1
|
Athar F, Zheng Z, Riquier S, Zacher M, Lu JY, Zhao Y, Volobaev V, Alcock D, Galazyuk A, Cooper LN, Schountz T, Wang LF, Teeling EC, Seluanov A, Gorbunova V. Limited cell-autonomous anticancer mechanisms in long-lived bats. Nat Commun 2025; 16:4125. [PMID: 40319021 PMCID: PMC12049446 DOI: 10.1038/s41467-025-59403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
Several bat species live >20-40 years, suggesting that they possess efficient anti-aging and anti-cancer defenses. Here we investigate the requirements for malignant transformation in primary fibroblasts from four bat species Myotis lucifugus, Eptesicus fuscus, Eonycteris spelaea, and Artibeus jamaicensis - spanning the bat evolutionary tree and including the longest-lived genera. We show that bat fibroblasts do not undergo replicative senescence, express active telomerase, and show attenuated SIPs with dampened secretory phenotype. Unexpectedly, unlike other long-lived mammals, bat fibroblasts are readily transformed by two oncogenic "hits": inactivation of p53 or pRb and activation of HRASG12V. Bat fibroblasts exhibit increased TP53 and MDM2 transcripts and elevated p53-dependent apoptosis. M. lucifugus shows a genomic duplication of TP53. We hypothesize that some bat species have evolved enhanced p53 activity as an additional anti-cancer strategy, similar to elephants. Further, the absence of unique cell-autonomous tumor suppressive mechanisms may suggest that in vivo bats may rely on enhanced immunosurveillance.
Collapse
Affiliation(s)
- Fathima Athar
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Zhizhong Zheng
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Sebastien Riquier
- School of Biology and Environmental Science, Belfield, University College Dublin, Dublin, Ireland
| | - Max Zacher
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - J Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Dominic Alcock
- School of Biology and Environmental Science, Belfield, University College Dublin, Dublin, Ireland
| | - Alex Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Lisa Noelle Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | - Emma C Teeling
- School of Biology and Environmental Science, Belfield, University College Dublin, Dublin, Ireland
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
2
|
Matthews S, Nikoonejad Fard V, Tollis M, Seoighe C. Variable Gene Copy Number in Cancer-Related Pathways Is Associated With Cancer Prevalence Across Mammals. Mol Biol Evol 2025; 42:msaf056. [PMID: 40112176 PMCID: PMC11954591 DOI: 10.1093/molbev/msaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/06/2025] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
Cancer is a disease of multicellularity, observed across the tree of life. In principle, animals with larger body sizes and longer lifespans should be at increased risk of developing cancer. However, there is no strong relationship between these traits and cancer across mammals. Previous studies have proposed that increased copy number of cancer-related genes may enhance the robustness of cancer suppression pathways in long-lived mammals, but these studies have not extended beyond known cancer-related genes. In this study, we conducted a phylogenetic generalized least squares analysis to test for associations between copy number of all protein-coding genes and longevity, body size, and cancer prevalence across 94 species of mammals. In addition to investigating the copy number of individual genes, we tested sets of related genes for a relationship between the aggregated gene copy number of the set and these traits. We did not find strong evidence to support the hypothesis that adaptive changes in gene copy number contribute to the lack of correlation between cancer prevalence and body size or lifespan. However, we found several biological processes where aggregate copy number was associated with malignancy rate. The strongest association was for the gene set relating to transforming growth factor beta, a cytokine that plays a role in cancer progression. Overall, this study provides a comprehensive evaluation of the role of gene copy number in adaptation to body size and lifespan and sheds light on the contribution of gene copy number to variation in cancer prevalence across mammals.
Collapse
Affiliation(s)
- Sophie Matthews
- School of Mathematical and Statistical Science, University of Galway, Galway, Ireland
- The SFI Centre for Research Training in Genomics Data Science, University of Galway, Galway, Ireland
| | - Vahid Nikoonejad Fard
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Marc Tollis
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
| | - Cathal Seoighe
- School of Mathematical and Statistical Science, University of Galway, Galway, Ireland
- The SFI Centre for Research Training in Genomics Data Science, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Compton ZT, Mellon W, Harris VK, Rupp S, Mallo D, Kapsetaki SE, Wilmot M, Kennington R, Noble K, Baciu C, Ramirez LN, Peraza A, Martins B, Sudhakar S, Aksoy S, Furukawa G, Vincze O, Giraudeau M, Duke EG, Spiro S, Flach E, Davidson H, Li CI, Zehnder A, Graham TA, Troan BV, Harrison TM, Tollis M, Schiffman JD, Aktipis CA, Abegglen LM, Maley CC, Boddy AM. Cancer Prevalence across Vertebrates. Cancer Discov 2025; 15:227-244. [PMID: 39445720 PMCID: PMC11726020 DOI: 10.1158/2159-8290.cd-24-0573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/17/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Cancer is pervasive across multicellular species, but what explains the differences in cancer prevalence across species? Using 16,049 necropsy records for 292 species spanning three clades of tetrapods (amphibians, sauropsids, and mammals), we found that neoplasia and malignancy prevalence increases with adult mass (contrary to Peto's paradox) and somatic mutation rate but decreases with gestation time. The relationship between adult mass and malignancy prevalence was only apparent when we controlled for gestation time. Evolution of cancer susceptibility appears to have undergone sudden shifts followed by stabilizing selection. Outliers for neoplasia prevalence include the common porpoise (<1.3%), the Rodrigues fruit bat (<1.6%), the black-footed penguin (<0.4%), ferrets (63%), and opossums (35%). Discovering why some species have particularly high or low levels of cancer may lead to a better understanding of cancer syndromes and novel strategies for the management and prevention of cancer. Significance: Evolution has discovered mechanisms for suppressing cancer in a wide variety of species. By analyzing veterinary necropsy records, we can identify species with exceptionally high or low cancer prevalence. Discovering the mechanisms of cancer susceptibility and resistance may help improve cancer prevention and explain cancer syndromes. See related commentary by Metzger, p. 14.
Collapse
Affiliation(s)
- Zachary T. Compton
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- University of Arizona Cancer Center, Tucson, Arizona
- University of Arizona College of Medicine, Tucson, Arizona
| | - Walker Mellon
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Valerie K. Harris
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Shawn Rupp
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Diego Mallo
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Mallory Wilmot
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Ryan Kennington
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Kathleen Noble
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Cristina Baciu
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Psychology, Arizona State University, Tempe, Arizona
| | - Lucia N. Ramirez
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, North Carolina
| | - Ashley Peraza
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Brian Martins
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Sushil Sudhakar
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Selin Aksoy
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Gabriela Furukawa
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Orsolya Vincze
- Institute of Aquatic Ecology, Centre for Ecological Research, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | | | - Elizabeth G. Duke
- North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - Simon Spiro
- Wildlife Health Services, Zoological Society of London, London, United Kingdom
| | - Edmund Flach
- Wildlife Health Services, Zoological Society of London, London, United Kingdom
| | - Hannah Davidson
- North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - Christopher I. Li
- Translational Research Program and Epidemiology Program, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Ashley Zehnder
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - Trevor A. Graham
- Centre for Evolution and Cancer, Institute of Cancer Research, London, United Kingdom
| | - Brigid V. Troan
- North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
- The North Carolina Zoo, Asheboro, North Carolina
| | - Tara M. Harrison
- North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - Marc Tollis
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, Arizona
| | - Joshua D. Schiffman
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Peel Therapeutics, Inc., Salt Lake City, Utah
| | - C. Athena Aktipis
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Lisa M. Abegglen
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Peel Therapeutics, Inc., Salt Lake City, Utah
| | - Carlo C. Maley
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, Arizona
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- University of California Santa Barbara, Santa Barbara, California
| |
Collapse
|
4
|
Vazquez JM, Lauterbur ME, Mottaghinia S, Bucci M, Fraser D, Gray-Sandoval G, Gaucherand L, Haidar ZR, Han M, Kohler W, Lama TM, Le Corf A, Loyer C, Maesen S, McMillan D, Li S, Lo J, Rey C, Capel SLR, Singer M, Slocum K, Thomas W, Tyburec JD, Villa S, Miller R, Buchalski M, Vazquez-Medina JP, Pfeffer S, Etienne L, Enard D, Sudmant PH. Extensive longevity and DNA virus-driven adaptation in nearctic Myotis bats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617725. [PMID: 39416019 PMCID: PMC11482938 DOI: 10.1101/2024.10.10.617725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The genus Myotis is one of the largest clades of bats, and exhibits some of the most extreme variation in lifespans among mammals alongside unique adaptations to viral tolerance and immune defense. To study the evolution of longevity-associated traits and infectious disease, we generated near-complete genome assemblies and cell lines for 8 closely related species of Myotis. Using genome-wide screens of positive selection, analyses of structural variation, and functional experiments in primary cell lines, we identify new patterns of adaptation contributing to longevity, cancer resistance, and viral interactions in bats. We find that Myotis bats have some of the most significant variation in cancer risk across mammals and demonstrate a unique DNA damage response in primary cells of the long-lived M. lucifugus. We also find evidence of abundant adaptation in response to DNA viruses - but not RNA viruses - in Myotis and other bats in sharp contrast with other mammals, potentially contributing to the role of bats as reservoirs of zoonoses. Together, our results demonstrate how genomics and primary cells derived from diverse taxa uncover the molecular bases of extreme adaptations in non-model organisms.
Collapse
Affiliation(s)
- Juan M Vazquez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- These authors contributed equally
| | - M. Elise Lauterbur
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Current affiliation: Department of Biology, University of Vermont, Burlington, VT USA
- These authors contributed equally
| | - Saba Mottaghinia
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Melanie Bucci
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Devaughn Fraser
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | | | - Léa Gaucherand
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Zeinab R Haidar
- Department of Biology, California State Polytechnic University, Humboldt, Arcata, CA USA
- Current affiliation: Western EcoSystems Technology Inc, Cheyenne, WY USA
| | - Melissa Han
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - William Kohler
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Tanya M. Lama
- Department of Biological Sciences, Smith College, Northampton, MA USA
| | - Amandine Le Corf
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Clara Loyer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Sarah Maesen
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Dakota McMillan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Department of Science and Biotechnology, Berkeley City College, Berkeley, CA USA
| | - Stacy Li
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Johnathan Lo
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Carine Rey
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Samantha LR Capel
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | - Michael Singer
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | | | - William Thomas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook NY USA
| | | | - Sarah Villa
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | - Richard Miller
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Michael Buchalski
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
| | | | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
- Senior author
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Senior author
- These authors contributed equally
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
- Senior author
- These authors contributed equally
- Lead contact
| |
Collapse
|
5
|
Kan H, Chen Y. Revealing endogenous conditions for Peto's paradox via an ordinary differential equation model. J Math Biol 2024; 89:27. [PMID: 38970664 PMCID: PMC11227477 DOI: 10.1007/s00285-024-02123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Cancer, a disease intimately linked to cellular mutations, is commonly believed to exhibit a positive association with the cell count and lifespan of a species. Despite this assumption, the observed uniformity in cancer rates across species, referred to as the Peto's paradox, presents a conundrum. Recognizing that tumour progression is not solely dependent on cancer cells but involves intricate interactions among various cell types, this study employed a Lotka-Volterra (LV) ordinary differential equation model to analyze the evolution of cancerous cells and the cancer incidence in an immune environment. As a result, this study uncovered the sufficient conditions underlying the absence of correlation in Peto's paradox and provide insights into the reasons for the equitable distribution of cancer incidence across diverse species by applying nondimensionalization and drawing an analogy between the characteristic time interval for the variation of cell populations in the ODE model and that of cell cycles of a species.
