1
|
James CD, Lewis RL, Witt AJ, Carter C, Rais NM, Wang X, Bristol ML. Fibroblasts regulate the transcriptional signature of human papillomavirus-positive keratinocytes. Tumour Virus Res 2024; 19:200302. [PMID: 39667669 PMCID: PMC11699615 DOI: 10.1016/j.tvr.2024.200302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024] Open
Abstract
Persistent human papillomavirus (HPV) infection is necessary but insufficient for viral oncogenesis. Additional contributing co-factors, such as immune evasion and viral integration have been implicated in HPV-induced cancer progression. It is widely accepted that HPV + keratinocytes require co-culture with fibroblasts to maintain viral DNA as episomes. How fibroblasts regulate viral episome maintenance is a critical knowledge gap. Here we present comprehensive RNA sequencing and proteomic analysis demonstrating that coculture with fibroblasts is supportive of the viral life cycle, and is confirmatory of previous observations. Novel observations suggest that errors in "cross-talk" between fibroblasts and infected keratinocytes may regulate HPV integration and drive oncogenic progression. Our co-culture models offer new insights into HPV-related transformation mechanisms.
Collapse
Affiliation(s)
- Claire D James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Rachel L Lewis
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Austin J Witt
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | | | - Nabiha M Rais
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Xu Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Molly L Bristol
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA; VCU Massey Comprehensive Cancer Center, Richmond, VA, USA.
| |
Collapse
|
2
|
Sannigrahi MK, Raghav L, Diab A, Basu D. The imprint of viral oncoproteins on the variable clinical behavior among human papilloma virus-related oropharyngeal squamous cell carcinomas. Tumour Virus Res 2024; 18:200295. [PMID: 39489416 PMCID: PMC11584912 DOI: 10.1016/j.tvr.2024.200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Human papilloma virus-related (HPV+) oropharyngeal squamous cell carcinomas (OPSCCs) are variable in their progression, immune landscape, treatment responses, and clinical outcomes. Their behavior is impacted not only by differences in host genomic alterations but also by diversity in levels and activity of HPV-encoded oncoproteins. Striking differences in HPV mRNA levels are found among HPV+ OPSCCs and likely derive in part from variations in the structurally diverse mix of integrated and episomal HPV genomes they often contain. Viral oncoprotein levels and function are also impacted by differential splicing of the two long polycistronic transcripts of HPV16, the HPV type within most HPV+ OPSCCs. Further variation in viral oncoprotein function arises from the distinct lineages and sub-lineages of HPV16, which encode polymorphisms in functionally important portions of oncogenes. Here we review the limited current knowledge linking HPV mRNA expression and splicing to differences in oncoprotein function that likely influence OPSCC behavior. We also summarize the evolving understanding of HPV16 physical genome state and genetic variants and their potential contributions to HPV oncoprotein levels and function. Addressing considerable remaining challenges in defining the quantitative and qualitative imprint of HPV oncoproteins on each OPSCC holds promise to guide personalization of therapy for this disease.
Collapse
Affiliation(s)
- Malay K Sannigrahi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lovely Raghav
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ahmed Diab
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Devraj Basu
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA; The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Bravo IG, Belkhir S, Paget-Bailly P. Why HPV16? Why, now, HPV42? How the discovery of HPV42 in rare cancers provides an opportunity to challenge our understanding about the transition between health and disease for common members of the healthy microbiota. FEMS Microbiol Rev 2024; 48:fuae029. [PMID: 39562287 PMCID: PMC11644485 DOI: 10.1093/femsre/fuae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
In 2022, a bioinformatic, agnostic approach identified HPV42 as causative agent of a rare cancer, later confirmed experimentally. This unexpected association offers an opportunity to reconsider our understanding about papillomavirus infections and cancers. We have expanded our knowledge about the diversity of papillomaviruses and the diseases they cause. Yet, we still lack answers to fundamental questions, such as what makes HPV16 different from the closely related HPV31 or HPV33; or why the very divergent HPV13 and HPV32 cause focal epithelial hyperplasia, while HPV6 or HPV42 do not, despite their evolutionary relatedness. Certain members of the healthy skin microbiota are associated to rare clinical conditions. We propose that a focus on cellular phenotypes, most often transient and influenced by intrinsic and extrinsic factors, may help understand the continuum between health and disease. A conceptual switch is required towards an interpretation of biology as a diversity of states connected by transition probabilities, rather than quasi-deterministic programs. Under this perspective, papillomaviruses may only trigger malignant transformation when specific viral genotypes interact with precise cellular states. Drawing on Canguilhem's concepts of normal and pathological, we suggest that understanding the transition between fluid cellular states can illuminate how commensal-like infections transition from benign to malignant.
