1
|
Kaushal SS, Shelton SA, Mayer PM, Kellmayer B, Utz RM, Reimer JE, Baljunas J, Bhide SV, Mon A, Rodriguez-Cardona BM, Grant SB, Newcomer-Johnson TA, Malin JT, Shatkay RR, Collison DC, Papageorgiou K, Escobar J, Rippy MA, Likens GE, Najjar RG, Mejia AI, Lassiter A, Li M, Chant RJ. Freshwater faces a warmer and saltier future from headwaters to coasts: climate risks, saltwater intrusion, and biogeochemical chain reactions. BIOGEOCHEMISTRY 2025; 168:31. [PMID: 40078318 PMCID: PMC11893707 DOI: 10.1007/s10533-025-01219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Alongside global climate change, many freshwater ecosystems are experiencing substantial shifts in the concentrations and compositions of salt ions coming from both land and sea. We synthesize a risk framework for anticipating how climate change and increasing salt pollution coming from both land and saltwater intrusion will trigger chain reactions extending from headwaters to tidal waters. Salt ions trigger 'chain reactions,' where chemical products from one biogeochemical reaction influence subsequent reactions and ecosystem responses. Different chain reactions impact drinking water quality, ecosystems, infrastructure, and energy and food production. Risk factors for chain reactions include shifts in salinity sources due to global climate change and amplification of salinity pulses due to the interaction of precipitation variability and human activities. Depending on climate and other factors, salt retention can range from 2 to 90% across watersheds globally. Salt retained in ecosystems interacts with many global biogeochemical cycles along flowpaths and contributes to 'fast' and 'slow' chain reactions associated with temporary acidification and long-term alkalinization of freshwaters, impacts on nutrient cycling, CO2, CH4, N2O, and greenhouse gases, corrosion, fouling, and scaling of infrastructure, deoxygenation, and contaminant mobilization along the freshwater-marine continuum. Salt also impacts the carbon cycle and the quantity and quality of organic matter transported from headwaters to coasts. We identify the double impact of salt pollution from land and saltwater intrusion on a wide range of ecosystem services. Our salinization risk framework is based on analyses of: (1) increasing temporal trends in salinization of tributaries and tidal freshwaters of the Chesapeake Bay and freshening of the Chesapeake Bay mainstem over 40 years due to changes in streamflow, sea level rise, and watershed salt pollution; (2) increasing long-term trends in concentrations and loads of major ions in rivers along the Eastern U.S. and increased riverine exports of major ions to coastal waters sometimes over 100-fold greater than forest reference conditions; (3) varying salt ion concentration-discharge relationships at U.S. Geological Survey (USGS) sites across the U.S.; (4) empirical relationships between specific conductance and Na+, Cl-, SO4 2-, Ca2+, Mg2+, K+, and N at USGS sites across the U.S.; (5) changes in relationships between concentrations of dissolved organic carbon (DOC) and different salt ions at USGS sites across the U.S.; and (6) original salinization experiments demonstrating changes in organic matter composition, mobilization of nutrients and metals, acidification and alkalinization, changes in oxidation-reduction potentials, and deoxygenation in non-tidal and tidal waters. The interaction of human activities and climate change is altering sources, transport, storage, and reactivity of salt ions and chain reactions along the entire freshwater-marine continuum. Our salinization risk framework helps anticipate, prevent, and manage the growing double impact of salt ions from both land and sea on drinking water, human health, ecosystems, aquatic life, infrastructure, agriculture, and energy production. Supplementary Information The online version contains supplementary material available at 10.1007/s10533-025-01219-6.
Collapse
Affiliation(s)
- Sujay S. Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Sydney A. Shelton
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Paul M. Mayer
- Pacific Ecological Systems Division, US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Corvallis, OR USA
| | - Bennett Kellmayer
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | | | - Jenna E. Reimer
- Department of Soil & Water Sciences, University of Florida, Gainesville, FL USA
| | | | - Shantanu V. Bhide
- The Charles E. Via Jr Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, Manassas, VA USA
| | - Ashley Mon
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Bianca M. Rodriguez-Cardona
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Université du Québec à Montréal, Montréal, Canada
| | - Stanley B. Grant
- The Charles E. Via Jr Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, Manassas, VA USA
| | - Tamara A. Newcomer-Johnson
- Watershed and Ecosystem Characterization Division, US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH USA
| | - Joseph T. Malin
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Ruth R. Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Daniel C. Collison
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Kyriaki Papageorgiou
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Jazmin Escobar
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Megan A. Rippy
- The Charles E. Via Jr Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, Manassas, VA USA
| | - Gene E. Likens
- Cary Institute of Ecosystem Studies, Millbrook, NY USA
- University of Connecticut, Storrs, CT USA
| | - Raymond G. Najjar
- Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA USA
| | - Alfonso I. Mejia
- Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA USA
| | - Allison Lassiter
- University of Pennsylvania Weitzman School of Design, Philadelphia, PA USA
| | - Ming Li
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD USA
| | - Robert J. Chant
- Institute of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ USA
| |
Collapse
|
2
|
Perera H, Jayawardana C, Chandrajith R. Freshwater salinisation: unravelling causes, adaptive mechanisms, ecological impacts, and management strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1195. [PMID: 39538033 DOI: 10.1007/s10661-024-13388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Freshwater salinisation is a growing problem worldwide, affecting surface and groundwater resources. Compared with other global environmental issues, freshwater salinisation has been studied extensively in North America, Australia, and Europe but less so in South America, Asia, and Africa. Both the natural and anthropogenic sources can contribute for freshwater salinisation, through the concentration of dissolved salts in water rising above its normal levels. This review provides a comprehensive assessment of the causes of freshwater salinisation, the impacts on freshwater communities and ecosystem functions, the adaptive mechanisms for survival in an increasingly saline environment, and the management strategies available to control freshwater salinisation. Many human activities contribute to freshwater salinisation, including road salt use, agricultural practices, resource extraction, reservoir construction, and climate change. Aquatic organisms have evolved mechanisms to survive in increasingly saline environments, but excessive salinity can lead to mortality and non-lethal effects. Such effects can have cascading impacts on the structure and function of aquatic communities and ecosystem services. Therefore, monitoring programmes and chemical fingerprinting are needed to identify highly salinised areas, determine how various human activities contribute to freshwater salinisation, and implement management strategies. Furthermore, current research on freshwater salinisation has been limited to a few regions of the world. It is essential to expand the research further into exploring the impacts of salinisation on freshwater resources in unexplored geographic areas of the world that are mainly impacted by climate change scenarios.
Collapse
Affiliation(s)
- Heshani Perera
- Faculty of Graduate Studies, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - Chandramali Jayawardana
- Department of Natural Resources, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka.
| | | |
Collapse
|
3
|
Huber ED, Hintz LL, Wilmoth B, McKenna JR, Hintz WD. Coping with stress: Salt type, concentration, and exposure history limit life history tradeoffs in response to road salt salinization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174998. [PMID: 39053528 DOI: 10.1016/j.scitotenv.2024.174998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Substantial increases in the salinity of freshwater ecosystems has occurred around the globe from causes such as climate change, industrial operations, and the application of road deicing salts. We know very little about how plastic responses in life history traits or rapid evolution of new traits among freshwater organisms could promote stability in ecological communities affected by salinization. We performed a cohort life history analysis from birth to death with 180 individuals of a ubiquitous freshwater zooplankter to understand how life history traits are affected by exposure to two common salt types causing salinization-sodium chloride (NaCl) and calcium chloride (CaCl2)-across two environmentally relevant concentrations. We also tested if a multi-generational exposure history to high salinity altered life-history responses. We tracked and measured lifespan, time to maturation, brood size, brood interval, and body size. We found smaller brood sizes but slightly longer lifespans occurred at a low concentration of NaCl (230 mg Cl-/L). The longer lifespans led to more, albeit smaller broods, which generated a similar lifetime reproductive output compared to the no-salt control populations. At higher concentrations of NaCl and CaCl2, we found lifetime reproductive output was reduced by 23 % to 83 % relative to control populations because no tradeoff among life history traits occurred. In CaCl2, we observed shorter life spans, longer time intervals between smaller broods, and smaller body sizes leading to reduced lifetime reproductive output. We also found that a multi-generational exposure to the salt types did not convey any advantages for lifetime reproductive output. In some cases, the exposure history worsened the life history trait responses suggesting maladaptation. Our findings suggest that life history tradeoffs for freshwater species can occur in response to salinization, but these tradeoffs will largely depend on salt type and concentration, which will have implications for biodiversity and ecological stability.
Collapse
Affiliation(s)
- Eric D Huber
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA
| | - Leslie L Hintz
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA
| | - Bayley Wilmoth
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA
| | - Jorden R McKenna
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA
| | - William D Hintz
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA.
| |
Collapse
|
4
|
Escobar-Sierra C, Cañedo-Argüelles M, Vinyoles D, Lampert KP. Unraveling the molecular mechanisms of fish physiological response to freshwater salinization: A comparative multi-tissue transcriptomic study in a river polluted by potash mining. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124400. [PMID: 38906407 DOI: 10.1016/j.envpol.2024.124400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Freshwater salinization is an escalating global environmental issue that threatens freshwater biodiversity, including fish populations. This study aims to uncover the molecular basis of salinity physiological responses in a non-native minnow species (Phoxinus septimaniae x P. dragarum) exposed to saline effluents from potash mines in the Llobregat River, Barcelona, Spain. Employing high-throughput mRNA sequencing and differential gene expression analyses, brain, gills, and liver tissues collected from fish at two stations (upstream and downstream of saline effluent discharge) were examined. Salinization markedly influenced global gene expression profiles, with the brain exhibiting the most differentially expressed genes, emphasizing its unique sensitivity to salinity fluctuations. Pathway analyses revealed the expected enrichment of ion transport and osmoregulation pathways across all tissues. Furthermore, tissue-specific pathways associated with stress, reproduction, growth, immune responses, methylation, and neurological development were identified in the context of salinization. Rigorous validation of RNA-seq data through quantitative PCR (qPCR) underscored the robustness and consistency of our findings across platforms. This investigation unveils intricate molecular mechanisms steering salinity physiological response in non-native minnows confronting diverse environmental stressors. This comprehensive analysis sheds light on the underlying genetic and physiological mechanisms governing fish physiological response in salinity-stressed environments, offering essential knowledge for the conservation and management of freshwater ecosystems facing salinization.
Collapse
Affiliation(s)
- Camilo Escobar-Sierra
- Institute of Zoology, Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät, Zülpicher Str. 47b, Köln, NRW, 50674, Germany.
| | - Miguel Cañedo-Argüelles
- FEHM-Lab, Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Dolors Vinyoles
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Avda. Diagonal 643, Barcelona, 08028, Catalonia, Spain
| | - Kathrin P Lampert
- Institute of Zoology, Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät, Zülpicher Str. 47b, Köln, NRW, 50674, Germany
| |
Collapse
|
5
|
Jeffree RA, Markich SJ, Oberhaensli F, Teyssie JL. Biokinetics of Americium-241 in the euryhaline diamond sturgeon Acipenser gueldenstaedtii following its uptake from water or food. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 278:107503. [PMID: 39088872 DOI: 10.1016/j.jenvrad.2024.107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 08/03/2024]
Abstract
Americium-241 whole body and internal biokinetics were experimentally investigated in the euryhaline diamond sturgeon Acipenser gueldenstaedtii during its uptake from water and food, in fresh (FW) and brackish water (BW; 9 psu). Whole-body uptake rates of 241Am from water and subsequent depuration rates were quantified over 14 and 28 days, respectively, and assimilation efficiency (AE) of 241Am from diet (chironomid) was determined over 28 days. FW reduced the biological half-life of 241Am following aqueous uptake by an order of magnitude. In contrast BW greatly reduced 241Am assimilation efficiency (AE) from diet (chironomid) by several orders of magnitude (from an AE of 8.5% (FW) down to 0.003% (BW)). Hence, salinity per se is indicated as a major environmental variable in determining the radiological exposure of A. gueldenstaedtii to 241Am. During aqueous exposure BW appreciably increased 241Am activity concentrations in most body components, but aqueous or dietary exposure pathway at either salinity did not determine marked differences in how 241Am was distributed among six body components. The highly mineralized skin of A. gueldenstaedtii recurred as a major repository of 241Am in all experimental treatments, as high as 50% among body components, due to its internal transfer from diet, surface adsorption and/or active absorption from water. The indicated prominence of the aqueous, compared to the dietary, exposure pathway for 241Am accumulation by A. gueldenstaedtii suggests its radiological exposure would be enhanced by BW as it leads to its greater long-term retention, due to a much longer biological half-life.
