1
|
Li Y, Lu R, Abuduhailili X, Feng Y. NSUN7 promotes cervical cancer progression through activation of ErbB signaling pathway. Funct Integr Genomics 2025; 25:37. [PMID: 39954044 DOI: 10.1007/s10142-025-01546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
We aimed to investigate the role of NSUN7 in the progression of Cervical Cancer through a combination of bioinformatics analysis and cell and animal culture experiments. We comprehensively assessed the expression levels of NSUN7 in the TCGA and CCLE databases, and explored its correlations with clinicopathological features, immune cell infiltration, DNA damage repair gene function, drug sensitivity, and methylation status. The NSUN7 gene was disrupted through lentiviral infection, and the effects on cell proliferation, invasion, and apoptosis were evaluated using CCK-8 assay, Transwell migration assay, and flow cytometry analysis. Gene enrichment analysis wasidentify the biological pathways associated with NSUN7 and cervical cancer development. Additionally, a xenograft model of cervical cancer was established to assess the in vivo inhibitory effect of NSUN7 and its impact on pathway molecules. The results of both in vitro and in vivo experiments confirmed that silencing the NSUN7 gene significantly inhibited the growth, spread, and metastasis of cervical cancer cells, while promoting apoptosis. TUNEL assay and HE staining further verified the apoptotic effect of NSUN7 on tumor tissues, and KEGG enrichment analysis revealed a significant enrichment of NSUN7 in the ErbB pathway. Silencing of NSUN7 resulted in a significant down-regulation of key ErbB pathway proteins (HER2, STAT5, PI3K/p-PI3K) as demonstrated by quantitative real-time PCR and Western blot. These findings suggest that NSUN7 may affect the biological behavior of cervical cancer cells and promote tumor development by activating the ErbB signaling pathway.
Collapse
Affiliation(s)
- Yuxia Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
- Clinical Laboratory Center, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Ruijiao Lu
- Clinical Laboratory Center, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Xieyidai Abuduhailili
- Clinical Laboratory Center, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Yangchun Feng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China.
- Clinical Laboratory Center, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China.
- Clinical Laboratory Center, The First Huizhou Affiliated Hospital of Guangdong Medical University, Guangdong, China.
| |
Collapse
|
2
|
Caeiro LD, Verdun RE, Morey L. Histone H3 mutations and their impact on genome stability maintenance. Biochem Soc Trans 2024; 52:2179-2191. [PMID: 39248209 PMCID: PMC11580799 DOI: 10.1042/bst20240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Histones are essential for maintaining chromatin structure and function. Histone mutations lead to changes in chromatin compaction, gene expression, and the recruitment of DNA repair proteins to the DNA lesion. These disruptions can impair critical DNA repair pathways, such as homologous recombination and non-homologous end joining, resulting in increased genomic instability, which promotes an environment favorable to tumor development and progression. Understanding these mechanisms underscores the potential of targeting DNA repair pathways in cancers harboring mutated histones, offering novel therapeutic strategies to exploit their inherent genomic instability for better treatment outcomes. Here, we examine how mutations in histone H3 disrupt normal chromatin function and DNA damage repair processes and how these mechanisms can be exploited for therapeutic interventions.
Collapse
Affiliation(s)
- Lucas D. Caeiro
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, U.S.A
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Ramiro E. Verdun
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, U.S.A
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
- Geriatric Research, Education, and Clinical Center, Miami VA Healthcare System, Miami, FL, U.S.A
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, U.S.A
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| |
Collapse
|
3
|
Dabin J, Giacomini G, Petit E, Polo SE. New facets in the chromatin-based regulation of genome maintenance. DNA Repair (Amst) 2024; 140:103702. [PMID: 38878564 DOI: 10.1016/j.dnarep.2024.103702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024]
Abstract
The maintenance of genome integrity by DNA damage response machineries is key to protect cells against pathological development. In cell nuclei, these genome maintenance machineries operate in the context of chromatin, where the DNA wraps around histone proteins. Here, we review recent findings illustrating how the chromatin substrate modulates genome maintenance mechanisms, focusing on the regulatory role of histone variants and post-translational modifications. In particular, we discuss how the pre-existing chromatin landscape impacts DNA damage formation and guides DNA repair pathway choice, and how DNA damage-induced chromatin alterations control DNA damage signaling and repair, and DNA damage segregation through cell divisions. We also highlight that pathological alterations of histone proteins may trigger genome instability by impairing chromosome segregation and DNA repair, thus defining new oncogenic mechanisms and opening up therapeutic options.
Collapse
Affiliation(s)
- Juliette Dabin
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France
| | - Giulia Giacomini
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France
| | - Eliane Petit
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France
| | - Sophie E Polo
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France.
| |
Collapse
|
4
|
Pu Y, Yang G, Zhou Y, Pan X, Guo T, Chai X. The Macrophage migration inhibitory factor is a vital player in Pan-Cancer by functioning as a M0 Macrophage biomarker. Int Immunopharmacol 2024; 134:112198. [PMID: 38733827 DOI: 10.1016/j.intimp.2024.112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND The role of the macrophage migration inhibitory factor (MIF) has recently attracted considerable attention in cancer research; nonetheless, the insights provided by current investigations remain constrained. Our main objective was to investigate its role and the latent mechanisms within the pan-cancer realm. METHODS We used comprehensive pan-cancer bulk sequencing data and online network tools to investigate the association between MIF expression and patient prognosis, genomic instability, cancer cell stemness, DNA damage repair, and immune infiltration. Furthermore, we validated the relationship between MIF expression and M0 macrophages using single-cell datasets, the SpatialDB database, and fluorescence staining. Additionally, we assessed the therapeutic response using the ROC plotter tool. RESULTS We observed the upregulation of MIF expression across numerous cancer types. Notably, elevated MIF levels were associated with a decline in genomic stability. We found a significant correlation between increased MIF expression and increased expression of mismatch repair genes, stemness features, and homologous recombination genes across diverse malignancies. Subsequently, through an analysis using ESTIMATE and cytokine results, we revealed the involvement of MIF in immune suppression. Then, we validated MIF as a hallmark of the M0 macrophages involved in tumor immunity. Our study suggests an association with other immune-inhibitory cellular populations and restraint of CD8 + T cells. In addition, we conducted a comparative analysis of MIF expression before and after treatment in three distinct sets of therapy responders and non-responders. Intriguingly, we identified notable disparities in MIF expression patterns in bladder urothelial carcinoma and ovarian cancer following particular therapeutic interventions. CONCLUSION Comprehensive pan-cancer analysis revealed notable enrichment of MIF within M0 macrophages, exerting a profound influence on tumor-associated immunosuppression and the intricate machinery of DNA repair.
Collapse
Affiliation(s)
- Yuting Pu
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guifang Yang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yang Zhou
- Department of Intensive Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaogao Pan
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tuo Guo
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangping Chai
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Burdett H, Foglizzo M, Musgrove LJ, Kumar D, Clifford G, Campbell L, Heath GR, Zeqiraj E, Wilson M. BRCA1-BARD1 combines multiple chromatin recognition modules to bridge nascent nucleosomes. Nucleic Acids Res 2023; 51:11080-11103. [PMID: 37823591 PMCID: PMC10639053 DOI: 10.1093/nar/gkad793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
Chromatin association of the BRCA1-BARD1 heterodimer is critical to promote homologous recombination repair of DNA double-strand breaks (DSBs) in S/G2. How the BRCA1-BARD1 complex interacts with chromatin that contains both damage induced histone H2A ubiquitin and inhibitory H4K20 methylation is not fully understood. We characterised BRCA1-BARD1 binding and enzymatic activity to an array of mono- and di-nucleosome substrates using biochemical, structural and single molecule imaging approaches. We found that the BRCA1-BARD1 complex preferentially interacts and modifies di-nucleosomes over mono-nucleosomes, allowing integration of H2A Lys-15 ubiquitylation signals with other chromatin modifications and features. Using high speed- atomic force microscopy (HS-AFM) to monitor how the BRCA1-BARD1 complex recognises chromatin in real time, we saw a highly dynamic complex that bridges two nucleosomes and associates with the DNA linker region. Bridging is aided by multivalent cross-nucleosome interactions that enhance BRCA1-BARD1 E3 ubiquitin ligase catalytic activity. Multivalent interactions across nucleosomes explain how BRCA1-BARD1 can recognise chromatin that retains partial di-methylation at H4 Lys-20 (H4K20me2), a parental histone mark that blocks BRCA1-BARD1 interaction with nucleosomes, to promote its enzymatic and DNA repair activities.