Collapse
Affiliation(s)
- Ignacio G Bravo
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Sophia Belkhir
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Philippe Paget-Bailly
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| |
Collapse
|
4
|
James CD, Lewis RL, Fakunmoju AL, Witt AJ, Youssef AH, Wang X, Rais NM, Prabhakar AT, Machado JM, Otoa R, Bristol ML. Fibroblast stromal support model for predicting human papillomavirus-associated cancer drug responses. J Virol 2024; 98:e0102424. [PMID: 39269177 PMCID: PMC11494926 DOI: 10.1128/jvi.01024-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Currently, there are no specific antiviral therapeutic approaches targeting Human papillomaviruses (HPVs), which cause around 5% of all human cancers. Specific antiviral reagents are particularly needed for HPV-related oropharyngeal cancers (HPV+OPCs) whose incidence is increasing and for which there are no early diagnostic tools available. We and others have demonstrated that the estrogen receptor alpha (ERα) is overexpressed in HPV+OPCs, compared to HPV-negative cancers in this region, and that these elevated levels are associated with an improved disease outcome. Utilizing this HPV+-specific overexpression profile, we previously demonstrated that estrogen attenuates the growth and cell viability of HPV+ keratinocytes and HPV+ cancer cells in vitro. Expansion of this work in vivo failed to replicate this sensitization. The role of stromal support from the tumor microenvironment (TME) has previously been tied to both the HPV lifecycle and in vivo therapeutic responses. Our investigations revealed that in vitro co-culture with fibroblasts attenuated HPV+-specific estrogen growth responses. Continuing to monopolize on the HPV+-specific overexpression of ERα, our co-culture models then assessed the suitability of the selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen, and showed growth attenuation in a variety of our models to one or both of these drugs in vitro. Utilization of these SERMs in vivo closely resembled the sensitization predicted by our co-culture models. Therefore, the in vitro fibroblast co-culture model better predicts in vivo responses. We propose that utilization of our co-culture in vitro model can accelerate cancer therapeutic drug discovery. IMPORTANCE Human papillomavirus-related cancers (HPV+ cancers) remain a significant public health concern, and specific clinical approaches are desperately needed. In translating drug response data from in vitro to in vivo, the fibroblasts of the adjacent stromal support network play a key role. Our study presents the utilization of a fibroblast 2D co-culture system to better predict translational drug assessments for HPV+ cancers. We also suggest that this co-culture system should be considered for other translational approaches. Predicting even a portion of treatment paradigms that may fail in vivo with a co-culture model will yield significant time, effort, resource, and cost efficiencies.
Collapse
Affiliation(s)
- Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Rachel L. Lewis
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Alexis L. Fakunmoju
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Austin J. Witt
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Aya H. Youssef
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Xu Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Nabiha M. Rais
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Apurva T. Prabhakar
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - J. Mathew Machado
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Raymonde Otoa
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Molly L. Bristol
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
5
|
Catalán-Castorena O, Garibay-Cerdenares OL, Illades-Aguiar B, Rodríguez-Ruiz HA, Zubillaga-Guerrero MI, Leyva-Vázquez MA, Encarnación-Guevara S, Alarcón-Romero LDC. The role of HR-HPV integration in the progression of premalignant lesions into different cancer types. Heliyon 2024; 10:e34999. [PMID: 39170128 PMCID: PMC11336306 DOI: 10.1016/j.heliyon.2024.e34999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024] Open
Abstract
High-risk human papillomavirus (HR-HPV) is associated with the development of different types of cancer, such as cervical, head and neck (including oral, laryngeal, and oropharyngeal), vulvar, vaginal, penile, and anal cancers. The progression of premalignant lesions to cancer depends on factors associated with the host cell and the different epithelia infected by HPV, such as basal cells of the flat epithelium and the cells of the squamocolumnar transformation zone (STZ) found in the uterine cervix and the anal canal, which is rich in heparan sulfate proteoglycans and integrin-like receptors. On the other hand, factors associated with the viral genotype, infection with multiple viruses, viral load, viral persistence, and type of integration determine the viral breakage pattern and the sites at which the virus integrates into the host cell genome (introns, exons, intergenic regions), inducing the loss of function of tumor suppressor genes and increasing oncogene expression. This review describes the role of viral integration and the molecular mechanisms induced by HR-HPV in different types of tissues. The purpose of this review is to identify the common factors associated with the role of integration events in the progression of premalignant lesions in different types of cancer.
Collapse
Affiliation(s)
- Oscar Catalán-Castorena
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Olga Lilia Garibay-Cerdenares
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
- CONAHCyT-Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Berenice Illades-Aguiar
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Hugo Alberto Rodríguez-Ruiz
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Ma. Isabel Zubillaga-Guerrero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Marco Antonio Leyva-Vázquez
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | | | - Luz del Carmen Alarcón-Romero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| |
Collapse
|
6
|
Yamada S, Kano K, Ishikawa R, Imai A, Mochizuki D, Morita K, Takeuchi K, Takizawa Y, Kawasaki H, Misawa K. Cell-free DNA analysis for recurrent respiratory papillomatosis: A case report. Clin Case Rep 2024; 12:e9268. [PMID: 39114832 PMCID: PMC11303445 DOI: 10.1002/ccr3.9268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
A 35-year-old male presented with recurrent respiratory papillomatosis. Human papillomavirus type 11 was detected from all sites of tumor tissue DNA by PCR. The pre-surgery cell-free DNA (cfDNA) viral load (3.33 × 103 copies/ng DNA) fell below the post-surgical detection limits on achieving remission, suggesting cfDNA's potential as a biomarker.