Collapse
Affiliation(s)
- Ross A Jeffree
- Jeffree Conservation & Research, 45 Casuarina Road, Alfords Point, 2234, Australia.
| | - Scott J Markich
- Aquatic Solutions International, North Arm Cove, NSW, 2324, Australia; School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Francois Oberhaensli
- Marine Radioecology Laboratory, IAEA Environment Laboratories, 4 Quai Antoine, MC 98000, Monaco
| | | |
Collapse
|
6
|
Marks NK, Cravotta CA, Rossi ML, Silva C, Kremer P, Goldsmith ST. Exploring spatial and temporal symptoms of the freshwater salinization syndrome in a rural to urban watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174266. [PMID: 38960200 DOI: 10.1016/j.scitotenv.2024.174266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
The freshwater salinization syndrome (FSS), a concomitant watershed-scale increase in salinity, alkalinity, and major-cation and trace-metal concentrations, over recent decades, has been described for major rivers draining extensive urban areas, yet few studies have evaluated temporal and spatial FSS variations, or causal factors, at the subwatershed scale in mixed-use landscapes. This study examines the potential influence of land-use practices and wastewater treatment plant (WWTP) effluent on the export of major ions and trace metals from the mixed-use East Branch Brandywine Creek watershed in southeastern Pennsylvania, during the 2019 water year. Separate analysis of baseflow and stormflow subsets revealed similar correlations among land-use characteristics and streamwater chemistry. Positive associations between percent impervious surface cover, which ranged from 1.26 % to 21.9 % for the 13 sites sampled, and concentrations of Ca2+, Mg2+, Na+, and Cl- are consistent with road-salt driven reverse cation exchange and weathering of the built environment. The relative volume of upstream WWTP was correlated with Cu and Zn, which may be derived in part from corroded water-conveyance infrastructure; chloride to sulfate mass ratios (CSMR) ranged from ~6.3 to ~7.7× the 0.5 threshold indicating serious corrosivity potential. Observed exceedances of U.S. Environmental Protection Agency Na+ and Cl- drinking water and aquatic life criteria occurred in winter months. Finally, correlations between percent cultivated cropland and As and Pb concentrations may be explained by the persistence of agricultural pesticides that had been used historically. Study results contribute to the understanding of FSS solute origin, fate, and transport in mixed-use watersheds, particularly those in road salt-affected regions. Study results also emphasize the complexity of trace-metal source attribution and explore the potential for FSS solutes to affect human health, aquatic life, and infrastructure.
Collapse
Affiliation(s)
- Nicole K Marks
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, United States of America
| | - Charles A Cravotta
- Cravotta Geochemical Consulting, Bethel, PA 19507, United States of America
| | - Marissa L Rossi
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, United States of America; U.S. Geological Survey, Pennsylvania Water Science Center, 408 Boot Road, Downingtown, PA 19335, United States of America
| | - Camila Silva
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, United States of America
| | - Peleg Kremer
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, United States of America
| | - Steven T Goldsmith
- Department of Geography and the Environment, Villanova University, Villanova, PA 19085, United States of America.
| |
Collapse
|
7
|
Shelton SA, Kaushal SS, Mayer PM, Shatkay RR, Rippy MA, Grant SB, Newcomer-Johnson TA. Salty chemical cocktails as water quality signatures: Longitudinal trends and breakpoints along different U.S. streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172777. [PMID: 38670384 PMCID: PMC11371123 DOI: 10.1016/j.scitotenv.2024.172777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Along urban streams and rivers, various processes, including road salt application, sewage leaks, and weathering of the built environment, contribute to novel chemical cocktails made up of metals, salts, nutrients, and organic matter. In order to track the impacts of urbanization and management strategies on water quality, we conducted longitudinal stream synoptic (LSS) monitoring in nine watersheds in five major metropolitan areas of the U.S. During each LSS monitoring survey, 10-53 sites were sampled along the flowpath of streams as they flowed along rural to urban gradients. Results demonstrated that major ions derived from salts (Ca2+, Mg2+, Na+, and K+) and correlated elements (e.g. Sr2+, N, Cu) formed 'salty chemical cocktails' that increased along rural to urban flowpaths. Salty chemical cocktails explained 46.1% of the overall variability in geochemistry among streams and showed distinct typologies, trends, and transitions along flowpaths through metropolitan regions. Multiple linear regression predicted 62.9% of the variance in the salty chemical cocktails using the six following significant drivers (p < 0.05): percent urban land, wastewater treatment plant discharge, mean annual precipitation, percent silicic residual material, percent volcanic material, and percent carbonate residual material. Mean annual precipitation and percent urban area were the most important in the regression, explaining 29.6% and 13.0% of the variance. Different pollution sources (wastewater, road salt, urban runoff) in streams were tracked downstream based on salty chemical cocktails. Streams flowing through stream-floodplain restoration projects and conservation areas with extensive riparian forest buffers did not show longitudinal increases in salty chemical cocktails, suggesting that there could be attenuation via conservation and restoration. Salinization represents a common urban water quality signature and longitudinal patterns of distinct chemical cocktails and ionic mixtures have the potential to track the sources, fate, and transport of different point and nonpoint pollution sources along streams across different regions.
Collapse
Affiliation(s)
- Sydney A Shelton
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, Geology Building 237, College Park, MD 20742, USA; ORISE Fellow at Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA.
| | - Sujay S Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, Geology Building 237, College Park, MD 20742, USA.
| | - Paul M Mayer
- Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA.
| | - Ruth R Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, Geology Building 237, College Park, MD 20742, USA.
| | - Megan A Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William St, Manassas, VA 20110, USA; Center for Coastal Studies, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Stanley B Grant
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William St, Manassas, VA 20110, USA; Center for Coastal Studies, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Tammy A Newcomer-Johnson
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Watershed and Ecosystem Characterization Division, 26 Martin Luther King Dr W, Cincinnati, OH 45220, USA.
| |
Collapse
|
8
|
Van Gray JB, Ayayee P. Examining the impacts of salt specificity on freshwater microbial community and functional potential following salinization. Environ Microbiol 2024; 26:e16628. [PMID: 38757470 DOI: 10.1111/1462-2920.16628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
The degradation of freshwater systems by salt pollution is a threat to global freshwater resources. Salinization is commonly identified by increased specific conductance (conductivity), a proxy for salt concentrations. However, conductivity fails to account for the diversity of salts entering freshwaters and the potential implications this has on microbial communities and functions. We tested 4 types of salt pollution-MgCl2, MgSO4, NaCl, and Na2SO4-on bacterial taxonomic and functional α-, β-diversity of communities originating from streams in two distinct localities (Nebraska [NE] and Ohio [OH], USA). Community responses depended on the site of origin, with NE and OH exhibiting more pronounced decreases in community diversity in response to Na2SO4 and MgCl2 than other salt amendments. A closer examination of taxonomic and functional diversity metrics suggests that core features of communities are more resistant to induced salt stress and that marginal features at both a population and functional level are more likely to exhibit significant structural shifts based on salt specificity. The lack of uniformity in community response highlights the need to consider the compositional complexities of salinization to accurately identify the ecological consequences of instances of salt pollution.
Collapse
Affiliation(s)
- Jonathon B Van Gray
- The Ohio State University CFAES Wooster, Agriculture Technical Institute, Wooster, Ohio, USA
| | - Paul Ayayee
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| |
Collapse
|
9
|
Malin JT, Kaushal SS, Mayer PM, Maas CM, Hohman SP, Rippy MA. Longitudinal stream synoptic (LSS) monitoring to evaluate water quality in restored streams. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:437. [PMID: 38592553 PMCID: PMC11069387 DOI: 10.1007/s10661-024-12570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/23/2024] [Indexed: 04/10/2024]
Abstract
Impervious surface cover increases peak flows and degrades stream health, contributing to a variety of hydrologic, water quality, and ecological symptoms, collectively known as the urban stream syndrome. Strategies to combat the urban stream syndrome often employ engineering approaches to enhance stream-floodplain reconnection, dissipate erosive forces from urban runoff, and enhance contaminant retention, but it is not always clear how effective such practices are or how to monitor for their effectiveness. In this study, we explore applications of longitudinal stream synoptic (LSS) monitoring (an approach where multiple samples are collected along stream flowpaths across both space and time) to narrow this knowledge gap. Specifically, we investigate (1) whether LSS monitoring can be used to detect changes in water chemistry along longitudinal flowpaths in response to stream-floodplain reconnection and (2) what is the scale over which restoration efforts improve stream quality. We present results for four different classes of water quality constituents (carbon, nutrients, salt ions, and metals) across five watersheds with varying degrees of stream-floodplain reconnection. Our work suggests that LSS monitoring can be used to evaluate stream restoration strategies when implemented at meter to kilometer scales. As streams flow through restoration features, concentrations of nutrients, salts, and metals significantly decline (p < 0.05) or remain unchanged. This same pattern is not evident in unrestored streams, where salt ion concentrations (e.g., Na+, Ca2+, K+) significantly increase with increasing impervious cover. When used in concert with statistical approaches like principal component analysis, we find that LSS monitoring reveals changes in entire chemical mixtures (e.g., salts, metals, and nutrients), not just individual water quality constituents. These chemical mixtures are locally responsive to restoration projects, but can be obscured at the watershed scale and overwhelmed during storm events.
Collapse
Affiliation(s)
- Joseph T Malin
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, USA.
- Environmental Quality Resources, L.L.C., 2391 Brandermill Blvd., Suite 301, Gambrills, MD, 21054, USA.
| | - Sujay S Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, USA
| | - Paul M Mayer
- Environmental Protection Agency, 805 SW Broadway #500, Portland, OR, 97205, USA
| | - Carly M Maas
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, USA
- United States Geological Survey, 1730 E Parham Road, Richmond, VA, 23228, USA
| | - Steven P Hohman
- Environmental Protection Agency, 1650 Arch St, Philadelphia, PA, 19103, USA
| | - Megan A Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA
- Center for Coastal Studies, Virginia Tech, 1068A Derring Hall (0420), Blacksburg, VA, USA
- Disaster Resilience and Risk Management (DRRM), 1068A Derring Hall, 405 Perry Street, Blacksburg, VA, 24061, USA
| |
Collapse
|
10
|
Lam D, Zhang K, Parolari AJ. Soil, climate, and landscape drivers of base cation concentrations in green stormwater infrastructure soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169907. [PMID: 38185164 DOI: 10.1016/j.scitotenv.2024.169907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Deicing practices and infrastructure weathering can impact plants, soil, and water quality through the input and transport of base cations. Base cation accumulation in green stormwater infrastructure (GSI) soils has the potential to decrease soil infiltration rates and plant water uptake or to promote leaching of metals and nutrients. To understand base cation retention in GSI soils and its drivers, we sampled 14 GSI soils of different age, contributing areas, and infiltration areas, across 3 years. We hypothesized that soil, climate, and landscape drivers explain the spatial and temporal variability of GSI soil base cation concentrations. Sodium (Na), Calcium (Ca), and Magnesium (Mg) concentrations in GSI soils were higher than in reference soils, while Ca and Mg were similar to an urban floodplain soil. Neither the contributing area, contributing impervious area, nor their ratios to infiltration area predicted base cation concentrations. Age predicted the spatial variability of Potassium (K) concentrations. Ca and Mg were moderately predicted by sand and silt, while clay predicted Mg, and sand predicted K. However, no soil characteristics predicted Na concentrations. A subset of sites had elevated Na in Fall 2019, which followed a winter with many freezing events and higher-than-average deicer salt application. K in sites with elevated Na was lower than in non-elevated sites, suggesting that transient spikes of Na driven by deicer salt decreased the ability of GSI soils to accumulate K. These findings demonstrate the large variability of GSI soil base cation concentrations and the relative importance of soil, climate, and landscape drivers of base cation dynamics. High variability in GSI soil data is commonly observed and further research is needed to reduce uncertainties for modeling studies and design. Improved understanding of how GSI soil properties evolve over time, and their relation to GSI performance, will benefit GSI design and maintenance practices.
Collapse
Affiliation(s)
- Duyen Lam
- Department of Civil, Construction, and Environmental Engineering, Marquette University, United States of America
| | - Kun Zhang
- Department of Civil, Construction, and Environmental Engineering, Marquette University, United States of America
| | - Anthony J Parolari
- Department of Civil, Construction, and Environmental Engineering, Marquette University, United States of America.
| |
Collapse
|
11
|
Soued C, Bogard MJ, Finlay K, Bortolotti LE, Leavitt PR, Badiou P, Knox SH, Jensen S, Mueller P, Lee SC, Ng D, Wissel B, Chan CN, Page B, Kowal P. Salinity causes widespread restriction of methane emissions from small inland waters. Nat Commun 2024; 15:717. [PMID: 38267478 PMCID: PMC10808391 DOI: 10.1038/s41467-024-44715-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Inland waters are one of the largest natural sources of methane (CH4), a potent greenhouse gas, but emissions models and estimates were developed for solute-poor ecosystems and may not apply to salt-rich inland waters. Here we combine field surveys and eddy covariance measurements to show that salinity constrains microbial CH4 cycling through complex mechanisms, restricting aquatic emissions from one of the largest global hardwater regions (the Canadian Prairies). Existing models overestimated CH4 emissions from ponds and wetlands by up to several orders of magnitude, with discrepancies linked to salinity. While not significant for rivers and larger lakes, salinity interacted with organic matter availability to shape CH4 patterns in small lentic habitats. We estimate that excluding salinity leads to overestimation of emissions from small Canadian Prairie waterbodies by at least 81% ( ~ 1 Tg yr-1 CO2 equivalent), a quantity comparable to other major national emissions sources. Our findings are consistent with patterns in other hardwater landscapes, likely leading to an overestimation of global lentic CH4 emissions. Widespread salinization of inland waters may impact CH4 cycling and should be considered in future projections of aquatic emissions.