Collapse
Affiliation(s)
- Haichun Kan
- SCS Laboratory, Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yu Chen
- SCS Laboratory, Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
6
|
Aranda-Anzaldo A, Dent MAR, Segura-Anaya E, Martínez-Gómez A. Protein folding, cellular stress and cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:40-57. [PMID: 38969306 DOI: 10.1016/j.pbiomolbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Proteins are acknowledged as the phenotypical manifestation of the genotype, because protein-coding genes carry the information for the strings of amino acids that constitute the proteins. It is widely accepted that protein function depends on the corresponding "native" structure or folding achieved within the cell, and that native protein folding corresponds to the lowest free energy minimum for a given protein. However, protein folding within the cell is a non-deterministic dissipative process that from the same input may produce different outcomes, thus conformational heterogeneity of folded proteins is the rule and not the exception. Local changes in the intracellular environment promote variation in protein folding. Hence protein folding requires "supervision" by a host of chaperones and co-chaperones that help their client proteins to achieve the folding that is most stable according to the local environment. Such environmental influence on protein folding is continuously transduced with the help of the cellular stress responses (CSRs) and this may lead to changes in the rules of engagement between proteins, so that the corresponding protein interactome could be modified by the environment leading to an alternative cellular phenotype. This allows for a phenotypic plasticity useful for adapting to sudden and/or transient environmental changes at the cellular level. Starting from this perspective, hereunder we develop the argument that the presence of sustained cellular stress coupled to efficient CSRs may lead to the selection of an aberrant phenotype as the resulting adaptation of the cellular proteome (and the corresponding interactome) to such stressful conditions, and this can be a common epigenetic pathway to cancer.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico.
| | - Myrna A R Dent
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Edith Segura-Anaya
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Alejandro Martínez-Gómez
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| |
Collapse
|
7
|
Compton ZT, Mellon W, Harris V, Rupp S, Mallo D, Kapsetaki S, Wilmot M, Kennington R, Noble K, Baciu C, Ramirez L, Peraza A, Martins B, Sudhakar S, Aksoy S, Furukawa G, Vincze O, Giraudeau MT, Duke E, Spiro S, Flach E, Davidson H, Li C, Zehnder A, Graham TA, Troan B, Harrison T, Tollis M, Schiffman J, Aktipis A, Abegglen L, Maley C, Boddy A. Cancer Prevalence Across Vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.15.527881. [PMID: 36824942 PMCID: PMC9948983 DOI: 10.1101/2023.02.15.527881] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cancer is pervasive across multicellular species, but what explains differences in cancer prevalence across species? Using 16,049 necropsy records for 292 species spanning three clades (amphibians, sauropsids and mammals) we found that neoplasia and malignancy prevalence increases with adult weight (contrary to Petos Paradox) and somatic mutation rate, but decreases with gestation time. Evolution of cancer susceptibility appears to have undergone sudden shifts followed by stabilizing selection. Outliers for neoplasia prevalence include the common porpoise (<1.3%), the Rodrigues fruit bat (<1.6%) the black-footed penguin (<0.4%), ferrets (63%) and opossums (35%). Discovering why some species have particularly high or low levels of cancer may lead to a better understanding of cancer syndromes and novel strategies for the management and prevention of cancer.
Collapse
|
8
|
Birkemeier M, Swindle A, Bowman J, Lynch VJ. Pervasive loss of regulated necrotic cell death genes in elephants, hyraxes, and sea cows ( Paenungualta). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588129. [PMID: 38617256 PMCID: PMC11014510 DOI: 10.1101/2024.04.04.588129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Gene loss can promote phenotypic differences between species, for example, if a gene constrains phenotypic variation in a trait, its loss allows for the evolution of a greater range of variation or even new phenotypes. Here, we explore the contribution of gene loss to the evolution of large bodies and augmented cancer resistance in elephants. We used genomes from 17 Afrotherian and Xenarthran species to identify lost genes, i.e., genes that have pseudogenized or been completely lost, and Dollo parsimony to reconstruct the evolutionary history of gene loss across species. We unexpectedly discovered a burst of gene losses in the Afrotherian stem lineage and found that the loss of genes with functions in regulated necrotic cell death modes was pervasive in elephants, hyraxes, and sea cows (Paenungulata). Among the lost genes are MLKL and RIPK3, which mediate necroptosis, and sensors that activate inflammasomes to induce pyroptosis, including AIM2, MEFV, NLRC4, NLRP1, and NLRP6. These data suggest that the mechanisms that regulate necrosis and pyroptosis are either extremely derived or potentially lost in these lineages, which may contribute to the repeated evolution of large bodies and cancer resistance in Paenungulates as well as susceptibility to pathogen infection.
Collapse
Affiliation(s)
- Meaghan Birkemeier
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| | - Arianna Swindle
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| | - Jacob Bowman
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, USA
| |
Collapse
|
9
|
Perillo M, Silla A, Punzo A, Caliceti C, Kriete A, Sell C, Lorenzini A. Peto's paradox: Nature has used multiple strategies to keep cancer at bay while evolving long lifespans and large body masses. A systematic review. Biomed J 2024; 47:100654. [PMID: 37604250 PMCID: PMC10973980 DOI: 10.1016/j.bj.2023.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Comparative oncology is an understudied field of science. We are far from understanding the key mechanisms behind Peto's paradox, i.e., understanding how long-lived and large animals are not subject to a higher cancer burden despite the longer exposure time to mutations and the larger number of cells exposed. In this work, we investigated the scientific evidence on such mechanisms through a systematic mini-review of the literature about the relation of longevity and/or large body mass with physiological, genetic, or environmental traits among mammalian species. More than forty thousand articles were retrieved from three repositories, and 383 of them were screened using an active-learning-based tool. Of those, 36 articles on longevity and 37 on body mass were selected for the review. Such articles were examined focusing on: number and type of species considered, statistical methods used, traits investigated, and observed relationship with longevity and/or body mass. Where applicable, the traits investigated were matched with one or more hallmarks of cancer. We obtained a list of potential candidate traits to explain Peto's paradox related to replicative immortality, cell senescence, genome instability and mutations, proliferative signaling, growth suppression evasion, and cell resistance to death. Our investigation suggests that different strategies have been followed to prevent cancer in large and long-lived species. The large number of papers retrieved emphasizes that more studies can be launched in the future, using more efficient analytical approaches to comprehensively evaluate the convergent biological mechanisms essential for acquiring longevity and large body mass without increasing cancer risk.
Collapse
Affiliation(s)
- Matteo Perillo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| | - Alessia Silla
- Department for Life Quality Studies, University of Bologna, Italy
| | - Angela Punzo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; National Institute of Biosystems and Biostructures INBB, Rome, Italy
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; National Institute of Biosystems and Biostructures INBB, Rome, Italy
| | - Andres Kriete
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Christian Sell
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; National Institute of Biosystems and Biostructures INBB, Rome, Italy
| |
Collapse
|
10
|
Bowman J, Lynch VJ. Rapid evolution of genes with anti-cancer functions during the origins of large bodies and cancer resistance in elephants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582135. [PMID: 38463968 PMCID: PMC10925141 DOI: 10.1101/2024.02.27.582135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Elephants have emerged as a model system to study the evolution of body size and cancer resistance because, despite their immense size, they have a very low prevalence of cancer. Previous studies have found that duplication of tumor suppressors at least partly contributes to the evolution of anti-cancer cellular phenotypes in elephants. Still, many other mechanisms must have contributed to their augmented cancer resistance. Here, we use a suite of codon-based maximum-likelihood methods and a dataset of 13,310 protein-coding gene alignments from 261 Eutherian mammals to identify positively selected and rapidly evolving elephant genes. We found 496 genes (3.73% of alignments tested) with statistically significant evidence for positive selection and 660 genes (4.96% of alignments tested) that likely evolved rapidly in elephants. Positively selected and rapidly evolving genes are statistically enriched in gene ontology terms and biological pathways related to regulated cell death mechanisms, DNA damage repair, cell cycle regulation, epidermal growth factor receptor (EGFR) signaling, and immune functions, particularly neutrophil granules and degranulation. All of these biological factors are plausibly related to the evolution of cancer resistance. Thus, these positively selected and rapidly evolving genes are promising candidates for genes contributing to elephant-specific traits, including the evolution of molecular and cellular characteristics that enhance cancer resistance.
Collapse
Affiliation(s)
- Jacob Bowman
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, 14260, USA
| | - Vincent J. Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, 551 Cooke Hall, Buffalo, NY, 14260, USA
| |
Collapse
|
11
|
Szasz A. Peto's "Paradox" and Six Degrees of Cancer Prevalence. Cells 2024; 13:197. [PMID: 38275822 PMCID: PMC10814230 DOI: 10.3390/cells13020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Peto's paradox and the epidemiologic observation of the average six degrees of tumor prevalence are studied and hypothetically solved. A simple consideration, Petho's paradox challenges our intuitive understanding of cancer risk and prevalence. Our simple consideration is that the more a cell divides, the higher the chance of acquiring cancerous mutations, and so the larger or longer-lived organisms have more cells and undergo more cell divisions over their lifetime, expecting to have a higher risk of developing cancer. Paradoxically, it is not supported by the observations. The allometric scaling of species could answer the Peto paradox. Another paradoxical human epidemiology observation in six average mutations is necessary for cancer prevalence, despite the random expectations of the tumor causes. To solve this challenge, game theory could be applied. The inherited and random DNA mutations in the replication process nonlinearly drive cancer development. The statistical variance concept does not reasonably describe tumor development. Instead, the Darwinian natural selection principle is applied. The mutations in the healthy organism's cellular population can serve the species' evolutionary adaptation by the selective pressure of the circumstances. Still, some cells collect multiple uncorrected mutations, adapt to the extreme stress in the stromal environment, and develop subclinical phases of cancer in the individual. This process needs extensive subsequent DNA replications to heritage and collect additional mutations, which are only marginal alone. Still, together, they are preparing for the first stage of the precancerous condition. In the second stage, when one of the caretaker genes is accidentally mutated, the caused genetic instability prepares the cell to fight for its survival and avoid apoptosis. This can be described as a competitive game. In the third stage, the precancerous cell develops uncontrolled proliferation with the damaged gatekeeper gene and forces the new game strategy with binary cooperation with stromal cells for alimentation. In the fourth stage, the starving conditions cause a game change again, starting a cooperative game, where the malignant cells cooperate and force the cooperation of the stromal host, too. In the fifth stage, the resetting of homeostasis finishes the subclinical stage, and in the fifth stage, the clinical phase starts. The prevention of the development of mutated cells is more complex than averting exposure to mutagens from the environment throughout the organism's lifetime. Mutagenic exposure can increase the otherwise random imperfect DNA reproduction, increasing the likelihood of cancer development, but mutations exist. Toxic exposure is more challenging; it may select the tolerant cells on this particular toxic stress, so these mutations have more facility to avoid apoptosis in otherwise collected random mutational states.