Collapse
Affiliation(s)
- Satoshi Yamada
- Department of Otolaryngology/Head and Neck SurgeryHamamatsu University School of MedicineHamamatsuJapan
| | - Kotaro Kano
- Department of Otolaryngology/Head and Neck SurgeryHamamatsu University School of MedicineHamamatsuJapan
| | - Ryuji Ishikawa
- Department of Otolaryngology/Head and Neck SurgeryHamamatsu University School of MedicineHamamatsuJapan
- Department of OtolaryngologyYaizu City HospitalYaizuJapan
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck SurgeryHamamatsu University School of MedicineHamamatsuJapan
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck SurgeryHamamatsu University School of MedicineHamamatsuJapan
| | - Kotaro Morita
- Department of Otolaryngology/Head and Neck SurgeryHamamatsu University School of MedicineHamamatsuJapan
| | - Kazutaka Takeuchi
- Department of Otolaryngology/Head and Neck SurgeryHamamatsu University School of MedicineHamamatsuJapan
| | - Yoshinori Takizawa
- Department of Otolaryngology/Head and Neck SurgeryHamamatsu University School of MedicineHamamatsuJapan
| | - Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education and Research CenterHamamatsu University School of MedicineHamamatsuJapan
| | - Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck SurgeryHamamatsu University School of MedicineHamamatsuJapan
| |
Collapse
|
7
|
Perdrizet UG, Hill JE, Sobchishin L, Singh B, Fernando C, Bollinger TK, Misra V. Tissue and cellular tropism of Eptesicus fuscus gammaherpesvirus in big brown bats, potential role of pulmonary intravascular macrophages. Vet Pathol 2024; 61:550-561. [PMID: 38619093 PMCID: PMC11264566 DOI: 10.1177/03009858241244849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Gammaherpesviruses (γHVs) are recognized as important pathogens in humans but their relationship with other animal hosts, especially wildlife species, is less well characterized. Our objectives were to examine natural Eptesicus fuscus gammaherpesvirus (EfHV) infections in their host, the big brown bat (Eptesicus fuscus), and determine whether infection is associated with disease. In tissue samples from 132 individual big brown bats, EfHV DNA was detected by polymerase chain reaction in 41 bats. Tissues from 59 of these cases, including 17 from bats with detectable EfHV genomes, were analyzed. An EfHV isolate was obtained from one of the cases, and electron micrographs and whole genome sequencing were used to confirm that this was a unique isolate of EfHV. Although several bats exhibited various lesions, we did not establish EfHV infection as a cause. Latent infection, defined as RNAScope probe binding to viral latency-associated nuclear antigen in the absence of viral envelope glycoprotein probe binding, was found within cells of the lymphoid tissues. These cells also had colocalization of the B-cell probe targeting CD20 mRNA. Probe binding for both latency-associated nuclear antigen and a viral glycoprotein was observed in individual cells dispersed throughout the alveolar capillaries of the lung, which had characteristics of pulmonary intravascular macrophages. Cells with a similar distribution in bat lungs expressed major histocompatibility class II, a marker for antigen presenting cells, and the existence of pulmonary intravascular macrophages in bats was confirmed with transmission electron microscopy. The importance of this cell type in γHVs infections warrants further investigation.
Collapse
Affiliation(s)
| | | | | | - Baljit Singh
- University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | - Vikram Misra
- University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
Skelin J, Tomaić V. Comparative Analysis of Alpha and Beta HPV E6 Oncoproteins: Insights into Functional Distinctions and Divergent Mechanisms of Pathogenesis. Viruses 2023; 15:2253. [PMID: 38005929 PMCID: PMC10674601 DOI: 10.3390/v15112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Human papillomaviruses (HPVs) represent a diverse group of DNA viruses that infect epithelial cells of mucosal and cutaneous tissues, leading to a wide spectrum of clinical outcomes. Among various HPVs, alpha (α) and beta (β) types have garnered significant attention due to their associations with human health. α-HPVs are primarily linked to infections of the mucosa, with high-risk subtypes, such as HPV16 and HPV18, being the major etiological agents of cervical and oropharyngeal cancers. In contrast, β-HPVs are predominantly associated with cutaneous infections and are commonly found on healthy skin. However, certain β-types, notably HPV5 and HPV8, have been implicated in the development of non-melanoma skin cancers in immunocompromised individuals, highlighting their potential role in pathogenicity. In this review, we comprehensively analyze the similarities and differences between α- and β-HPV E6 oncoproteins, one of the major drivers of viral replication and cellular transformation, and how these impact viral fitness and the capacity to induce malignancy. In particular, we compare the mechanisms these oncoproteins use to modulate common cellular processes-apoptosis, DNA damage repair, cell differentiation, and the immune response-further shedding light on their shared and distinct features, which enable them to replicate at divergent locations of the human body and cause different types of cancer.
Collapse
Affiliation(s)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| |
Collapse
|
9
|
Modic Z, Cemazar M, Markelc B, Cör A, Sersa G, Kranjc Brezar S, Jesenko T. HPV-positive murine oral squamous cell carcinoma: development and characterization of a new mouse tumor model for immunological studies. J Transl Med 2023; 21:376. [PMID: 37296466 PMCID: PMC10257320 DOI: 10.1186/s12967-023-04221-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Infection with high-risk human papillomavirus (HPV) strains is one of the risk factors for the development of oral squamous cell carcinoma (OSCC). Some patients with HPV-positive OSCC have a better prognosis and respond better to various treatment modalities, including radiotherapy or immunotherapy. However, since HPV can only infect human cells, there are only a few immunocompetent mouse models available that enable immunological studies. Therefore, the aim of our study was to develop a transplantable immunocompetent mouse model of HPV-positive OSCC and characterize it in vitro and in vivo. METHODS Two monoclonal HPV-positive OSCC mouse cell lines were established by inducing the expression of HPV-16 oncogenes E6 and E7 in the MOC1 OSCC cell line using retroviral transduction. After confirming stable expression of HPV-16 E6 and E7 with quantitative real-time PCR and immunofluorescence staining, the cell lines were further characterized in vitro using proliferation assay, wound healing assay, clonogenic assay and RNA sequencing. In addition, tumor models were characterized in vivo in C57Bl/6NCrl mice in terms of their histological properties, tumor growth kinetics, and radiosensitivity. Furthermore, immunofluorescence staining of blood vessels, hypoxic areas, proliferating cells and immune cells was performed to characterize the tumor microenvironment of all three tumor models. RESULTS Characterization of the resulting MOC1-HPV cell lines and tumor models confirmed stable expression of HPV-16 oncogenes and differences in cell morphology, in vitro migration capacity, and tumor microenvironment characteristics. Although the cell lines did not differ in their intrinsic radiosensitivity, one of the HPV-positive tumor models, MOC1-HPV K1, showed a significantly longer growth delay after irradiation with a single dose of 15 Gy compared to parental MOC1 tumors. Consistent with this, MOC1-HPV K1 tumors had a lower percentage of hypoxic tumor area and a higher percentage of proliferating cells. Characteristics of the newly developed HPV-positive OSCC tumor models correlate with the transcriptomic profile of MOC1-HPV cell lines. CONCLUSIONS In conclusion, we developed and characterized a novel immunocompetent mouse model of HPV-positive OSCC that exhibits increased radiosensitivity and enables studies of immune-based treatment approaches in HPV-positive OSCC.