Collapse
Affiliation(s)
- Hayden Burdett
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Martina Foglizzo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Laura J Musgrove
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Dhananjay Kumar
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Gillian Clifford
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Lisa J Campbell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - George R Heath
- Astbury Centre for Structural Molecular Biology, School of Physics & Astronomy and Biomedical Sciences, Faculty of Engineering & Physical Sciences and Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
6
|
Paglia G, Minacori M, Meschiari G, Fiorini S, Chichiarelli S, Eufemi M, Altieri F. Protein Disulfide Isomerase A3 (PDIA3): A Pharmacological Target in Glioblastoma? Int J Mol Sci 2023; 24:13279. [PMID: 37686085 PMCID: PMC10488224 DOI: 10.3390/ijms241713279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The protein disulfide isomerase A3 (PDIA3) is directly or indirectly involved in various physiopathological processes and participates in cancer initiation, progression and chemosensitivity. However, little is known about its involvement in glioblastoma. To obtain specific information, we performed cellular experiments in the T98G and U-87 MG glioblastoma cell lines to evaluate the role of PDIA3. The loss of PDIA3 functions, either through inhibition or silencing, reduced glioblastoma cells spreading by triggering cytotoxic phenomena. PDIA3 inhibition led to a redistribution of PDIA3, resulting in the formation of protein aggregates visualized through immunofluorescence staining. Concurrently, cell cycle progression underwent arrest at the G1/S checkpoint. After PDIA3 inhibition, ROS-independent DNA damage and the activation of the repair system occurred, as evidenced by the phosphorylation of H2A.X and the overexpression of the Ku70 protein. We also demonstrated through a clonogenic assay that PDIA3 inhibition could increase the chemosensitivity of T98G and U-87 MG cells to the approved glioblastoma drug temozolomide (TMZ). Overall, PDIA3 inhibition induced cytotoxic effects in the analyzed glioblastoma cell lines. Although further in vivo studies are needed, the results suggested PDIA3 as a novel therapeutic target that could also be included in already approved therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fabio Altieri
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (G.P.); (M.M.); (G.M.); (S.F.); (S.C.); (M.E.)
| |
Collapse
|
7
|
Lee SO, Kelliher JL, Song W, Tengler K, Sarkar A, Dray E, Leung JWC. UBA80 and UBA52 fine-tune RNF168-dependent histone ubiquitination and DNA repair. J Biol Chem 2023; 299:105043. [PMID: 37451480 PMCID: PMC10413357 DOI: 10.1016/j.jbc.2023.105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
The ubiquitin signaling pathway is crucial for the DNA damage response pathway. More specifically, RNF168 is integral in regulating DNA repair proteins at damaged chromatin. However, the detailed mechanism by which RNF168 is regulated in cells is not fully understood. Here, we identify the ubiquitin-ribosomal fusion proteins UBA80 (also known as RPS27A) and UBA52 (also known as RPL40) as interacting proteins for H2A/H2AX histones and RNF168. Both UBA80 and UBA52 are recruited to laser-induced micro-irradiation DNA damage sites and are required for DNA repair. Ectopic expression of UBA80 and UBA52 inhibits RNF168-mediated H2A/H2AX ubiquitination at K13/15 and impairs 53BP1 recruitment to DNA lesions. Mechanistically, the C-terminal ribosomal fragments of UBA80 and UBA52, S27A and L40, respectively, limit RNF168-nucleosome engagement by masking the regulatory acidic residues at E143/E144 and the nucleosome acidic patch. Together, our results reveal that UBA80 and UBA52 antagonize the ubiquitination signaling pathway and fine-tune the spatiotemporal regulation of DNA repair proteins at DNA damage sites.
Collapse
Affiliation(s)
- Seong-Ok Lee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jessica L Kelliher
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Wan Song
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Kyle Tengler
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Aradhan Sarkar
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Justin W C Leung
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
8
|
Zhang Z, Samsa WE, De Y, Zhang F, Reizes O, Almasan A, Gong Z. HDGFRP3 interaction with 53BP1 promotes DNA double-strand break repair. Nucleic Acids Res 2023; 51:2238-2256. [PMID: 36794849 PMCID: PMC10018360 DOI: 10.1093/nar/gkad073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
The 53BP1-dependent end-joining pathway plays a critical role in double-strand break (DSB) repair. However, the regulators of 53BP1 in chromatin remain incompletely characterized. In this study, we identified HDGFRP3 (hepatoma-derived growth factor related protein 3) as a 53BP1-interacting protein. The HDGFRP3-53BP1 interaction is mediated by the PWWP domain of HDGFRP3 and the Tudor domain of 53BP1. Importantly, we observed that the HDGFRP3-53BP1 complex co-localizes with 53BP1 or γH2AX at sites of DSB and participates in the response to DNA damage repair. Loss of HDGFRP3 impairs classical non-homologous end-joining repair (NHEJ), curtails the accumulation of 53BP1 at DSB sites, and enhances DNA end-resection. Moreover, the HDGFRP3-53BP1 interaction is required for cNHEJ repair, 53BP1 recruitment at DSB sites, and inhibition of DNA end resection. In addition, loss of HDGFRP3 renders BRCA1-deficient cells resistant to PARP inhibitors by facilitating end-resection in BRCA1 deficient cells. We also found that the interaction of HDGFRP3 with methylated H4K20 was dramatically decreased; in contrast, the 53BP1-methylated H4K20 interaction was increased after ionizing radiation, which is likely regulated by protein phosphorylation and dephosphorylation. Taken together, our data reveal a dynamic 53BP1-methylated H4K20-HDGFRP3 complex that regulates 53BP1 recruitment at DSB sites, providing new insights into our understanding of the regulation of 53BP1-mediated DNA repair pathway.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - William E Samsa
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Yanyan De
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Fan Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Ofer Reizes
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Alexandru Almasan
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| |
Collapse
|
9
|
Aricthota S, Rana PP, Haldar D. Histone acetylation dynamics in repair of DNA double-strand breaks. Front Genet 2022; 13:926577. [PMID: 36159966 PMCID: PMC9503837 DOI: 10.3389/fgene.2022.926577] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Packaging of eukaryotic genome into chromatin is a major obstacle to cells encountering DNA damage caused by external or internal agents. For maintaining genomic integrity, the double-strand breaks (DSB) must be efficiently repaired, as these are the most deleterious type of DNA damage. The DNA breaks have to be detected in chromatin context, the DNA damage response (DDR) pathways have to be activated to repair breaks either by non‐ homologous end joining and homologous recombination repair. It is becoming clearer now that chromatin is not a mere hindrance to DDR, it plays active role in sensing, detection and repair of DNA damage. The repair of DSB is governed by the reorganization of the pre-existing chromatin, leading to recruitment of specific machineries, chromatin remodelling complexes, histone modifiers to bring about dynamic alterations in histone composition, nucleosome positioning, histone modifications. In response to DNA break, modulation of chromatin occurs via various mechanisms including post-translational modification of histones. DNA breaks induce many types of histone modifications, such as phosphorylation, acetylation, methylation and ubiquitylation on specific histone residues which are signal and context dependent. DNA break induced histone modifications have been reported to function in sensing the breaks, activating processing of breaks by specific pathways, and repairing damaged DNA to ensure integrity of the genome. Favourable environment for DSB repair is created by generating open and relaxed chromatin structure. Histone acetylation mediate de-condensation of chromatin and recruitment of DSB repair proteins to their site of action at the DSB to facilitate repair. In this review, we will discuss the current understanding on the critical role of histone acetylation in inducing changes both in chromatin organization and promoting recruitment of DSB repair proteins to sites of DNA damage. It consists of an overview of function and regulation of the deacetylase enzymes which remove these marks and the function of histone acetylation and regulators of acetylation in genome surveillance.
