1
|
Vanhove MPM, Kmentová N, Faes C, Fernandes JMO, Hahn C, Hens N, Pariselle A, Koblmüller S. Understanding the Influence of Host Radiation on Symbiont Speciation through Parasites of Species Flocks. Cold Spring Harb Perspect Biol 2025; 17:a041450. [PMID: 38768969 PMCID: PMC11694742 DOI: 10.1101/cshperspect.a041450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
(Adaptive) radiations have attracted evolutionary biologists for a long time as ideal model systems to study patterns and processes of often rapid speciation. However, whereas a wealth of (sometimes already genome-scale) data is available for host radiations, very few studies target the patterns of diversification in their symbionts, even though they would be excellent models to study symbiont speciation. Our review summarizes what little is known about general patterns of symbiont diversification in often iconic adaptive host radiations and to what extent these patterns are dependent on the evolutionary trajectories of their hosts. We identify research gaps that need to be addressed in the future and discuss the potential of approaches not yet typically used in these study systems, such as epidemiological disease modeling and new omics technologies, for significantly advancing our understanding of these complex eco-evolutionary relationships.
Collapse
Affiliation(s)
- Maarten P M Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Christel Faes
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-Biostat), Data Science Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jorge M O Fernandes
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
- Institut de Ciències del Mar, Spanish National Research Council, 08003 Barcelona, Spain
| | - Christoph Hahn
- Institute of Biology, University of Graz, 8010 Graz, Austria
| | - Niel Hens
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-Biostat), Data Science Institute, Hasselt University, 3590 Diepenbeek, Belgium
- Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, 2000 Antwerpen, Belgium
| | - Antoine Pariselle
- Institute of Evolutionary Science of Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Institut de Recherche pour le Développement, 34394 Montpellier, France
- Laboratory Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University in Rabat, 10000 Rabat, Morocco
| | | |
Collapse
|
2
|
Duncan AB, Godoy O, Michalakis Y, Zélé F, Magalhães S. Interspecific interactions among parasites in multiple infections. Trends Parasitol 2024; 40:1042-1052. [PMID: 39428306 DOI: 10.1016/j.pt.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024]
Abstract
Individual hosts and populations frequently harbour multiple parasite species simultaneously. Despite their commonness, the consequences of interspecific interactions among parasites for determining infection outcomes are still poorly understood. We review and propose several expectations for multiple infections involving different species. We highlight that interspecific interactions affect the outcome of competition within hosts and that heterospecific parasites engage in cotransmission, gene exchange, and reproductive interference. Studies specifically comparing intra- and inter-specific coinfections and knowledge from community ecology may be instrumental to fully understand the consequences of interspecific multiple infections for parasite life history, ecology, and evolution.
Collapse
Affiliation(s)
- Alison B Duncan
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| | - Oscar Godoy
- Estación Biológica de Doñana, EBD, CSIC, Sevilla, 41092, Spain
| | - Yannis Michalakis
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université Montpellier, CNRS, IRD, Montpellier 34394, France
| | - Flore Zélé
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sara Magalhães
- Centre for Ecology, Evolution, and Environmental Changes (cE3c), CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
3
|
Alizon S. Multiple infection theory rather than 'socio-virology'? A commentary on Leeks et al. 2023. J Evol Biol 2023; 36:1571-1576. [PMID: 37975504 DOI: 10.1111/jeb.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Samuel Alizon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
4
|
Abdelrazek SMR, Connon RE, Sanchez C, Atencio B, Mauduit F, Lehman B, Hallett SL, Atkinson SD, Foott JS, Daniels ME. Responses to pathogen exposure in sentinel juvenile fall-run Chinook salmon in the Sacramento River, CA. CONSERVATION PHYSIOLOGY 2023; 11:coad066. [PMID: 37649642 PMCID: PMC10465009 DOI: 10.1093/conphys/coad066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
This study investigated how the deployment of juvenile Chinook salmon in ambient river conditions and the subsequent exposure to and infection by pathogens was associated with the changes in the expression of genes involved in immune system functioning, general stress and host development. Juvenile fish were deployed in sentinel cages for 21 days in the Sacramento River, CA, USA. Gill, kidney and intestinal tissue were sampled at 0, 7, 14 and 21 days post-deployment. Pathogen detection and host response were assessed by a combination of molecular and histopathological evaluation. Our findings showed that fish became infected by the parasites Ceratonova shasta, Parvicapsula minibicornis and Ichthyophthirius multifiliis, and to a lesser extent, the bacteria Flavobacterium columnare and Rickettsia-like organisms. Co-infection was common among sentinel fish. Expression of investigated genes was altered following deployment and was often associated with pathogen abundance. This study provides a foundation for future avenues of research investigating pathogens that affect out-migrating Chinook salmon in the Sacramento River, and offers crucial knowledge related to conservation efforts.