Collapse
Affiliation(s)
- Ziva Modic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Polje 42, Izola, Slovenia.
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, Ljubljana, Slovenia
| | - Andrej Cör
- Department of Research, Valdoltra Orthopedic Hospital, Jadranska cesta 31, Ankaran, Slovenia
- Faculty of Education, University of Primorska, Cankarjeva pot 5, Koper, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Jackson R, Rajadhyaksha EV, Loeffler RS, Flores CE, Van Doorslaer K. Characterization of 3D organotypic epithelial tissues reveals tonsil-specific differences in tonic interferon signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524743. [PMID: 36711548 PMCID: PMC9882319 DOI: 10.1101/2023.01.19.524743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Three-dimensional (3D) culturing techniques can recapitulate the stratified nature of multicellular epithelial tissues. Organotypic 3D epithelial tissue culture methods have several applications, including the study of tissue development and function, drug discovery and toxicity testing, host-pathogen interactions, and the development of tissue-engineered constructs for use in regenerative medicine. We grew 3D organotypic epithelial tissues from foreskin, cervix, and tonsil-derived primary cells and characterized the transcriptome of these in vitro tissue equivalents. Using the same 3D culturing method, all three tissues yielded stratified squamous epithelium, validated histologically using basal and superficial epithelial cell markers. The goal of this study was to use RNA-seq to compare gene expression patterns in these three types of epithelial tissues to gain a better understanding of the molecular mechanisms underlying their function and identify potential therapeutic targets for various diseases. Functional profiling by over-representation and gene set enrichment analysis revealed tissue-specific differences: i.e. , cutaneous homeostasis and lipid metabolism in foreskin, extracellular matrix remodeling in cervix, and baseline innate immune differences in tonsil. Specifically, tonsillar epithelia may play an active role in shaping the immune microenvironment of the tonsil balancing inflammation and immune responses in the face of constant exposure to microbial insults. Overall, these data serve as a resource, with gene sets made available for the research community to explore, and as a foundation for understanding the epithelial heterogeneity and how it may impact their in vitro use. An online resource is available to investigate these data ( https://viz.datascience.arizona.edu/3DEpiEx/ ).
Collapse
Affiliation(s)
- Robert Jackson
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Esha V Rajadhyaksha
- College of Medicine and College of Science, University of Arizona, Tucson, AZ, USA
| | - Reid S Loeffler
- Biosystems Engineering, College of Agriculture and Life Sciences; College of Engineering, University of Arizona, Tucson, AZ, USA
| | - Caitlyn E Flores
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology; Cancer Biology Graduate Interdisciplinary Program; Genetics Graduate Interdisciplinary Program; and University of Arizona Cancer Center, University of Arizona, Tucson, AZ USA
| |
Collapse
|
11
|
Badoual C, Adimi Y, Martin J, Morin B, Baudouin R. Les cancers des voies aérodigestives supérieures induits par une infection par Papillomavirus humain : spécificités épidémiologiques, diagnostiques, pronostiques et thérapeutiques. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2023. [DOI: 10.1016/j.banm.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Castro-Muñoz LJ, Rocha-Zavaleta L, Lizano M, Ramírez-Alcántara KM, Madrid-Marina V, Manzo-Merino J. Alteration of the IFN-Pathway by Human Papillomavirus Proteins: Antiviral Immune Response Evasion Mechanism. Biomedicines 2022; 10:biomedicines10112965. [PMID: 36428532 PMCID: PMC9687819 DOI: 10.3390/biomedicines10112965] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
A persistent infection with the so-called high-risk Human Papillomaviruses (hr-HPVs) plays a fundamental role in the development of different neoplasms. The expression of the HPV proteins throughout the different steps of the viral life cycle produce a disruption of several cellular processes, including immune response, which can lead to cell transformation. The interferon-mediated response plays an important role in eliminating HPV-infected and -transformed cells. The ability of HPV to disrupt the proper function of the interferon response is based on a series of molecular mechanisms coordinated by HPV proteins intended to prevent clearance of infection, ultimately producing an immunotolerant environment that facilitates the establishment of persistence and cancer. In this review, we focus on the molecular actions performed by HPV E1, E2, E5, E6 and E7 proteins on IFN signaling elements and their contribution to the establishment of infection, viral persistence and the progression to cancer.