Collapse
Affiliation(s)
- Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
12
|
Huang Z, Jiang C, Gu J, Uvizl M, Power S, Douglas D, Kacprzyk J. Duplications of Human Longevity-Associated Genes Across Placental Mammals. Genome Biol Evol 2023; 15:evad186. [PMID: 37831410 PMCID: PMC10588791 DOI: 10.1093/gbe/evad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023] Open
Abstract
Natural selection has shaped a wide range of lifespans across mammals, with a few long-lived species showing negligible signs of ageing. Approaches used to elucidate the genetic mechanisms underlying mammalian longevity usually involve phylogenetic selection tests on candidate genes, detections of convergent amino acid changes in long-lived lineages, analyses of differential gene expression between age cohorts or species, and measurements of age-related epigenetic changes. However, the link between gene duplication and evolution of mammalian longevity has not been widely investigated. Here, we explored the association between gene duplication and mammalian lifespan by analyzing 287 human longevity-associated genes across 37 placental mammals. We estimated that the expansion rate of these genes is eight times higher than their contraction rate across these 37 species. Using phylogenetic approaches, we identified 43 genes whose duplication levels are significantly correlated with longevity quotients (False Discovery Rate (FDR) < 0.05). In particular, the strong correlation observed for four genes (CREBBP, PIK3R1, HELLS, FOXM1) appears to be driven mainly by their high duplication levels in two ageing extremists, the naked mole rat (Heterocephalus glaber) and the greater mouse-eared bat (Myotis myotis). Further sequence and expression analyses suggest that the gene PIK3R1 may have undergone a convergent duplication event, whereby the similar region of its coding sequence was independently duplicated multiple times in both of these long-lived species. Collectively, this study identified several candidate genes whose duplications may underlie the extreme longevity in mammals, and highlighted the potential role of gene duplication in the evolution of mammalian long lifespans.
Collapse
Affiliation(s)
- Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Chongyi Jiang
- Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
| | - Jiayun Gu
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Marek Uvizl
- Department of Zoology, National Museum, Prague, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Sarahjane Power
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Declan Douglas
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Bornstein K, Gryan G, Chang ES, Marchler-Bauer A, Schneider VA. The NIH Comparative Genomics Resource: addressing the promises and challenges of comparative genomics on human health. BMC Genomics 2023; 24:575. [PMID: 37759191 PMCID: PMC10523801 DOI: 10.1186/s12864-023-09643-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Comparative genomics is the comparison of genetic information within and across organisms to understand the evolution, structure, and function of genes, proteins, and non-coding regions (Sivashankari and Shanmughavel, Bioinformation 1:376-8, 2007). Advances in sequencing technology and assembly algorithms have resulted in the ability to sequence large genomes and provided a wealth of data that are being used in comparative genomic analyses. Comparative analysis can be leveraged to systematically explore and evaluate the biological relationships and evolution between species, aid in understanding the structure and function of genes, and gain a better understanding of disease and potential drug targets. As our knowledge of genetics expands, comparative genomics can help identify emerging model organisms among a broader span of the tree of life, positively impacting human health. This impact includes, but is not limited to, zoonotic disease research, therapeutics development, microbiome research, xenotransplantation, oncology, and toxicology. Despite advancements in comparative genomics, new challenges have arisen around the quantity, quality assurance, annotation, and interoperability of genomic data and metadata. New tools and approaches are required to meet these challenges and fulfill the needs of researchers. This paper focuses on how the National Institutes of Health (NIH) Comparative Genomics Resource (CGR) can address both the opportunities for comparative genomics to further impact human health and confront an increasingly complex set of challenges facing researchers.
Collapse
Affiliation(s)
| | - Gary Gryan
- The MITRE Corporation, 7525 Colshire Dr, McLean, VA, USA
| | - E Sally Chang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Aron Marchler-Bauer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Valerie A Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
14
|
Roitershtein A, Rastegar R, Chapkin RS, Ivanov I. Extinction scenarios in evolutionary processes: a multinomial Wright-Fisher approach. J Math Biol 2023; 87:63. [PMID: 37751048 PMCID: PMC10586398 DOI: 10.1007/s00285-023-01993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
We study a discrete-time multi-type Wright-Fisher population process. The mean-field dynamics of the stochastic process is induced by a general replicator difference equation. We prove several results regarding the asymptotic behavior of the model, focusing on the impact of the mean-field dynamics on it. One of the results is a limit theorem that describes sufficient conditions for an almost certain path to extinction, first eliminating the type which is the least fit at the mean-field equilibrium. The effect is explained by the metastability of the stochastic system, which under the conditions of the theorem spends almost all time before the extinction event in a neighborhood of the equilibrium. In addition to the limit theorems, we propose a maximization principle for a general deterministic replicator dynamics and study its implications for the stochastic model.
Collapse
Affiliation(s)
| | - Reza Rastegar
- Occidental Petroleum Corporation, Houston, TX, 77046, USA
| | - Robert S Chapkin
- Department of Nutrition - Program in Integrative Nutrition & Complex Diseases, Texas A &M University, College Station, TX, 77843, USA
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A &M University, College Station, TX, 77843, USA.
| |
Collapse
|
15
|
Yang F, Liu X, Li Y, Yu Z, Huang X, Yang G, Xu S. Evolutionary analysis of the mTOR pathway provide insights into lifespan extension across mammals. BMC Genomics 2023; 24:456. [PMID: 37582720 PMCID: PMC10426088 DOI: 10.1186/s12864-023-09554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Lifespan extension has independently evolved several times during mammalian evolution, leading to the emergence of a group of long-lived animals. Though mammalian/mechanistic target of rapamycin (mTOR) signaling pathway is shown as a central regulator of lifespan and aging, the underlying influence of mTOR pathway on the evolution of lifespan in mammals is not well understood. RESULTS Here, we performed evolution analyses of 72 genes involved in the mTOR network across 48 mammals to explore the underlying mechanism of lifespan extension. We identified a total of 20 genes with significant evolution signals unique to long-lived species, including 12 positively selected genes, four convergent evolution genes, and five longevity associated genes whose evolution rate related to the maximum lifespan (MLS). Of these genes, four positively selected genes, two convergent evolution genes and one longevity-associated gene were involved in the autophagy response and aging-related diseases, while eight genes were known as cancer genes, indicating the long-lived species might have evolved effective regulation mechanisms of autophagy and cancer to extend lifespan. CONCLUSION Our study revealed genes with significant evolutionary signals unique to long-lived species, which provided new insight into the lifespan extension of mammals and might bring new strategies to extend human lifespan.
Collapse
Affiliation(s)
- Fei Yang
- Jiangsu Key Laboratory for Biodiverity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xing Liu
- Jiangsu Key Laboratory for Biodiverity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yi Li
- Jiangsu Key Laboratory for Biodiverity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhenpeng Yu
- Jiangsu Key Laboratory for Biodiverity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiverity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiverity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiverity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
16
|
Compton ZT, Harris V, Mellon W, Rupp S, Mallo D, Kapsetaki SE, Wilmot M, Kennington R, Noble K, Baciu C, Ramirez L, Peraza A, Martins B, Sudhakar S, Aksoy S, Furukawa G, Vincze O, Giraudeau M, Duke EG, Spiro S, Flach E, Davidson H, Zehnder A, Graham TA, Troan B, Harrison TM, Tollis M, Schiffman JD, Aktipis A, Abegglen LM, Maley CC, Boddy AM. Cancer Prevalence Across Vertebrates. RESEARCH SQUARE 2023:rs.3.rs-3117313. [PMID: 37461608 PMCID: PMC10350200 DOI: 10.21203/rs.3.rs-3117313/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Cancer is pervasive across multicellular species, but what explains differences in cancer prevalence across species? Using 16,049 necropsy records for 292 species spanning three clades (amphibians, sauropsids and mammals) we found that neoplasia and malignancy prevalence increases with adult weight (contrary to Peto's Paradox) and somatic mutation rate, but decreases with gestation time. Evolution of cancer susceptibility appears to have undergone sudden shifts followed by stabilizing selection. Outliers for neoplasia prevalence include the common porpoise (<1.3%), the Rodrigues fruit bat (<1.6%) the black-footed penguin (<0.4%), ferrets (63%) and opossums (35%). Discovering why some species have particularly high or low levels of cancer may lead to a better understanding of cancer syndromes and novel strategies for the management and prevention of cancer.
Collapse
Affiliation(s)
- Zachary T. Compton
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Valerie Harris
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Walker Mellon
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Shawn Rupp
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Diego Mallo
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Mallory Wilmot
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Ryan Kennington
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Kathleen Noble
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Cristina Baciu
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
- Department of Psychology, Arizona State University, Tempe, AZ
| | - Lucia Ramirez
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC
| | - Ashley Peraza
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Brian Martins
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Sushil Sudhakar
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Selin Aksoy
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Gabriella Furukawa
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Orsolya Vincze
- Institute of Aquatic Ecology, Centre for Ecological Research, 4026 Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, 400006 Cluj-Napoca, Romania
| | | | - Elizabeth G. Duke
- North Carolina State College of Veterinary Medicine, Raleigh, NC
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, NC
| | - Simon Spiro
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Edmund Flach
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Hannah Davidson
- North Carolina State College of Veterinary Medicine, Raleigh, NC
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, NC
| | - Ashley Zehnder
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, NC
| | - Trevor A. Graham
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - Brigid Troan
- North Carolina State College of Veterinary Medicine, Raleigh, NC
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, NC
- The North Carolina Zoo, Asheboro, NC
| | - Tara M. Harrison
- North Carolina State College of Veterinary Medicine, Raleigh, NC
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, NC
| | - Marc Tollis
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ
| | - Joshua D. Schiffman
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
- Peel Therapeutics, Inc., Salt Lake City, UT
| | - Athena Aktipis
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
- Department of Psychology, Arizona State University, Tempe, AZ
| | - Lisa M. Abegglen
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
- Peel Therapeutics, Inc., Salt Lake City, UT
| | - Carlo C. Maley
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe, AZ
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, AZ
- University of California Santa Barbara, Santa Barbara, CA
| |
Collapse
|
17
|
Schraverus H, Larondelle Y, Page MM. Beyond the Lab: What We Can Learn about Cancer from Wild and Domestic Animals. Cancers (Basel) 2022; 14:cancers14246177. [PMID: 36551658 PMCID: PMC9776354 DOI: 10.3390/cancers14246177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer research has benefited immensely from the use of animal models. Several genetic tools accessible in rodent models have provided valuable insight into cellular and molecular mechanisms linked to cancer development or metastasis and various lines are available. However, at the same time, it is important to accompany these findings with those from alternative or non-model animals to offer new perspectives into the understanding of tumor development, prevention, and treatment. In this review, we first discuss animals characterized by little or no tumor development. Cancer incidence in small animals, such as the naked mole rat, blind mole rat and bats have been reported as almost negligible and tumor development may be inhibited by increased defense and repair mechanisms, altered cell cycle signaling and reduced rates of cell migration to avoid tumor microenvironments. On the other end of the size spectrum, large animals such as elephants and whales also appear to have low overall cancer rates, possibly due to gene replicates that are involved in apoptosis and therefore can inhibit uncontrolled cell cycle progression. While it is important to determine the mechanisms that lead to cancer protection in these animals, we can also take advantage of other animals that are highly susceptible to cancer, especially those which develop tumors similar to humans, such as carnivores or poultry. The use of such animals does not require the transplantation of malignant cancer cells or use of oncogenic substances as they spontaneously develop tumors of similar presentation and pathophysiology to those found in humans. For example, some tumor suppressor genes are highly conserved between humans and domestic species, and various tumors develop in similar ways or because of a common environment. These animals are therefore of great interest for broadening perspectives and techniques and for gathering information on the tumor mechanisms of certain types of cancer. Here we present a detailed review of alternative and/or non-model vertebrates, that can be used at different levels of cancer research to open new perspectives and fields of action.