Collapse
Affiliation(s)
- Samah M R Abdelrazek
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Camilo Sanchez
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Benjamin Atencio
- Institute of Marine Sciences, University of California, Santa Cruz, Affiliated with Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA
| | - Florian Mauduit
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Brendan Lehman
- Institute of Marine Sciences, University of California, Santa Cruz, Affiliated with Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA
| | - Sascha L Hallett
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - J. Scott Foott
- California Nevada Fish Health Center, U.S. Fish and Wildlife Service, Anderson, CA 96007, USA
| | - Miles E Daniels
- Institute of Marine Sciences, University of California, Santa Cruz, Affiliated with Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA
| |
Collapse
|
5
|
Plant Virus Adaptation to New Hosts: A Multi-scale Approach. Curr Top Microbiol Immunol 2023; 439:167-196. [PMID: 36592246 DOI: 10.1007/978-3-031-15640-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Viruses are studied at each level of biological complexity: from within-cells to ecosystems. The same basic evolutionary forces and principles operate at each level: mutation and recombination, selection, genetic drift, migration, and adaptive trade-offs. Great efforts have been put into understanding each level in great detail, hoping to predict the dynamics of viral population, prevent virus emergence, and manage their spread and virulence. Unfortunately, we are still far from this. To achieve these ambitious goals, we advocate for an integrative perspective of virus evolution. Focusing in plant viruses, we illustrate the pervasiveness of the above-mentioned principles. Beginning at the within-cell level, we describe replication modes, infection bottlenecks, and cellular contagion rates. Next, we move up to the colonization of distal tissues, discussing the fundamental role of random events. Then, we jump beyond the individual host and discuss the link between transmission mode and virulence. Finally, at the community level, we discuss properties of virus-plant infection networks. To close this review we propose the multilayer network theory, in which elements at different layers are connected and submit to their own dynamics that feed across layers, resulting in new emerging properties, as a way to integrate information from the different levels.
Collapse
|
6
|
Fan R, Geritz SAH. Modelling and optimising healthcare interventions in a model with explicit within- and between-host dynamics. J Theor Biol 2022; 554:111276. [PMID: 36126777 DOI: 10.1016/j.jtbi.2022.111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 01/14/2023]
Abstract
Given an endemic infectious disease and a budget, how do we optimally allocate interventions to control the disease? This paper shows that the optimal strategy varies depending on the budget, the type of intervention, the trajectory of pathogen load, and the objective. Using a model with explicit within- and between-host dynamics, we model isolation, supportive treatment, and specific treatment. Isolation and supportive treatment affect the transmission coefficient and the disease-induced mortality rate, respectively, in the between-host dynamics. Specific treatment affects the clearance rate of pathogens in the within-host dynamics. We study the optimisation of the three interventions for various budget levels via evaluating isolation and supportive treatment at the population level and specific treatment at both the population and individual levels. At the population level, we consider the risk of transmission, the burden of illness, and the survival probability, and to that end, we choose the population-level infection rate, the population density of infected individuals, and the total disease-induced mortality rate as objective functions. At the individual level, we consider the length of infection and the pathogen load, and to that end, we choose the maximum infection-age and the maximum pathogen load as objective functions. The objective is to minimise these functions through varying two variables that refer to when the intervention starts and when it stops for an infected individual and also indicate what kind of individuals can get the intervention from the population perspective. We find that the optimal strategy of isolation is to isolate individuals with a higher pathogen load, given a lower budget. The optimal strategy of supportive treatment can be the same as isolation or simply no treatment. The optimal strategy of specific treatment is complicated, and it can be to treat individuals with pathogen loads above a particular level until they recover or until the pathogens can decrease when treatment stops, or it can be another scenario.
Collapse
Affiliation(s)
- Ruili Fan
- Department of Mathematics and Statistics, University of Helsinki, FIN-00014, Finland.
| | - Stefan A H Geritz
- Department of Mathematics and Statistics, University of Helsinki, FIN-00014, Finland.
| |
Collapse
|
7
|
Makau DN, Lycett S, Michalska-Smith M, Paploski IAD, Cheeran MCJ, Craft ME, Kao RR, Schroeder DC, Doeschl-Wilson A, VanderWaal K. Ecological and evolutionary dynamics of multi-strain RNA viruses. Nat Ecol Evol 2022; 6:1414-1422. [PMID: 36138206 DOI: 10.1038/s41559-022-01860-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
Potential interactions among co-circulating viral strains in host populations are often overlooked in the study of virus transmission. However, these interactions probably shape transmission dynamics by influencing host immune responses or altering the relative fitness among co-circulating strains. In this Review, we describe multi-strain dynamics from ecological and evolutionary perspectives, outline scales in which multi-strain dynamics occur and summarize important immunological, phylogenetic and mathematical modelling approaches used to quantify interactions among strains. We also discuss how host-pathogen interactions influence the co-circulation of pathogens. Finally, we highlight outstanding questions and knowledge gaps in the current theory and study of ecological and evolutionary dynamics of multi-strain viruses.