Collapse
Affiliation(s)
- Cynthia Soued
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Matthew J Bogard
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada.
| | - Kerri Finlay
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
- Institute of Environmental Change and Society, University of Regina, S4S 0A2, Regina, SK, Canada
| | - Lauren E Bortolotti
- Institute for Wetland & Waterfowl Research, Ducks Unlimited Canada, PO Box 1160, R0C 2Z0, Stonewall, MB, Canada
| | - Peter R Leavitt
- Institute of Environmental Change and Society, University of Regina, S4S 0A2, Regina, SK, Canada
- Limnology Laboratory, Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Pascal Badiou
- Institute for Wetland & Waterfowl Research, Ducks Unlimited Canada, PO Box 1160, R0C 2Z0, Stonewall, MB, Canada
| | - Sara H Knox
- Department of Geography, The University of British Columbia, Vancouver, BC, Canada
- Department of Geography, McGill University, Montreal, QC, Canada
| | - Sydney Jensen
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Peka Mueller
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Sung Ching Lee
- Department of Geography, The University of British Columbia, Vancouver, BC, Canada
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Darian Ng
- Department of Geography, The University of British Columbia, Vancouver, BC, Canada
| | - Björn Wissel
- Institute of Environmental Change and Society, University of Regina, S4S 0A2, Regina, SK, Canada
- LEHNA, Université Claude Bernard Lyon 1, 69622, Villeurbanne, Cedex, France
| | - Chun Ngai Chan
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Bryan Page
- Institute for Wetland & Waterfowl Research, Ducks Unlimited Canada, PO Box 1160, R0C 2Z0, Stonewall, MB, Canada
| | - Paige Kowal
- Institute for Wetland & Waterfowl Research, Ducks Unlimited Canada, PO Box 1160, R0C 2Z0, Stonewall, MB, Canada
| |
Collapse
|
12
|
Galella JG, Kaushal SS, Mayer PM, Maas CM, Shatkay RR, Inamdar S, Belt KT. Freshwater Salinization Syndrome Alters Nitrogen Transport in Urban Watersheds. WATER 2023; 15:1-22. [PMID: 38313692 PMCID: PMC10831318 DOI: 10.3390/w15223956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Anthropogenic salt inputs have impacted many streams in the U.S. for over a century. Urban stream salinity is often chronically elevated and punctuated by episodic salinization events, which can last hours to days after snowstorms and the application of road salt. Here, we investigated the impacts of freshwater salinization on total dissolved nitrogen (TDN) and NO 3 - / NO 2 - concentrations and fluxes across time in urban watersheds in the Baltimore-Washington D.C. metropolitan area of the Chesapeake Bay region. Episodic salinization from road salt applications and snowmelt quickly mobilized TDN in streams likely through soil ion exchange, hydrologic flushing, and other biogeochemical processes. Previous experimental work from other studies has shown that salinization can mobilize nitrogen from sediments, but less work has investigated this phenomenon with high-frequency sensors and targeted monitoring during road salt events. We found that urban streams exhibited elevated concentrations and fluxes of TDN, NO 3 - / NO 2 - , and specific conductance that rapidly peaked during and after winter road salt events, and then rapidly declined afterwards. We observed plateaus in TDN concentrations in the ranges of the highest specific conductance values (between 1000 and 2000 μS/cm) caused by road salt events. Plateaus in TDN concentrations beyond a certain threshold of specific conductance values suggested source limitation of TDN in watersheds (at the highest ranges in chloride concentrations and ranges); salts were likely extracting nitrogen from soils and streams through ion exchange in soils and sediments, ion pairing in soils and waters, and sodium dispersion of soils to a certain threshold level. When watershed transport was compared across land use, including a forested reference watershed, there was a positive relationship between Cl- loads and NO 3 - / NO 2 - loads. This relationship occurred across all sites regardless of land use, which suggests that the mass transport of Cl- and NO 3 - / NO 2 - are likely influenced by similar factors such as soil ion exchange, ion pairing, sodium dispersion of soils, hydrologic flushing, and biogeochemical processes. Freshwater salinization has the potential to alter the magnitude and timing of total dissolved nitrogen delivery to receiving waters during winter months following road salt applications, and further work should investigate the seasonal relationships of N transport with salinization in urban watersheds.
Collapse
Affiliation(s)
- Joseph G. Galella
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20140, USA
| | - Sujay S. Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20140, USA
| | - Paul M. Mayer
- US Environmental Protection Agency Office of Research and Development, Center for Public Health and Environmental Assessment, Corvallis, OR 97333, USA
| | - Carly M. Maas
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20140, USA
| | - Ruth R. Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20140, USA
| | - Shreeram Inamdar
- Water Science and Policy Graduate Program, University of Delaware, Newark, DE 19716, USA
| | - Kenneth T. Belt
- Department of Geography and Environmental Systems, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
13
|
Kaushal SS, Likens GE, Mayer PM, Shatkay RR, Shelton SA, Grant SB, Utz RM, Yaculak AM, Maas CM, Reimer JE, Bhide SV, Malin JT, Rippy MA. The Anthropogenic Salt Cycle. NATURE REVIEWS. EARTH & ENVIRONMENT 2023; 4:770-784. [PMID: 38515734 PMCID: PMC10953805 DOI: 10.1038/s43017-023-00485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 03/23/2024]
Abstract
Increasing salt production and use is shifting the natural balances of salt ions across Earth systems, causing interrelated effects across biophysical systems collectively known as freshwater salinization syndrome. In this Review, we conceptualize the natural salt cycle and synthesize increasing global trends of salt production and riverine salt concentrations and fluxes. The natural salt cycle is primarily driven by relatively slow geologic and hydrologic processes that bring different salts to the surface of the Earth. Anthropogenic activities have accelerated the processes, timescales and magnitudes of salt fluxes and altered their directionality, creating an anthropogenic salt cycle. Global salt production has increased rapidly over the past century for different salts, with approximately 300 Mt of NaCl produced per year. A salt budget for the USA suggests that salt fluxes in rivers can be within similar orders of magnitude as anthropogenic salt fluxes, and there can be substantial accumulation of salt in watersheds. Excess salt propagates along the anthropogenic salt cycle, causing freshwater salinization syndrome to extend beyond freshwater supplies and affect food and energy production, air quality, human health and infrastructure. There is a need to identify environmental limits and thresholds for salt ions and reduce salinization before planetary boundaries are exceeded, causing serious or irreversible damage across Earth systems.
Collapse
Affiliation(s)
- Sujay S Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Gene E Likens
- Cary Institute of Ecosystem Studies, Millbrook, NY, USA
- University of Connecticut, Storrs, CT, USA
| | - Paul M Mayer
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, OR, USA
| | - Ruth R Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Sydney A Shelton
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Stanley B Grant
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, USA
- Center for Coastal Studies, Virginia Tech, Blacksburg, VA, USA
| | | | - Alexis M Yaculak
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Carly M Maas
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Jenna E Reimer
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Shantanu V Bhide
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, USA
| | - Joseph T Malin
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Megan A Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, USA
- Center for Coastal Studies, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
14
|
Maas CM, Kaushal SS, Rippy MA, Mayer PM, Grant SB, Shatkay RR, Malin JT, Bhide SV, Vikesland P, Krauss L, Reimer JE, Yaculak AM. Freshwater salinization syndrome limits management efforts to improve water quality. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11:1-20. [PMID: 37841559 PMCID: PMC10568995 DOI: 10.3389/fenvs.2023.1106581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Freshwater Salinization Syndrome (FSS) refers to groups of biological, physical, and chemical impacts which commonly occur together in response to salinization. FSS can be assessed by the mobilization of chemical mixtures, termed "chemical cocktails", in watersheds. Currently, we do not know if salinization and mobilization of chemical cocktails along streams can be mitigated or reversed using restoration and conservation strategies. We investigated 1) the formation of chemical cocktails temporally and spatially along streams experiencing different levels of restoration and riparian forest conservation and 2) the potential for attenuation of chemical cocktails and salt ions along flowpaths through conservation and restoration areas. We monitored high-frequency temporal and longitudinal changes in streamwater chemistry in response to different pollution events (i.e., road salt, stormwater runoff, wastewater effluent, and baseflow conditions) and several types of watershed management or conservation efforts in six urban watersheds in the Chesapeake Bay watershed. Principal component analysis (PCA) indicates that chemical cocktails which formed along flowpaths (i.e., permanent reaches of a stream) varied due to pollution events. In response to winter road salt applications, the chemical cocktails were enriched in salts and metals (e.g., Na+, Mn, and Cu). During most baseflow and stormflow conditions, chemical cocktails were less enriched in salt ions and trace metals. Downstream attenuation of salt ions occurred during baseflow and stormflow conditions along flowpaths through regional parks, stream-floodplain restorations, and a national park. Conversely, chemical mixtures of salt ions and metals, which formed in response to multiple road salt applications or prolonged road salt exposure, did not show patterns of rapid attenuation downstream. Multiple linear regression was used to investigate variables that influence changes in chemical cocktails along flowpaths. Attenuation and dilution of salt ions and chemical cocktails along stream flowpaths was significantly related to riparian forest buffer width, types of salt pollution, and distance downstream. Although salt ions and chemical cocktails can be attenuated and diluted in response to conservation and restoration efforts at lower concentration ranges, there can be limitations in attenuation during road salt events, particularly if storm drains bypass riparian buffers.
Collapse
Affiliation(s)
- Carly M. Maas
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Sujay S. Kaushal
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Megan A. Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
- Center for Coastal Studies, Virginia Tech, Blacksburg, VA, United States
| | - Paul M. Mayer
- US Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, United States
| | - Stanley B. Grant
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
- Center for Coastal Studies, Virginia Tech, Blacksburg, VA, United States
| | - Ruth R. Shatkay
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Joseph T. Malin
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Shantanu V. Bhide
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
| | - Peter Vikesland
- The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Lauren Krauss
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
| | - Jenna E. Reimer
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
| | - Alexis M. Yaculak
- Water Sciences and Policy Graduate Program, University of Delaware, Newark, DE, United States
| |
Collapse
|
15
|
Kaushal SS, Maas CM, Mayer PM, Newcomer-Johnson TA, Grant SB, Rippy MA, Shatkay RR, Leathers J, Gold AJ, Smith C, McMullen EC, Haq S, Smith R, Duan S, Malin J, Yaculak A, Reimer JE, Newcomb KD, Raley AS, Collison DC, Galella JG, Grese M, Sivirichi G, Doody TR, Vikesland P, Bhide SV, Krauss L, Daugherty M, Stavrou C, Etheredge M, Ziegler J, Kirschnick A, England W, Belt KT. Longitudinal stream synoptic monitoring tracks chemicals along watershed continuums: a typology of trends. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11:1-28. [PMID: 37475839 PMCID: PMC10355011 DOI: 10.3389/fenvs.2023.1122485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
There are challenges in monitoring and managing water quality due to spatial and temporal heterogeneity in contaminant sources, transport, and transformations. We demonstrate the importance of longitudinal stream synoptic (LSS) monitoring, which can track combinations of water quality parameters along flowpaths across space and time. Specifically, we analyze longitudinal patterns of chemical mixtures of carbon, nutrients, greenhouse gasses, salts, and metals concentrations along 10 flowpaths draining 1,765 km2 of the Chesapeake Bay region. These 10 longitudinal stream flowpaths are drained by watersheds experiencing either urban degradation, forest and wetland conservation, or stream and floodplain restoration. Along the 10 longitudinal stream flowpaths, we monitored over 300 total sampling sites along a combined stream length of 337 km. Synoptic monitoring along longitudinal flowpaths revealed: (1) increasing, decreasing, piecewise, or no trends and transitions in water quality with increasing distance downstream, which provide insights into water quality processes along flowpaths; (2) longitudinal trends and transitions in water quality along flowpaths can be quantified and compared using simple linear and non-linear statistical relationships with distance downstream and/or land use/land cover attributes, (3) attenuation and transformation of chemical cocktails along flowpaths depend on: spatial scales, pollution sources, and transitions in land use and management, hydrology, and restoration. We compared our LSS patterns with others from the global literature to synthesize a typology of longitudinal water quality trends and transitions in streams and rivers based on hydrological, biological, and geochemical processes. Applications of LSS monitoring along flowpaths from our results and the literature reveal: (1) if there are shifts in pollution sources, trends, and transitions along flowpaths, (2) which pollution sources can spread further downstream to sensitive receiving waters such as drinking water supplies and coastal zones, and (3) if transitions in land use, conservation, management, or restoration can attenuate downstream transport of pollution sources. Our typology of longitudinal water quality responses along flowpaths combines many observations across suites of chemicals that can follow predictable patterns based on watershed characteristics. Our typology of longitudinal water quality responses also provides a foundation for future studies, watershed assessments, evaluating watershed management and stream restoration, and comparing watershed responses to non-point and point pollution sources along streams and rivers. LSS monitoring, which integrates both spatial and temporal dimensions and considers multiple contaminants together (a chemical cocktail approach), can be a comprehensive strategy for tracking sources, fate, and transport of pollutants along stream flowpaths and making comparisons of water quality patterns across different watersheds and regions.