Collapse
|
18
|
Nunney L. Cancer suppression and the evolution of multiple retrogene copies of TP53 in elephants: a re‐evaluation. Evol Appl 2022; 15:891-901. [PMID: 35603034 PMCID: PMC9108310 DOI: 10.1111/eva.13383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022] Open
Abstract
Evolving to become bigger and/or longer lived should increase cancer susceptibility, but this predicted increase is not observed, a contradiction named Peto's paradox. A solution is that cancer suppression evolves to minimize cancer susceptibility, and the discovery of 19 retrogene (RTG) copies of the tumor suppressor gene TP53 in the African elephant (Loxodonta africana) is increasingly cited as a classic example of such adaptive suppression. However, classic examples need rigorous evaluation and an alternative hypothesis is that the RTGs spread by genetic drift. This study shows that before its duplication, the ancestral elephant RTG was already truncated from 390 amino acids to 157 by a frameshift mutation, and that 14 of the 19 copies are now truncated to ≤88 amino acids. There was no compelling evidence of either positive or negative selection acting on these 88 codons, and the pattern of RTG accumulation fits a neutral model with a duplication rate of ~10−6 per generation. It is concluded that there is no evidence supporting the hypothesis that the 19 elephant RTGs spread to fixation by selection; instead, the evidence indicates that these RTGs accumulated primarily by segmental duplication and drift. It is shown that the evolutionary multistage model of carcinogenesis (EMMC) predicts the recruitment of 1–2 independently acting tumor suppressor genes to suppress the increased cancer risk in elephants, so it is possible that one or a few RTGs may have been favored by selection resulting in the known enhanced sensitivity of elephant cells to DNA damage. However, the analysis does not provide any support for either a direct (via conserved TP53 activity) or indirect (via supporting canonical TP53 function) role of the RTGs sequences, so that the presence of multiple copies of TP53 retrogenes in elephants needs to be further justified before being used as a classic example of tumor suppression in large‐bodied animals.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside 900 University Avenue Riverside CA 92521 USA
| |
Collapse
|
19
|
Tejada-Martinez D, Avelar RA, Lopes I, Zhang B, Novoa G, de Magalhães JP, Trizzino M. Positive Selection and Enhancer Evolution Shaped Lifespan and Body Mass in Great Apes. Mol Biol Evol 2022; 39:msab369. [PMID: 34971383 PMCID: PMC8837823 DOI: 10.1093/molbev/msab369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within primates, the great apes are outliers both in terms of body size and lifespan, since they include the largest and longest-lived species in the order. Yet, the molecular bases underlying such features are poorly understood. Here, we leveraged an integrated approach to investigate multiple sources of molecular variation across primates, focusing on over 10,000 genes, including approximately 1,500 previously associated with lifespan, and additional approximately 9,000 for which an association with longevity has never been suggested. We analyzed dN/dS rates, positive selection, gene expression (RNA-seq), and gene regulation (ChIP-seq). By analyzing the correlation between dN/dS, maximum lifespan, and body mass, we identified 276 genes whose rate of evolution positively correlates with maximum lifespan in primates. Further, we identified five genes, important for tumor suppression, adaptive immunity, metastasis, and inflammation, under positive selection exclusively in the great ape lineage. RNA-seq data, generated from the liver of six species representing all the primate lineages, revealed that 8% of approximately 1,500 genes previously associated with longevity are differentially expressed in apes relative to other primates. Importantly, by integrating RNA-seq with ChIP-seq for H3K27ac (which marks active enhancers), we show that the differentially expressed longevity genes are significantly more likely than expected to be located near a novel "ape-specific" enhancer. Moreover, these particular ape-specific enhancers are enriched for young transposable elements, and specifically SINE-Vntr-Alus. In summary, we demonstrate that multiple evolutionary forces have contributed to the evolution of lifespan and body size in primates.
Collapse
Affiliation(s)
- Daniela Tejada-Martinez
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Roberto A Avelar
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Inês Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Guy Novoa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología—CSIC, Madrid, Spain
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
20
|
Vazquez JM, Pena MT, Muhammad B, Kraft M, Adams LB, Lynch VJ. Parallel evolution of reduced cancer risk and tumor suppressor duplications in Xenarthra. eLife 2022; 11:82558. [PMID: 36480266 PMCID: PMC9810328 DOI: 10.7554/elife.82558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The risk of developing cancer is correlated with body size and lifespan within species, but there is no correlation between cancer and either body size or lifespan between species indicating that large, long-lived species have evolved enhanced cancer protection mechanisms. Previously we showed that several large bodied Afrotherian lineages evolved reduced intrinsic cancer risk, particularly elephants and their extinct relatives (Proboscideans), coincident with pervasive duplication of tumor suppressor genes (Vazquez and Lynch, 2021). Unexpectedly, we also found that Xenarthrans (sloths, armadillos, and anteaters) evolved very low intrinsic cancer risk. Here, we show that: (1) several Xenarthran lineages independently evolved large bodies, long lifespans, and reduced intrinsic cancer risk; (2) the reduced cancer risk in the stem lineages of Xenarthra and Pilosa coincided with bursts of tumor suppressor gene duplications; (3) cells from sloths proliferate extremely slowly while Xenarthran cells induce apoptosis at very low doses of DNA damaging agents; and (4) the prevalence of cancer is extremely low Xenarthrans, and cancer is nearly absent from armadillos. These data implicate the duplication of tumor suppressor genes in the evolution of remarkably large body sizes and decreased cancer risk in Xenarthrans and suggest they are a remarkably cancer-resistant group of mammals.
Collapse
Affiliation(s)
- Juan Manuel Vazquez
- Department of Integrative Biology, Valley Life Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Maria T Pena
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease ProgramBaton RougeUnited States
| | - Baaqeyah Muhammad
- Department of Biological Sciences, University at Buffalo, SUNYBuffaloUnited States
| | - Morgan Kraft
- Department of Biological Sciences, University at Buffalo, SUNYBuffaloUnited States
| | - Linda B Adams
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease ProgramBaton RougeUnited States
| | - Vincent J Lynch
- Department of Biological Sciences, University at Buffalo, SUNYBuffaloUnited States
| |
Collapse
|
21
|
Nery MF, Rennó M, Picorelli A, Ramos E. A phylogenetic review of cancer resistance highlights evolutionary solutions to Peto’s Paradox. Genet Mol Biol 2022; 45:e20220133. [DOI: 10.1590/1678-4685-gmb-2022-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
|
22
|
Glaberman S, Bulls SE, Vazquez JM, Chiari Y, Lynch VJ. Concurrent evolution of anti-aging gene duplications and cellular phenotypes in long-lived turtles. Genome Biol Evol 2021; 13:6430984. [PMID: 34792580 PMCID: PMC8688777 DOI: 10.1093/gbe/evab244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
There are many costs associated with increased body size and longevity in animals, including the accumulation of genotoxic and cytotoxic damage that comes with having more cells and living longer. Yet, some species have overcome these barriers and have evolved remarkably large body sizes and long lifespans, sometimes within a narrow window of evolutionary time. Here, we demonstrate through phylogenetic comparative analysis that multiple turtle lineages, including Galapagos giant tortoises, concurrently evolved large bodies, long lifespans, and reduced cancer risk. We also show through comparative genomic analysis that Galapagos giant tortoises have gene duplications related to longevity and tumor suppression. To examine the molecular basis underlying increased body size and lifespan in turtles, we treated cell lines from multiple species, including Galapagos giant tortoises, with drugs that induce different types of cytotoxic stress. Our results indicate that turtle cells, in general, are resistant to oxidative stress related to aging, whereas Galapagos giant tortoise cells, specifically, are sensitive to endoplasmic reticulum stress, which may give this species an ability to mitigate the effects of cellular stress associated with increased body size and longevity.
Collapse
Affiliation(s)
- Scott Glaberman
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA.,Department of Biology, University of South Alabama, Mobile, AL, USA
| | | | - Juan Manuel Vazquez
- Department of Integrative Biology, University of California - Berkeley, Berkeley, CA, USA
| | - Ylenia Chiari
- Department of Biology, George Mason University, Fairfax, VA, USA
| | - Vincent J Lynch
- Department of Biological Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| |
Collapse
|
23
|
Abstract
Analogies between placentation, in particular the behavior of trophoblast cells, and cancer have been noted since the beginning of the twentieth century. To what degree these can be explained as a consequence of the evolution of placentation has been unclear. In this review, we conclude that many similarities between trophoblast and cancer cells are shared with other, phylogenetically older processes than placentation. The best candidates for cancer hallmarks that can be explained by the evolution of eutherian placenta are mechanisms of immune evasion. Another dimension of the maternal accommodation of the placenta with an impact on cancer malignancy is the evolution of endometrial invasibility. Species with lower degrees of placental invasion tend to have lower vulnerability to cancer malignancy. We finally identify several areas in which one could expect to see coevolutionary changes in placental and cancer biology but that, to our knowledge, have not been explored. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Günter P Wagner
- Systems Biology Institute, Yale University, West Haven, Connecticut, USA; , , .,Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, Connecticut, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Storrs, Connecticut, USA;
| | - Anasuya Dighe
- Systems Biology Institute, Yale University, West Haven, Connecticut, USA; , , .,Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Andre Levchenko
- Systems Biology Institute, Yale University, West Haven, Connecticut, USA; , , .,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Omotoso O, Gladyshev VN, Zhou X. Lifespan Extension in Long-Lived Vertebrates Rooted in Ecological Adaptation. Front Cell Dev Biol 2021; 9:704966. [PMID: 34733838 PMCID: PMC8558438 DOI: 10.3389/fcell.2021.704966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023] Open
Abstract
Contemporary studies on aging and longevity have largely overlooked the role that adaptation plays in lifespan variation across species. Emerging evidence indicates that the genetic signals of extended lifespan may be maintained by natural selection, suggesting that longevity could be a product of organismal adaptation. The mechanisms of adaptation in long-lived animals are believed to account for the modification of physiological function. Here, we first review recent progress in comparative biology of long-lived animals, together with the emergence of adaptive genetic factors that control longevity and disease resistance. We then propose that hitchhiking of adaptive genetic changes is the basis for lifespan changes and suggest ways to test this evolutionary model. As individual adaptive or adaptation-linked mutations/substitutions generate specific forms of longevity effects, the cumulative beneficial effect is largely nonrandom and is indirectly favored by natural selection. We consider this concept in light of other proposed theories of aging and integrate these disparate ideas into an adaptive evolutionary model, highlighting strategies in decoding genetic factors of lifespan control.
