1
|
Hu S, Meng F. Multiflagellate Swimming Controlled by Hydrodynamic Interactions. PHYSICAL REVIEW LETTERS 2024; 132:204002. [PMID: 38829103 DOI: 10.1103/physrevlett.132.204002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/18/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Many eukaryotic microorganisms propelled by multiple flagella can swim very rapidly with distinct gaits. Here, we model a three-dimensional mutiflagellate swimmer, resembling the microalgae. When the flagella are actuated synchronously, the swimming efficiency can be enhanced or reduced by interflagella hydrodynamic interactions (HIs), determined by the intrinsic tilting angle of the flagella. The asynchronous gait with a phase difference between neighboring flagella can reduce oscillatory motion via the basal mechanical coupling. In the presence of a spherical body, simulations taking into account the flagella-body interactions reveal the advantage of anterior configuration compared with posterior configuration, where in the latter case an optimal flagella number arises. Apart from understanding the role of HIs in the multiflagellate microorganisms, this work could also guide laboratory fabrications of novel microswimmers.
Collapse
Affiliation(s)
- Shiyuan Hu
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fanlong Meng
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
2
|
Laeverenz-Schlogelhofer H, Wan KY. Bioelectric control of locomotor gaits in the walking ciliate Euplotes. Curr Biol 2024; 34:697-709.e6. [PMID: 38237598 DOI: 10.1016/j.cub.2023.12.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 02/29/2024]
Abstract
Diverse animal species exhibit highly stereotyped behavioral actions and locomotor sequences as they explore their natural environments. In many such cases, the neural basis of behavior is well established, where dedicated neural circuitry contributes to the initiation and regulation of certain response sequences. At the microscopic scale, single-celled eukaryotes (protists) also exhibit remarkably complex behaviors and yet are completely devoid of nervous systems. Here, to address the question of how single cells control behavior, we study locomotor patterning in the exemplary hypotrich ciliate Euplotes, a highly polarized cell, which actuates a large number of leg-like appendages called cirri (each a bundle of ∼25-50 cilia) to swim in fluids or walk on surfaces. As it navigates its surroundings, a walking Euplotes cell is routinely observed to perform side-stepping reactions, one of the most sophisticated maneuvers ever observed in a single-celled organism. These are spontaneous and stereotyped reorientation events involving a transient and fast backward motion followed by a turn. Combining high-speed imaging with simultaneous time-resolved electrophysiological recordings, we show that this complex coordinated motion sequence is tightly regulated by rapid membrane depolarization events, which orchestrate the activity of different cirri on the cell. Using machine learning and computer vision methods, we map detailed measurements of cirri dynamics to the cell's membrane bioelectrical activity, revealing a differential response in the front and back cirri. We integrate these measurements with a minimal model to understand how Euplotes-a unicellular organism-manipulates its membrane potential to achieve real-time control over its motor apparatus.
Collapse
Affiliation(s)
| | - Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
3
|
Wan KY, Poon RN. Mechanisms and functions of multiciliary coordination. Curr Opin Cell Biol 2024; 86:102286. [PMID: 38035649 DOI: 10.1016/j.ceb.2023.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Ciliated organisms are present in virtually every branch of the eukaryotic tree of life. In diverse systems, cilia operate in a coordinated manner to drive fluid flows, or even propel entire organisms. How do groups of motile cilia coordinate their activity within a cell or across a tissue to fulfil essential functions of life? In this review, we highlight the latest developments in our understanding of the mechanisms and functions of multiciliary coordination in diverse systems. We explore new and emerging trends in bioimaging, analytical, and computational methods, which together with their application in new model systems, have conspired to deliver important insights into one of the most fundamental questions in cellular dynamics.
Collapse
Affiliation(s)
- Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, UK.
| | - Rebecca N Poon
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, UK
| |
Collapse
|
4
|
Wan KY. Active oscillations in microscale navigation. Anim Cogn 2023; 26:1837-1850. [PMID: 37665482 PMCID: PMC10769930 DOI: 10.1007/s10071-023-01819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023]
Abstract
Living organisms routinely navigate their surroundings in search of better conditions, more food, or to avoid predators. Typically, animals do so by integrating sensory cues from the environment with their locomotor apparatuses. For single cells or small organisms that possess motility, fundamental physical constraints imposed by their small size have led to alternative navigation strategies that are specific to the microscopic world. Intriguingly, underlying these myriad exploratory behaviours or sensory functions is the onset of periodic activity at multiple scales, such as the undulations of cilia and flagella, the vibrations of hair cells, or the oscillatory shape modes of migrating neutrophils. Here, I explore oscillatory dynamics in basal microeukaryotes and hypothesize that these active oscillations play a critical role in enhancing the fidelity of adaptive sensorimotor integration.