Collapse
Affiliation(s)
- Sujay S. Kaushal
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Carly M. Maas
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Paul M. Mayer
- United States Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, United States
| | - Tammy A. Newcomer-Johnson
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Watershed and Ecosystem Characterization Division, Cincinnati, OH, United States
| | - Stanley B. Grant
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
- Center for Coastal Studies, Virginia Tech, Blacksburg, VA, United States
| | - Megan A. Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
- Center for Coastal Studies, Virginia Tech, Blacksburg, VA, United States
| | - Ruth R. Shatkay
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | | | - Arthur J. Gold
- Department of Natural Resources Science, University of Rhode Island, Kingston, RI, United States
| | - Cassandra Smith
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Evan C. McMullen
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Shahan Haq
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Rose Smith
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Shuiwang Duan
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Joseph Malin
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Alexis Yaculak
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Jenna E. Reimer
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Katie Delaney Newcomb
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Ashley Sides Raley
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Daniel C. Collison
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Joseph G. Galella
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | | | | | - Thomas R. Doody
- Department of Geology, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Peter Vikesland
- The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Shantanu V. Bhide
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
| | - Lauren Krauss
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Manassas, VA, United States
| | | | | | | | | | | | | | - Kenneth T. Belt
- Department of Geography and Environmental Systems, University of Maryland Baltimore County, Baltimore, MD, United States
| |
Collapse
|
16
|
Adhikari B, Perlman R, Rigden A, Walter MT, Clark S, McPhillips L. Field assessment of metal and base cation accumulation in green stormwater infrastructure soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162500. [PMID: 36863596 DOI: 10.1016/j.scitotenv.2023.162500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Green stormwater infrastructure (GSI) is adopted to reduce the impact of stormwater on urban flooding and water quality issues. This study assessed the performance of GSI, like bioretention basins, in accumulating metals. Twenty one GSI basins were considered for this study, which were located in New York and Pennsylvania, USA. Shallow (0-5 cm) soil samples were collected from each site at inlet, pool, and adjacent reference locations. The study analyzed 3 base cations (Ca, Mg, Na) and 6 metals (Cd, Cr, Cu, Ni, Pb, and Zn), some of which are toxic to ecosystem and human health. The accumulation of cations/metals at the inlet and pool differed between the selected basins. However, accumulation was consistently higher at the inlet or the pool of the basin as compared to the reference location. Contrary to prior research, this study did not find significant accumulation with age, suggesting that other factors such as site characteristics (e.g., loading rate) might be confounding. GSI basins that receive water only from parking lots or parking lots and building roofs combined showed higher metals and Na accumulation as compared to the basins that received stormwater only from building roofs. Cu, Mg and Zn accumulation showed a positive relationship with the organic matter content in soil, indicating likely sorption of metals on organic matter. Ca and Cu accumulation was greater in GSI basins with larger drainage areas. A negative relationship between Cu and Na implies that Na loading from de-icers may reduce Cu retention. Overall, the study found that the GSI basins are successfully accumulating metals and some base cations, with highest accumulation at the inlet. Additionally, this study provided evidence of GSI effectiveness in accumulating metals using a more cost efficient and time averaged approach compared to traditional means of stormwater inflow and outflow monitoring.
Collapse
Affiliation(s)
- Bishwodeep Adhikari
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America.
| | - Rachel Perlman
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853-5701, United States of America
| | - Angela Rigden
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853-5701, United States of America
| | - M Todd Walter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853-5701, United States of America
| | - Shirley Clark
- Department of Civil, Construction, and Environmental Engineering, The Pennsylvania State University, Harrisburg, PA 17057, United States of America
| | - Lauren McPhillips
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America; Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
17
|
Galella JG, Kaushal SS, Mayer PM, Maas CM, Shatkay RR, Stutzke RA. Stormwater Best Management Practices: Experimental Evaluation of Chemical Cocktails Mobilized by Freshwater Salinization Syndrome. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11:1-20. [PMID: 37234950 PMCID: PMC10208307 DOI: 10.3389/fenvs.2023.1020914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Freshwater Salinization Syndrome (FSS) refers to the suite of physical, biological, and chemical impacts of salt ions on the degradation of natural, engineered, and social systems. Impacts of FSS on mobilization of chemical cocktails has been documented in streams and groundwater, but little research has focused on the effects of FSS on stormwater best management practices (BMPs) such as: constructed wetlands, bioswales, ponds, and bioretention. However emerging research suggests that stormwater BMPs may be both sources and sinks of contaminants, shifting seasonally with road salt applications. We conducted lab experiments to investigate this premise; replicate water and soil samples were collected from four distinct stormwater feature types (bioretention, bioswale, constructed wetlands and retention ponds) and were used in salt incubation experiments conducted under six different salinities with three different salts (NaCl, CaCl2, and MgCl2). Increased salt concentrations had profound effects on major and trace element mobilization, with all three salts showing significant positive relationships across nearly all elements analyzed. Across all sites, mean salt retention was 34%, 28%, and 26% for Na+, Mg2+ and Ca2+ respectively, and there were significant differences among stormwater BMPs. Salt type showed preferential mobilization of certain elements. NaCl mobilized Cu, a potent toxicant to aquatic biota, at rates over an order of magnitude greater than both CaCl2 and MgCl2. Stormwater BMP type also had a significant effect on elemental mobilization, with ponds mobilizing significantly more Mn than other sites. However, salt concentration and salt type consistently had significant effects on mean concentrations of elements mobilized across all stormwater BMPs (p<0.05), suggesting that processes such as ion exchange mobilize metals mobilize metals and salt ions regardless of BMP type. Our results suggest that decisions regarding the amounts and types of salts used as deicers can have significant effects on reducing contaminant mobilization to freshwater ecosystems.
Collapse
Affiliation(s)
- Joseph G Galella
- Department of Geology & Earth System Science Interdisciplinary Center University of Maryland College Park, MD 20140
| | - Sujay S Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center University of Maryland College Park, MD 20140
| | - Paul M Mayer
- US Environmental Protection Agency Office of Research and Development Center for Public Health and Environmental Assessment Corvallis, OR 97333
| | - Carly M Maas
- Department of Geology & Earth System Science Interdisciplinary Center University of Maryland College Park, MD 20140
| | - Ruth R Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center University of Maryland College Park, MD 20140
| | - Robert A Stutzke
- Department of Geology & Earth System Science Interdisciplinary Center University of Maryland College Park, MD 20140
| |
Collapse
|
18
|
Woodley A, Hintz LL, Wilmoth B, Hintz WD. Impacts of water hardness and road deicing salt on zooplankton survival and reproduction. Sci Rep 2023; 13:2975. [PMID: 36806739 PMCID: PMC9941116 DOI: 10.1038/s41598-023-30116-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Rising salinity from road deicing salts threatens the survival and reproduction of freshwater organisms. We conducted two experiments to address how Daphnia pulex survival and reproduction were affected by road salt concentration (control, 120, 640 and 1200 mg Cl-/L) crossed with three concentrations of water hardness (20, 97, 185 mg CaCO3 /L). D. pulex survival was poor in our hard water treatment in both experiments (185 mg CaCO3 /L), potentially indicating a low tolerance to hard water for the strain used in our experiments. With the remaining two hardness treatments (20 and 97 mg CaCO3 /L), we found no evidence of an interactive effect between salt concentration and water hardness on D. pulex survival. In our population-level experiment, D. pulex survival was reduced by > 60% at 120 mg Cl-/L compared to the control. In the individual experiment, survival was similar between the control and 120 mg Cl-/L, but ≤ 40% of individuals survived in 640 and 1200 mg Cl-/L. For the surviving individuals across all treatments, the number of offspring produced per individual declined with increasing Cl- concentration and in hard water. Our results indicate that current Cl- thresholds may not protect some zooplankton and reduced food availability per capita may enhance the negative impacts of road salt.
Collapse
Affiliation(s)
- Aniyah Woodley
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Road, Oregon, OH, 43616, USA
| | - Leslie L Hintz
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Road, Oregon, OH, 43616, USA
| | - Bayley Wilmoth
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Road, Oregon, OH, 43616, USA
| | - William D Hintz
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Road, Oregon, OH, 43616, USA.
| |
Collapse
|
19
|
Kaushal SS, Mayer PM, Likens GE, Reimer JE, Maas CM, Rippy MA, Grant SB, Hart I, Utz RM, Shatkay RR, Wessel BM, Maietta CE, Pace ML, Duan S, Boger WL, Yaculak AM, Galella JG, Wood KL, Morel CJ, Nguyen W, Querubin SEC, Sukert RA, Lowien A, Houde AW, Roussel A, Houston AJ, Cacopardo A, Ho C, Talbot-Wendlandt H, Widmer JM, Slagle J, Bader JA, Chong JH, Wollney J, Kim J, Shepherd L, Wilfong MT, Houlihan M, Sedghi N, Butcher R, Chaudhary S, Becker WD. Five state factors control progressive stages of freshwater salinization syndrome. LIMNOLOGY AND OCEANOGRAPHY LETTERS 2023; 8:190-211. [PMID: 37539375 PMCID: PMC10395323 DOI: 10.1002/lol2.10248] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/21/2022] [Indexed: 08/05/2023]
Abstract
Factors driving freshwater salinization syndrome (FSS) influence the severity of impacts and chances for recovery. We hypothesize that spread of FSS across ecosystems is a function of interactions among five state factors: human activities, geology, flowpaths, climate, and time. (1) Human activities drive pulsed or chronic inputs of salt ions and mobilization of chemical contaminants. (2) Geology drives rates of erosion, weathering, ion exchange, and acidification-alkalinization. (3) Flowpaths drive salinization and contaminant mobilization along hydrologic cycles. (4) Climate drives rising water temperatures, salt stress, and evaporative concentration of ions and saltwater intrusion. (5) Time influences consequences, thresholds, and potentials for ecosystem recovery. We hypothesize that state factors advance FSS in distinct stages, which eventually contribute to failures in systems-level functions (supporting drinking water, crops, biodiversity, infrastructure, etc.). We present future research directions for protecting freshwaters at risk based on five state factors and stages from diagnosis to prognosis to cure.
Collapse
Affiliation(s)
- Sujay S. Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Paul M. Mayer
- Pacific Ecological Systems Division, US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Corvallis, Oregon
| | - Gene E. Likens
- Cary Institute of Ecosystem Studies, Millbrook, New York
- University of Connecticut, Storrs, Connecticut
| | - Jenna E. Reimer
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Carly M. Maas
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Megan A. Rippy
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, Manassas, Virginia
- Center for Coastal Studies, Virginia Tech, Blacksburg, Virginia
| | - Stanley B. Grant
- Occoquan Watershed Monitoring Laboratory, The Charles E. Via Jr Department of Civil and Environmental Engineering, Virginia Tech, Manassas, Virginia
- Center for Coastal Studies, Virginia Tech, Blacksburg, Virginia
| | - Ian Hart
- Chatham University, Gibsonia, Pennsylvania
| | | | - Ruth R. Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Barret M. Wessel
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Christine E. Maietta
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Michael L. Pace
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia
| | - Shuiwang Duan
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Walter L. Boger
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Alexis M. Yaculak
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Joseph G. Galella
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Kelsey L. Wood
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Carol J. Morel
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - William Nguyen
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Shane Elizabeth C. Querubin
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Rebecca A. Sukert
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Anna Lowien
- Environmental Science & Policy Program, University of Maryland, College Park, Maryland
| | - Alyssa Wellman Houde
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Anaïs Roussel
- Department of Biology, Georgetown University, Washington, District of Columbia
| | - Andrew J. Houston
- Department of Geology, University of Maryland, College Park, Maryland
| | - Ari Cacopardo
- Department of Geology, University of Maryland, College Park, Maryland
| | - Cristy Ho
- Department of Geology, University of Maryland, College Park, Maryland
| | | | - Jacob M. Widmer
- Department of Geology, University of Maryland, College Park, Maryland
| | - Jairus Slagle
- Department of Geology, University of Maryland, College Park, Maryland
| | - James A. Bader
- Department of Geology, University of Maryland, College Park, Maryland
| | - Jeng Hann Chong
- Department of Geology, University of Maryland, College Park, Maryland
| | - Jenna Wollney
- Department of Geology, University of Maryland, College Park, Maryland
| | - Jordan Kim
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Lauren Shepherd
- Department of Geology, University of Maryland, College Park, Maryland
| | - Matthew T. Wilfong
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Megan Houlihan
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
| | - Nathan Sedghi
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland
| | - Rebecca Butcher
- Department of Geology, University of Maryland, College Park, Maryland
| | - Sona Chaudhary
- Department of Geology, University of Maryland, College Park, Maryland
| | - William D. Becker
- Department of Geology, University of Maryland, College Park, Maryland
| |
Collapse
|
20
|
Grant SB, Rippy MA, Birkland TA, Schenk T, Rowles K, Misra S, Aminpour P, Kaushal S, Vikesland P, Berglund E, Gomez-Velez JD, Hotchkiss ER, Perez G, Zhang HX, Armstrong K, Bhide SV, Krauss L, Maas C, Mendoza K, Shipman C, Zhang Y, Zhong Y. Can Common Pool Resource Theory Catalyze Stakeholder-Driven Solutions to the Freshwater Salinization Syndrome? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13517-13527. [PMID: 36103712 PMCID: PMC9536470 DOI: 10.1021/acs.est.2c01555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 06/15/2023]
Abstract
Freshwater salinity is rising across many regions of the United States as well as globally, a phenomenon called the freshwater salinization syndrome (FSS). The FSS mobilizes organic carbon, nutrients, heavy metals, and other contaminants sequestered in soils and freshwater sediments, alters the structures and functions of soils, streams, and riparian ecosystems, threatens drinking water supplies, and undermines progress toward many of the United Nations Sustainable Development Goals. There is an urgent need to leverage the current understanding of salinization's causes and consequences─in partnership with engineers, social scientists, policymakers, and other stakeholders─into locally tailored approaches for balancing our nation's salt budget. In this feature, we propose that the FSS can be understood as a common pool resource problem and explore Nobel Laureate Elinor Ostrom's social-ecological systems framework as an approach for identifying the conditions under which local actors may work collectively to manage the FSS in the absence of top-down regulatory controls. We adopt as a case study rising sodium concentrations in the Occoquan Reservoir, a critical water supply for up to one million residents in Northern Virginia (USA), to illustrate emerging impacts, underlying causes, possible solutions, and critical research needs.