Collapse
|
10
|
Chen BR, Sleckman BP. The regulation of DNA end resection by chromatin response to DNA double strand breaks. Front Cell Dev Biol 2022; 10:932633. [PMID: 35912102 PMCID: PMC9335370 DOI: 10.3389/fcell.2022.932633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
DNA double-strand breaks (DSBs) constantly arise upon exposure to genotoxic agents and during physiological processes. The timely repair of DSBs is important for not only the completion of the cellular functions involving DSBs as intermediates, but also the maintenance of genome stability. There are two major pathways dedicated to DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). The decision of deploying HR or NHEJ to repair DSBs largely depends on the structures of broken DNA ends. DNA ends resected to generate extensive single-strand DNA (ssDNA) overhangs are repaired by HR, while those remaining blunt or minimally processed can be repaired by NHEJ. As the generation and repair of DSB occurs within the context of chromatin, the resection of broken DNA ends is also profoundly affected by the state of chromatin flanking DSBs. Here we review how DNA end resection can be regulated by histone modifications, chromatin remodeling, and the presence of ssDNA structure through altering the accessibility to chromatin and the activity of pro- and anti-resection proteins.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Bo-Ruei Chen,
| | - Barry P. Sleckman
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Liang X, Zhang H, Wang Z, Zhang X, Dai Z, Zhang J, Luo P, Zhang L, Hu J, Liu Z, Bi C, Cheng Q. JMJD8 Is an M2 Macrophage Biomarker, and It Associates With DNA Damage Repair to Facilitate Stemness Maintenance, Chemoresistance, and Immunosuppression in Pan-Cancer. Front Immunol 2022; 13:875786. [PMID: 35898493 PMCID: PMC9309472 DOI: 10.3389/fimmu.2022.875786] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND JMJD8 has recently been identified as a cancer-related gene, but current studies provide limited information. We aimed to clarify its roles and the potential mechanisms in pan-cancer. METHODS Pan-cancer bulk sequencing data and online web tools were applied to analyze JMJD8's correlations with prognosis, genome instability, cancer stemness, DNA repair, and immune infiltration. Moreover, single-cell datasets, SpatialDB database, and multiple fluorescence staining were used to validate the association between JMJD8 expression and M2 macrophages. Further, we utilized ROCplotter and cMap web tool to analyze the therapeutic responses and screened JMJD8-targeted compounds, respectively, and we used AlphaFold2 and Discovery Studio to conduct JMJD8 homology modeling and molecular docking. RESULTS We first noticed that JMJD8 was an oncogene in many cancer types. High JMJD8 was associated with lower genome stability. We then found that high JMJD8 correlated with high expression of mismatch repair genes, stemness, homologous repair gene signature in more than 9 cancers. ESTIMATE and cytokine analyses results presented JMJD8's association with immunosuppression. Also, immune checkpoint CD276 was positively relevant to JMJD8. Subsequently, we validated JMJD8 as the M2 macrophage marker and showed its connection with other immunosuppressive cells and CD8+ T-cell depression. Finally, potential JMJD8-targeted drugs were screened out and docked to JMJD8 protein. CONCLUSION We found that JMJD8 was a novel oncogene, and it correlated with immunosuppression and DNA repair. JMJD8 was highly associated with immune checkpoint CD276 and was an M2 macrophage biomarker in many cancers. This study will reveal JMJD8's roles in pan-cancer and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jason Hu
- Department of Neonatology, Yale School of Medicine, New Haven, CT, United States
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changlong Bi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Maccaroni K, La Torre M, Burla R, Saggio I. Phase Separation in the Nucleus and at the Nuclear Periphery during Post-Mitotic Nuclear Envelope Reformation. Cells 2022; 11:1749. [PMID: 35681444 PMCID: PMC9179440 DOI: 10.3390/cells11111749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane-enclosed organelle compartmentalization is not the only way by which cell processes are spatially organized. Phase separation is emerging as a new driver in the organization of membrane-less compartments and biological processes. Liquid-liquid phase separation has been indicated as a new way to control the kinetics of molecular reactions and is based on weak multivalent interactions affecting the stoichiometry of the molecules involved. In the nucleus, liquid-liquid phase separation may represent an ancestral means of controlling genomic activity by forming discrete chromatin regions, regulating transcriptional activity, contributing to the assembly of DNA damage response foci, and controlling the organization of chromosomes. Liquid-liquid phase separation also contributes to chromatin function through its role in the reorganization of the nuclear periphery in the post-mitotic phase. Herein, we describe the basic principles regulating liquid-liquid phase separation, analyze examples of phase separation occurring in the nucleus, and dedicate attention to the implication of liquid-liquid phase separation in the reorganization of the nuclear periphery by the endosomal sorting complexes required for transport (ESCRT) machinery. Although some caution is warranted, current scientific knowledge allows for the hypothesis that many factors and processes in the cell are yet to be discovered which are functionally associated with phase separation.
Collapse
Affiliation(s)
- Klizia Maccaroni
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
| | - Mattia La Torre
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
- Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
13
|
DNA Damage-Induced Phosphorylation of Histone H2A at Serine 15 Is Linked to DNA End Resection. Mol Cell Biol 2021; 41:e0005621. [PMID: 34570618 DOI: 10.1128/mcb.00056-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) occurs in chromatin, and several histone posttranslational modifications have been implicated in the process. Modifications of the histone H2A N-terminal tail have also been linked to DNA damage response, through acetylation or ubiquitination of lysine residues that regulate repair pathway choice. Here, we characterize a new DNA damage-induced phosphorylation on chromatin, at serine 15 of H2A in yeast. We show that this SQ motif functions independently of the classical S129 C-terminal site (γ-H2A) and that mutant-mimicking constitutive phosphorylation increases cell sensitivity to DNA damage. H2AS129ph is induced by Tel1ATM and Mec1ATR, and the loss of Lcd1ATRIP or Mec1 signaling decreases γ-H2A spreading distal to the DSB. In contrast, H2AS15ph is completely dependent on Lcd1ATRIP, indicating that this modification only happens when end resection is engaged. This is supported by an increase in replication protein A (RPA) and a decrease in DNA signal near the DSB in H2A-S15E phosphomimic mutants, indicating higher resection. In mammals, this serine is replaced by a lysine (H2AK15) which undergoes an acetyl-monoubiquityl switch to regulate binding of 53BP1 and resection. This regulation seems functionally conserved with budding yeast H2AS15 and 53BP1-homolog Rad9, using different posttranslational modifications between organisms but achieving the same function.
Collapse
|
14
|
Spegg V, Altmeyer M. Biomolecular condensates at sites of DNA damage: More than just a phase. DNA Repair (Amst) 2021; 106:103179. [PMID: 34311273 PMCID: PMC7612016 DOI: 10.1016/j.dnarep.2021.103179] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022]
Abstract
Protein recruitment to DNA break sites is an integral part of the DNA damage response (DDR). Elucidation of the hierarchy and temporal order with which DNA damage sensors as well as repair and signaling factors assemble around chromosome breaks has painted a complex picture of tightly regulated macromolecular interactions that build specialized compartments to facilitate repair and maintenance of genome integrity. While many of the underlying interactions, e.g. between repair factors and damage-induced histone marks, can be explained by lock-and-key or induced fit binding models assuming fixed stoichiometries, structurally less well defined interactions, such as the highly dynamic multivalent interactions implicated in phase separation, also participate in the formation of multi-protein assemblies in response to genotoxic stress. Although much remains to be learned about these types of cooperative and highly dynamic interactions and their functional roles, the rapidly growing interest in material properties of biomolecular condensates and in concepts from polymer chemistry and soft matter physics to understand biological processes at different scales holds great promises. Here, we discuss nuclear condensates in the context of genome integrity maintenance, highlighting the cooperative potential between clustered stoichiometric binding and phase separation. Rather than viewing them as opposing scenarios, their combined effects can balance structural specificity with favorable physicochemical properties relevant for the regulation and function of multilayered nuclear condensates.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Fijen C, Rothenberg E. The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. DNA Repair (Amst) 2021; 105:103170. [PMID: 34256335 DOI: 10.1016/j.dnarep.2021.103170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Formation of biomolecular condensates is increasingly recognized as a mechanism employed by cells to deal with stress and to optimize enzymatic reactions. Recent studies have characterized several DNA repair foci as phase-separated condensates, behaving like liquid droplets. Concomitantly, the apparent importance of long non-coding RNAs and RNA-binding proteins for the repair of double-strand breaks has raised many questions about their exact contribution to the repair process. Here we discuss how RNA molecules can participate in condensate formation and how RNA-binding proteins can act as molecular scaffolds. We furthermore summarize our current knowledge about how properties of condensates can influence the choice of repair pathway (homologous recombination or non-homologous end joining) and identify the open questions in this field of emerging importance.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
16
|
Lezaja A, Panagopoulos A, Wen Y, Carvalho E, Imhof R, Altmeyer M. RPA shields inherited DNA lesions for post-mitotic DNA synthesis. Nat Commun 2021; 12:3827. [PMID: 34158486 PMCID: PMC8219667 DOI: 10.1038/s41467-021-23806-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
The paradigm that checkpoints halt cell cycle progression for genome repair has been challenged by the recent discovery of heritable DNA lesions escaping checkpoint control. How such inherited lesions affect genome function and integrity is not well understood. Here, we identify a new class of heritable DNA lesions, which is marked by replication protein A (RPA), a protein primarily known for shielding single-stranded DNA in S/G2. We demonstrate that post-mitotic RPA foci occur at low frequency during unperturbed cell cycle progression, originate from the previous cell cycle, and are exacerbated upon replication stress. RPA-marked inherited ssDNA lesions are found at telomeres, particularly of ALT-positive cancer cells. We reveal that RPA protects these replication remnants in G1 to allow for post-mitotic DNA synthesis (post-MiDAS). Given that ALT-positive cancer cells exhibit high levels of replication stress and telomere fragility, targeting post-MiDAS might be a new therapeutic opportunity.