Collapse
Affiliation(s)
- Leonardo Josué Castro-Muñoz
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Delegación Coyoacán, Mexico City 04500, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Katia Montserrat Ramírez-Alcántara
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Vicente Madrid-Marina
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Av. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, Morelos 62100, Mexico
| | - Joaquín Manzo-Merino
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Cátedras CONACyT-Instituto Nacional de Cancerología, San Fernando No. 22, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Correspondence:
| |
Collapse
|
13
|
Cai L, Xu H, Cui Z. Factors Limiting the Translatability of Rodent Model-Based Intranasal Vaccine Research to Humans. AAPS PharmSciTech 2022; 23:191. [PMID: 35819736 PMCID: PMC9274968 DOI: 10.1208/s12249-022-02330-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
The intranasal route of vaccination presents an attractive alternative to parenteral routes and offers numerous advantages, such as the induction of both mucosal and systemic immunity, needle-free delivery, and increased patient compliance. Despite demonstrating promising results in preclinical studies, however, few intranasal vaccine candidates progress beyond early clinical trials. This discrepancy likely stems in part from the limited predictive value of rodent models, which are used frequently in intranasal vaccine research. In this review, we explored the factors that limit the translatability of rodent-based intranasal vaccine research to humans, focusing on the differences in anatomy, immunology, and disease pathology between rodents and humans. We also discussed approaches that minimize these differences and examined alternative animal models that would produce more clinically relevant research.
Collapse
Affiliation(s)
- Lucy Cai
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, USA
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA.
| |
Collapse
|
14
|
Louredo BVR, Prado-Ribeiro AC, Brandão TB, Epstein JB, Migliorati CA, Piña AR, Kowalski LP, Vargas PA, Lopes MA, Santos-Silva AR. State-of-the-science concepts of HPV-related oropharyngeal squamous cell carcinoma: a comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 134:190-205. [PMID: 35725962 DOI: 10.1016/j.oooo.2022.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
High-risk (HR) human papillomavirus (HPV) infection is recognized as a primary etiologic factor of anogenital cancers and more recently of a subgroup of oropharyngeal squamous cell carcinomas (OPSCC). The incidence of HPV-related OPSCC has increased dramatically in several developed countries in the past 3 decades and is currently the most common cancer caused by HR-HPV in the United States and Germany, surpassing cervical cancer. Consequently, the patient's demographic and clinicopathologic profile has shifted to nonsmoking and nondrinking younger men with higher schooling level and with a history of multiple oral sex partners. Patients with HPV-related OPSCC often show better treatment outcomes and higher survival rates than their HPV-unrelated counterparts, which has led to a change in tumor staging for HPV-related cases. HPV vaccination is emerging as an effective primary prevention strategy, and systematic screening of HPV DNA in blood and salivary oral rinse samples of HR patients is being examined to determine if it may provide a surveillance method and support early diagnosis of HPV-related OPSCC. In this context, a narrative review was conducted to provide an overview of the state-of-the-art of HPV-related OPSCC, including epidemiology, risk factors, clinicopathologic and molecular features, screening, prevention, management, and prognosis.
Collapse
Affiliation(s)
| | - Ana Carolina Prado-Ribeiro
- Dental Oncology Service, São Paulo State Cancer Institute (ICESP), School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Thaís Bianca Brandão
- Dental Oncology Service, São Paulo State Cancer Institute (ICESP), School of Medicine, University of São Paulo (USP), São Paulo, Brazil; Oral Medicine Department, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Joel B Epstein
- Department of Dentistry, Cedars-Sinai Health System, Los Angeles, California, USA; Department of Dentistry, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | | | | | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, AC Camargo Cancer Center (ACCCC), Sao Paulo, Brazil; Department of Head and Neck Surgery, São Paulo State Cancer Institute (ICESP), School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Pablo Agustin Vargas
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Márcio Ajudarte Lopes
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Alan Roger Santos-Silva
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil.
| |
Collapse
|
15
|
Badoual C. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Oropharynx and Nasopharynx. Head Neck Pathol 2022; 16:19-30. [PMID: 35312986 PMCID: PMC9019010 DOI: 10.1007/s12105-022-01449-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022]
Abstract
The new WHO classification of head and neck tumors provides a comprehensive overview of lesions by summarizing their clinical, epidemiological, histological, immunohistochemical, molecular and genetic features. The chapters related to the description of oropharyngeal and nasopharyngeal lesions have thus been largely modified.
Collapse
Affiliation(s)
- Cécile Badoual
- Service d'Anatomo-Pathologie, Department of Pathology, Hôpital Européen G Pompidou, APHP, Université de Paris, 20-40 rue Leblanc, 75015, Paris, France.
| |
Collapse
|
16
|
Human papillomaviruses: diversity, infection and host interactions. Nat Rev Microbiol 2021; 20:95-108. [PMID: 34522050 DOI: 10.1038/s41579-021-00617-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPVs) are an ancient and highly successful group of viruses that have co-evolved with their host to replicate in specific anatomical niches of the stratified epithelia. They replicate persistently in dividing cells, hijack key host cellular processes to manipulate the cellular environment and escape immune detection, and produce virions in terminally differentiated cells that are shed from the host. Some HPVs cause benign, proliferative lesions on the skin and mucosa, and others are associated with the development of cancer. However, most HPVs cause infections that are asymptomatic and inapparent unless the immune system becomes compromised. To date, the genomes of almost 450 distinct HPV types have been isolated and sequenced. In this Review, I explore the diversity, evolution, infectious cycle, host interactions and disease association of HPVs.