Collapse
Affiliation(s)
- Stanley B. Grant
- Occoquan
Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department
of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, Virginia 20110, United States
- Center
for Coastal Studies, Virginia Tech, 1068A Derring Hall (0420), Blacksburg, Virginia 24061, United States
| | - Megan A. Rippy
- Occoquan
Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department
of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, Virginia 20110, United States
- Center
for Coastal Studies, Virginia Tech, 1068A Derring Hall (0420), Blacksburg, Virginia 24061, United States
| | - Thomas A. Birkland
- School
of Public and International Affairs, North
Carolina State University, Raleigh, North Carolina 27695-8102, United States
| | - Todd Schenk
- School
of Public and International Affairs, Virginia
Tech, 140 Otey St., Blacksburg, Virginia 24060, United
States
| | - Kristin Rowles
- Policy
Works LLC, 3410 Woodberry
Ave., Baltimore, Maryland 21211, United States
| | - Shalini Misra
- School
of
Public and International Affairs, Virginia
Tech, Arlington, Virginia 22203, United States
| | - Payam Aminpour
- Department
of Environmental Health and Engineering, Johns Hopkins University, Ames Hall, 3101 Wyman Park Dr., Baltimore, Maryland 21211, United States
| | - Sujay Kaushal
- Department
of Geology and Earth System Science Interdisciplinary Center, University of Maryland, 8000 Regents Drive, College
Park, Maryland 20742, United States
| | - Peter Vikesland
- The
Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Emily Berglund
- Department
of Civil, Construction, and Environmental Engineering, North Carolina State University, Fitts-Woolard Hall, Room 3250, 915
Partners Way, Raleigh, North
Carolina 27606, United
States
| | - Jesus D. Gomez-Velez
- Department
of Civil and Environmental Engineering, Vanderbilt University, PMB 351831, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1831, United States
- Climate
Change Science Institute & Environmental Sciences Division, Oak
Ridge National Laboratory, Oak
Ridge, Tennessee 37830, United States
| | - Erin R. Hotchkiss
- Department
of Biological Sciences, Virginia Tech, 2125 Derring Hall (Mail Code 0406),
926 West Campus Drive, Blacksburg, Virginia 24061, United
States
| | - Gabriel Perez
- Department
of Civil and Environmental Engineering, Vanderbilt University, PMB 351831, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1831, United States
| | - Harry X. Zhang
- The
Water Research Foundation, 1199 N. Fairfax St., Suite 900, Alexandria, Virginia 22314, United States
| | - Kingston Armstrong
- Department
of Civil, Construction, and Environmental Engineering, North Carolina State University, Fitts-Woolard Hall, Room 3250, 915
Partners Way, Raleigh, North
Carolina 27606, United
States
| | - Shantanu V. Bhide
- Occoquan
Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department
of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, Virginia 20110, United States
| | - Lauren Krauss
- Occoquan
Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department
of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, Virginia 20110, United States
| | - Carly Maas
- Department
of Geology and Earth System Science Interdisciplinary Center, University of Maryland, 8000 Regents Drive, College
Park, Maryland 20742, United States
| | - Kent Mendoza
- The
Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Caitlin Shipman
- Occoquan
Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department
of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, Virginia 20110, United States
| | - Yadong Zhang
- Department
of Civil and Environmental Engineering, Vanderbilt University, PMB 351831, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1831, United States
| | - Yinman Zhong
- School
of Public and International Affairs, North
Carolina State University, Raleigh, North Carolina 27695-8102, United States
| |
Collapse
|
21
|
DeVilbiss SE, Steele MK, Brown BL, Badgley BD. Stream bacterial diversity peaks at intermediate freshwater salinity and varies by salt type. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156690. [PMID: 35714745 DOI: 10.1016/j.scitotenv.2022.156690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic freshwater salinization is an emerging and widespread water quality stressor that increases salt concentrations of freshwater, where specific upland land-uses produce distinct ionic profiles. In-situ studies find salinization in disturbed landscapes is correlated with declines in stream bacterial diversity, but cannot isolate the effects of salinization from multiple co-occurring stressors. By manipulating salt concentration and type in controlled microcosm studies, we identified direct and complex effects of freshwater salinization on bacterial diversity in the absence of other stressors common in field studies using chloride salts. Changes in both salt concentration and cation produced distinct bacterial communities. Bacterial richness, or the total number of amplicon sequence variants (ASVs) detected, increased at conductivities as low as 350 μS cm-1, which is opposite the observations from field studies. Richness remained elevated at conductivities as high as 1500 μS cm-1 in communities exposed to a mixture of Ca, Mg, and K chloride salts, but decreased in communities exposed to NaCl, revealing a classic subsidy-stress response. Exposure to different chloride salts at the same conductivity resulted in distinct bacterial community structure, further supporting that salt type modulates responses of bacterial communities to freshwater salinization. Community variability peaked at 125-350 μS cm-1 and was more similar at lower and upper conductivities suggesting possible shifts in deterministic vs. stochastic assembly mechanisms across freshwater salinity gradients. Based on these results, we hypothesize that modest freshwater salinization (125-350 μS cm-1) lessens hypo-osmotic stress, reducing the importance of salinity as an environmental filter at intermediate freshwater ranges but effects of higher salinities at the upper freshwater range differ based on salt type. Our results also support previous findings that ~300 μS cm-1 is a biological effect concentration and effective salt management strategies may need to consider variable effects of different salt types associated with land-use.
Collapse
Affiliation(s)
- Stephen E DeVilbiss
- Virginia Tech, School of Plant and Environmental Sciences, United States of America.
| | - Meredith K Steele
- Virginia Tech, School of Plant and Environmental Sciences, United States of America
| | - Bryan L Brown
- Virginia Tech, Department of Biological Sciences, United States of America
| | - Brian D Badgley
- Virginia Tech, School of Plant and Environmental Sciences, United States of America
| |
Collapse
|
22
|
Utz R, Bidlack S, Fisher B, Kaushal S. Urbanization drives geographically heterogeneous freshwater salinization in the northeastern United States. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:952-965. [PMID: 35687714 DOI: 10.1002/jeq2.20379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Rising trends in freshwater salinity, collectively termed the Freshwater Salinization Syndrome (FSS), constitute a global environmental concern. Given that the FSS has been observed in diverse settings, key questions regarding the causes, trend magnitudes, and consequences remain. Prior work hypothesized that FSS is driven by state factors, such as human-centered land use change, geology, and climate. Here, we identify the fundamental overriding factors driving FSS within the northeastern United States and quantify the diversity of FSS severity within the region. Specifically, we analyzed decadal-scale trends in specific conductance (a salinity proxy) for 333 lotic sites over four decades. Next, we quantified potential variables driving the rising or falling trends, including impervious surface cover (ISC), winter temperature and precipitation, watershed size, and ambient conductance. Temperature and ISC were considered the most likely candidates for predicting FSS severity because road salts have previously emerged as the fundamental regional driver. Most (62.5%) sites exhibited patterns of significantly increasing conductance; thus, the overall regional state reflects advancing FSS. However, others exhibited an absence of change (28.8%) or decreasing values (8.7%), and slope magnitude did change with latitude. Linear modeling demonstrated that two variables-ISC and watershed size-constitute the best predictors of long-term conductance trends and that an intercept not significantly different than zero suggests that the FSS does not reign in the absence of urbanization. We also detected areas with consistently decreasing trends despite moderate ISC. Therefore, within the region, advancing urbanization causes the typical condition of advancing FSS, but heterogeneity also exists.
Collapse
Affiliation(s)
- Ryan Utz
- Falk School of Sustainability, Chatham Univ., 6035 Ridge Road, Gibsonia, PA, 15044, USA
| | - Samantha Bidlack
- Falk School of Sustainability, Chatham Univ., 6035 Ridge Road, Gibsonia, PA, 15044, USA
| | - Burch Fisher
- Earth Research Institute, Univ. of California, Santa Barbara, CA, 93106, USA
| | - Sujay Kaushal
- Dep. of Geology & Earth System Science Interdisciplinary Center, Univ, of Maryland, College Park, 20740, USA
| |
Collapse
|
23
|
Kaushal SS, Reimer JE, Mayer PM, Shatkay RR, Maas CM, Nguyen WD, Boger WL, Yaculak AM, Doody TR, Pennino MJ, Bailey NW, Galella JG, Weingrad A, Collison DC, Wood KL, Haq S, Johnson TAN, Duan S, Belt KT. Freshwater Salinization Syndrome Alters Retention and Release of 'Chemical Cocktails' along Flowpaths: from Stormwater Management to Urban Streams. FRESHWATER SCIENCE (PRINT) 2022; 41:420-441. [PMID: 36213200 PMCID: PMC9533665 DOI: 10.1086/721469] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We investigate impacts of Freshwater Salinization Syndrome (FSS) on mobilization of salts, nutrients, and metals in urban streams and stormwater BMPs by analyzing original data on concentrations and fluxes of salts, nutrients, and metals from 7 urban watersheds in the Mid-Atlantic U.S. and synthesizing literature data. We also explore future critical research needs through a survey of practitioners and scientists. Our original data show: (1) sharp pulses in concentrations of salt ions and metals in urban streams directly following both road salt events and stream restoration construction (e.g., similar to the way concentrations increase during other soil disturbance activities); (2) sharp declines in pH (acidification) in response to road salt applications due to mobilization of H+ from soil exchange sites by Na+; (3) sharp increases in organic matter from microbial and algal sources (based on fluorescence spectroscopy) in response to road salt applications likely due to lysing cells and/or changes in solubility; (4) significant retention (~30-40%) of Na+ in stormwater BMP sediments and floodplains in response to salinization; (5) increased ion exchange and mobilization of diverse salt ions (Na+, Ca2+, K+, Mg2+), nutrients (N, P), and trace metals (Cu, Sr) from stormwater BMPs and restored streams in response to FSS; (6) downstream increasing loads of Cl-, SO4 2-, Br-, F-, and I- along flowpaths through urban streams, and P release from urban stormwater BMPs in response to salinization, and (7) a significant annual reduction (> 50%) in Na+ concentrations in an urban stream when road salt applications were dramatically reduced, which suggests potential for ecosystem recovery. We compared our original results to published metrics of contaminant retention and release across a broad range of stormwater management BMPs from North America and Europe. Overall, urban streams and stormwater management BMPs consistently retain Na+ and Cl- but mobilize multiple contaminants based on salt types and salinity levels. Finally, we present our top 10 research questions regarding FSS impacts on urban streams and stormwater management BMPs. Reducing diverse 'chemical cocktails' of contaminants mobilized by freshwater salinization is now a priority for effectively and holistically restoring urban waters.
Collapse
Affiliation(s)
- Sujay S Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Jenna E Reimer
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, Oregon, 97333, USA
| | - Paul M Mayer
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Ruth R Shatkay
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Carly M Maas
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - William D Nguyen
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Walter L Boger
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Alexis M Yaculak
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Thomas R Doody
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Michael J Pennino
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Integrate Environmental Assessment Branch, 1200 Pennsylvania Ave, NW, Washington, D.C. 20460, USA
| | - Nathan W Bailey
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Joseph G Galella
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Aaron Weingrad
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Daniel C Collison
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Kelsey L Wood
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Shahan Haq
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Tamara A Newcomer Johnson
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Watershed and Ecosystem Characterization Division, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268, USA
| | - Shuiwang Duan
- Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Kenneth T Belt
- Department of Geography and Environmental Systems, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| |
Collapse
|
24
|
Po BHK, Wood CM. Transepithelial potential remains indicative of major ion toxicity in rainbow trout (Oncorhynchus mykiss) after 4-day pre-exposure to major salts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106132. [PMID: 35286992 DOI: 10.1016/j.aquatox.2022.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/06/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The Multi-Ion Toxicity (MIT) Model uses electrochemical theory to predict the transepithelial potential (TEP) across the gills as an index of major ion toxicity in freshwater animals. The goal is to determine environmental criteria that will be protective of aquatic organisms exposed to salt pollution. In recent studies, TEP disturbances above baseline (ΔTEP) during short-term exposures to major ions have been proven as indicative of their toxicity to fish, in accord with the MIT model. However, the acute 1-h exposures used in these previous studies might not be realistic relative to the 24 h or 96 h test periods used for toxicity assessment. To address this temporal inconsistency, the current study investigated both the TEP responses to serial concentrations of 10 major salts (NaCl, Na2SO4, NaHCO3, KCl, K2SO4, KHCO3, CaCl2, CaSO4, MgCl2, MgSO4) and plasma ion levels in juvenile rainbow trout after they had been pre-exposed to 50% of the 96h-LC50 levels of these same salts for 4 days. The pre-exposures caused no mortalities. In general, plasma ions (Na+, K+, Ca2+, Mg2+, Cl-) were well-regulated; however, pre-exposure to sulfate salts resulted in the greatest number of alterations in plasma ion levels. TEP responses remained largely similar to those of naïve trout (without salt pre-exposure). All salts caused hyperbolic concentration-dependent increases in TEP that were well-described by the Michaelis-Menten equation. In the pre-exposed trout, the variation of ∆TEP at the 96h-LC50 concentrations was only 2.2-fold, compared to nearly 28-fold variation among the molar concentrations of the various salts at the 96h-LC50s, identical to the conclusion for naïve trout. Overall, the results remove the temporal inconsistency of previous tests and remain supportive of the MIT model. In addition, the recorded alterations in certain plasma ions, baseline TEP, and Michaelis-Menten constants improve our knowledge on specific physiological responses after extended major ion exposure.