Collapse
Affiliation(s)
- Aleksandra Lezaja
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Andreas Panagopoulos
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Yanlin Wen
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Edison Carvalho
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Ralph Imhof
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- grid.7400.30000 0004 1937 0650Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Beji S, D'Agostino M, Gambini E, Sileno S, Scopece A, Vinci MC, Milano G, Melillo G, Napolitano M, Pompilio G, Capogrossi MC, Avitabile D, Magenta A. Doxorubicin induces an alarmin-like TLR4-dependent autocrine/paracrine action of Nucleophosmin in human cardiac mesenchymal progenitor cells. BMC Biol 2021; 19:124. [PMID: 34134693 PMCID: PMC8210386 DOI: 10.1186/s12915-021-01058-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background Doxorubicin (Dox) is an anti-cancer anthracycline drug that causes double-stranded DNA breaks. It is highly effective against several types of tumours; however, it also has adverse effects on regenerative populations of normal cells, such as human cardiac mesenchymal progenitor cells (hCmPCs), and its clinical use is limited by cardiotoxicity. Another known effect of Dox is nucleolar disruption, which triggers the ubiquitously expressed nucleolar phosphoprotein Nucleophosmin (NPM) to be released from the nucleolus into the cell, where it participates in the orchestration of cellular stress responses. NPM has also been observed in the extracellular space in response to different stress stimuli; however, the mechanism behind this and its functional implications are as yet largely unexplored. The aim of this study was to establish whether Dox could elicit NPM secretion in the extracellular space and to elucidate the mechanism of secretion and the effect of extracellular NPM on hCmPCs. Results We found that following the double-strand break formation in hCmPCs caused by Dox, NPM was rapidly secreted in the extracellular space by an active mechanism, in the absence of either apoptosis or necrosis. Extracellular release of NPM was similarly seen in response to ultraviolet radiation (UV). Furthermore, we observed an increase of NPM levels in the plasma of Dox-treated mice; thus, NPM release also occurred in vivo. The treatment of hCmPCs with extracellular recombinant NPM induced a decrease of cell proliferation and a response mediated through the Toll-like receptor (TLR)4. We demonstrated that NPM binds to TLR4, and via TLR4, and nuclear factor kappa B (NFkB) activation/nuclear translocation, exerts proinflammatory functions by inducing IL-6 and COX-2 gene expression. Finally, we found that in hCmPCs, NPM secretion could be driven by an autophagy-dependent unconventional mechanism that requires TLR4, since TLR4 inhibition dramatically reduced Dox-induced secretion. Conclusions We hypothesise that the extracellular release of NPM could be a general response to DNA damage since it can be elicited by either a chemical agent such as Dox or a physical genotoxic stressor such as UV radiation. Following genotoxic stress, NPM acts similarly to an alarmin in hCmPCs, being rapidly secreted and promoting cell cycle arrest and a TLR4/NFκB-dependent inflammatory response. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01058-5.
Collapse
Affiliation(s)
- Sara Beji
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Marco D'Agostino
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Elisa Gambini
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Sara Sileno
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Alessandro Scopece
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Maria Cristina Vinci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Giuseppina Milano
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | | | | | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, Via Carlo Parea 4, 20138, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Maurizio C Capogrossi
- Laboratory of Cardiovascular Science, National Institute on Aging (NIA), National Institutes of Health (NIH), 251 Bayview Blvd, Baltimore, MD, 21224, USA.,Division of Cardiology, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Daniele Avitabile
- Idi Farmaceutici S.r.l., Via dei Castelli Romani 83/85, 00071, Pomezia (Rome), Italy.
| | - Alessandra Magenta
- National Research Council of Italy (CNR), Institute of Translational Pharmacology IFT, Via Fosso del Cavaliere 100, 00133, Rome, Italy.
| |
Collapse
|
18
|
The nuclear kinesin KIF18B promotes 53BP1-mediated DNA double-strand break repair. Cell Rep 2021; 35:109306. [PMID: 34192545 DOI: 10.1016/j.celrep.2021.109306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
53BP1 is recruited to chromatin in the vicinity of DNA double-strand breaks (DSBs). We identify the nuclear kinesin, KIF18B, as a 53BP1-interacting protein and define its role in 53BP1-mediated DSB repair. KIF18B is a molecular motor protein involved in destabilizing astral microtubules during mitosis. It is primarily nuclear throughout the interphase and is constitutively chromatin bound. Our observations indicate a nuclear function during the interphase for a kinesin previously implicated in mitosis. We identify a central motif in KIF18B, which we term the Tudor-interacting motif (TIM), because of its interaction with the Tudor domain of 53BP1. TIM enhances the interaction between the 53BP1 Tudor domain and dimethylated lysine 20 of histone H4. TIM and the motor function of KIF18B are both required for efficient 53BP1 focal recruitment in response to damage and for fusion of dysfunctional telomeres. Our data suggest a role for KIF18B in efficient 53BP1-mediated end-joining of DSBs.
Collapse
|
19
|
Pires E, Sharma N, Selemenakis P, Wu B, Huang Y, Alimbetov DS, Zhao W, Wiese C. RAD51AP1 mediates RAD51 activity through nucleosome interaction. J Biol Chem 2021; 297:100844. [PMID: 34058198 PMCID: PMC8233230 DOI: 10.1016/j.jbc.2021.100844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 10/31/2022] Open
Abstract
RAD51-associated protein 1 (RAD51AP1) is a key protein in the homologous recombination (HR) DNA repair pathway. Loss of RAD51AP1 leads to defective HR, genome instability, and telomere erosion. RAD51AP1 physically interacts with the RAD51 recombinase and promotes RAD51-mediated capture of donor DNA, synaptic complex assembly, and displacement-loop formation when tested with nucleosome-free DNA substrates. In cells, however, DNA is packaged into chromatin, posing an additional barrier to the complexities of the HR reaction. In this study, we show that RAD51AP1 binds to nucleosome core particles (NCPs), the minimum basic unit of chromatin in which approximately two superhelical turns of 147 bp double-stranded DNA are wrapped around one histone octamer with no free DNA ends remaining. We identified a C-terminal region in RAD51AP1, including its previously mapped DNA-binding domain, as critical for mediating the association between RAD51AP1 and both the NCP and the histone octamer. Using in vitro surrogate assays of HR activity, we show that RAD51AP1 is capable of promoting duplex DNA capture and initiating joint-molecule formation with the NCP and chromatinized template DNA, respectively. Together, our results suggest that RAD51AP1 directly assists in the RAD51-mediated search for donor DNA in chromatin. We present a model, in which RAD51AP1 anchors the DNA template through affinity for its nucleosomes to the RAD51-ssDNA nucleoprotein filament.
Collapse
Affiliation(s)
- Elena Pires
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA; Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Platon Selemenakis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA; Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA
| | - Bo Wu
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Yuxin Huang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Dauren S Alimbetov
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
20
|
Control of the chromatin response to DNA damage: Histone proteins pull the strings. Semin Cell Dev Biol 2021; 113:75-87. [DOI: 10.1016/j.semcdb.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
|
21
|
Zhang H, Devoucoux M, Song X, Li L, Ayaz G, Cheng H, Tempel W, Dong C, Loppnau P, Côté J, Min J. Structural Basis for EPC1-Mediated Recruitment of MBTD1 into the NuA4/TIP60 Acetyltransferase Complex. Cell Rep 2021; 30:3996-4002.e4. [PMID: 32209463 DOI: 10.1016/j.celrep.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 01/01/2020] [Accepted: 02/28/2020] [Indexed: 12/28/2022] Open
Abstract
MBTD1, a H4K20me reader, has recently been identified as a component of the NuA4/TIP60 acetyltransferase complex, regulating gene expression and DNA repair. NuA4/TIP60 inhibits 53BP1 binding to chromatin through recognition of the H4K20me mark by MBTD1 and acetylation of H2AK15, blocking the ubiquitination mark required for 53BP1 localization at DNA breaks. The NuA4/TIP60 non-catalytic subunit EPC1 enlists MBTD1 into the complex, but the detailed molecular mechanism remains incompletely explored. Here, we present the crystal structure of the MBTD1-EPC1 complex, revealing a hydrophobic C-terminal fragment of EPC1 engaging the MBT repeats of MBTD1 in a site distinct from the H4K20me binding site. Different cellular assays validate the physiological significance of the key residues involved in the MBTD1-EPC1 interaction. Our study provides a structural framework for understanding the mechanism by which MBTD1 recruits the NuA4/TIP60 acetyltransferase complex to influence transcription and DNA repair pathway choice.