Collapse
|
17
|
Oton-Gonzalez L, Rotondo JC, Lanzillotti C, Mazzoni E, Bononi I, Iaquinta MR, Cerritelli L, Malagutti N, Ciorba A, Bianchini C, Pelucchi S, Tognon M, Martini F. Serum HPV16 E7 Oncoprotein Is a Recurrence Marker of Oropharyngeal Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:3370. [PMID: 34282779 PMCID: PMC8268104 DOI: 10.3390/cancers13133370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/29/2022] Open
Abstract
Despite improved prognosis for many HPV-positive head and neck squamous cell carcinomas (HNSCCs), some cases are still marked by recurrence and metastasis. Our study aimed to identify novel biomarkers for patient stratification. Classical HPV markers: HPV-DNA, p16 and HPV mRNA expression were studied in HNSCC (n = 67) and controls (n = 58) by qPCR. Subsequently, ELISA tests were used for HPV16 L1 antibody and HPV16 E7 oncoprotein detection in serum at diagnosis and follow-up. All markers were correlated to relapse-free survival (RFS) and overall survival (OS). HPV-DNA was found in HNSCCs (29.85%), HPV16-DNA in 95% of cases, HPV16 E7 mRNA was revealed in 93.75%. p16 was overexpressed in 75% of HPV-positive HNSCC compared to negative samples and controls (p < 0.001). Classical markers correlated with improved OS (p < 0.05). Serological studies showed similar proportions of HPV16 L1 antibodies in all HNSCCs (p > 0.05). Serum E7 oncoprotein was present in 30% HPV-positive patients at diagnosis (p > 0.05) and correlated to HNSCC HPV16 E7 mRNA (p < 0.01), whereas it was associated to worse RFS and OS, especially for oropharyngeal squamous cell carcinoma (OPSCC) (p < 0.01). Detection of circulating HPV16 E7 oncoprotein at diagnosis may be useful for stratifying and monitoring HPV-positive HNSCC patients for worse prognosis, providing clinicians a tool for selecting patients for treatment de-escalation.
Collapse
Affiliation(s)
- Lucia Oton-Gonzalez
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.O.-G.); (J.C.R.); (C.L.); (E.M.); (M.R.I.)
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.O.-G.); (J.C.R.); (C.L.); (E.M.); (M.R.I.)
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.O.-G.); (J.C.R.); (C.L.); (E.M.); (M.R.I.)
| | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.O.-G.); (J.C.R.); (C.L.); (E.M.); (M.R.I.)
| | - Ilaria Bononi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.O.-G.); (J.C.R.); (C.L.); (E.M.); (M.R.I.)
| | - Luca Cerritelli
- ENT Unit, Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, 44121 Ferrara, Italy; (L.C.); (N.M.); (A.C.); (C.B.); (S.P.)
| | - Nicola Malagutti
- ENT Unit, Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, 44121 Ferrara, Italy; (L.C.); (N.M.); (A.C.); (C.B.); (S.P.)
| | - Andrea Ciorba
- ENT Unit, Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, 44121 Ferrara, Italy; (L.C.); (N.M.); (A.C.); (C.B.); (S.P.)
| | - Chiara Bianchini
- ENT Unit, Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, 44121 Ferrara, Italy; (L.C.); (N.M.); (A.C.); (C.B.); (S.P.)
| | - Stefano Pelucchi
- ENT Unit, Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, 44121 Ferrara, Italy; (L.C.); (N.M.); (A.C.); (C.B.); (S.P.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.O.-G.); (J.C.R.); (C.L.); (E.M.); (M.R.I.)
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (L.O.-G.); (J.C.R.); (C.L.); (E.M.); (M.R.I.)
| |
Collapse
|
18
|
Brennan S, Baird AM, O’Regan E, Sheils O. The Role of Human Papilloma Virus in Dictating Outcomes in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:677900. [PMID: 34250016 PMCID: PMC8262095 DOI: 10.3389/fmolb.2021.677900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
The Human Papilloma Virus (HPV) is an oncogenic virus which is associated with the development of head and neck squamous cell carcinoma (HNSCC), predominantly within the oropharynx. Approximately 25% of oropharyngeal squamous cell carcinoma (OPSCC) cases worldwide are attributable to HPV infection, with an estimated 65% in the United States. Transmission is via exposure during sexual contact, with distinctive anatomical features of the tonsils providing this organ with a predilection for infection by HPV. No premalignant lesion is identifiable on clinical examination, thus no comparative histological features to denote the stages of carcinogenesis for HPV driven HNSCC are identifiable. This is in contrast to HPV-driven cervical carcinoma, making screening a challenge for the head and neck region. However, HPV proffers a favorable prognosis in the head and neck region, with better overall survival rates in contrast to its HPV negative counterparts. This has resulted in extensive research into de-intensifying therapies aiming to minimize the morbidity induced by standard concurrent chemo-radiotherapy without compromising efficacy. Despite the favorable prognosis, cases of recurrence and/or metastasis of HPV positive HNSCC do occur, and are linked with poor outcomes. HPV 16 is the most frequent genotype identified in HNSCC, yet there is limited research to date studying the impact of other HPV genotype with respect to overall survival. A similar situation pertains to genetic aberrations associated in those with HPV positive HNSCC who recur, with only four published studies to date. Somatic mutations in TSC2, BRIP1, NBN, TACC3, NFE2l2, STK11, HRAS, PIK3R1, TP63, and FAT1 have been identified in recurrent HPV positive OPSCC. Finding alternative therapeutic strategies for this young cohort may depend on upfront identification of HPV genotypes and mutations which are linked with worse outcomes, thus ensuring appropriate stratification of treatment regimens.