Collapse
Affiliation(s)
- Beverly H K Po
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4; Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1.
| |
Collapse
|
25
|
Current water quality guidelines across North America and Europe do not protect lakes from salinization. Proc Natl Acad Sci U S A 2022; 119:2115033119. [PMID: 35193976 PMCID: PMC8892338 DOI: 10.1073/pnas.2115033119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
The salinity of freshwater ecosystems is increasing worldwide. Given that most freshwater organisms have no recent evolutionary history with high salinity, we expect them to have a low tolerance to elevated salinity caused by road deicing salts, agricultural practices, mining operations, and climate change. Leveraging the results from a network of experiments conducted across North America and Europe, we showed that salt pollution triggers a massive loss of important zooplankton taxa, which led to increased phytoplankton biomass at many study sites. We conclude that current water quality guidelines established by governments in North America and Europe do not adequately protect lake food webs, indicating an immediate need to establish guidelines where they do not exist and to reassess existing guidelines. Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization—indicated as elevated chloride (Cl−) concentration—will affect lake food webs and if two of the lowest Cl− thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl− thresholds established in Canada (120 mg Cl−/L) and the United States (230 mg Cl−/L) and throughout Europe where Cl− thresholds are generally higher. For instance, at 73% of our study sites, Cl− concentrations that caused a ≥50% reduction in cladoceran abundance were at or below Cl− thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl− thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.
Collapse
|
26
|
Coble AA, Wymore AS, Potter JD, McDowell WH. Land Use Overrides Stream Order and Season in Driving Dissolved Organic Matter Dynamics Throughout the Year in a River Network. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2009-2020. [PMID: 35007420 DOI: 10.1021/acs.est.1c06305] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anthropogenic land use has increased nutrient concentrations and altered dissolved organic matter (DOM) character and its bioavailability. Despite widespread recognition that DOM character and its reactivity can vary temporally, the relative influence of land use and stream order on DOM characteristics is poorly understood across seasons and the entire flow regime. We examined DOM character and 28-day bioavailable dissolved organic carbon (BDOC) across a river network to determine the relative roles of land use and stream order in driving variability in DOM character and bioavailability throughout the year. DOM in 1st-order streams was distinct from higher stream orders with lower DOC concentrations, less aromatic (specific ultraviolet absorbance at 254 nm (SUVA254)), more autochthonous (fluorescence index), and more recently produced (β/α) DOM. Across all months, variability in DOM character was primarily explained by land use, rather than stream order or season. Land use and stream order explained the most DOM variation in transitional and winter months and the least during dry months. BDOC was greater in watersheds with less aromatic (SUVA254) and more recent allochthonous DOM (β/α) and more development and impervious surface. With continued development, the bioavailability of DOM in the smallest and most impacted watersheds is expected to increase.
Collapse
Affiliation(s)
- Ashley A Coble
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Adam S Wymore
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Jody D Potter
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - William H McDowell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
27
|
Peng Y, Yang X, Li H, Iqbal M, Li A, Zhang J, Zhang M, Li J, Zhou D. Salt-contaminated water inducing pulmonary hypertension and kidney damage by increasing Ang II concentration in broilers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1134-1143. [PMID: 34347242 DOI: 10.1007/s11356-021-13358-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/04/2021] [Indexed: 06/13/2023]
Abstract
NaCl is the main component of freshwater salinization. High NaCl concentration in drinking water can cause pulmonary hypertension syndrome (PHS) and kidney damage in broilers. To explore the effect of NaCl in drinking water on broilers' kidneys, this study divided 80 chickens into four groups. With the control group fed with pure water, broiler chickens were fed with fresh water (FW, NaCl 1 g/L), low salt-contaminated water (L-SCW, NaCl 2.5 g/L), and high salt-contaminated water (H-SCW, NaCl 5 g/L). The results show that ascites heart index (AHI) and hematocrit (HCT) of broilers increase in L-SCW and H-SCW, the serum blood urea nitrogen and creatinine of broilers increase significantly, the kidney index increases, the kidney sections show vacuolar degeneration and fibrotic degeneration, and the TUNEL results show that the kidneys possess obvious apoptosis. In addition, the detection of RAAS-related genes (AGT gene in the liver, REN in the kidney, ACE in the lung) demonstrates that after using salt-contaminated water, the transcription levels of AGT, REN, and ACE rise significantly, and the concentration of angiotensin II (Ang II) also increases significantly. In order to verify the effect of Ang II on broiler kidneys, this research used exogenous Ang II to treat chicken embryonic kidney (CEK) cells. The results show that the cell activity of CEK decreased with the increase of the concentration of exogenous Ang II. Meanwhile, the flow cytometry assay shows that Ang II could promote the apoptosis of CEK cells. These results indicate that the salt-contaminated water can aggravate PHS and cause kidney damage. The mechanism may be related to the increase of Ang II.
Collapse
Affiliation(s)
- Yuxuan Peng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hainan College of Vocation and Technique, No.95 Nanhai Avenue, Longhua District, Haikou City, Hainan Province, 570105, China
| | - Xiaoqi Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hao Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiabin Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mengdi Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Donghai Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
28
|
Freshwater salinisation: a research agenda for a saltier world. Trends Ecol Evol 2022; 37:440-453. [DOI: 10.1016/j.tree.2021.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
|
29
|
Walker SE, Robbins G, Helton AM, Lawrence BA. Road salt inputs alter biogeochemistry but not plant community composition in exurban forested wetlands. Ecosphere 2021. [DOI: 10.1002/ecs2.3814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Samantha E. Walker
- Department of Natural Resources and the Environment University of Connecticut Storrs Connecticut USA
| | - Gary Robbins
- Department of Natural Resources and the Environment University of Connecticut Storrs Connecticut USA
| | - Ashley M. Helton
- Department of Natural Resources and the Environment University of Connecticut Storrs Connecticut USA
- Center for Environmental Science and Engineering University of Connecticut Storrs Connecticut USA
| | - Beth A. Lawrence
- Department of Natural Resources and the Environment University of Connecticut Storrs Connecticut USA
- Center for Environmental Science and Engineering University of Connecticut Storrs Connecticut USA
| |
Collapse
|
30
|
Po BHK, Wood CM. Trans-epithelial potential (TEP) response as an indicator of major ion toxicity in rainbow trout and goldfish exposed to 10 different salts in ion-poor water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116699. [PMID: 33639489 DOI: 10.1016/j.envpol.2021.116699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Freshwater ecosystems are facing increasing contamination by major ions. The Multi-Ion Toxicity (MIT) model, a new tool for risk assessment and regulation, predicts major ion toxicity to aquatic organisms by relating it to a critical disturbance of the trans-epithelial potential (TEP) across the gills, as predicted by electrochemical theory. The model is based on unproven assumptions. We tested some of these by directly measuring the acute TEP responses to a geometric series of 10 different single salts (NaCl, Na2SO4, KCl, K2SO4, CaCl2, CaSO4, MgCl2, MgSO4, NaHCO3, KHCO3) in the euryhaline rainbow trout (Oncorhynchus mykiss) and the stenohaline goldfish (Carassius auratus) acclimated to very soft, ion-poor water (hardness 10 mg CaCO3/L). Results were compared to 24-h and 96-h LC50 data from the literature, mainly from fathead minnow (Pimephales promelas). All salts caused concentration-dependent increases in TEP to less negative/more positive values, in patterns well-described by the Michaelis-Menten equation, or a modified version incorporating substrate inhibition. The ΔTEP above baseline became close to a maximum at the 96-h LC50, except for the HCO3- salts. Furthermore, the range of ΔTEP values at the LC50 within one species was much more consistent (1.6- to 2.1-fold variation) than the molar concentrations of the different salts at the LC50 (19- to 25-fold variation). ΔTEP responses were related to cation rather than anion concentrations. Overall patterns were qualitatively similar between trout and goldfish, with some quantitative differences, and also in general accord with recently published data on three other species in harder water where ΔTEP responses were much smaller. Blood plasma Na+ and K+ concentrations were minimally affected by the exposures. The results are in accord with most but not all of the assumptions of the MIT model and support its further development as a predictive tool.
Collapse
Affiliation(s)
- Beverly H K Po
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada; Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA.
| |
Collapse
|
31
|
Lewis JL, Agostini G, Jones DK, Relyea RA. Cascading effects of insecticides and road salt on wetland communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116006. [PMID: 33189447 DOI: 10.1016/j.envpol.2020.116006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Novel stressors introduced by human activities increasingly threaten freshwater ecosystems. The annual application of more than 2.3 billion kg of pesticide active ingredient and 22 billion kg of road salt has led to the contamination of temperate waterways. While pesticides and road salt are known to cause direct and indirect effects in aquatic communities, their possible interactive effects remain widely unknown. Using outdoor mesocosms, we created wetland communities consisting of zooplankton, phytoplankton, periphyton, and leopard frog (Rana pipiens) tadpoles. We evaluated the toxic effects of six broad-spectrum insecticides from three families (neonicotinoids: thiamethoxam, imidacloprid; organophosphates: chlorpyrifos, malathion; pyrethroids: cypermethrin, permethrin), as well as the potentially interactive effects of four of these insecticides with three concentrations of road salt (NaCl; 44, 160, 1600 Cl- mg/L). Organophosphate exposure decreased zooplankton abundance, elevated phytoplankton biomass, and reduced tadpole mass whereas exposure to neonicotinoids and pyrethroids decreased zooplankton abundance but had no significant effect on phytoplankton abundance or tadpole mass. While organophosphates decreased zooplankton abundance at all salt concentrations, effects on phytoplankton abundance and tadpole mass were dependent upon salt concentration. In contrast, while pyrethroids had no effects in the absence of salt, they decreased zooplankton and phytoplankton density under increased salt concentrations. Our results highlight the importance of multiple-stressor research under natural conditions. As human activities continue to imperil freshwater systems, it is vital to move beyond single-stressor experiments that exclude potentially interactive effects of chemical contaminants.
Collapse
Affiliation(s)
- Jacquelyn L Lewis
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Gabriela Agostini
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; CONICET-Buenos Aires University, Institute of Ecology, Genetics and Evolution of Buenos Aires, Argentina
| | - Devin K Jones
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
32
|
Galella JG, Kaushal SS, Wood KL, Reimer JE, Mayer PM. Sensors track mobilization of 'chemical cocktails' in streams impacted by road salts in the Chesapeake Bay watershed. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2021; 16:035017-35017. [PMID: 34017359 PMCID: PMC8128710 DOI: 10.1088/1748-9326/abe48f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Increasing trends in base cations, pH, and salinity of freshwaters have been documented in U.S. streams over 50 years. These patterns, collectively known as Freshwater Salinization Syndrome (FSS), are driven by multiple processes, including applications of road salt and human-accelerated weathering of impervious surfaces, reductions in acid rain, and other anthropogenic legacies of change. FSS mobilizes chemical cocktails of distinct elemental mixtures via ion exchange, and other biogeochemical processes. We analyzed impacts of FSS on streamwater chemistry across five urban watersheds in the Baltimore-Washington, USA metropolitan region. Through combined grab-sampling and high-frequency monitoring by USGS sensors, regression relationships were developed among specific conductance and major ion and trace metal concentrations. These linear relationships were statistically significant in most of the urban streams (e.g., R2 = 0.62 and 0.43 for Mn and Cu, respectively), and showed that specific conductance could be used as a proxy to predict concentrations of major ions and trace metals. Major ions and trace metals analyzed via linear regression and principal component analysis (PCA) showed co-mobilization (i.e., correlations among combinations of specific conductance, Mn, Cu, Sr2+, and all base cations during certain times of year and hydrologic conditions). Co-mobilization of metals and base cations was strongest during peak snow events but could continue over 24 hours after specific conductance peaked, suggesting ongoing cation exchange in soils and stream sediments. Mn and Cu concentrations predicted from specific conductance as a proxy indicated acceptable goodness of fit for predicted vs. observed values (Nash-Sutcliffe Efficiency > 0.28). Metals concentrations remained elevated for days after specific conductance decreased following snowstorms, suggesting lag times and continued mobilization after road salt use. High-frequency sensor monitoring and proxies associated with FSS may help better predict contaminant pulses and contaminant exceedances in response to salinization and impacts on aquatic life, infrastructure, and drinking water.