Collapse
Affiliation(s)
- Olatunde Omotoso
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| |
Collapse
|
25
|
Tollis M, Ferris E, Campbell MS, Harris VK, Rupp SM, Harrison TM, Kiso WK, Schmitt DL, Garner MM, Aktipis CA, Maley CC, Boddy AM, Yandell M, Gregg C, Schiffman JD, Abegglen LM. Elephant Genomes Reveal Accelerated Evolution in Mechanisms Underlying Disease Defenses. Mol Biol Evol 2021; 38:3606-3620. [PMID: 33944920 PMCID: PMC8383897 DOI: 10.1093/molbev/msab127] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disease susceptibility and resistance are important factors for the conservation of endangered species, including elephants. We analyzed pathology data from 26 zoos and report that Asian elephants have increased neoplasia and malignancy prevalence compared with African bush elephants. This is consistent with observed higher susceptibility to tuberculosis and elephant endotheliotropic herpesvirus (EEHV) in Asian elephants. To investigate genetic mechanisms underlying disease resistance, including differential responses between species, among other elephant traits, we sequenced multiple elephant genomes. We report a draft assembly for an Asian elephant, and defined 862 and 1,017 conserved potential regulatory elements in Asian and African bush elephants, respectively. In the genomes of both elephant species, conserved elements were significantly enriched with genes differentially expressed between the species. In Asian elephants, these putative regulatory regions were involved in immunity pathways including tumor-necrosis factor, which plays an important role in EEHV response. Genomic sequences of African bush, forest, and Asian elephant genomes revealed extensive sequence conservation at TP53 retrogene loci across three species, which may be related to TP53 functionality in elephant cancer resistance. Positive selection scans revealed outlier genes related to additional elephant traits. Our study suggests that gene regulation plays an important role in the differential inflammatory response of Asian and African elephants, leading to increased infectious disease and cancer susceptibility in Asian elephants. These genomic discoveries can inform future functional and translational studies aimed at identifying effective treatment approaches for ill elephants, which may improve conservation.
Collapse
Affiliation(s)
- Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
| | - Elliott Ferris
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | | | - Valerie K Harris
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Shawn M Rupp
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Tara M Harrison
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Wendy K Kiso
- Ringling Bros Center for Elephant Conservation, Polk City, FL, USA
| | - Dennis L Schmitt
- Ringling Bros Center for Elephant Conservation, Polk City, FL, USA
- William H. Darr College of Agriculture, Missouri State University, Springfield, MO, USA
| | | | - Christina Athena Aktipis
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Amy M Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Mark Yandell
- Department of Genetics, University of Utah, Salt Lake City, UT, USA
| | - Christopher Gregg
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Joshua D Schiffman
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- PEEL Therapeutics, Inc., Salt Lake City, UT, USA & Haifa, Israel
| | - Lisa M Abegglen
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- PEEL Therapeutics, Inc., Salt Lake City, UT, USA & Haifa, Israel
| |
Collapse
|
26
|
Tollis M, Schneider-Utaka AK, Maley CC. The Evolution of Human Cancer Gene Duplications across Mammals. Mol Biol Evol 2021; 37:2875-2886. [PMID: 32421773 PMCID: PMC7530603 DOI: 10.1093/molbev/msaa125] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is caused by genetic alterations that affect cellular fitness, and multicellular organisms have evolved mechanisms to suppress cancer such as cell cycle checkpoints and apoptosis. These pathways may be enhanced by the addition of tumor suppressor gene paralogs or deletion of oncogenes. To provide insights to the evolution of cancer suppression across the mammalian radiation, we estimated copy numbers for 548 human tumor suppressor gene and oncogene homologs in 63 mammalian genome assemblies. The naked mole rat contained the most cancer gene copies, consistent with the extremely low rates of cancer found in this species. We found a positive correlation between a species’ cancer gene copy number and its longevity, but not body size, contrary to predictions from Peto’s Paradox. Extremely long-lived mammals also contained more copies of caretaker genes in their genomes, suggesting that the maintenance of genome integrity is an essential form of cancer prevention in long-lived species. We found the strongest association between longevity and copy numbers of genes that are both germline and somatic tumor suppressor genes, suggesting that selection has acted to suppress both hereditary and sporadic cancers. We also found a strong relationship between the number of tumor suppressor genes and the number of oncogenes in mammalian genomes, suggesting that complex regulatory networks mediate the balance between cell proliferation and checks on tumor progression. This study is the first to investigate cancer gene expansions across the mammalian radiation and provides a springboard for potential human therapies based on evolutionary medicine.
Collapse
Affiliation(s)
- Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ.,Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ
| | | | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ.,School of Life Sciences, Arizona State University, Tempe, AZ
| |
Collapse
|
27
|
Vazquez JM, Lynch VJ. Pervasive duplication of tumor suppressors in Afrotherians during the evolution of large bodies and reduced cancer risk. eLife 2021; 10:e65041. [PMID: 33513090 PMCID: PMC7952090 DOI: 10.7554/elife.65041] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
The risk of developing cancer is correlated with body size and lifespan within species. Between species, however, there is no correlation between cancer and either body size or lifespan, indicating that large, long-lived species have evolved enhanced cancer protection mechanisms. Elephants and their relatives (Proboscideans) are a particularly interesting lineage for the exploration of mechanisms underlying the evolution of augmented cancer resistance because they evolved large bodies recently within a clade of smaller-bodied species (Afrotherians). Here, we explore the contribution of gene duplication to body size and cancer risk in Afrotherians. Unexpectedly, we found that tumor suppressor duplication was pervasive in Afrotherian genomes, rather than restricted to Proboscideans. Proboscideans, however, have duplicates in unique pathways that may underlie some aspects of their remarkable anti-cancer cell biology. These data suggest that duplication of tumor suppressor genes facilitated the evolution of increased body size by compensating for decreasing intrinsic cancer risk.
Collapse
Affiliation(s)
- Juan M Vazquez
- Department of Human Genetics, The University of ChicagoChicagoUnited States
| | - Vincent J Lynch
- Department of Biological Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
28
|
Vedelek B, Maddali AK, Davenova N, Vedelek V, Boros IM. TERT promoter alterations could provide a solution for Peto's paradox in rodents. Sci Rep 2020; 10:20815. [PMID: 33257697 PMCID: PMC7704627 DOI: 10.1038/s41598-020-77648-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer is a genetic disease caused by changes in gene expression resulting from somatic mutations and epigenetic changes. Although the probability of mutations is proportional with cell number and replication cycles, large bodied species do not develop cancer more frequently than smaller ones. This notion is known as Peto's paradox, and assumes stronger tumor suppression in larger animals. One of the possible tumor suppressor mechanisms involved could be replicative senescence caused by telomere shortening in the absence of telomerase activity. We analysed telomerase promoter activity and transcription factor binding in mammals to identify the key element of telomerase gene inactivation. We found that the GABPA transcription factor plays a key role in TERT regulation in somatic cells of small rodents, but its binding site is absent in larger beavers. Protein binding and reporter gene assays verify different use of this site in different species. The presence or absence of the GABPA TF site in TERT promoters of rodents correlates with TERT promoter activity; thus it could determine whether replicative senescence plays a tumor suppressor role in these species, which could be in direct relation with body mass. The GABPA TF binding sites that contribute to TERT activity in somatic cells of rodents are analogous to those mutated in human tumors, which activate telomerase by a non-ALT mechanism.
Collapse
Affiliation(s)
- Balázs Vedelek
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Asha Kiran Maddali
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Nurgul Davenova
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Viktor Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Imre M Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary.
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
29
|
Harman RM, Das SP, Bartlett AP, Rauner G, Donahue LR, Van de Walle GR. Beyond tradition and convention: benefits of non-traditional model organisms in cancer research. Cancer Metastasis Rev 2020; 40:47-69. [PMID: 33111160 DOI: 10.1007/s10555-020-09930-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Traditional laboratory model organisms are indispensable for cancer research and have provided insight into numerous mechanisms that contribute to cancer development and progression in humans. However, these models do have some limitations, most notably related to successful drug translation, because traditional model organisms are often short-lived, small-bodied, genetically homogeneous, often immunocompromised, are not exposed to natural environments shared with humans, and usually do not develop cancer spontaneously. We propose that assimilating information from a variety of long-lived, large, genetically diverse, and immunocompetent species that live in natural environments and do develop cancer spontaneously (or do not develop cancer at all) will lead to a more comprehensive understanding of human cancers. These non-traditional model organisms can also serve as sentinels for environmental risk factors that contribute to human cancers. Ultimately, expanding the range of animal models that can be used to study cancer will lead to improved insights into cancer development, progression and metastasis, tumor microenvironment, as well as improved therapies and diagnostics, and will consequently reduce the negative impacts of the wide variety of cancers afflicting humans overall.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sanjna P Das
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gat Rauner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Leanne R Donahue
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
30
|
Boddy AM, Harrison TM, Abegglen LM. Comparative Oncology: New Insights into an Ancient Disease. iScience 2020; 23:101373. [PMID: 32738614 PMCID: PMC7394918 DOI: 10.1016/j.isci.2020.101373] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer has deep evolutionary roots and is an important source of selective pressure in organismal evolution. Yet, we find a great deal of variation in cancer vulnerabilities across the tree of life. Comparative oncology offers insights into why some species vary in their susceptibility to cancer and the mechanisms responsible for the diversity of cancer defenses. Here we provide an overview for why cancer persists across the tree of life. We then summarize current data on cancer in mammals, reptiles, and birds in comparison with commonly reported human cancers. We report on both novel and shared mechanisms of cancer protection in animals. Cross-discipline collaborations, including zoological and aquarium institutions, wildlife and evolutionary biologists, veterinarians, medical doctors, cancer biologists, and oncologists, will be essential for progress in the field of comparative oncology. Improving medical treatment of humans and animals with cancer is the ultimate promise of comparative oncology.