Collapse
Affiliation(s)
- Shane Brennan
- School of Medicine, Faculty of Health Sciences, Trinity College, Dublin, Ireland
| | - Anne-Marie Baird
- School of Medicine, Faculty of Health Sciences, Trinity College, Dublin, Ireland
| | - Esther O’Regan
- Department of Histopathology, St. James’s Hospital, Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Faculty of Health Sciences, Trinity College, Dublin, Ireland
| |
Collapse
|
19
|
Vats A, Trejo-Cerro O, Thomas M, Banks L. Human papillomavirus E6 and E7: What remains? Tumour Virus Res 2021; 11:200213. [PMID: 33716206 PMCID: PMC7972986 DOI: 10.1016/j.tvr.2021.200213] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Decades of research on the human papillomavirus oncogenes, E6 and E7, have given us huge amounts of data on their expression, functions and structures. We know much about the very many cellular proteins and pathways that they influence in one way or another. However, much of this information is quite discrete, referring to one activity examined under one condition. It is now time to join the dots to try to understand a larger picture: how, where and when do all these interactions occur... and why? Examining these questions will also show how many of the yet obscure cellular processes work together for cellular and tissue homeostasis in health and disease.
Collapse
Affiliation(s)
- Arushi Vats
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Oscar Trejo-Cerro
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| | - Miranda Thomas
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy.
| | - Lawrence Banks
- Tumour Virology Group, ICGEB, AREA Science Park, Trieste, 34149, Italy
| |
Collapse
|
20
|
Cytokeratin 7 and 19 expression in oropharyngeal and oral squamous cell carcinoma. Eur Arch Otorhinolaryngol 2021; 279:1435-1443. [PMID: 34046748 DOI: 10.1007/s00405-021-06894-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The precise etiopathogenesis of human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OPSCC), and reasons for predilection for crypt epithelium, remain uncertain. The purpose of this study is to investigate the interaction between HPV and specific cytokeratins 7 (CK7) and 19 (CK19) in crypt epithelium. METHODS This is a retrospective cohort study of patients presenting between 1999 and 2015 at a tertiary referral center. CK7 and CK19 positivity and H Scores were determined by immunohistochemistry. Disease-specific and overall survival rates were analyzed. RESULTS There were 253 patients presenting with OPSCC (134), squamous cell carcinoma (SCC) of unknown primary site (22), and oral tongue SCC (97). Primary tumor CK7 and CK19 positivity and H Scores were significantly higher in HPV-positive OPSCC than HPV-negative OPSCC and oral tongue SCC. Higher CK19 Scores, but not CK7 Scores, were also seen in regional metastases from HPV-positive OPSCC than other sites. No impact on disease-specific or overall survival was identified on multivariate analysis. CONCLUSION The increased expression of CK7 and CK19 in HPV-positive OPSCC compared to HPV-negative disease supports the theory for a role for these cytokeratins in the etiopathogenesis of HPV-related OPSCC.
Collapse
|
21
|
Wieland U, Kreuter A. [Prevention of HPV-induced diseases by prophylactic vaccination]. DER HAUTARZT 2020; 72:106-113. [PMID: 33337514 DOI: 10.1007/s00105-020-04739-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
Human papillomavirus (HPV) infections belong to the most frequent viral infections. Besides benign common warts and benign and malignant lesions of the head and neck area, HPV can induce anogenital dysplasias and cancers. Since the year 2007, effective and safe prophylactic HPV vaccines are licensed in Europe. To date, a bivalent (HPV16 and 18) and a nonavalent HPV vaccine (HPV6, 11, 16, 18, 31, 33, 45, 52, and 58) are commercially available in Germany. The German standing committee on vaccination (STIKO) currently recommends gender-neutral prophylactic HPV-vaccination between 9 and 14 years of age, with the possibility of catch-up vaccination until the age of 17 years. Besides a large proportion of HPV-induced anogenital dysplasias and carcinomas, the nonavalent HPV vaccine also prevents anogenital warts. Iatrogenically immunocompromised patients older than 17 years of age should also receive prophylactic HPV vaccination, preferrably by the age of 26 years. In case of already acquired HPV infection or existing HPV-induced lesions prophylactic vaccination does not lead to accelerated HPV elimination or clearance of lesions.
Collapse
Affiliation(s)
- Ulrike Wieland
- Institut für Virologie, Nationales Referenzzentrum für Papillom- und Polyomaviren, Universitätsklinikum Köln, Universität zu Köln, Köln, Deutschland
| | - Alexander Kreuter
- Klinik für Dermatologie, Venerologie und Allergologie, HELIOS St. Elisabeth Klinik Oberhausen, Universität Witten/Herdecke, Josefstr. 3, 46045, Oberhausen, Deutschland.