Collapse
Affiliation(s)
- Dennis N Makau
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | | | | | - Igor A D Paploski
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Meggan E Craft
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Rowland R Kao
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
8
|
Sequential infection of Daphnia magna by a gut microsporidium followed by a haemolymph yeast decreases transmission of both parasites. Parasitology 2021; 148:1566-1577. [PMID: 35060463 PMCID: PMC8564772 DOI: 10.1017/s0031182021001384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Over the course of seasonal epidemics, populations of susceptible hosts may encounter a wide variety of parasites. Parasite phenology affects the order in which these species encounter their hosts, leading to sequential infections, with potentially strong effects on within-host growth and host population dynamics. Here, the cladoceran Daphnia magna was exposed sequentially to a haemolymph-infecting yeast (Metschnikowia bicuspidata) and a gut microsporidium (Ordospora colligata), with experimental treatments reflecting two possible scenarios of parasite succession. The effects of single and co-exposure were compared on parasite infectivity, spore production and the overall virulence experienced by the host. We show that neither parasite benefited from coinfection; instead, when hosts encountered Ordospora, followed by Metschnikowia, higher levels of host mortality contributed to an overall decrease in the transmission of both parasites. These results showcase an example of sequential infections generating unilateral priority effects, in which antagonistic interactions between parasites can alleviate the intensity of infection and coincide with maladaptive levels of damage inflicted on the host.
Collapse
|
9
|
Teffer AK, Hinch SG, Miller KM, Patterson DA, Bass AL, Cooke SJ, Farrell AP, Beacham TD, Chapman JM, Juanes F. Host-pathogen-environment interactions predict survival outcomes of adult sockeye salmon (Oncorhynchus nerka) released from fisheries. Mol Ecol 2021; 31:134-160. [PMID: 34614262 DOI: 10.1111/mec.16214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
Incorporating host-pathogen(s)-environment axes into management and conservation planning is critical to preserving species in a warming climate. However, the role pathogens play in host stress resilience remains largely unexplored in wild animal populations. We experimentally characterized how independent and cumulative stressors (fisheries handling, high water temperature) and natural infections affected the health and longevity of released wild adult sockeye salmon (Oncorhynchus nerka) in British Columbia, Canada. Returning adults were collected before and after entering the Fraser River, yielding marine- and river-collected groups, respectively (N = 185). Fish were exposed to a mild (seine) or severe (gill net) fishery treatment at collection, and then held in flow-through freshwater tanks for up to four weeks at historical (14°C) or projected migration temperatures (18°C). Using weekly nonlethal gill biopsies and high-throughput qPCR, we quantified loads of up to 46 pathogens with host stress and immune gene expression. Marine-collected fish had less severe infections than river-collected fish, a short migration distance (100 km, 5-7 days) that produced profound infection differences. At 14°C, river-collected fish survived 1-2 weeks less than marine-collected fish. All fish held at 18°C died within 4 weeks unless they experienced minimal handling. Gene expression correlated with infections in river-collected fish, while marine-collected fish were more stressor-responsive. Cumulative stressors were detrimental regardless of infections or collection location, probably due to extreme physiological disturbance. Because river-derived infections correlated with single stressor responses, river entry probably decreases stressor resilience of adult salmon by altering both physiology and pathogen burdens, which redirect host responses toward disease resistance.
Collapse
Affiliation(s)
- Amy K Teffer
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada.,Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristina M Miller
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Arthur L Bass
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Anthony P Farrell
- Department of Zoology, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Terry D Beacham
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Jacqueline M Chapman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
10
|
Jeger MJ. The Epidemiology of Plant Virus Disease: Towards a New Synthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1768. [PMID: 33327457 PMCID: PMC7764944 DOI: 10.3390/plants9121768] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Epidemiology is the science of how disease develops in populations, with applications in human, animal and plant diseases. For plant diseases, epidemiology has developed as a quantitative science with the aims of describing, understanding and predicting epidemics, and intervening to mitigate their consequences in plant populations. Although the central focus of epidemiology is at the population level, it is often necessary to recognise the system hierarchies present by scaling down to the individual plant/cellular level and scaling up to the community/landscape level. This is particularly important for diseases caused by plant viruses, which in most cases are transmitted by arthropod vectors. This leads to range of virus-plant, virus-vector and vector-plant interactions giving a distinctive character to plant virus epidemiology (whilst recognising that some fungal, oomycete and bacterial pathogens are also vector-borne). These interactions have epidemiological, ecological and evolutionary consequences with implications for agronomic practices, pest and disease management, host resistance deployment, and the health of wild plant communities. Over the last two decades, there have been attempts to bring together these differing standpoints into a new synthesis, although this is more apparent for evolutionary and ecological approaches, perhaps reflecting the greater emphasis on shorter often annual time scales in epidemiological studies. It is argued here that incorporating an epidemiological perspective, specifically quantitative, into this developing synthesis will lead to new directions in plant virus research and disease management. This synthesis can serve to further consolidate and transform epidemiology as a key element in plant virus research.