Collapse
Affiliation(s)
- Joseph G Galella
- Department of Geology & Earth System Science Interdisciplinary Center University of Maryland College Park, MD 20140
| | - Sujay S Kaushal
- Department of Geology & Earth System Science Interdisciplinary Center University of Maryland College Park, MD 20140
| | - Kelsey L Wood
- Department of Geology & Earth System Science Interdisciplinary Center University of Maryland College Park, MD 20140
| | - Jenna E Reimer
- Department of Geology & Earth System Science Interdisciplinary Center University of Maryland College Park, MD 20140
| | - Paul M Mayer
- US Environmental Protection Agency Office of Research and Development Center for Public Health and Environmental Assessment Corvallis, OR 97333
| |
Collapse
|
33
|
Niedrist GH, Cañedo-Argüelles M, Cauvy-Fraunié S. Salinization of Alpine rivers during winter months. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7295-7306. [PMID: 33029775 PMCID: PMC7840655 DOI: 10.1007/s11356-020-11077-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/30/2020] [Indexed: 05/27/2023]
Abstract
Human-induced (i.e., secondary) salinization affects aquatic biodiversity and ecosystem functioning worldwide. While agriculture or resource extraction are the main drivers of secondary salinization in arid and semi-arid regions of the world, the application of deicing road salt in winter can be an important source of salts entering freshwaters in cold regions. Alpine rivers are probably affected by salinization, especially in highly populated mountain regions, although this remains to be explored. In this study, we analyzed multi-year conductance time series from four rivers in the European Alps and demonstrated that the application of deicing road salt is linked to peaking rivers' salinity levels during late winter/early spring. Especially in small catchments with more urban surfaces close to the rivers, conductance increased during constant low-flow periods in late winter and was less correlated with discharge than in summer. Thus, our results suggest that small rivers highly connected to urban infrastructures are prone to considerable salinity peaks during late winter/early spring. Given the low natural level of salinities in Alpine rivers, the aquatic biodiversity might be significantly affected by the recorded changes in conductance, with potential consequences on ecosystem functioning. Thereby, we urge the research community to assess the impact of secondary salinization in Alpine rivers and call for an implementation of management practices to prevent the degradation of these pristine and valuable ecosystems.
Collapse
Affiliation(s)
- Georg H Niedrist
- Department of Ecology, River and Conservation Research, University of Innsbruck, Innsbruck, Austria.
| | - Miguel Cañedo-Argüelles
- Freshwater Ecology, Hydrology and Management group (FEHM), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
34
|
Lawson L, Jackson DA. Salty summertime streams—road salt contaminated watersheds and estimates of the proportion of impacted species. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Road salt runoff is a leading cause of secondary freshwater salinization in north temperate climates. Increased chloride concentrations in freshwater can be toxic and lead to changes in organismal behavior, lethality, biotic homogenization, and altered food webs. High chloride concentrations have been reported for winter months in urban centers, as road density is highest in cities. However, summer chloride conditions are not typically studied as road salt is not actively applied outside of winter months, yet summer is when many taxa reproduce and are most sensitive to chloride. In our study, we test the spatial variability of summer chloride conditions across four watersheds in Toronto, Canada. We find 89% of 214 sampled sites exceeded the federal chronic exposure guidelines for chloride, and 13% exceeded the federal acute guidelines. Through a model linking concentration to cumulative proportion of impacted species, we estimate 34% of sites show in excess of one-quarter of all species may be impacted by their site-specific chloride concentrations, with up to two-thirds of species impacted at some sites. Our results suggest that even presumed low seasons for chloride show concentrations sufficient to cause significant negative impacts to aquatic communities.
Collapse
Affiliation(s)
- Lauren Lawson
- Department of Ecology & Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Donald A. Jackson
- Department of Ecology & Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
35
|
Yao W, Gallagher DL, Dietrich AM. An overlooked route of inhalation exposure to tap water constituents for children and adults: Aerosolized aqueous minerals from ultrasonic humidifiers. WATER RESEARCH X 2020; 9:100060. [PMID: 32793876 PMCID: PMC7408721 DOI: 10.1016/j.wroa.2020.100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/03/2020] [Accepted: 07/24/2020] [Indexed: 05/06/2023]
Abstract
Fine particulates and aerosols emitted by commonly used, room-sized ultrasonic humidifiers may pose adverse health effects to children and adults. The literature documents adverse effects for children exposed to minerals emitted from humidifiers. This study performs novel and comprehensive characterization of bivariate particle size and element concentrations of emitted airborne aerosols and particles from ultrasonic humidifiers filled with tap water, including size distribution from 0.014 to 10 μm by scanning mobility particle sizer and AeroTrak; corresponding metal and elemental concentrations as a function of particle size by inductively coupled plasma mass spectrometer; and calculations of deposition fraction in human lungs for age-specific groups using the multi-path particle dosimetry model (MPPD). Deposition fraction is the ratio of mass deposited to total mass inhaled. When filled with tap water, water evaporated from emitted aerosols to form submicron particles that became essentially "dried tap water" with median size 146 nm and mean concentration of 211 μg-total elements/m3-air including 35 μg-calcium/m3-air in a room of 33.5 m3 and air exchange rate at ∼0.8 hr-1. Approximately 90% of emitted particles deposited in human lungs were <1 μm as shown by MPPD model. The smaller particles contained little water and higher concentration of minerals, while larger particles of >1 μm consisted of lower elemental concentrations and more water due to low evaporation. Deposition fraction in pulmonary region was ∼2-fold higher, and deposited particulate mass was 3.5-fold higher for children than adults, indicating greater inhalation exposure to children compared to adults. Modeled data of total particles mass per body weight (BW) that will deposit in adult and child lungs after 8-h humidifier exposure were respectively 2.8 μg/kg-BW and 9.8 μg/kg-BW, where calcium contributes 0.4 μg/kg-BW and 1.6 μg/kg-BW. This comprehensive study of bivariate inorganic chemical composition as a function of particle size expanded, quantified, and modeled exposure for children and adults to aerosolized calcium and other inorganic constituents in water.
Collapse
Affiliation(s)
- Wenchuo Yao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Daniel L. Gallagher
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Andrea M. Dietrich
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
36
|
Developing Sensor Proxies for “Chemical Cocktails” of Trace Metals in Urban Streams. WATER 2020. [DOI: 10.3390/w12102864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Understanding transport mechanisms and temporal patterns in the context of metal concentrations in urban streams is important for developing best management practices and restoration strategies to improve water quality. In some cases, in-situ sensors can be used to estimate unknown concentrations of trace metals or to interpolate between sampling events. Continuous sensor data from the United States Geological Survey were analyzed to determine statistically significant relationships between lead, copper, zinc, cadmium, and mercury with turbidity, specific conductance, dissolved oxygen, and discharge for the Hickey Run, Watts Branch, and Rock Creek watersheds in the Washington, D.C. region. We observed a significant negative linear relationship between concentrations of Cu and dissolved oxygen at Rock Creek (p < 0.05). Sometimes, turbidity had significant positive linear relationships with Pb and Hg concentrations. There were negative or positive linear relationships between Pb, Cd, Zn, and Hg and specific conductance. There also appeared to be relationships between watershed areal fluxes of Pb, Cu, Zn, and Cd in streams with turbidity. Watershed monitoring approaches using continuous sensor data have the potential to characterize the frequency, magnitude, and composition of pulses in concentrations and loads of trace metals, which could improve the management and restoration of urban streams.
Collapse
|
37
|
Burgis CR, Hayes GM, Henderson DA, Zhang W, Smith JA. Green stormwater infrastructure redirects deicing salt from surface water to groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138736. [PMID: 32361433 DOI: 10.1016/j.scitotenv.2020.138736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Winter deicing salt application has led to water quality impairment as stormwater carries salt ions (Na+ and Cl-) through watersheds. Green infrastructure (GI) is a promising urban stormwater management practice, but its efficacy in managing salt is unknown. GI is not yet designed to remove salt, but may have potential to mitigate its loading to surface waters. Two roadside infiltration-based GI practices in Northern Virginia (bioretention and bioswale) were monitored year-round over 28 precipitation events to investigate the transport of salt through modern stormwater infrastructure. Stormwater runoff volumes and concentrations of salt ions entering and exiting each GI were monitored to determine reductions of salt ions. Both the bioretention and bioswale significantly reduced effluent surface loads of Cl- and Na+ (76% to 82%), displaying ability to temporarily retain and infiltrate salts and delay their release to surface waters. Changes in bioretention soil chemistry revealed a small percentage of Na+ was stored long-term by ion exchange, but no long-term Cl- storage was observed. Limited soil storage along with groundwater observations suggest the majority of salt removed from stormwater by the bioretention infiltrates into groundwater. Infiltration GI can buffer surface waters from salt, but are also an avenue for groundwater salt loading.
Collapse
Affiliation(s)
- Charles R Burgis
- Department of Engineering Systems and Environment, University of Virginia, 351 McCormick Rd., Charlottesville, VA 22904, United States
| | - Gail M Hayes
- Department of Engineering Systems and Environment, University of Virginia, 351 McCormick Rd., Charlottesville, VA 22904, United States
| | - Derek A Henderson
- Department of Engineering Systems and Environment, University of Virginia, 351 McCormick Rd., Charlottesville, VA 22904, United States
| | - Wuhuan Zhang
- Department of Engineering Systems and Environment, University of Virginia, 351 McCormick Rd., Charlottesville, VA 22904, United States
| | - James A Smith
- Department of Engineering Systems and Environment, University of Virginia, 351 McCormick Rd., Charlottesville, VA 22904, United States.
| |
Collapse
|
38
|
Kaushal SS, Wood KL, Galella JG, Gion AM, Haq S, Goodling PJ, Haviland KA, Reimer JE, Morel CJ, Wessel B, Nguyen W, Hollingsworth JW, Mei K, Leal J, Widmer J, Sharif R, Mayer PM, Johnson TAN, Newcomb KD, Smith E, Belt KT. Making 'Chemical Cocktails' - Evolution of Urban Geochemical Processes across the Periodic Table of Elements. APPLIED GEOCHEMISTRY : JOURNAL OF THE INTERNATIONAL ASSOCIATION OF GEOCHEMISTRY AND COSMOCHEMISTRY 2020; 119:1-104632. [PMID: 33746355 PMCID: PMC7970522 DOI: 10.1016/j.apgeochem.2020.104632] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Urbanization contributes to the formation of novel elemental combinations and signatures in terrestrial and aquatic watersheds, also known as 'chemical cocktails.' The composition of chemical cocktails evolves across space and time due to: (1) elevated concentrations from anthropogenic sources, (2) accelerated weathering and corrosion of the built environment, (3) increased drainage density and intensification of urban water conveyance systems, and (4) enhanced rates of geochemical transformations due to changes in temperature, ionic strength, pH, and redox potentials. Characterizing chemical cocktails and underlying geochemical processes is necessary for: (1) tracking pollution sources using complex chemical mixtures instead of individual elements or compounds; (2) developing new strategies for co-managing groups of contaminants; (3) identifying proxies for predicting transport of chemical mixtures using continuous sensor data; and (4) determining whether interactive effects of chemical cocktails produce ecosystem-scale impacts greater than the sum of individual chemical stressors. First, we discuss some unique urban geochemical processes which form chemical cocktails, such as urban soil formation, human-accelerated weathering, urban acidification-alkalinization, and freshwater salinization syndrome. Second, we review and synthesize global patterns in concentrations of major ions, carbon and nutrients, and trace elements in urban streams across different world regions and make comparisons with reference conditions. In addition to our global analysis, we highlight examples from some watersheds in the Baltimore-Washington DC region, which show increased transport of major ions, trace metals, and nutrients across streams draining a well-defined land-use gradient. Urbanization increased the concentrations of multiple major and trace elements in streams draining human-dominated watersheds compared to reference conditions. Chemical cocktails of major and trace elements were formed over diurnal cycles coinciding with changes in streamflow, dissolved oxygen, pH, and other variables measured by high-frequency sensors. Some chemical cocktails of major and trace elements were also significantly related to specific conductance (p<0.05), which can be measured by sensors. Concentrations of major and trace elements increased, peaked, or decreased longitudinally along streams as watershed urbanization increased, which is consistent with distinct shifts in chemical mixtures upstream and downstream of other major cities in the world. Our global analysis of urban streams shows that concentrations of multiple elements along the Periodic Table significantly increase when compared with reference conditions. Furthermore, similar biogeochemical patterns and processes can be grouped among distinct mixtures of elements of major ions, dissolved organic matter, nutrients, and trace elements as chemical cocktails. Chemical cocktails form in urban waters over diurnal cycles, decades, and throughout drainage basins. We conclude our global review and synthesis by proposing strategies for monitoring and managing chemical cocktails using source control, ecosystem restoration, and green infrastructure. We discuss future research directions applying the watershed chemical cocktail approach to diagnose and manage environmental problems. Ultimately, a chemical cocktail approach targeting sources, transport, and transformations of different and distinct elemental combinations is necessary to more holistically monitor and manage the emerging impacts of chemical mixtures in the world's fresh waters.