Collapse
Affiliation(s)
- Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Tara M Harrison
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Lisa M Abegglen
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
31
|
Nunney L. Resolving Peto's paradox: Modeling the potential effects of size-related metabolic changes, and of the evolution of immune policing and cancer suppression. Evol Appl 2020; 13:1581-1592. [PMID: 32821274 PMCID: PMC7428811 DOI: 10.1111/eva.12993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
The intrinsic risk of cancer increases with body size and longevity; however, big long-lived species do not exhibit this increase, a contradiction named Peto's paradox. Five hypotheses potentially resolving this paradox were modeled using the multistage model of carcinogenesis. The five hypotheses were based on (1) intrinsic changes in metabolic rate with body size; adaptive increase in immune policing of (2) cancer cells or (3) cells with driver mutations; or adaptive increase in cancer suppression via (4) decreased somatic mutation rate, or (5) increased genetic control. Parameter changes needed to stabilize cancer risk in three types of cancer were estimated for tissues scaled from mouse size and longevity to human and blue whale levels. The metabolic rate hypothesis alone was rejected due to a conflict between the required interspecific effect with the observed intraspecific effect of size on cancer risk, but some metabolic change was optionally incorporated in the other models. Necessary parameter changes in immune policing and somatic mutation rate far exceeded values observed; however, natural selection increasing the genetic suppression of cancer was generally consistent with data. Such adaptive increases in genetic control of cancers in large and/or long-lived animals raise the possibility that nonmodel animals will reveal novel anticancer mechanisms.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California RiversideRiversideCAUSA
| |
Collapse
|
32
|
Boddy AM, Abegglen LM, Pessier AP, Aktipis A, Schiffman JD, Maley CC, Witte C. Lifetime cancer prevalence and life history traits in mammals. EVOLUTION MEDICINE AND PUBLIC HEALTH 2020; 2020:187-195. [PMID: 33209304 PMCID: PMC7652303 DOI: 10.1093/emph/eoaa015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Background Cancer is a common diagnosis in many mammalian species, yet they vary in their vulnerability to cancer. The factors driving this variation are unknown, but life history theory offers potential explanations to why cancer defense mechanisms are not equal across species. Methodology Here we report the prevalence of neoplasia and malignancy in 37 mammalian species, representing 11 mammalian orders, using 42 years of well curated necropsy data from the San Diego Zoo and San Diego Zoo Safari Park. We collected data on life history components of these species and tested for associations between life history traits and both neoplasia and malignancy, while controlling for phylogenetic history. Results These results support Peto's paradox, in that we find no association between lifespan and/or body mass and the prevalence of neoplasia or malignancy. However, a positive relationship exists between litter size and prevalence of malignancy (P = 0.005, Adj. R2 = 0.212), suggesting that a species' life history strategy may influence cancer vulnerabilities. Lastly, we tested for the relationship between placental invasiveness and malignancy. We find no evidence for an association between placental depth and malignancy prevalence (P = 0.618, Adj. R2 = 0.068). Conclusions Life history theory offers a powerful framework to understand variation in cancer defenses across the tree of life. These findings provide insight into the relationship between life history traits and cancer vulnerabilities, which suggest a trade-off between reproduction and cancer defenses. Lay summary Why are some mammals more vulnerable to cancer than others? We test whether life history trade-offs may explain this variation in cancer risk. Bigger, longer-lived animals do not develop more cancer compared to smaller, shorter-lived animals. However, we find a positive association between litter size and cancer prevalence in mammals.
Collapse
Affiliation(s)
- Amy M Boddy
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Lisa M Abegglen
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Allan P Pessier
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, AZ.,Arizona Cancer Evolution Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Joshua D Schiffman
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Carmel Witte
- Institute for Conservation Research, San Diego Zoo Global, CA, USA
| |
Collapse
|
33
|
A comparison of the mitochondrial proteome and lipidome in the mouse and long-lived Pipistrelle bats. Aging (Albany NY) 2020; 11:1664-1685. [PMID: 30892277 PMCID: PMC6461166 DOI: 10.18632/aging.101861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
It is accepted that smaller mammals with higher metabolic rates have shorter lifespans. The very few species that do not follow these rules can give insights into interesting differences. The recorded maximum lifespans of bats are exceptional - over 40 years, compared with the laboratory mouse of 4 years. We investigated the differences in the biochemical composition of mitochondria between bat and mouse species. We used proteomics and ultra-high-performance liquid chromatography coupled with high resolution mass spectrometry lipidomics, to interrogate mitochondrial fractions prepared from Mus musculus and Pipistrellus pipistrellus brain and skeletal muscle. Fatty acid binding protein 3 was found at different levels in mouse and bat muscle mitochondria and its orthologues were investigated in Caenorhabditis elegans knock-downs for LBP 4, 5 and 6. In the bat, high levels of free fatty acids and N-acylethanolamine lipid species together with a significantly greater abundance of fatty acid binding protein 3 in muscle (1.8-fold, p=0.037) were found. Manipulation of fatty acid binding protein orthologues in C. elegans suggest these proteins and their role in lipid regulation are important for mitochondrial function.
Collapse
|
34
|
Giraudeau M, Watson H, Powell D, Vincze O, Thomas F, Sepp T, Ujvari B, Le Loc'h G, Isaksson C. Will urbanisation affect the expression level of genes related to cancer of wild great tits? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:135793. [PMID: 32018940 DOI: 10.1016/j.scitotenv.2019.135793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Recent studies suggest that oncogenic processes (from precancerous lesions to metastatic cancers) are widespread in wild animal species, but their importance for ecosystem functioning is still underestimated by evolutionary biologists and animal ecologists. Similar to what has been observed in humans, environmental modifications that often place wild organisms into an evolutionary trap and/or exposes them to a cocktail of mutagenic and carcinogenic pollutants might favor cancer emergence and progression, if animals do not up-regulate their defenses against these pathologies. Here, we compared, for the first time, the expression of 59 tumor-suppressor genes in blood and liver tissues of urban and rural great tits (Parus major); urban conditions being known to favor cancer progression due to, among other things, exposure to chemical or light pollution. Contrary to earlier indications, once we aligned the transcriptome to the great tit genome, we found negligible differences in the expression of anti-cancer defenses between urban and rural birds in blood and liver. Our results indicate the higher expression of a single caretaker gene (i.e. BRCA1) in livers of rural compared to urban birds. We conclude that, while urban birds might be exposed to an environment favoring the development of oncogenic processes, they seem to not upregulate their cancer defenses accordingly and future studies should confirm this result by assessing more markers of cancer defenses. This may result in a mismatch that might predispose urban birds to higher cancer risk and future studies in urban ecology should take into account this, so far completely ignored, hazard.
Collapse
Affiliation(s)
- Mathieu Giraudeau
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France; CREEC/MIVEGEC (CNRS - IRD - Université de Montpellier), France.
| | - Hannah Watson
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
| | - Daniel Powell
- Department of Biology, Lund University, SE-223 62 Lund, Sweden
| | - Orsolya Vincze
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania; Department of Tisza Research, MTA Centre for Ecological Research, Debrecen, Hungary
| | - Frederic Thomas
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France; CREEC/MIVEGEC (CNRS - IRD - Université de Montpellier), France
| | - Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Australia
| | | | | |
Collapse
|
35
|
Abstract
Cellular parabiosis is tissue-based phenotypic suppression of cellular dysfunction by intercellular molecular traffic keeping initiated age-related diseases and conditions in long latency. Interruption of cellular parabiosis (e.g. by chronic inflammation) promotes the onset of initiated pathologies. The stability of initiated latent cancers and other age-related diseases (ARD) hints to phenotypically silent genome alterations. I propose that latency in the onset of ageing and ARD is largely due to phenotypic suppression of cellular dysfunctions via molecular traffic among neighbouring cells. Intercellular trafficking ranges from the transfer of ions and metabolites (via gap junctions) to entire organelles (via tunnelling nanotubes). Any mechanism of cell-to-cell communication resulting in functional cross-complementation among the cells is called cellular parabiosis. Such ‘cellular solidarity’ creates tissue homeostasis by buffering defects and averaging cellular functions within the tissues. Chronic inflammation is known to (i) interrupt cellular parabiosis by the activity of extracellular proteases, (ii) activate dormant pathologies and (iii) shorten disease latency, as in tumour promotion and inflammaging. Variation in cellular parabiosis and protein oxidation can account for interspecies correlations between body mass, ARD latency and longevity. Now, prevention of ARD onset by phenotypic suppression, and healing by phenotypic reversion, become conceivable.
Collapse
Affiliation(s)
- Miroslav Radman
- 1 Mediterranean Institute for Life Sciences (MedILS) , 21000 Split , Croatia.,2 Naos Institute for Life Sciences , 13290 Aix-en-Provence , France.,3 Inserm u-1001, University R. Descartes Medical School , Cochin Site, 75014 Paris , France
| |
Collapse
|
36
|
Somarelli JA, Boddy AM, Gardner HL, DeWitt SB, Tuohy J, Megquier K, Sheth MU, Hsu SD, Thorne JL, London CA, Eward WC. Improving Cancer Drug Discovery by Studying Cancer across the Tree of Life. Mol Biol Evol 2020; 37:11-17. [PMID: 31688937 DOI: 10.1093/molbev/msz254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite a considerable expenditure of time and resources and significant advances in experimental models of disease, cancer research continues to suffer from extremely low success rates in translating preclinical discoveries into clinical practice. The continued failure of cancer drug development, particularly late in the course of human testing, not only impacts patient outcomes, but also drives up the cost for those therapies that do succeed. It is clear that a paradigm shift is necessary if improvements in this process are to occur. One promising direction for increasing translational success is comparative oncology-the study of cancer across species, often involving veterinary patients that develop naturally-occurring cancers. Comparative oncology leverages the power of cross-species analyses to understand the fundamental drivers of cancer protective mechanisms, as well as factors contributing to cancer initiation and progression. Clinical trials in veterinary patients with cancer provide an opportunity to evaluate novel therapeutics in a setting that recapitulates many of the key features of human cancers, including genomic aberrations that underly tumor development, response and resistance to treatment, and the presence of comorbidities that can affect outcomes. With a concerted effort from basic scientists, human physicians and veterinarians, comparative oncology has the potential to enhance the cost-effectiveness and efficiency of pipelines for cancer drug discovery and other cancer treatments.
Collapse
Affiliation(s)
- Jason A Somarelli
- Department of Medicine, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Durham, NC
| | - Amy M Boddy
- Department of Anthropology, University of California, Santa Barbara, Santa Barbara, CA
| | - Heather L Gardner
- Cummings School of Veterinary Medicine, Tufts University, Boston, MA
| | | | - Joanne Tuohy
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA
| | - Kate Megquier
- Broad Institute, Massachussettes Institute of Technology and Harvard University, Boston, MA
| | - Maya U Sheth
- Department of Medicine, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Durham, NC
| | - Shiaowen David Hsu
- Department of Medicine, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Durham, NC
| | - Jeffrey L Thorne
- Department of Biological Sciences, North Carolina State University, Raleigh, NC.,Department of Statistics, North Carolina State University, Raleigh, NC
| | - Cheryl A London
- Cummings School of Veterinary Medicine, Tufts University, Boston, MA
| | - William C Eward
- Duke Cancer Institute, Durham, NC.,Department of Orthopaedics, Duke University Medical Center, Durham, NC
| |
Collapse
|
37
|
Evolution of placental invasion and cancer metastasis are causally linked. Nat Ecol Evol 2019; 3:1743-1753. [PMID: 31768023 PMCID: PMC7340496 DOI: 10.1038/s41559-019-1046-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
Among mammals, placental invasion is correlated with vulnerability to malignancy. Animals with more invasive placentation (e.g. humans) are more vulnerable to malignancy. To explain this correlation, we propose the hypothesis of Evolved Levels of Invasibility: the evolution of invasibility of stromal tissue affects both, placental and cancer invasion. We provide evidence for this hypothesis using an in vitro model. We find that bovine endometrial and skin fibroblasts are more resistant to invasion than their human counterparts. Gene expression profiling identified genes with high expression in human but not in bovine fibroblasts. Knocking down a subset of them in human fibroblasts leads to stronger resistance to cancer cell invasion. Identifying the evolutionary determinants of stromal invasibility can provide significant insights to develop rational anti-metastatic therapeutics.