Collapse
Affiliation(s)
- Michael J Jeger
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, UK
| |
Collapse
|
11
|
Teffer AK, Hinch S, Miller K, Jeffries K, Patterson D, Cooke S, Farrell A, Kaukinen KH, Li S, Juanes F. Cumulative Effects of Thermal and Fisheries Stressors Reveal Sex-Specific Effects on Infection Development and Early Mortality of Adult Coho Salmon ( Oncorhynchus kisutch). Physiol Biochem Zool 2020; 92:505-529. [PMID: 31397628 DOI: 10.1086/705125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Multiple stressors are commonly encountered by wild animals, but their cumulative effects are poorly understood, especially regarding infection development. We conducted a holding study with repeated gill and blood sampling to characterize the effects of cumulative stressors on infection development in adult coho salmon. Treatments included chronic thermal stress (15°C vs. 10°C) and acute gill net entanglement with an air exposure (simulating fisheries bycatch release). The potential loadings of 35 infectious agents and the expression of 17 host immune genes were quantified using high-throughput quantitative polymerase chain reaction, while host physiology was characterized with chemical analysis of blood. Temporal increases in infectious agent richness and loads were concurrent with decreased expression of immune genes in fish sampled in the river. In the laboratory, mortality was minimal in cool water regardless of fishery treatment (<15%). Elevated water temperature under laboratory conditions increased mortality of males and females (8% and 28% mortality, respectively, delayed by >1 wk) and enhanced mortality associated with handling and biopsy (∼40% both sexes). Experimental gillnetting at high temperature further enhanced female mortality (73%). Fish held at high temperature demonstrated heavier infectious agent loads, osmoregulatory impairment, suppressed female maturation, and upregulation of inflammatory and extracellular immune genes. At high temperature, heavy Parvicapsula minibicornis loads were associated with premature mortality. Females exhibited physiological impairment from both stressors after 1 wk, and infection burdens correlated poorly with immune gene regulation compared with males. Cumulative effects of multiple stressors on female mortality are likely a function of physiological impairment and enhanced infections at high temperature.
Collapse
|
12
|
Teffer AK, Carr J, Tabata A, Schulze A, Bradbury I, Deschamps D, Gillis CA, Brunsdon EB, Mordecai G, Miller KM. A molecular assessment of infectious agents carried by Atlantic salmon at sea and in three eastern Canadian rivers, including aquaculture escapees and North American and European origin wild stocks. Facets (Ott) 2020. [DOI: 10.1139/facets-2019-0048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Infectious agents are key components of animal ecology and drivers of host population dynamics. Knowledge of their diversity and transmission in the wild is necessary for the management and conservation of host species like Atlantic salmon ( Salmo salar). Although pathogen exchange can occur throughout the salmon life cycle, evidence is lacking to support transmission during population mixing at sea or between farmed and wild salmon due to aquaculture exposure. We tested these hypotheses using a molecular approach that identified infectious agents and transmission potential among sub-adult Atlantic salmon at marine feeding areas and adults in three eastern Canadian rivers with varying aquaculture influence. We used high-throughput qPCR to quantify infection profiles and next generation sequencing to measure genomic variation among viral isolates. We identified 14 agents, including five not yet described as occurring in Eastern Canada. Phylogenetic analysis of piscine orthoreovirus showed homology between isolates from European and North American origin fish at sea, supporting the hypothesis of intercontinental transmission. We found no evidence to support aquaculture influence on wild adult infections, which varied relative to environmental conditions, life stage, and host origin. Our findings identify research opportunities regarding pathogen transmission and biological significance for wild Atlantic salmon populations.