Collapse
Affiliation(s)
- Heng Zhang
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Maëva Devoucoux
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Xiaosheng Song
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Li Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Gamze Ayaz
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Biology, Middle East Technical University, Ankara, Turkey
| | - Harry Cheng
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Cheng Dong
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Jacques Côté
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada.
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
22
|
Owiti NA, Nagel ZD, Engelward BP. Fluorescence Sheds Light on DNA Damage, DNA Repair, and Mutations. Trends Cancer 2020; 7:240-248. [PMID: 33203608 DOI: 10.1016/j.trecan.2020.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022]
Abstract
DNA damage can lead to carcinogenic mutations and toxicity that promotes diseases. Therefore, having rapid assays to quantify DNA damage, DNA repair, mutations, and cytotoxicity is broadly relevant to health. For example, DNA damage assays can be used to screen chemicals for genotoxicity, and knowledge about DNA repair capacity has applications in precision prevention and in personalized medicine. Furthermore, knowledge of mutation frequency has predictive power for downstream cancer, and assays for cytotoxicity can predict deleterious health effects. Tests for all of these purposes have been rendered faster and more effective via adoption of fluorescent readouts. Here, we provide an overview of established and emerging cell-based assays that exploit fluorescence for studies of DNA damage and its consequences.
Collapse
Affiliation(s)
- Norah A Owiti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zachary D Nagel
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
23
|
Ferrand J, Rondinelli B, Polo SE. Histone Variants: Guardians of Genome Integrity. Cells 2020; 9:E2424. [PMID: 33167489 PMCID: PMC7694513 DOI: 10.3390/cells9112424] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chromatin integrity is key for cell homeostasis and for preventing pathological development. Alterations in core chromatin components, histone proteins, recently came into the spotlight through the discovery of their driving role in cancer. Building on these findings, in this review, we discuss how histone variants and their associated chaperones safeguard genome stability and protect against tumorigenesis. Accumulating evidence supports the contribution of histone variants and their chaperones to the maintenance of chromosomal integrity and to various steps of the DNA damage response, including damaged chromatin dynamics, DNA damage repair, and damage-dependent transcription regulation. We present our current knowledge on these topics and review recent advances in deciphering how alterations in histone variant sequence, expression, and deposition into chromatin fuel oncogenic transformation by impacting cell proliferation and cell fate transitions. We also highlight open questions and upcoming challenges in this rapidly growing field.
Collapse
Affiliation(s)
| | | | - Sophie E. Polo
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, 75013 Paris, France; (J.F.); (B.R.)
| |
Collapse
|
24
|
Pessina F, Gioia U, Brandi O, Farina S, Ceccon M, Francia S, d'Adda di Fagagna F. DNA Damage Triggers a New Phase in Neurodegeneration. Trends Genet 2020; 37:337-354. [PMID: 33020022 DOI: 10.1016/j.tig.2020.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Subcellular compartmentalization contributes to the organization of a plethora of molecular events occurring within cells. This can be achieved in membraneless organelles generated through liquid-liquid phase separation (LLPS), a demixing process that separates and concentrates cellular reactions. RNA is often a critical factor in mediating LLPS. Recent evidence indicates that DNA damage response foci are membraneless structures formed via LLPS and modulated by noncoding transcripts synthesized at DNA damage sites. Neurodegeneration is often associated with DNA damage, and dysfunctional LLPS events can lead to the formation of toxic aggregates. In this review, we discuss those gene products involved in neurodegeneration that undergo LLPS and their involvement in the DNA damage response.
Collapse
Affiliation(s)
- Fabio Pessina
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | - Ubaldo Gioia
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | - Ornella Brandi
- Istituto di Genetica Molecolare 'Luigi Luca Cavalli-Sforza' CNR - Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Stefania Farina
- Istituto di Genetica Molecolare 'Luigi Luca Cavalli-Sforza' CNR - Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy; University School for Advanced Studies IUSS, 27100 Pavia, Italy
| | - Marta Ceccon
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy
| | - Sofia Francia
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy; Istituto di Genetica Molecolare 'Luigi Luca Cavalli-Sforza' CNR - Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy.
| | - Fabrizio d'Adda di Fagagna
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy; Istituto di Genetica Molecolare 'Luigi Luca Cavalli-Sforza' CNR - Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy.
| |
Collapse
|
25
|
Biot M, de Massy B. Reading the epigenetic code for exchanging DNA. eLife 2020; 9:61820. [PMID: 32936074 PMCID: PMC7494355 DOI: 10.7554/elife.61820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 01/04/2023] Open
Abstract
Three independent studies show that a protein called ZCWPW1 is able to recognize the histone modifications that initiate the recombination of genetic information during meiosis.
Collapse
Affiliation(s)
- Mathilde Biot
- Institut de Génétique Humaine, University Montpellier, Montpellier, France.,Centre National de la Recherche Scientifique, University Montpellier, Montpellier, France
| | - Bernard de Massy
- Institut de Génétique Humaine, University Montpellier, Montpellier, France.,Centre National de la Recherche Scientifique, University Montpellier, Montpellier, France
| |
Collapse
|
26
|
PAICS contributes to gastric carcinogenesis and participates in DNA damage response by interacting with histone deacetylase 1/2. Cell Death Dis 2020; 11:507. [PMID: 32632107 PMCID: PMC7338359 DOI: 10.1038/s41419-020-2708-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), an essential enzyme involved in de novo purine biosynthesis, is connected with formation of various tumors. However, the specific biological roles and related mechanisms of PAICS in gastric cancer (GC) remain unclear. In the present study, we identified for the first time that PAICS was significantly upregulated in GC and high expression of PAICS was correlated with poor prognosis of patients with GC. In addition, knockdown of PAICS significantly induced cell apoptosis, and inhibited GC cell growth both in vitro and in vivo. Mechanistic studies first found that PAICS was engaged in DNA damage response, and knockdown of PAICS in GC cell lines induced DNA damage and impaired DNA damage repair efficiency. Further explorations revealed that PAICS interacted with histone deacetylase HDAC1 and HDAC2, and PAICS deficiency decreased the expression of DAD51 and inhibited its recruitment to DNA damage sites by impairing HDAC1/2 deacetylase activity, eventually preventing DNA damage repair. Consistently, PAICS deficiency enhanced the sensitivity of GC cells to DNA damage agent, cisplatin (CDDP), both in vitro and in vivo. Altogether, our findings demonstrate that PAICS plays an oncogenic role in GC, which act as a novel diagnosis and prognostic biomarker for patients with GC.
Collapse
|
27
|
Novak J, Zamostna B, Vopalensky V, Buryskova M, Burysek L, Doleckova D, Pospisek M. Interleukin-1α associates with the tumor suppressor p53 following DNA damage. Sci Rep 2020; 10:6995. [PMID: 32332775 PMCID: PMC7181607 DOI: 10.1038/s41598-020-63779-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
Interleukin-1α (IL-1α) is a dual-function proinflammatory mediator. In addition to its role in the canonical IL-1 signaling pathway, which employs membrane-bound receptors, a growing body of evidence shows that IL-1α has some additional intracellular functions. We identified the interaction of IL-1α with the tumor suppressor p53 in the nuclei and cytoplasm of both malignant and noncancerous mammalian cell lines using immunoprecipitation and the in situ proximity ligation assay (PLA). This interaction was enhanced by treatment with the antineoplastic drug etoposide, which suggests a role for the IL-1α•p53 interaction in genotoxic stress.
