, 21027 Ispra (VA), Italy
| | - Tomasz Puzyn
- Laboratory of Environmental Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Ronit Purian
- Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 Israel
| | - Christoffer Åberg
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sandra Karcher
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890
| | - Hanne Vriens
- Department of Public Health and Primary Care, K.U.Leuven, Faculty of Medicine, Unit Environment & Health – Toxicology, Herestraat 49 (O&N 706), Leuven, Belgium
| | - Peter Hoet
- Department of Public Health and Primary Care, K.U.Leuven, Faculty of Medicine, Unit Environment & Health – Toxicology, Herestraat 49 (O&N 706), Leuven, Belgium
| | - Mark D. Hoover
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505-2888
| | - Christine Ogilvie Hendren
- Center for the Environmental Implications of NanoTechnology, Duke University, PO Box 90287 121 Hudson Hall, Durham NC 27708
| | - Stacey L. Harper
- Department of Environmental and Molecular Toxicology, School of Chemical, Biological and Environmental Engineering, Oregon State University, 1007 ALS, Corvallis, OR 97331
| |
Collapse
|
19
|
Kendall M, Lynch I. Long-term monitoring for nanomedicine implants and drugs. NATURE NANOTECHNOLOGY 2016; 11:206-10. [PMID: 26936811 DOI: 10.1038/nnano.2015.341] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Michaela Kendall
- School of Metallurgy and Materials, University of Birmingham, Edgbaston B15 2TT, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
20
|
Kendall K. Cell adhesion century: culture breakthrough. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140025. [PMID: 25533087 DOI: 10.1098/rstb.2014.0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- K Kendall
- Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
21
|
Piludu M, Medda L, Cugia F, Monduzzi M, Salis A. Silver Enhancement for Transmission Electron Microscopy Imaging of Antibody Fragment-Gold Nanoparticles Conjugates Immobilized on Ordered Mesoporous Silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9458-63. [PMID: 26267521 DOI: 10.1021/acs.langmuir.5b02830] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ordered mesoporous silica (OMS) materials are receiving great attention as possible carriers for valuable but unstable drugs as, for example, therapeutic proteins. A key issue is to prove that the therapeutic protein is effectively able to penetrate the pores of OMS during the adsorption step. Here, we immobilized an antibody fragment [F(ab')GAMIgG] conjugated with ultrasmall gold nanoparticles (GNPs) onto amino-functionalized SBA-15 (SBA-NH2) mesoporous silica. The aim of this work is the visualization of the location of the conjugates adsorbed onto SBA-NH2 with transmission electron microscopy (TEM). Because of the ultrasmall size of GNPs (<1 nm), we use the silver enhancement procedure to amplify their size. In this procedure, ultrathin sections of conjugate-loaded SBA-NH2 particles are prepared by a ultramicrotome sectioning technique. The ultrasmall GNPs located on the top side of the 70-90 nm thick slices act as microcrystallization nucleation sites for the deposition of reduced metallic silver. Consequently, the ultrasmall GNPs increase their size. This allows for the direct imaging of the conjugates adsorbed. We clearly localize the F(ab')GAMIgG-GNPs conjugates either on the external surface of the particles or inside the mesopores of SBA-NH2 through TEM.
Collapse
Affiliation(s)
- Marco Piludu
- Department of Biomedical Sciences, and ‡Department of Chemical and Geological Sciences, University of Cagliari , CSGI and CNBS, Cittadella Universitaria, Strada Statale 554 Bivio Sestu, 09042 Monserrato Cagliari, Italy
| | - Luca Medda
- Department of Biomedical Sciences, and ‡Department of Chemical and Geological Sciences, University of Cagliari , CSGI and CNBS, Cittadella Universitaria, Strada Statale 554 Bivio Sestu, 09042 Monserrato Cagliari, Italy
| | - Francesca Cugia
- Department of Biomedical Sciences, and ‡Department of Chemical and Geological Sciences, University of Cagliari , CSGI and CNBS, Cittadella Universitaria, Strada Statale 554 Bivio Sestu, 09042 Monserrato Cagliari, Italy
| | - Maura Monduzzi
- Department of Biomedical Sciences, and ‡Department of Chemical and Geological Sciences, University of Cagliari , CSGI and CNBS, Cittadella Universitaria, Strada Statale 554 Bivio Sestu, 09042 Monserrato Cagliari, Italy
| | - Andrea Salis
- Department of Biomedical Sciences, and ‡Department of Chemical and Geological Sciences, University of Cagliari , CSGI and CNBS, Cittadella Universitaria, Strada Statale 554 Bivio Sestu, 09042 Monserrato Cagliari, Italy
| |
Collapse
|