Collapse
Affiliation(s)
- Amy K. Teffer
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jonathan Carr
- Atlantic Salmon Federation, Chamcook, NB E5B 3A9, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Angela Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Ian Bradbury
- Salmonids Section, Fisheries and Oceans Canada, St. John’s, NF A1C 5X1, Canada
| | - Denise Deschamps
- Ministère des Forêts, de la Faune et des Parcs du Québec, Direction de l’expertise sur la faune aquatique, Quebec, QC G1S 4X4, Canada
| | | | | | - Gideon Mordecai
- Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kristina M. Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
13
|
Pinotti F, Ghanbarnejad F, Hövel P, Poletto C. Interplay between competitive and cooperative interactions in a three-player pathogen system. ROYAL SOCIETY OPEN SCIENCE 2020; 7:190305. [PMID: 32218925 PMCID: PMC7029927 DOI: 10.1098/rsos.190305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
In ecological systems, heterogeneous interactions between pathogens take place simultaneously. This occurs, for instance, when two pathogens cooperate, while at the same time, multiple strains of these pathogens co-circulate and compete. Notable examples include the cooperation of human immunodeficiency virus with antibiotic-resistant and susceptible strains of tuberculosis or some respiratory infections with Streptococcus pneumoniae strains. Models focusing on competition or cooperation separately fail to describe how these concurrent interactions shape the epidemiology of such diseases. We studied this problem considering two cooperating pathogens, where one pathogen is further structured in two strains. The spreading follows a susceptible-infected-susceptible process and the strains differ in transmissibility and extent of cooperation with the other pathogen. We combined a mean-field stability analysis with stochastic simulations on networks considering both well-mixed and structured populations. We observed the emergence of a complex phase diagram, where the conditions for the less transmissible, but more cooperative strain to dominate are non-trivial, e.g. non-monotonic boundaries and bistability. Coupled with community structure, the presence of the cooperative pathogen enables the coexistence between strains by breaking the spatial symmetry and dynamically creating different ecological niches. These results shed light on ecological mechanisms that may impact the epidemiology of diseases of public health concern.
Collapse
Affiliation(s)
- Francesco Pinotti
- INSERM, Sorbonne Université, Institut Pierre Louis d’Épidémiologie et de Santé Publique, IPLESP, Paris 75012, France
| | - Fakhteh Ghanbarnejad
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, Berlin 10623, Germany
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
- Physics Department, Sharif University of Technology, PO Box 11165-9161, Tehran, Iran
| | - Philipp Hövel
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, Berlin 10623, Germany
- School of Mathematical Sciences, University College Cork, Western Road, Cork T12 XF62, Republic of Ireland
| | - Chiara Poletto
- INSERM, Sorbonne Université, Institut Pierre Louis d’Épidémiologie et de Santé Publique, IPLESP, Paris 75012, France
| |
Collapse
|
14
|
Aivelo T, Norberg A, Tschirren B. Bacterial microbiota composition of Ixodes ricinus ticks: the role of environmental variation, tick characteristics and microbial interactions. PeerJ 2019; 7:e8217. [PMID: 31875152 PMCID: PMC6925955 DOI: 10.7717/peerj.8217] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/14/2019] [Indexed: 01/16/2023] Open
Abstract
Ecological factors, host characteristics and/or interactions among microbes may all shape the occurrence of microbes and the structure of microbial communities within organisms. In the past, disentangling these factors and determining their relative importance in shaping within-host microbiota communities has been hampered by analytical limitations to account for (dis)similar environmental preferences ('environmental filtering'). Here we used a joint species distribution modelling (JSDM) approach to characterize the bacterial microbiota of one of the most important disease vectors in Europe, the sheep tick Ixodes ricinus, along ecological gradients in the Swiss Alps. Although our study captured extensive environmental variation along elevational clines, the explanatory power of such large-scale ecological factors was comparably weak, suggesting that tick-specific traits and behaviours, microhabitat and -climate experienced by ticks, and interactions among microbes play an important role in shaping tick microbial communities. Indeed, when accounting for shared environmental preferences, evidence for significant patterns of positive or negative co-occurrence among microbes was found, which is indicative of competition or facilitation processes. Signals of facilitation were observed primarily among human pathogens, leading to co-infection within ticks, whereas signals of competition were observed between the tick endosymbiont Spiroplasma and human pathogens. These findings highlight the important role of small-scale ecological variation and microbe-microbe interactions in shaping tick microbial communities and the dynamics of tick-borne disease.