Collapse
Affiliation(s)
- J Novak
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - B Zamostna
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - V Vopalensky
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - M Buryskova
- Protean s.r.o., Dobra Voda u Ceskych Budejovic, Czech Republic
| | - L Burysek
- Protean s.r.o., Dobra Voda u Ceskych Budejovic, Czech Republic
| | - D Doleckova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - M Pospisek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
28
|
Belotserkovskaya R, Raga Gil E, Lawrence N, Butler R, Clifford G, Wilson MD, Jackson SP. PALB2 chromatin recruitment restores homologous recombination in BRCA1-deficient cells depleted of 53BP1. Nat Commun 2020; 11:819. [PMID: 32041954 PMCID: PMC7010753 DOI: 10.1038/s41467-020-14563-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Loss of functional BRCA1 protein leads to defects in DNA double-strand break (DSB) repair by homologous recombination (HR) and renders cells hypersensitive to poly (ADP-ribose) polymerase (PARP) inhibitors used to treat BRCA1/2-deficient cancers. However, upon chronic treatment of BRCA1-mutant cells with PARP inhibitors, resistant clones can arise via several mechanisms, including loss of 53BP1 or its downstream co-factors. Defects in the 53BP1 axis partially restore the ability of a BRCA1-deficient cell to form RAD51 filaments at resected DSBs in a PALB2- and BRCA2-dependent manner, and thereby repair DSBs by HR. Here we show that depleting 53BP1 in BRCA1-null cells restores PALB2 accrual at resected DSBs. Moreover, we demonstrate that PALB2 DSB recruitment in BRCA1/53BP1-deficient cells is mediated by an interaction between PALB2's chromatin associated motif (ChAM) and the nucleosome acidic patch region, which in 53BP1-expressing cells is bound by 53BP1's ubiquitin-directed recruitment (UDR) domain.
Collapse
Affiliation(s)
- Rimma Belotserkovskaya
- Wellcome Trust CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Elisenda Raga Gil
- Wellcome Trust CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Nicola Lawrence
- Wellcome Trust CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Richard Butler
- Wellcome Trust CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Gillian Clifford
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK.
| | - Stephen P Jackson
- Wellcome Trust CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
29
|
Averbeck D, Candéias S, Chandna S, Foray N, Friedl AA, Haghdoost S, Jeggo PA, Lumniczky K, Paris F, Quintens R, Sabatier L. Establishing mechanisms affecting the individual response to ionizing radiation. Int J Radiat Biol 2020; 96:297-323. [PMID: 31852363 DOI: 10.1080/09553002.2019.1704908] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose: Humans are increasingly exposed to ionizing radiation (IR). Both low (<100 mGy) and high doses can cause stochastic effects, including cancer; whereas doses above 100 mGy are needed to promote tissue or cell damage. 10-15% of radiotherapy (RT) patients suffer adverse reactions, described as displaying radiosensitivity (RS). Sensitivity to IR's stochastic effects is termed radiosusceptibility (RSu). To optimize radiation protection we need to understand the range of individual variability and underlying mechanisms. We review the potential mechanisms contributing to RS/RSu focusing on RS following RT, the most tractable RS group.Conclusions: The IR-induced DNA damage response (DDR) has been well characterized. Patients with mutations in the DDR have been identified and display marked RS but they represent only a small percentage of the RT patients with adverse reactions. We review the impacting mechanisms and additional factors influencing RS/RSu. We discuss whether RS/RSu might be genetically determined. As a recommendation, we propose that a prospective study be established to assess RS following RT. The study should detail tumor site and encompass a well-defined grading system. Predictive assays should be independently validated. Detailed analysis of the inflammatory, stress and immune responses, mitochondrial function and life style factors should be included. Existing cohorts should also be optimally exploited.
Collapse
Affiliation(s)
| | - Serge Candéias
- CEA, CNRS, LCMB, University of Grenoble Alpes, Grenoble, France
| | - Sudhir Chandna
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Nicolas Foray
- Inserm UA8 Unit Radiations: Defense, Health and Environment, Lyon, France
| | - Anna A Friedl
- Department of Radiation Oncology, University Hospital, LMU, Munich, Germany
| | - Siamak Haghdoost
- Cimap-Laria, Advanced Resource Center for HADrontherapy in Europe (ARCHADE,), University of Caen Normandy, France.,Centre for Radiation Protection Research, Department of Molecular Bioscience, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Katalin Lumniczky
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Center, Budapest, Hungary
| | | | | | | |
Collapse
|
30
|
Salguero I, Belotserkovskaya R, Coates J, Sczaniecka-Clift M, Demir M, Jhujh S, Wilson MD, Jackson SP. MDC1 PST-repeat region promotes histone H2AX-independent chromatin association and DNA damage tolerance. Nat Commun 2019; 10:5191. [PMID: 31729360 PMCID: PMC6858307 DOI: 10.1038/s41467-019-12929-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/03/2019] [Indexed: 02/02/2023] Open
Abstract
Histone H2AX and MDC1 are key DNA repair and DNA-damage signalling proteins. When DNA double-strand breaks (DSBs) occur, H2AX is phosphorylated and then recruits MDC1, which in turn serves as a docking platform to promote the localization of other factors, including 53BP1, to DSB sites. Here, by using CRISPR-Cas9 engineered human cell lines, we identify a hitherto unknown, H2AX-independent, function of MDC1 mediated by its PST-repeat region. We show that the PST-repeat region directly interacts with chromatin via the nucleosome acidic patch and mediates DNA damage-independent association of MDC1 with chromatin. We find that this region is largely functionally dispensable when the canonical γH2AX-MDC1 pathway is operative but becomes critical for 53BP1 recruitment to DNA-damage sites and cell survival following DSB induction when H2AX is not available. Consequently, our results suggest a role for MDC1 in activating the DDR in areas of the genome lacking or depleted of H2AX.
Collapse
Affiliation(s)
- Israel Salguero
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Rimma Belotserkovskaya
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Julia Coates
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Matylda Sczaniecka-Clift
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Mukerrem Demir
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Satpal Jhujh
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Stephen P Jackson
- Wellcome Trust/CRUK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| |
Collapse
|
31
|
Abstract
Complex regulatory circuits determine whether DNA double-strand breaks (DSBs) are repaired by nonhomologous end-joining (NHEJ) or homology-directed repair (HDR) pathways, a carefully balanced equilibrium of which is critical for genome stability. In this issue of EMBO Reports, Deng et al [1] report that a novel p53-suppressed long noncoding RNA (lncRNA), PRLH1, interacts with and stabilizes the E3 ubiquitin ligase RNF169 to stimulate HDR-mediated DSB repair and proliferation of p53-deficient cancer cells. These findings suggest a new regulatory principle in modulating DSB repair pathway selection that may contribute to tumorigenesis.
Collapse
Affiliation(s)
- Dimitris Typas
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Human papillomavirus E7 oncoprotein targets RNF168 to hijack the host DNA damage response. Proc Natl Acad Sci U S A 2019; 116:19552-19562. [PMID: 31501315 DOI: 10.1073/pnas.1906102116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-risk human papillomaviruses (HR-HPVs) promote cervical cancer as well as a subset of anogenital and head and neck cancers. Due to their limited coding capacity, HPVs hijack the host cell's DNA replication and repair machineries to replicate their own genomes. How this host-pathogen interaction contributes to genomic instability is unknown. Here, we report that HPV-infected cancer cells express high levels of RNF168, an E3 ubiquitin ligase that is critical for proper DNA repair following DNA double-strand breaks, and accumulate high numbers of 53BP1 nuclear bodies, a marker of genomic instability induced by replication stress. We describe a mechanism by which HPV E7 subverts the function of RNF168 at DNA double-strand breaks, providing a rationale for increased homology-directed recombination in E6/E7-expressing cervical cancer cells. By targeting a new regulatory domain of RNF168, E7 binds directly to the E3 ligase without affecting its enzymatic activity. As RNF168 knockdown impairs viral genome amplification in differentiated keratinocytes, we propose that E7 hijacks the E3 ligase to promote the viral replicative cycle. This study reveals a mechanism by which tumor viruses reshape the cellular response to DNA damage by manipulating RNF168-dependent ubiquitin signaling. Importantly, our findings reveal a pathway by which HPV may promote the genomic instability that drives oncogenesis.
Collapse
|
33
|
Kilic S, Lezaja A, Gatti M, Bianco E, Michelena J, Imhof R, Altmeyer M. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J 2019; 38:e101379. [PMID: 31267591 PMCID: PMC6694294 DOI: 10.15252/embj.2018101379] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The DNA damage response (DDR) generates transient repair compartments to concentrate repair proteins and activate signaling factors. The physicochemical properties of these spatially confined compartments and their function remain poorly understood. Here, we establish, based on live cell microscopy and CRISPR/Cas9-mediated endogenous protein tagging, that 53BP1-marked repair compartments are dynamic, show droplet-like behavior, and undergo frequent fusion and fission events. 53BP1 assembly, but not the upstream accumulation of γH2AX and MDC1, is highly sensitive to changes in osmotic pressure, temperature, salt concentration and to disruption of hydrophobic interactions. Phase separation of 53BP1 is substantiated by optoDroplet experiments, which further allowed dissection of the 53BP1 sequence elements that cooperate for light-induced clustering. Moreover, we found the tumor suppressor protein p53 to be enriched within 53BP1 optoDroplets, and conditions that disrupt 53BP1 phase separation impair 53BP1-dependent induction of p53 and diminish p53 target gene expression. We thus suggest that 53BP1 phase separation integrates localized DNA damage recognition and repair factor assembly with global p53-dependent gene activation and cell fate decisions.