Collapse
Affiliation(s)
- Sujay S Kaushal
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Kelsey L Wood
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Joseph G Galella
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Austin M Gion
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
| | - Shahan Haq
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Phillip J Goodling
- MD-DE-DC US Geological Survey Water Science Center, 5522 Research Park Drive, Catonsville, Maryland 21228, USA
| | | | - Jenna E Reimer
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Carol J Morel
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Barret Wessel
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland 20740, USA
| | - William Nguyen
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - John W Hollingsworth
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
| | - Kevin Mei
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
| | - Julian Leal
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
| | - Jacob Widmer
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
| | - Rahat Sharif
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland 20740, USA
| | - Paul M Mayer
- US Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Western Ecology Division, 200 SW 35 Street, Corvallis, Oregon 97333, USA
| | - Tamara A Newcomer Johnson
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Watershed and Ecosystem Characterization Division, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268, USA
| | | | - Evan Smith
- Department of Geology, University of Maryland, College Park, Maryland 20740, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740, USA
| | - Kenneth T Belt
- Department of Geography and Environmental Systems, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250
| |
Collapse
|
39
|
Definitions of Water Quality: A Survey of Lake-Users of Water Quality-Compromised Lakes. WATER 2020. [DOI: 10.3390/w12082114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Understanding and defining water quality is an important precursor for influencing pro-environmental behavior and accurately assessing potential outcomes of human–lake interactions. This study surveyed 82 lake-users in Nebraska regarding their definitions of water quality and the importance of various water quality features to determine if lake-users’ definitions align with complex and multi-faceted governmental and scientific definitions. Survey sites included two recreational reservoirs (e.g., boating and fishing), Holmes Lake (urban watershed) and Branched Oak Lake (agricultural watershed). The biological and chemical parameters are similar between the lakes and both lakes were listed as “impaired” on the Section 303(d) (United States Environmental Protection Agency, Washington, DC, USA) list of impaired waters of the US at the time of the surveys. The results of our survey suggest that the overwhelming majority of lake-users’ self-generated definitions of water quality did not include more than one feature of water quality found in the relevant policy and regulatory definitions and they focused primarily on water clarity. Further, when provided a list of specific water quality features, the participants rated all provided features of water quality as highly important. This suggests that the failure to include those features in a self-generated definition is not the consequence of perceiving that feature as low importance.
Collapse
|
40
|
Moore J, Fanelli RM, Sekellick AJ. High-Frequency Data Reveal Deicing Salts Drive Elevated Specific Conductance and Chloride along with Pervasive and Frequent Exceedances of the U.S. Environmental Protection Agency Aquatic Life Criteria for Chloride in Urban Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:778-789. [PMID: 31845802 DOI: 10.1021/acs.est.9b04316] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Increasing specific conductance (SC) and chloride concentrations [Cl] negatively affect many stream ecosystems. We characterized spatial variability in SC, [Cl], and exceedances of Environmental Protection Agency [Cl] criteria using nearly 30 million high-frequency observations (2-15 min intervals) for SC and modeled [Cl] from 93 sites across three regions in the eastern United States: Southeast, Mid-Atlantic, and New England. SC and [Cl] increase substantially from south to north and within regions with impervious surface cover (ISC). In the Southeast, [Cl] weakly correlates with ISC, no [Cl] exceedances occur, and [Cl] concentrations are constant with time. In the Mid-Atlantic and New England, [Cl] and [Cl] exceedances strongly correlate with ISC. [Cl] criteria are frequently exceeded at sites with greater than 9-10% ISC and median [Cl] higher than 30-80 mg/L. Tens to hundreds of [Cl] exceedances observed annually at most of these sites help explain previous research where stream ecosystems showed changes at (primarily nonwinter) [Cl] as low as 30-40 mg/L. Mid-Atlantic chronic [Cl] exceedances occur primarily in December-March. In New England, exceedances are common in nonwinter months. [Cl] is increasing at nearly all Mid-Atlantic and New England sites with the largest increases at sites with higher [Cl].
Collapse
Affiliation(s)
| | - Rosemary M Fanelli
- U.S. Geological Survey , Maryland-Delaware-District of Columbia Water Science Center , 5522 Research Park Drive , Catonsville , Maryland 21228 , United States
| | - Andrew J Sekellick
- U.S. Geological Survey , Maryland-Delaware-District of Columbia Water Science Center , 5522 Research Park Drive , Catonsville , Maryland 21228 , United States
| |
Collapse
|
41
|
Jackson JK, Funk DH. Temperature affects acute mayfly responses to elevated salinity: implications for toxicity of road de-icing salts. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0081. [PMID: 30509923 DOI: 10.1098/rstb.2018.0081] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2018] [Indexed: 11/12/2022] Open
Abstract
Salinity in freshwater ecosystems has increased significantly at numerous locations throughout the world, and this increase often reflects the use or production of salts from road de-icing, mining/oil and gas drilling activities, or agricultural production. When related to de-icing salts, highest salinity often occurs in winter when water temperature is often low relative to mean annual temperature at a site. Our study examined acute (96 h) responses to elevated salinity (NaCl) concentrations at five to seven temperature treatments (5-25°C) for four mayfly species (Baetidae: Neocloeon triangulifer, Procloeon fragile; Heptageniidae: Maccaffertium modestum; Leptophlebiidae: Leptophlebia cupida) that are widely distributed across eastern North America. Based on acute LC50s at 20°C, P. fragile was most sensitive (LC50 = 767 mg l-1, 1447 µS cm-1), followed by N. triangulifer (2755 mg l-1, 5104 µS cm-1), M. modestum (2760 mg l-1, 5118 µS cm-1) and L. cupida (4588 mg l-1, 8485 µS cm-1). Acute LC50s decreased as temperature increased for all four species (n = 5-7, R 2 = 0.65-0.88, p = 0.052-0.002). Thus, acute salt toxicity is strongly temperature dependent for the mayfly species we tested, which suggests that brief periods of elevated salinity during cold seasons or in colder locations may be ecologically less toxic than predicted by standard 20 or 25°C laboratory bioassays.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- John K Jackson
- Stroud Water Research Center, 970 Spencer Road, Avondale, PA 19311, USA
| | - David H Funk
- Stroud Water Research Center, 970 Spencer Road, Avondale, PA 19311, USA
| |
Collapse
|
42
|
Cañedo-Argüelles M, Kefford B, Schäfer R. Salt in freshwaters: causes, effects and prospects - introduction to the theme issue. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0002. [PMID: 30509904 DOI: 10.1098/rstb.2018.0002] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 01/07/2023] Open
Abstract
Humans are globally increasing the salt concentration of freshwaters (i.e. freshwater salinization), leading to significant effects at the population, community and ecosystem level. The present theme issue focuses on priority research questions and delivers results that contribute to shaping the future research agenda on freshwater salinization as well as fostering our capacity to manage salinization. The issue is structured along five topics: (i) the estimation of future salinity and evaluation of the relative contribution of the different drivers; (ii) the physiological responses of organisms to alterations in ion concentrations with a specific focus on the osmophysiology of freshwater insects and the responses of different organisims to seawater intrusion; (iii) the impact of salinization on ecosystem functioning, also considering the connections between riparian and stream ecosystems; (iv) the role of context in moderating the response to salinization. The contributions scrutinise the role of additional stressors, biotic interactions, the identify of the ions and their ratios, as well as of the biogeographic and evolutionary context; and (v) the public discourse on salinization and recommendations for management and regulation. In this paper we introduce the general background of salinization, outline research gaps and report key findings from the contributions to this theme issue.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- Miguel Cañedo-Argüelles
- Grup de recerca FEHM (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciència Ambientals, Universitat de Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Ben Kefford
- Institute for Applied Ecology, University of Canberra, Australian Capital Territory 2601, Australia
| | - Ralf Schäfer
- Department of Quantitative Landscape Ecology, University Koblenz-Landau, Fortstr. 7, 76829 Landau, Germany
| |
Collapse
|
43
|
Bogart SJ, Azizishirazi A, Pyle GG. Challenges and future prospects for developing Ca and Mg water quality guidelines: a meta-analysis. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0364. [PMID: 30509926 DOI: 10.1098/rstb.2018.0364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 11/12/2022] Open
Abstract
Anthropogenic activities have the potential to increase water hardness (Ca + Mg) in receiving waters to toxic concentrations, and thus, water quality guidelines (WQG) for Ca and Mg are warranted. However, Ca can modify Mg toxicity in Ca-poor water and additional interactions with other major ions (Na+, K+, HCO3 -/CO3 2-, SO4 2- and Cl-) may occur, potentially obscuring the water hardness-effect relationship. In a meta-analysis of toxicological studies, we: (i) evaluate the performance of three WQG derivation methods, and (ii) determine the influence of several variables (acute/chronic data, anions, Ca:Mg ratios, non-geographically relevant species) on the models. We find that the most sensitive species- or species sensitivity distribution (SSD)-based WQG derivation methods greatly overestimate water hardness toxicity, particularly if non-resident species are included. Broad-scale implementation of most sensitive species- or SSD-based WQG is impractical because water hardness varies beyond and within the regional scale. Anion type does not affect water hardness toxicity across species, but the Ca : Mg ratio is toxicologically relevant, underscoring the importance of considering ion ratios when developing major ion WQG. Although data supporting formal water hardness WQG are unavailable, we suggest using a two-component background condition approach that supports simultaneous management of water hardness and Ca : Mg ratio, and WQG that are applicable beyond the regional scale.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- Sarah J Bogart
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| | - Ali Azizishirazi
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4.,British Columbia Ministry of Environment and Climate Change Strategy, 525 Superior Street, Victoria, British Columbia, Canada V8V 1T7
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
44
|
Estévez E, Rodríguez-Castillo T, González-Ferreras AM, Cañedo-Argüelles M, Barquín J. Drivers of spatio-temporal patterns of salinity in Spanish rivers: a nationwide assessment. Philos Trans R Soc Lond B Biol Sci 2018; 374:20180022. [PMID: 30509921 PMCID: PMC6283964 DOI: 10.1098/rstb.2018.0022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2018] [Indexed: 11/12/2022] Open
Abstract
The salinization of freshwaters is a global water quality problem that leads to the biological degradation of aquatic ecosystems. However, little is known about the spatial extent of freshwater salinization and the relative contribution of each human activity (e.g. agriculture, urbanization, mining or shale-gas extraction). Here, we investigated environmental factors that explain spatio-temporal patterns of water salinity and examined the causes, the extent and the degree of salinization of Spanish rivers. Results showed a strong variation in water salinity among river typologies and between river reaches in good and poor ecological status according to the Water Framework Directive. The variation in water salinity was largely explained by a combination of natural (i.e. climate and geology) and anthropogenic (i.e. land use) factors. By contrast, land use factors as urbanization and agriculture were the main drivers of salinization, which affected more than one quarter of the rivers and streams in Spain, especially those in the most arid regions (central and southern regions) and in the main courses of the largest rivers such as the Ebro, Douro and Tajo rivers. The information provided here can be relevant to set priority regions and actions to ameliorate freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- Edurne Estévez
- Environmental Hydraulics Institute 'IH Cantabria', University of Cantabria, PCTCAN. C/ Isabel Torres 15, 39011 Santander, Spain
| | - Tamara Rodríguez-Castillo
- Environmental Hydraulics Institute 'IH Cantabria', University of Cantabria, PCTCAN. C/ Isabel Torres 15, 39011 Santander, Spain
| | - Alexia María González-Ferreras
- Environmental Hydraulics Institute 'IH Cantabria', University of Cantabria, PCTCAN. C/ Isabel Torres 15, 39011 Santander, Spain
| | - Miguel Cañedo-Argüelles
- Grup de recerca FEHM (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain
| | - José Barquín
- Environmental Hydraulics Institute 'IH Cantabria', University of Cantabria, PCTCAN. C/ Isabel Torres 15, 39011 Santander, Spain
| |
Collapse
|
45
|
Entrekin SA, Clay NA, Mogilevski A, Howard-Parker B, Evans-White MA. Multiple riparian-stream connections are predicted to change in response to salinization. Philos Trans R Soc Lond B Biol Sci 2018; 374:20180042. [PMID: 30509922 PMCID: PMC6283969 DOI: 10.1098/rstb.2018.0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Secondary freshwater salinization, a common anthropogenic alteration, has detrimental, lethal and sub-lethal effects on aquatic biota. Ions from secondary salinization can become toxic to terrestrial and aquatic organisms when exposed to salinized runoff that causes periodic high-concentration pulses. Gradual, low-level (less than 1000 ppm salinity) increases in salt concentrations are also commonly documented in regions with urbanization, agriculture, drilling and mining. Despite widespread low-level salt increases, little is known about the biological and ecological consequences in coupled riparian-stream systems. Recent research indicates lethal and even sub-lethal levels of ions can subsidize or stress microbial decomposer and macroinvertebrate detritivores that could lead to alterations of three riparian-stream pathways: (i) salinized runoff that changes microbial decomposer and macroinvertebrate detritivore and algae performance leading to changes in composition and processing of detrital pools; (ii) riparian plant salt uptake and altered litter chemistry, and litterfall for riparian and aquatic detritivores and their subsequent enrichment, stimulating decomposition rates and production of dissolved and fine organic matter; and (iii) salt consumption in salinized soils could increase riparian detritivore growth, decomposition and dissolved organic matter production. Subsidy-stress and reciprocal flows in coupled riparian-stream connections provide frameworks to identify the extent and magnitude of changes in detrital processing from salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- Sally A Entrekin
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Natalie A Clay
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA
| | | | - Brooke Howard-Parker
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | |
Collapse
|