Collapse
Affiliation(s)
- Tuomas Aivelo
- Organismal and Evolutionary Biology research program, University of Helsinki, Helsinki, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Anna Norberg
- Organismal and Evolutionary Biology research program, University of Helsinki, Helsinki, Finland
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
15
|
Rynkiewicz EC, Fenton A, Pedersen AB. Linking community assembly and structure across scales in a wild mouse parasite community. Ecol Evol 2019; 9:13752-13763. [PMID: 31938479 PMCID: PMC6953566 DOI: 10.1002/ece3.5785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/23/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023] Open
Abstract
Understanding what processes drive community structure is fundamental to ecology. Many wild animals are simultaneously infected by multiple parasite species, so host-parasite communities can be valuable tools for investigating connections between community structures at multiple scales, as each host can be considered a replicate parasite community. Like free-living communities, within-host-parasite communities are hierarchical; ecological interactions between hosts and parasites can occur at multiple scales (e.g., host community, host population, parasite community within the host), therefore, both extrinsic and intrinsic processes can determine parasite community structure. We combine analyses of community structure and assembly at both the host population and individual scales using extensive datasets on wild wood mice (Apodemus sylvaticus) and their parasite community. An analysis of parasite community nestedness at the host population scale provided predictions about the order of infection at the individual scale, which were then tested using parasite community assembly data from individual hosts from the same populations. Nestedness analyses revealed parasite communities were significantly more structured than random. However, observed nestedness did not differ from null models in which parasite species abundance was kept constant. We did not find consistency between observed community structure at the host population scale and within-host order of infection. Multi-state Markov models of parasite community assembly showed that a host's likelihood of infection with one parasite did not consistently follow previous infection by a different parasite species, suggesting there is not a deterministic order of infection among the species we investigated in wild wood mice. Our results demonstrate that patterns at one scale (i.e., host population) do not reliably predict processes at another scale (i.e., individual host), and that neutral or stochastic processes may be driving the patterns of nestedness observed in these communities. We suggest that experimental approaches that manipulate parasite communities are needed to better link processes at multiple ecological scales.
Collapse
Affiliation(s)
- Evelyn C. Rynkiewicz
- Department of Science and MathematicsFashion Institute of TechnologyState University of New YorkNew YorkNYUSA
- Institute of Evolutionary Biology & Centre for Immunity, Infection and EvolutionSchool of Biological ScienceUniversity of EdinburghEdinburghUK
| | - Andy Fenton
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Amy B. Pedersen
- Institute of Evolutionary Biology & Centre for Immunity, Infection and EvolutionSchool of Biological ScienceUniversity of EdinburghEdinburghUK
| |
Collapse
|
16
|
Strauss AT, Shoemaker LG, Seabloom EW, Borer ET. Cross‐scale dynamics in community and disease ecology: relative timescales shape the community ecology of pathogens. Ecology 2019; 100:e02836. [DOI: 10.1002/ecy.2836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/15/2019] [Accepted: 06/25/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Alexander T. Strauss
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55108 USA
| | - Lauren G. Shoemaker
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55108 USA
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55108 USA
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55108 USA
| |
Collapse
|
17
|
Alizon S, Murall CL, Saulnier E, Sofonea MT. Detecting within-host interactions from genotype combination prevalence data. Epidemics 2019; 29:100349. [PMID: 31257014 PMCID: PMC6899502 DOI: 10.1016/j.epidem.2019.100349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 11/24/2022] Open
Abstract
Parasite genetic diversity can provide information on disease transmission dynamics but most mathematical and statistical frameworks ignore the exact combinations of genotypes in infections. We introduce and validate a new method that combines explicit epidemiological modelling of coinfections and regression-Approximate Bayesian Computing (ABC) to detect within-host interactions. Using a susceptible-infected-susceptible (SIS) model, we show that, if sufficiently strong, within-host parasite interactions can be detected from epidemiological data. We also show that, in this simple setting, this detection is robust even in the face of some level of host heterogeneity in behaviour. These simulations results offer promising applications to analyse large datasets of multiple infection prevalence data, such as those collected for genital infections by Human Papillomaviruses (HPVs).
Collapse
Affiliation(s)
- Samuel Alizon
- MIVEGEC, CNRS, IRD, Université de Montpellier, France.
| | | | - Emma Saulnier
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
| | | |
Collapse
|
18
|
Azevedo F, Amaku M, Coutinho FAB, Lopez LF, Massad E. The effect of the infection within the individual host on its propagation in the population. Infect Dis Model 2019; 3:345-361. [PMID: 30839922 PMCID: PMC6326235 DOI: 10.1016/j.idm.2018.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022] Open
Abstract
We consider nested or multiscale models to study the effect of the temporal evolution of the disease within the host in the population dynamics of the disease, for one and two infectious agents. We assumed a coupling between the within-host infection rate and the between-host transmission rate. The age of infection within each individual in a population affects the probability of transmission of the disease to a susceptible host and this will affect the temporal evolution of the disease in the host population. To analyze the infection within the host, we consider bacterial-like and viral-like infections. In the model for two infectious agents, we found that, when strain 2 has a basic reproduction number R 02 greater than the basic reproduction number R 01 of strain 1, strain 2 replaces strain 1 in the population. However, if R 02 > R 01 but the values are closer, the replacement does not occur immediately and both strains can coexist for a long time. We applied the model to a scenario in which patients infected with the hepatitis C virus (HCV) are cleared of HCV when super-infected with the hepatitis A virus (HAV). We compared the time for the replacement of HCV by HAV in the population considering instantaneous and non-instantaneous replacement within the individuals. The model developed can be generalized for more than two infectious agents.