Collapse
Affiliation(s)
- Sinan Kilic
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Aleksandra Lezaja
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
- Cancer Biology PhD ProgramLife Science Zurich Graduate SchoolZurichSwitzerland
| | - Marco Gatti
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Eliana Bianco
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
- Cancer Biology PhD ProgramLife Science Zurich Graduate SchoolZurichSwitzerland
- Present address:
Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Jone Michelena
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Ralph Imhof
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| |
Collapse
|
34
|
Clouaire T, Legube G. A Snapshot on the Cis Chromatin Response to DNA Double-Strand Breaks. Trends Genet 2019; 35:330-345. [PMID: 30898334 DOI: 10.1016/j.tig.2019.02.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 12/11/2022]
Abstract
In eukaryotes, detection and repair of DNA double-strand breaks (DSBs) operate within chromatin, an incredibly complex structure that tightly packages and regulates DNA metabolism. Chromatin participates in the repair of these lesions at multiple steps, from detection to genomic sequence recovery and chromatin is itself extensively modified during the repair process. In recent years, new methodologies and dedicated techniques have expanded the experimental toolbox, opening up a new era granting the high-resolution analysis of chromatin modifications at annotated DSBs in a genome-wide manner. A complex picture is starting to emerge whereby chromatin is altered at various scales around DSBs, in a manner that relates to the repair pathway used, hence defining a 'repair histone code'. Here, we review the recent advances regarding our knowledge of the chromatin landscape induced in cis around DSBs, with an emphasis on histone post-translational modifications and histone variants.
Collapse
Affiliation(s)
- Thomas Clouaire
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France.
| |
Collapse
|
35
|
Peropadre A, Fernández Freire P, Hazen MJ. A moderate exposure to perfluorooctanoic acid causes persistent DNA damage and senescence in human epidermal HaCaT keratinocytes. Food Chem Toxicol 2018; 121:351-359. [DOI: 10.1016/j.fct.2018.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 01/15/2023]
|
36
|
Abstract
Viral DNA genomes have limited coding capacity and therefore harness cellular factors to facilitate replication of their genomes and generate progeny virions. Studies of viruses and how they interact with cellular processes have historically provided seminal insights into basic biology and disease mechanisms. The replicative life cycles of many DNA viruses have been shown to engage components of the host DNA damage and repair machinery. Viruses have evolved numerous strategies to navigate the cellular DNA damage response. By hijacking and manipulating cellular replication and repair processes, DNA viruses can selectively harness or abrogate distinct components of the cellular machinery to complete their life cycles. Here, we highlight consequences for viral replication and host genome integrity during the dynamic interactions between virus and host.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104;
| | - Amélie Fradet-Turcotte
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Université Laval, Québec G1V 0A6, Canada;
- CHU de Québec Research Center-Université Laval (L'Hôtel-Dieu de Québec), Cancer Research Center, Québec G1R 2J6, Canada
| |
Collapse
|
37
|
Phospho-dependent recruitment of the yeast NuA4 acetyltransferase complex by MRX at DNA breaks regulates RPA dynamics during resection. Proc Natl Acad Sci U S A 2018; 115:10028-10033. [PMID: 30224481 DOI: 10.1073/pnas.1806513115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The KAT5 (Tip60/Esa1) histone acetyltransferase is part of NuA4, a large multifunctional complex highly conserved from yeast to mammals that targets lysines on H4 and H2A (X/Z) tails for acetylation. It is essential for cell viability, being a key regulator of gene expression, cell proliferation, and stem cell renewal and an important factor for genome stability. The NuA4 complex is directly recruited near DNA double-strand breaks (DSBs) to facilitate repair, in part through local chromatin modification and interplay with 53BP1 during the DNA damage response. While NuA4 is detected early after appearance of the lesion, its precise mechanism of recruitment remains to be defined. Here, we report a stepwise recruitment of yeast NuA4 to DSBs first by a DNA damage-induced phosphorylation-dependent interaction with the Xrs2 subunit of the Mre11-Rad50-Xrs2 (MRX) complex bound to DNA ends. This is followed by a DNA resection-dependent spreading of NuA4 on each side of the break along with the ssDNA-binding replication protein A (RPA). Finally, we show that NuA4 can acetylate RPA and regulate the dynamics of its binding to DNA, hence targeting locally both histone and nonhistone proteins for lysine acetylation to coordinate repair.
Collapse
|
38
|
Smith PJ, Darzynkiewicz Z, Errington RJ. Nuclear cytometry and chromatin organization. Cytometry A 2018; 93:771-784. [PMID: 30144297 DOI: 10.1002/cyto.a.23521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/25/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022]
Abstract
The nuclear-targeting chemical probe, for the detection and quantification of DNA within cells, has been a mainstay of cytometry-from the colorimetric Feulgen stain to smart fluorescent agents with tuned functionality. The level of nuclear structure and function at which the probe aims to readout, or indeed at which a DNA-targeted drug acts, is shadowed by a wide range of detection modalities and analytical methods. These methods are invariably limited in terms of the resolution attainable versus the volume occupied by targeted chromatin structures. The scalar challenge arises from the need to understand the extent and different levels of compaction of genomic DNA and how such structures can be re-modeled, reported, or even perturbed by both probes and drugs. Nuclear cytometry can report on the complex levels of chromatin order, disorder, disassembly, and even active disruption by probes and drugs. Nuclear probes can report defining features of clinical and therapeutic interest as in NETosis and other cell death processes. New cytometric approaches continue to bridge the scalar challenges of analyzing chromatin organization. Advances in super-resolution microscopy address the resolution and depth of analysis issues in cellular systems. Typical of recent insights into chromatin organization enabled by exploiting a DNA interacting probe is ChromEM tomography (ChromEMT). ChromEMT uses the unique properties of the anthraquinone-based cytometric dye DRAQ5™ to reveal that local and global 3D chromatin structures effect differences in compaction. The focus of this review is nuclear and chromatin cytometry, with linked reference to DNA targeting probes and drugs as exemplified by the anthracenediones.
Collapse
Affiliation(s)
- Paul J Smith
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Zbigniew Darzynkiewicz
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, Valhalla, New York, 10595
| | - Rachel J Errington
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
39
|
Abstract
Viral DNA genomes have limited coding capacity and therefore harness cellular factors to facilitate replication of their genomes and generate progeny virions. Studies of viruses and how they interact with cellular processes have historically provided seminal insights into basic biology and disease mechanisms. The replicative life cycles of many DNA viruses have been shown to engage components of the host DNA damage and repair machinery. Viruses have evolved numerous strategies to navigate the cellular DNA damage response. By hijacking and manipulating cellular replication and repair processes, DNA viruses can selectively harness or abrogate distinct components of the cellular machinery to complete their life cycles. Here, we highlight consequences for viral replication and host genome integrity during the dynamic interactions between virus and host.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104;
| | - Amélie Fradet-Turcotte
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Université Laval, Québec G1V 0A6, Canada; .,CHU de Québec Research Center-Université Laval (L'Hôtel-Dieu de Québec), Cancer Research Center, Québec G1R 2J6, Canada
| |
Collapse
|
40
|
Caridi PC, Delabaere L, Zapotoczny G, Chiolo I. And yet, it moves: nuclear and chromatin dynamics of a heterochromatic double-strand break. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0291. [PMID: 28847828 PMCID: PMC5577469 DOI: 10.1098/rstb.2016.0291] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2017] [Indexed: 12/15/2022] Open
Abstract
Heterochromatin is mostly composed of repeated DNA sequences prone to aberrant recombination. How cells maintain the stability of these sequences during double-strand break (DSB) repair has been a long-standing mystery. Studies in Drosophila cells revealed that faithful homologous recombination repair of heterochromatic DSBs relies on the striking relocalization of repair sites to the nuclear periphery before Rad51 recruitment and repair progression. Here, we summarize our current understanding of this response, including the molecular mechanisms involved, and conserved pathways in mammalian cells. We will highlight important similarities with pathways identified in budding yeast for repair of other types of repeated sequences, including rDNA and short telomeres. We will also discuss the emerging role of chromatin composition and regulation in heterochromatin repair progression. Together, these discoveries challenged previous assumptions that repair sites are substantially static in multicellular eukaryotes, that heterochromatin is largely inert in the presence of DSBs, and that silencing and compaction in this domain are obstacles to repair. This article is part of the themed issue ‘Chromatin modifiers and remodellers in DNA repair and signalling’.