Collapse
|
38
|
Vazquez JM, Sulak M, Chigurupati S, Lynch VJ. A Zombie LIF Gene in Elephants Is Upregulated by TP53 to Induce Apoptosis in Response to DNA Damage. Cell Rep 2019; 24:1765-1776. [PMID: 30110634 DOI: 10.1016/j.celrep.2018.07.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/30/2018] [Accepted: 07/11/2018] [Indexed: 12/24/2022] Open
Abstract
Large-bodied organisms have more cells that can potentially turn cancerous than small-bodied organisms, imposing an increased risk of developing cancer. This expectation predicts a positive correlation between body size and cancer risk; however, there is no correlation between body size and cancer risk across species ("Peto's paradox"). Here, we show that elephants and their extinct relatives (proboscideans) may have resolved Peto's paradox in part through refunctionalizing a leukemia inhibitory factor pseudogene (LIF6) with pro-apoptotic functions. LIF6 is transcriptionally upregulated by TP53 in response to DNA damage and translocates to the mitochondria where it induces apoptosis. Phylogenetic analyses of living and extinct proboscidean LIF6 genes indicates that its TP53 response element evolved coincident with the evolution of large body sizes in the proboscidean stem lineage. These results suggest that refunctionalizing of a pro-apoptotic LIF pseudogene may have been permissive (although not sufficient) for the evolution of large body sizes in proboscideans.
Collapse
Affiliation(s)
- Juan Manuel Vazquez
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Michael Sulak
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | | | - Vincent J Lynch
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA; Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
39
|
Nakagawa N, Sakaguchi S, Nomura T, Kamada R, Omichinski JG, Sakaguchi K. The tetramerization domain of the tree shrew p53 protein displays unique thermostability despite sharing high sequence identity with the human p53 protein. Biochem Biophys Res Commun 2019; 521:681-686. [PMID: 31690451 DOI: 10.1016/j.bbrc.2019.10.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 01/11/2023]
Abstract
The p53 protein plays a number of roles in protecting organisms from different genotoxic stresses and this includes DNA damage induced by acetaldehyde, a metabolite of alcohol. Since the common tree shrew ingests high levels of alcohol as part of its normal diet, this suggests that its p53 protein may possess unique properties. Using a combination of biophysical and modeling studies, we demonstrate that the tetramerization domain of the tree shrew p53 protein is considerably more stable than the corresponding domain from humans despite sharing almost 90% sequence identity. Based on modeling and mutagenesis studies, we determine that a glutamine to methionine substitution at position 354 plays a key role in this difference. Given the link between stability of the p53 tetramerization domain and its transcriptional activity, the results suggest that this enhanced stability could lead to important consequences at p53-regulated genes in the tree shrew.
Collapse
Affiliation(s)
- Natsumi Nakagawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Shuya Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takao Nomura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Rui Kamada
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - James G Omichinski
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Kazuyasu Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
40
|
Salazar-Bañuelos A. A mathematical solution to Peto's paradox using Polya's urn model: implications for the aetiology of cancer in general. Theory Biosci 2019; 138:241-250. [PMID: 30771154 PMCID: PMC6800849 DOI: 10.1007/s12064-019-00290-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Ageing is the leading risk factor for the emergence of cancer in humans. Accumulation of pro-carcinogenic events throughout life is believed to explain this observation; however, the lack of direct correlation between the number of cells in an organism and cancer incidence, known as Peto's Paradox, is at odds with this assumption. Finding the events responsible for this discrepancy can unveil mechanisms with potential uses in prevention and treatment of cancer in humans. On the other hand, the immune system is important in preventing the development of clinically relevant tumours by maintaining a fine equilibrium between reactive and suppressive lymphocyte clones. It is suggested here that the loss of this equilibrium is what ultimately leads to increased risk of cancer and to propose a mechanism for the changes in clonal proportions based on decreased proliferative capacity of lymphocyte clones as a natural phenomenon of ageing. This mechanism, being a function of the number of cells, provides an explanation for Peto's Paradox.
Collapse
Affiliation(s)
- Anastasio Salazar-Bañuelos
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 1403 - 29 street NW, Calgary, AB, Canada.
| |
Collapse
|
41
|
Divide and conquer: two stem cell populations in squamous epithelia, reserves and the active duty forces. Int J Oral Sci 2019; 11:26. [PMID: 31451683 PMCID: PMC6802623 DOI: 10.1038/s41368-019-0061-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/09/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
Stem cells are of great interest to the scientific community due to their potential role in regenerative and rejuvenative medicine. However, their role in the aging process and carcinogenesis remains unclear. Because DNA replication in stem cells may contribute to the background mutation rate and thereby to cancer, reducing proliferation and establishing a relatively quiescent stem cell compartment has been hypothesized to limit DNA replication-associated mutagenesis. On the other hand, as the main function of stem cells is to provide daughter cells to build and maintain tissues, the idea of a quiescent stem cell compartment appears counterintuitive. Intriguing observations in mice have led to the idea of separated stem cell compartments that consist of cells with different proliferative activity. Some epithelia of short-lived rodents appear to lack quiescent stem cells. Comparing stem cells of different species and different organs (comparative stem cell biology) may allow us to elucidate the evolutionary pressures such as the balance between cancer and longevity that govern stem cell biology (evolutionary stem cell biology). The oral mucosa and its stem cells are an exciting model system to explore the characteristics of quiescent stem cells that have eluded biologists for decades.
Collapse
|
42
|
Tollis M, Robbins J, Webb AE, Kuderna LFK, Caulin AF, Garcia JD, Bèrubè M, Pourmand N, Marques-Bonet T, O’Connell MJ, Palsbøll PJ, Maley CC. Return to the Sea, Get Huge, Beat Cancer: An Analysis of Cetacean Genomes Including an Assembly for the Humpback Whale (Megaptera novaeangliae). Mol Biol Evol 2019; 36:1746-1763. [PMID: 31070747 PMCID: PMC6657726 DOI: 10.1093/molbev/msz099] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cetaceans are a clade of highly specialized aquatic mammals that include the largest animals that have ever lived. The largest whales can have ∼1,000× more cells than a human, with long lifespans, leaving them theoretically susceptible to cancer. However, large-bodied and long-lived animals do not suffer higher risks of cancer mortality than humans-an observation known as Peto's Paradox. To investigate the genomic bases of gigantism and other cetacean adaptations, we generated a de novo genome assembly for the humpback whale (Megaptera novaeangliae) and incorporated the genomes of ten cetacean species in a comparative analysis. We found further evidence that rorquals (family Balaenopteridae) radiated during the Miocene or earlier, and inferred that perturbations in abundance and/or the interocean connectivity of North Atlantic humpback whale populations likely occurred throughout the Pleistocene. Our comparative genomic results suggest that the evolution of cetacean gigantism was accompanied by strong selection on pathways that are directly linked to cancer. Large segmental duplications in whale genomes contained genes controlling the apoptotic pathway, and genes inferred to be under accelerated evolution and positive selection in cetaceans were enriched for biological processes such as cell cycle checkpoint, cell signaling, and proliferation. We also inferred positive selection on genes controlling the mammalian appendicular and cranial skeletal elements in the cetacean lineage, which are relevant to extensive anatomical changes during cetacean evolution. Genomic analyses shed light on the molecular mechanisms underlying cetacean traits, including gigantism, and will contribute to the development of future targets for human cancer therapies.
Collapse
Affiliation(s)
- Marc Tollis
- Biodesign Institute, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe, AZ
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ
| | | | - Andrew E Webb
- Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA
| | | | - Aleah F Caulin
- Genomics and Computational Biology Program, University of Pennsylvania, Philadelphia, PA
| | | | - Martine Bèrubè
- Center for Coastal Studies, Provincetown, MA
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Nader Pourmand
- Jack Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Tomas Marques-Bonet
- Instituto de Biologia Evolutiva (UPF-CSIC), PRBB, Barcelona, Spain
- CNAG‐CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Barcelona, Spain
| | - Mary J O’Connell
- Computational and Molecular Evolutionary Biology Research Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Per J Palsbøll
- Center for Coastal Studies, Provincetown, MA
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Carlo C Maley
- Biodesign Institute, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe, AZ
| |
Collapse
|
43
|
Lemaître J, Pavard S, Giraudeau M, Vincze O, Jennings G, Hamede R, Ujvari B, Thomas F. Eco‐evolutionary perspectives of the dynamic relationships linking senescence and cancer. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jean‐François Lemaître
- Université de Lyon, F‐69000, Lyon; Université Lyon 1; CNRS, UMR5558 Laboratoire de Biométrie et Biologie Évolutive F‐69622 Villeurbanne France
| | - Samuel Pavard
- Unité Eco-anthropologie (EA), Muséum National d’Histoire Naturelle, CNRS 7206 Université Paris Diderot Paris France
| | | | - Orsolya Vincze
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group Babeş‐Bolyai University Cluj‐Napoca Romania
- Department of Tisza Research MTA Centre for Ecological Research Debrecen Hungary
| | - Geordie Jennings
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria Australia
- School of Natural Sciences University of Tasmania Hobart Tasmania Australia
| | - Rodrigo Hamede
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria Australia
- School of Natural Sciences University of Tasmania Hobart Tasmania Australia
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Waurn Ponds Victoria Australia
| | | |
Collapse
|
44
|
Risques RA, Promislow DEL. All's well that ends well: why large species have short telomeres. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0448. [PMID: 29335372 DOI: 10.1098/rstb.2016.0448] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Among mammal species, almost all life-history traits are strongly size dependent. This size dependence even occurs at a molecular level. For example, both telomere length and telomerase expression show a size-dependent threshold. With some exceptions, species smaller than approximately 2 kg express telomerase, while species larger than that do not. Among species greater than approximately 5 kg, telomeres tend to be short-less than 25 kb-while among smaller species, some species have short and some have long telomeres. Here, we present a model to explore the role of body size-dependent trade-offs in shaping this threshold. We assume that selection favours short telomeres as a mechanism to protect against cancer. At the same time, selection favours long telomeres as a protective mechanism against DNA damage and replicative senescence. The relative importance of these two selective forces will depend on underlying intrinsic mortality and risk of cancer, both of which are size-dependent. Results from this model suggest that a cost-benefit model for the evolution of telomere length could explain phylogenetic patterns observed within the Class Mammalia. In addition, the model suggests a general conceptual framework to think about the role that body size plays in the evolution of tumour suppressor mechanisms.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Rosa Ana Risques
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.,Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
45
|
Albuquerque TAF, Drummond do Val L, Doherty A, de Magalhães JP. From humans to hydra: patterns of cancer across the tree of life. Biol Rev Camb Philos Soc 2018; 93:1715-1734. [PMID: 29663630 PMCID: PMC6055669 DOI: 10.1111/brv.12415] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Cancer is a disease of multicellularity; it originates when cells become dysregulated due to mutations and grow out of control, invading other tissues and provoking discomfort, disability, and eventually death. Human life expectancy has greatly increased in the last two centuries, and consequently so has the incidence of cancer. However, how cancer patterns in humans compare to those of other species remains largely unknown. In this review, we search for clues about cancer and its evolutionary underpinnings across the tree of life. We discuss data from a wide range of species, drawing comparisons with humans when adequate, and interpret our findings from an evolutionary perspective. We conclude that certain cancers are uniquely common in humans, such as lung, prostate, and testicular cancer; while others are common across many species. Lymphomas appear in almost every animal analysed, including in young animals, which may be related to pathogens imposing selection on the immune system. Cancers unique to humans may be due to our modern environment or may be evolutionary accidents: random events in the evolution of our species. Finally, we find that cancer‐resistant animals such as whales and mole‐rats have evolved cellular mechanisms that help them avoid neoplasia, and we argue that there are multiple natural routes to cancer resistance.