Collapse
Affiliation(s)
- Franciane Azevedo
- Faculdade de Engenharia da Computação e Engenharia Elétrica, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA, Brazil.,Faculdade de Medicina, Universidade de São Paulo e LIM01-HCFMUSP, Av. Dr. Arnaldo 455, São Paulo, SP, 01246-903, Brazil
| | - Marcos Amaku
- Faculdade de Medicina, Universidade de São Paulo e LIM01-HCFMUSP, Av. Dr. Arnaldo 455, São Paulo, SP, 01246-903, Brazil.,Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, 05508-270, Brazil
| | | | - Luis Fernandez Lopez
- Faculdade de Medicina, Universidade de São Paulo e LIM01-HCFMUSP, Av. Dr. Arnaldo 455, São Paulo, SP, 01246-903, Brazil
| | - Eduardo Massad
- Faculdade de Medicina, Universidade de São Paulo e LIM01-HCFMUSP, Av. Dr. Arnaldo 455, São Paulo, SP, 01246-903, Brazil.,London School of Hygiene and Tropical Medicine, London, UK.,Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, Brazil.,College of Natural and Life Sciences, The University of Derby, Derby, UK
| |
Collapse
|
19
|
Mihaljevic JR, Hoverman JT, Johnson PTJ. Co-exposure to multiple ranavirus types enhances viral infectivity and replication in a larval amphibian system. DISEASES OF AQUATIC ORGANISMS 2018; 132:23-35. [PMID: 30530928 DOI: 10.3354/dao03300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multiple pathogens commonly co-occur in animal populations, yet few studies demonstrate how co-exposure of individual hosts scales up to affect transmission. Although viruses in the genus Ranavirus are globally widespread, and multiple virus species or strains likely co-occur in nature, no studies have examined how co-exposure affects infection dynamics in larval amphibians. We exposed individual northern red-legged frog Rana aurora larvae to 2 species of ranavirus, namely Ambystoma tigrinum virus (ATV), frog virus 3 (FV3), or an FV3-like strain isolated from a frog-culturing facility in Georgia, USA (RCV-Z2). We compared single-virus to pairwise co-exposures while experimentally accounting for dosage. Co-exposure to ATV and FV3-like strains resulted in almost twice as many infected individuals compared to single-virus exposures, suggesting an effect of co-exposure on viral infectivity. The viral load in infected individuals exposed to ATV and FV3 was also higher than the single-dose FV3 treatment, suggesting an effect of co-exposure on viral replication. In a follow-up experiment, we examined how the co-occurrence of ATV and FV3 affected epizootics in mesocosm populations of larval western chorus frogs Pseudacris triseriata. Although ATV did not generally establish within host populations (<4% prevalence), when ATV and FV3 were both present, this co-exposure resulted in a larger epizootic of FV3. Our results emphasize the importance of multi-pathogen interactions in epizootic dynamics and have management implications for natural and commercial amphibian populations.
Collapse
Affiliation(s)
- Joseph R Mihaljevic
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
20
|
Zélé F, Magalhães S, Kéfi S, Duncan AB. Ecology and evolution of facilitation among symbionts. Nat Commun 2018; 9:4869. [PMID: 30451829 PMCID: PMC6242936 DOI: 10.1038/s41467-018-06779-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/31/2018] [Indexed: 01/30/2023] Open
Abstract
Facilitation occurs when one species positively impacts the fitness of another, and has predominantly been studied in free-living species like plants. Facilitation can also occur among symbiont (mutualistic or parasitic) species or strains, but equivalent studies are scarce. To advance an integrated view of the effect of facilitation on symbiont ecology and evolution, we review empirical evidence and their underlying mechanisms, explore the factors favouring its emergence, and discuss its consequences for virulence and transmission. We argue that the facilitation concept can improve understanding of the evolutionary forces shaping symbiont communities and their effects on hosts.