Collapse
Affiliation(s)
- P Christopher Caridi
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Laetitia Delabaere
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Grzegorz Zapotoczny
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Irene Chiolo
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
41
|
Chiu LY, Gong F, Miller KM. Bromodomain proteins: repairing DNA damage within chromatin. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0286. [PMID: 28847823 DOI: 10.1098/rstb.2016.0286] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2017] [Indexed: 12/21/2022] Open
Abstract
Genome surveillance and repair, termed the DNA damage response (DDR), functions within chromatin. Chromatin-based DDR mechanisms sustain genome and epigenome integrity, defects that can disrupt cellular homeostasis and contribute to human diseases. An important chromatin DDR pathway is acetylation signalling which is controlled by histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes, which regulate acetylated lysines within proteins. Acetylated proteins, including histones, can modulate chromatin structure and provide molecular signals that are bound by acetyl-lysine binders, including bromodomain (BRD) proteins. Acetylation signalling regulates several DDR pathways, as exemplified by the preponderance of HATs, HDACs and BRD proteins that localize at DNA breaks to modify chromatin for lesion repair. Here, we explore the involvement of acetylation signalling in the DDR, focusing on the involvement of BRD proteins in promoting chromatin remodelling to repair DNA double-strand breaks. BRD proteins have widespread DDR functions including chromatin remodelling, chromatin modification and transcriptional regulation. We discuss mechanistically how BRD proteins read acetylation signals within chromatin to trigger DDR and chromatin activities to facilitate genome-epigenome maintenance. Thus, DDR pathways involving BRD proteins represent key participants in pathways that preserve genome-epigenome integrity to safeguard normal genome and cellular functions.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Li-Ya Chiu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| |
Collapse
|
42
|
Dhar S, Gursoy-Yuzugullu O, Parasuram R, Price BD. The tale of a tail: histone H4 acetylation and the repair of DNA breaks. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0284. [PMID: 28847821 DOI: 10.1098/rstb.2016.0284] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 02/06/2023] Open
Abstract
The ability of cells to detect and repair DNA double-strand breaks (DSBs) within the complex architecture of the genome requires co-ordination between the DNA repair machinery and chromatin remodelling complexes. This co-ordination is essential to process damaged chromatin and create open chromatin structures which are required for repair. Initially, there is a PARP-dependent recruitment of repressors, including HP1 and several H3K9 methyltransferases, and exchange of histone H2A.Z by the NuA4-Tip60 complex. This creates repressive chromatin at the DSB in which the tail of histone H4 is bound to the acidic patch on the nucleosome surface. These repressor complexes are then removed, allowing rapid acetylation of the H4 tail by Tip60. H4 acetylation blocks interaction between the H4 tail and the acidic patch on adjacent nucleosomes, decreasing inter-nucleosomal interactions and creating open chromatin. Further, the H4 tail is now free to recruit proteins such as 53BP1 to DSBs, a process modulated by H4 acetylation, and provides binding sites for bromodomain proteins, including ZMYND8 and BRD4, which are important for DSB repair. Here, we will discuss how the H4 tail functions as a dynamic hub that can be programmed through acetylation to alter chromatin packing and recruit repair proteins to the break site.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Surbhi Dhar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| | - Ozge Gursoy-Yuzugullu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| | - Ramya Parasuram
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| |
Collapse
|
43
|
Morrison AJ. Genome maintenance functions of the INO80 chromatin remodeller. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0289. [PMID: 28847826 DOI: 10.1098/rstb.2016.0289] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 12/15/2022] Open
Abstract
Chromatin modification is conserved in all eukaryotes and is required to facilitate and regulate DNA-templated processes. For example, chromatin manipulation, such as histone post-translational modification and nucleosome positioning, play critical roles in genome stability pathways. The INO80 chromatin-remodelling complex, which regulates the abundance and positioning of nucleosomes, is particularly important for proper execution of inducible responses to DNA damage. This review discusses the participation and activity of the INO80 complex in DNA repair and cell cycle checkpoint pathways, with emphasis on the Saccharomyces cerevisiae model system. Furthermore, the role of ATM/ATR kinases, central regulators of DNA damage signalling, in the regulation of INO80 function will be reviewed. In addition, emerging themes of chromatin remodelling in mitotic stability pathways and chromosome segregation will be introduced. These studies are critical to understanding the dynamic chromatin landscape that is rapidly and reversibly modified to maintain the integrity of the genome.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Ashby J Morrison
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
44
|
Baranes-Bachar K, Levy-Barda A, Oehler J, Reid DA, Soria-Bretones I, Voss TC, Chung D, Park Y, Liu C, Yoon JB, Li W, Dellaire G, Misteli T, Huertas P, Rothenberg E, Ramadan K, Ziv Y, Shiloh Y. The Ubiquitin E3/E4 Ligase UBE4A Adjusts Protein Ubiquitylation and Accumulation at Sites of DNA Damage, Facilitating Double-Strand Break Repair. Mol Cell 2018; 69:866-878.e7. [PMID: 29499138 PMCID: PMC6265044 DOI: 10.1016/j.molcel.2018.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 12/12/2017] [Accepted: 01/31/2018] [Indexed: 11/18/2022]
Abstract
Double-strand breaks (DSBs) are critical DNA lesions that robustly activate the elaborate DNA damage response (DDR) network. We identified a critical player in DDR fine-tuning: the E3/E4 ubiquitin ligase UBE4A. UBE4A's recruitment to sites of DNA damage is dependent on primary E3 ligases in the DDR and promotes enhancement and sustainment of K48- and K63-linked ubiquitin chains at these sites. This step is required for timely recruitment of the RAP80 and BRCA1 proteins and proper organization of RAP80- and BRCA1-associated protein complexes at DSB sites. This pathway is essential for optimal end resection at DSBs, and its abrogation leads to upregulation of the highly mutagenic alternative end-joining repair at the expense of error-free homologous recombination repair. Our data uncover a critical regulatory level in the DSB response and underscore the importance of fine-tuning the complex DDR network for accurate and balanced execution of DSB repair.
Collapse
Affiliation(s)
- Keren Baranes-Bachar
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adva Levy-Barda
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Judith Oehler
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Dylan A Reid
- Perlmutter NYU Cancer Center and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Isabel Soria-Bretones
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, Spain
| | - Ty C Voss
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Dudley Chung
- Departments of Pathology and Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Yoon Park
- Department of Biochemistry and Protein Network Research Center, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, Korea
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jong-Bok Yoon
- Department of Biochemistry and Protein Network Research Center, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul, Korea
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Graham Dellaire
- Departments of Pathology and Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, Spain
| | - Eli Rothenberg
- Perlmutter NYU Cancer Center and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
45
|
Sebastian R, Oberdoerffer P. Transcription-associated events affecting genomic integrity. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160288. [PMID: 28847825 PMCID: PMC5577466 DOI: 10.1098/rstb.2016.0288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 12/25/2022] Open
Abstract
Accurate maintenance of genomic as well as epigenomic integrity is critical for proper cell and organ function. Continuous exposure to DNA damage is, thus, often associated with malignant transformation and degenerative diseases. A significant, chronic threat to genome integrity lies in the process of transcription, which can result in the formation of potentially harmful RNA : DNA hybrid structures (R-loops) and has been linked to DNA damage accumulation as well as dynamic chromatin reorganization. In sharp contrast, recent evidence suggests that active transcription, the resulting transcripts as well as R-loop formation can play multi-faceted roles in maintaining and restoring genome integrity. Here, we will discuss the emerging contributions of transcription as both a source of DNA damage and a mediator of DNA repair. We propose that both aspects have significant implications for genome maintenance, and will speculate on possible long-term consequences for the epigenetic integrity of transcribing cells.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Robin Sebastian
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, Room B907, Bethesda, MD 20892, USA
| | - Philipp Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, Room B907, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Jeggo PA, Downs JA, Gasser SM. Chromatin modifiers and remodellers in DNA repair and signalling. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160279. [PMID: 28847816 PMCID: PMC5577457 DOI: 10.1098/rstb.2016.0279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Penny A Jeggo
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton BN71TL, UK
| | - Jessica A Downs
- Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|