| |
Collapse
|
22
|
Jackson R, Maarsingh J, Herbst-Kralovetz MM, Van Doorslaer K. 3D Oral and Cervical Tissue Models for Studying Papillomavirus Host-Pathogen Interactions. CURRENT PROTOCOLS IN MICROBIOLOGY 2020; 59:e129. [PMID: 33232584 PMCID: PMC11088941 DOI: 10.1002/cpmc.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomavirus (HPV) infection occurs in differentiating epithelial tissues. Cancers caused by high-risk types (e.g., HPV16 and HPV18) typically occur at oropharyngeal and anogenital anatomical sites. The HPV life cycle is differentiation-dependent, requiring tissue culture methodology that is able to recapitulate the three-dimensional (3D) stratified epithelium. Here we report two distinct and complementary methods for growing differentiating epithelial tissues that mimic many critical morphological and biochemical aspects of in vivo tissue. The first approach involves growing primary human epithelial cells on top of a dermal equivalent consisting of collagen fibers and living fibroblast cells. When these cells are grown at the liquid-air interface, differentiation occurs and allows for epithelial stratification. The second approach uses a rotating wall vessel bioreactor. The low-fluid-shear microgravity environment inside the bioreactor allows the cells to use collagen-coated microbeads as a growth scaffold and self-assemble into 3D cellular aggregates. These approaches are applied to epithelial cells derived from HPV-positive and HPV-negative oral and cervical tissues. The second part of the article introduces potential downstream applications for these 3D tissue models. We describe methods that will allow readers to start successfully culturing 3D tissues from oral and cervical cells. These tissues have been used for microscopic visualization, scanning electron microscopy, and large omics-based studies to gain insights into epithelial biology, the HPV life cycle, and host-pathogen interactions. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Establishing human primary cell-derived 3D organotypic raft cultures Support Protocol 1: Isolation of epithelial cells from patient-derived tissues Support Protocol 2: Growth and maintenance of primary human epithelial cells in monolayer culture Support Protocol 3: PCR-based HPV screening of primary cell cultures Basic Protocol 2: Establishing human 3D cervical tissues using the rotating wall vessel bioreactor Support Protocol 4: Growth and maintenance of human A2EN cells in monolayer culture Support Protocol 5: Preparation of the slow-turning lateral vessel bioreactor Support Protocol 6: Preparation of Cytodex-3 microcarrier beads Basic Protocol 3: Histological assessment of 3D organotypic raft tissues Basic Protocol 4: Spatial analysis of protein expression in 3D organotypic raft cultures Basic Protocol 5: Immunofluorescence imaging of RWV-derived 3D tissues Basic Protocol 6: Ultrastructural visualization and imaging of RWV-derived 3D tissues Basic Protocol 7: Characterization of gene expression by RT-qPCR.
Collapse
Affiliation(s)
- Robert Jackson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA 85721
| | - Jason Maarsingh
- Department of Obstetrics and Gynecology, University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, USA 85004
| | - Melissa M. Herbst-Kralovetz
- Department of Obstetrics and Gynecology, University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, USA 85004
- Department of Basic Medical Sciences; BIO5 Institute; Clinical Translational Sciences Graduate Program; University of Arizona Cancer Center, University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, USA 85004
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA 85721
- Department of Immunobiology; BIO5 Institute; Cancer Biology Graduate Interdisciplinary Program; Genetics Graduate Interdisciplinary Program; and University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA 85721
| |
Collapse
|
23
|
De Gregorio V, Urciuolo F, Netti PA, Imparato G. In Vitro Organotypic Systems to Model Tumor Microenvironment in Human Papillomavirus (HPV)-Related Cancers. Cancers (Basel) 2020; 12:E1150. [PMID: 32375253 PMCID: PMC7281263 DOI: 10.3390/cancers12051150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022] Open
Abstract
Despite the well-known role of chronic human papillomavirus (HPV) infections in causing tumors (i.e., all cervical cancers and other human malignancies from the mucosal squamous epithelia, including anogenital and oropharyngeal cavity), its persistence is not sufficient for cancer development. Other co-factors contribute to the carcinogenesis process. Recently, the critical role of the underlying stroma during the HPV life cycle and HPV-induced disease have been investigated. The tumor stroma is a key component of the tumor microenvironment (TME), which is a specialized entity. The TME is dynamic, interactive, and constantly changing-able to trigger, support, and drive tumor initiation, progression, and metastasis. In previous years, in vitro organotypic raft cultures and in vivo genetically engineered mouse models have provided researchers with important information on the interactions between HPVs and the epithelium. Further development for an in-depth understanding of the interaction between HPV-infected tissue and the surrounding microenvironment is strongly required. In this review, we critically describe the HPV-related cancers modeled in vitro from the simplified 'raft culture' to complex three-dimensional (3D) organotypic models, focusing on HPV-associated cervical cancer disease platforms. In addition, we review the latest knowledge in the field of in vitro culture systems of HPV-associated malignancies of other mucosal squamous epithelia (anogenital and oropharynx), as well as rare cutaneous non-melanoma associated cancer.
Collapse
Affiliation(s)
- Vincenza De Gregorio
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy; (F.U.); (P.A.N.)
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Francesco Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy; (F.U.); (P.A.N.)
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy; (F.U.); (P.A.N.)
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) University of Naples Federico II, 80125 Naples, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
24
|
Alizon S, Bravo IG, Farrell PJ, Roberts S. Towards a multi-level and a multi-disciplinary approach to DNA oncovirus virulence. Philos Trans R Soc Lond B Biol Sci 2020; 374:20190041. [PMID: 30955496 DOI: 10.1098/rstb.2019.0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One out of 10 cancers is estimated to arise from infections by a handful of oncogenic viruses. These infectious cancers constitute an opportunity for primary prevention through immunization against the viral infection, for early screening through molecular detection of the infectious agent, and potentially for specific treatments, by targeting the virus as a marker of cancer cells. Accomplishing these objectives will require a detailed understanding of the natural history of infections, the mechanisms by which the viruses contribute to disease, the mutual adaptation of viruses and hosts, and the possible viral evolution in the absence and in the presence of the public health interventions conceived to target them. This issue showcases the current developments in experimental tissue-like and animal systems, mathematical models and evolutionary approaches to understand DNA oncoviruses. Our global aim is to provide proximate explanations to the present-day interface and interactions between virus and host, as well as ultimate explanations about the adaptive value of these interactions and about the evolutionary pathways that have led to the current malignant phenotype of oncoviral infections. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Samuel Alizon
- 1 French National Center for Scientific Research (CNRS), Laboratory MIVEGEC (CNRS, IRD, UM) , 34394 Montpellier , France
| | - Ignacio G Bravo
- 1 French National Center for Scientific Research (CNRS), Laboratory MIVEGEC (CNRS, IRD, UM) , 34394 Montpellier , France
| | | | - Sally Roberts
- 3 Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham B15 2SY , UK
| |
Collapse
|