Collapse
Affiliation(s)
- Flore Zélé
- cE3c: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences, University of Lisbon, Edifício C2, piso-3, 1749-016, Lisboa, Portugal
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences, University of Lisbon, Edifício C2, piso-3, 1749-016, Lisboa, Portugal
| | - Sonia Kéfi
- ISEM, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, Cedex 05, France
| | - Alison B Duncan
- ISEM, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, Cedex 05, France.
| |
Collapse
|
21
|
Duncan AB, Dusi E, Schrallhammer M, Berendonk T, Kaltz O. Population-level dynamics in experimental mixed infections: evidence for competitive exclusion among bacterial parasites ofParamecium caudatum. OIKOS 2018. [DOI: 10.1111/oik.05280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alison B. Duncan
- Inst. of Evolutionary Sciences; Univ. of Montpellier; Montpellier France
| | - Eike Dusi
- Inst. of Hydrobiology; Technische Univ. Dresden; Germany
| | - Martina Schrallhammer
- Inst. of Hydrobiology; Technische Univ. Dresden; Germany
- Microbiology; Inst. of Biology II, Albert-Ludwigs Univ. Freiburg; Freiburg Germany
| | | | - Oliver Kaltz
- Inst. of Evolutionary Sciences; Univ. of Montpellier; Montpellier France
| |
Collapse
|
22
|
Roughgarden J, Gilbert SF, Rosenberg E, Zilber-Rosenberg I, Lloyd EA. Holobionts as Units of Selection and a Model of Their Population Dynamics and Evolution. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s13752-017-0287-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Sofonea MT, Alizon S, Michalakis Y. Exposing the diversity of multiple infection patterns. J Theor Biol 2017; 419:278-289. [PMID: 28193485 DOI: 10.1016/j.jtbi.2017.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 12/11/2022]
Abstract
Natural populations often have to cope with genetically distinct parasites that can coexist, or not, within the same hosts. Theoretical models addressing the evolution of virulence have considered two within host infection outcomes, namely superinfection and coinfection. The field somehow became limited by this dichotomy that does not correspond to an empirical reality as other infection patterns, namely sets of within-host infection outcomes, are possible. We indeed formally prove there are over one hundred different infection patterns solely for recoverable chronic infections caused by two genetically distinct horizontally-transmitted microparasites. We afterwards highlight eight infection patterns using an explicit modelling of within-host dynamics that captures a large range of ecological interactions, five of which have been neglected so far. To clarify the terminology related to multiple infections, we introduce terms describing these new relevant patterns and illustrate them with existing biological systems. These infection patterns constitute a new framework for linking within-host and between-host dynamics, which is a requirement to forward our understanding of the epidemiology and the evolution of parasites.
Collapse
Affiliation(s)
- Mircea T Sofonea
- Laboratoire MIVEGEC (UMR CNRS 5290, IRD 224, UM), 911 avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France.
| | - Samuel Alizon
- Laboratoire MIVEGEC (UMR CNRS 5290, IRD 224, UM), 911 avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France
| | - Yannis Michalakis
- Laboratoire MIVEGEC (UMR CNRS 5290, IRD 224, UM), 911 avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
24
|
|
25
|
Bose J, Kloesener MH, Schulte RD. Multiple-genotype infections and their complex effect on virulence. ZOOLOGY 2016; 119:339-49. [PMID: 27389395 DOI: 10.1016/j.zool.2016.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 11/17/2022]
Abstract
Multiple infections are common. Although in recent years our understanding of multiple infections has increased significantly, it has also become clear that a diversity of aspects has to be considered to understand the interplay between co-infecting parasite genotypes of the same species and its implications for virulence and epidemiology, resulting in high complexity. Here, we review different interaction mechanisms described for multiple infections ranging from competition to cooperation. We also list factors influencing the interaction between co-infecting parasite genotypes and their influence on virulence. Finally, we emphasise the importance of between-host effects and their evolution for understanding multiple infections and their implications.
Collapse
Affiliation(s)
- Joy Bose
- Department of Behavioral Biology, University of Osnabrueck, Barbarastr. 11, D-49076 Osnabrueck, Germany
| | - Michaela H Kloesener
- Department of Behavioral Biology, University of Osnabrueck, Barbarastr. 11, D-49076 Osnabrueck, Germany
| | - Rebecca D Schulte
- Department of Behavioral Biology, University of Osnabrueck, Barbarastr. 11, D-49076 Osnabrueck, Germany.
| |
Collapse
|
26
|
Restif O, Graham AL. Within-host dynamics of infection: from ecological insights to evolutionary predictions. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0304. [PMID: 26150670 PMCID: PMC4528502 DOI: 10.1098/rstb.2014.0304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Olivier Restif
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
27
|
Bashey F. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140301. [PMID: 26150667 PMCID: PMC4528499 DOI: 10.1098/rstb.2014.0301] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 12/11/2022] Open
Abstract
Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases.
Collapse
Affiliation(s)
- Farrah Bashey
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| |
Collapse
|