Collapse
Affiliation(s)
- Thales A F Albuquerque
- Escola Superior de Ciências da Saúde, SMHN Quadra 03 conjunto A, Bloco 1 Edifício Fepecs CEP 70, 710-907, Brasilia, Brazil
| | - Luisa Drummond do Val
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Room 281, 6 West Derby Street, Liverpool, L7 8TX, U.K
| | - Aoife Doherty
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Room 281, 6 West Derby Street, Liverpool, L7 8TX, U.K
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, Room 281, 6 West Derby Street, Liverpool, L7 8TX, U.K
| |
Collapse
|
46
|
Vittecoq M, Giraudeau M, Sepp T, Marcogliese DJ, Klaassen M, Renaud F, Ujvari B, Thomas F. Turning natural adaptations to oncogenic factors into an ally in the war against cancer. Evol Appl 2018; 11:836-844. [PMID: 29928293 PMCID: PMC5999213 DOI: 10.1111/eva.12608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/25/2018] [Indexed: 12/14/2022] Open
Abstract
Both field and experimental evolution studies have demonstrated that organisms naturally or artificially exposed to environmental oncogenic factors can, sometimes rapidly, evolve specific adaptations to cope with pollutants and their adverse effects on fitness. Although numerous pollutants are mutagenic and carcinogenic, little attention has been given to exploring the extent to which adaptations displayed by organisms living in oncogenic environments could inspire novel cancer treatments, through mimicking the processes allowing these organisms to prevent or limit malignant progression. Building on a substantial knowledge base from the literature, we here present and discuss this progressive and promising research direction, advocating closer collaboration between the fields of medicine, ecology, and evolution in the war against cancer.
Collapse
Affiliation(s)
- Marion Vittecoq
- Institut de Recherche de la Tour du Valat Arles France.,CREEC/MIVEGEC IRD CNRS University of Montpellier Montpellier France
| | - Mathieu Giraudeau
- School of Life Sciences Arizona State University Tempe AZ USA.,Centre for Ecology & Conservation College of Life and Environmental Sciences University of Exeter Penryn UK
| | - Tuul Sepp
- School of Life Sciences Arizona State University Tempe AZ USA.,Department of Zoology University of Tartu Tartu Estonia
| | - David J Marcogliese
- Aquatic Contaminants Research Division Water Science and Technology Directorate Environment and Climate Change Canada St. Lawrence Centre Montreal QC Canada.,Fisheries and Oceans Canada St. Andrews Biological Station St. Andrews NB Canada
| | - Marcel Klaassen
- School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Deakin Vic. Australia
| | - François Renaud
- CREEC/MIVEGEC IRD CNRS University of Montpellier Montpellier France
| | - Beata Ujvari
- School of Life and Environmental Sciences Centre for Integrative Ecology Deakin University Deakin Vic. Australia.,School of Biological Sciences University of Tasmania Hobart TAS Australia
| | - Frédéric Thomas
- CREEC/MIVEGEC IRD CNRS University of Montpellier Montpellier France
| |
Collapse
|
47
|
Tidwell TR, Søreide K, Hagland HR. Aging, Metabolism, and Cancer Development: from Peto's Paradox to the Warburg Effect. Aging Dis 2017; 8:662-676. [PMID: 28966808 PMCID: PMC5614328 DOI: 10.14336/ad.2017.0713] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 06/13/2017] [Indexed: 12/15/2022] Open
Abstract
Medical advances made over the last century have increased our lifespan, but age-related diseases are a fundamental health burden worldwide. Aging is therefore a major risk factor for cardiovascular disease, cancer, diabetes, obesity, and neurodegenerative diseases, all increasing in prevalence. However, huge inter-individual variations in aging and disease risk exist, which cannot be explained by chronological age, but rather physiological age decline initiated even at young age due to lifestyle. At the heart of this lies the metabolic system and how this is regulated in each individual. Metabolic turnover of food to energy leads to accumulation of co-factors, byproducts, and certain proteins, which all influence gene expression through epigenetic regulation. How these epigenetic markers accumulate over time is now being investigated as the possible link between aging and many diseases, such as cancer. The relationship between metabolism and cancer was described as early as the late 1950s by Dr. Otto Warburg, before the identification of DNA and much earlier than our knowledge of epigenetics. However, when the stepwise gene mutation theory of cancer was presented, Warburg's theories garnered little attention. Only in the last decade, with epigenetic discoveries, have Warburg's data on the metabolic shift in cancers been brought back to life. The stepwise gene mutation theory fails to explain why large animals with more cells, do not have a greater cancer incidence than humans, known as Peto's paradox. The resurgence of research into the Warburg effect has given us insight to what may explain Peto's paradox. In this review, we discuss these connections and how age-related changes in metabolism are tightly linked to cancer development, which is further affected by lifestyle choices modulating the risk of aging and cancer through epigenetic control.
Collapse
Affiliation(s)
- Tia R. Tidwell
- Department of Mathematics and Natural Sciences, Centre for Organelle Research, University of Stavanger, Stavanger, Norway
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Hillevaåg, Stavanger University Hospital, Stavanger, Norway
| | - Kjetil Søreide
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Hillevaåg, Stavanger University Hospital, Stavanger, Norway
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hanne R. Hagland
- Department of Mathematics and Natural Sciences, Centre for Organelle Research, University of Stavanger, Stavanger, Norway
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Hillevaåg, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
48
|
Abstract
The risk of developing cancer should theoretically increase with both the number of cells and the lifespan of an organism. However, gigantic animals do not get more cancer than humans, suggesting that super-human cancer suppression has evolved numerous times across the tree of life. This is the essence and promise of Peto's Paradox. We discuss what is known about Peto's Paradox and provide hints of what is yet to be discovered.
Collapse
Affiliation(s)
- Marc Tollis
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E. Tyler St., Tempe, AZ, 85287-5001, USA
| | - Amy M Boddy
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E. Tyler St., Tempe, AZ, 85287-5001, USA
| | - Carlo C Maley
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E. Tyler St., Tempe, AZ, 85287-5001, USA.
| |
Collapse
|
49
|
Tollis M, Schiffman JD, Boddy AM. Evolution of cancer suppression as revealed by mammalian comparative genomics. Curr Opin Genet Dev 2017; 42:40-47. [DOI: 10.1016/j.gde.2016.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 02/05/2023]
|
50
|
Sulak M, Fong L, Mika K, Chigurupati S, Yon L, Mongan NP, Emes RD, Lynch VJ. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife 2016; 5. [PMID: 27642012 PMCID: PMC5061548 DOI: 10.7554/elife.11994] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 09/17/2016] [Indexed: 12/21/2022] Open
Abstract
A major constraint on the evolution of large body sizes in animals is an increased risk of developing cancer. There is no correlation, however, between body size and cancer risk. This lack of correlation is often referred to as 'Peto's Paradox'. Here, we show that the elephant genome encodes 20 copies of the tumor suppressor gene TP53 and that the increase in TP53 copy number occurred coincident with the evolution of large body sizes, the evolution of extreme sensitivity to genotoxic stress, and a hyperactive TP53 signaling pathway in the elephant (Proboscidean) lineage. Furthermore, we show that several of the TP53 retrogenes (TP53RTGs) are transcribed and likely translated. While TP53RTGs do not appear to directly function as transcription factors, they do contribute to the enhanced sensitivity of elephant cells to DNA damage and the induction of apoptosis by regulating activity of the TP53 signaling pathway. These results suggest that an increase in the copy number of TP53 may have played a direct role in the evolution of very large body sizes and the resolution of Peto's paradox in Proboscideans. DOI:http://dx.doi.org/10.7554/eLife.11994.001 As time passes, healthy cells are more likely to become cancerous because more and more damaging mutations accumulate in the cell’s DNA. Assuming that all cells have a similar risk of acquiring mutations, larger and longer-lived animals – like elephants – should have a higher risk of cancer than smaller, shorter-lived animals – like mice. However, there does not appear to be any link between the size of an animal and its risk of developing cancer. Consequently, a key question in cancer biology is how very large animals protect themselves against these diseases. One gene that is often damaged during an animal’s lifetime is called TP53. This gene normally produces a tumor suppressor protein that senses when DNA is damaged or a cell is under stress and either briefly slows the cell’s growth while the damage is repaired or triggers cell death if the stress is overwhelming. One way that large animals could reduce their risk of cancer is to have extra copies of TP53 or other genes that encode tumor suppressor proteins. Here Sulak et al. used an evolutionary genomics approach to study TP53 in 61 animals of various sizes, including several large animals such as African elephants and Minke whales. All of the animals studied had at least one copy of TP53, and several had a few extra copies, known as TP53 retrogenes. African elephants – the largest living land mammal – had more retrogenes than any of the others with 19 in total. To investigate why African elephants have so many TP53 retrogenes, Sulak et al. also analyzed DNA from Asian elephants and several other closely related, but now extinct species, including the woolly mammoth. As expected, as species evolved larger body sizes they also evolved more TP53 retrogenes. Further experiments indicate that several of the TP53 retrogenes in African elephants are likely to be able to produce the tumor suppressor protein and that they contribute to elephant cells being better equipped to deal with DNA damage. The next step following on from this work will be to find out exactly how TP53 retrogenes help to protect animals from cancer. DOI:http://dx.doi.org/10.7554/eLife.11994.002
Collapse
Affiliation(s)
- Michael Sulak
- Department of Human Genetics, The University of Chicago, Chicago, United States
| | - Lindsey Fong
- Department of Human Genetics, The University of Chicago, Chicago, United States
| | - Katelyn Mika
- Department of Human Genetics, The University of Chicago, Chicago, United States
| | | | - Lisa Yon
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom.,Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, United Kingdom
| | - Nigel P Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom.,Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, United Kingdom.,Department of Pharmacology, Weill Cornell Medical College, New York, United States
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom.,Faculty of Medicine and Health Sciences, University of Nottingham, Leicestershire, United Kingdom.,Advanced Data Analysis Centre, University of Nottingham UK, Nottingham, United Kingdom
| | - Vincent J Lynch
- Department of Human Genetics, The University of Chicago, Chicago, United States
| |
Collapse
|