Collapse
Affiliation(s)
- Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK.
| |
Collapse
|
5
|
Elices I, Kulkarni A, Escoubet N, Pontani LL, Prevost AM, Brette R. An electrophysiological and kinematic model of Paramecium, the "swimming neuron". PLoS Comput Biol 2023; 19:e1010899. [PMID: 36758112 PMCID: PMC9946239 DOI: 10.1371/journal.pcbi.1010899] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/22/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Paramecium is a large unicellular organism that swims in fresh water using cilia. When stimulated by various means (mechanically, chemically, optically, thermally), it often swims backward then turns and swims forward again in a new direction: this is called the avoiding reaction. This reaction is triggered by a calcium-based action potential. For this reason, several authors have called Paramecium the "swimming neuron". Here we present an empirically constrained model of its action potential based on electrophysiology experiments on live immobilized paramecia, together with simultaneous measurement of ciliary beating using particle image velocimetry. Using these measurements and additional behavioral measurements of free swimming, we extend the electrophysiological model by coupling calcium concentration to kinematic parameters, turning it into a swimming model. In this way, we obtain a model of autonomously behaving Paramecium. Finally, we demonstrate how the modeled organism interacts with an environment, can follow gradients and display collective behavior. This work provides a modeling basis for investigating the physiological basis of autonomous behavior of Paramecium in ecological environments.
Collapse
Affiliation(s)
- Irene Elices
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Anirudh Kulkarni
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Nicolas Escoubet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris
| | - Léa-Laetitia Pontani
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris
| | - Alexis Michel Prevost
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris
| | - Romain Brette
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
6
|
Zhang Y, Wei D, Wang X, Wang B, Li M, Fang H, Peng Y, Fan Q, Ye F. Run-and-Tumble Dynamics and Mechanotaxis Discovered in Microglial Migration. RESEARCH (WASHINGTON, D.C.) 2023; 6:0063. [PMID: 36939442 PMCID: PMC10013966 DOI: 10.34133/research.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Microglia are resident macrophage cells in the central nervous system that search for pathogens or abnormal neural activities and migrate to resolve the issues. The effective search and targeted motion of macrophages mean dearly to maintaining a healthy brain, yet little is known about their migration dynamics. In this work, we study microglial motion with and without the presence of external mechanostimuli. We discover that the cells are promptly attracted by the applied forces (i.e., mechanotaxis), which is a tactic behavior as yet unconfirmed in microglia. Meanwhile, in both the explorative and the targeted migration, microglia display dynamics that is strikingly analogous to bacterial run-and-tumble motion. A closer examination reveals that microglial run-and-tumble is more sophisticated, e.g., they display a short-term memory when tumbling and rely on active steering during runs to achieve mechanotaxis, probably via the responses of mechanosensitive ion channels. These differences reflect the sharp contrast between microglia and bacteria cells (eukaryotes vs. prokaryotes) and their environments (compact tissue vs. fluid). Further analyses suggest that the reported migration dynamics has an optimal search efficiency and is shared among a subset of immune cells (human monocyte and macrophage). This work reveals a fruitful analogy between the locomotion of 2 remote systems and provides a framework for studying immune cells exploring complex environments.
Collapse
Affiliation(s)
- Yiyu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaochen Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Boyi Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Haiping Fang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- School of Science,
East China University of Science and Technology, Shanghai 200237, China
| | - Yi Peng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Address correspondence to: (F.Y.); (Y.P.); (Q.F.)
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- Address correspondence to: (F.Y.); (Y.P.); (Q.F.)
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
- Address correspondence to: (F.Y.); (Y.P.); (Q.F.)
| |
Collapse
|
7
|
Bentley SA, Laeverenz-Schlogelhofer H, Anagnostidis V, Cammann J, Mazza MG, Gielen F, Wan KY. Phenotyping single-cell motility in microfluidic confinement. eLife 2022; 11:e76519. [PMID: 36416411 PMCID: PMC9683786 DOI: 10.7554/elife.76519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
The movement trajectories of organisms serve as dynamic read-outs of their behaviour and physiology. For microorganisms this can be difficult to resolve due to their small size and fast movement. Here, we devise a novel droplet microfluidics assay to encapsulate single micron-sized algae inside closed arenas, enabling ultralong high-speed tracking of the same cell. Comparing two model species - Chlamydomonas reinhardtii (freshwater, 2 cilia), and Pyramimonas octopus (marine, 8 cilia), we detail their highly-stereotyped yet contrasting swimming behaviours and environmental interactions. By measuring the rates and probabilities with which cells transition between a trio of motility states (smooth-forward swimming, quiescence, tumbling or excitable backward swimming), we reconstruct the control network that underlies this gait switching dynamics. A simplified model of cell-roaming in circular confinement reproduces the observed long-term behaviours and spatial fluxes, including novel boundary circulation behaviour. Finally, we establish an assay in which pairs of droplets are fused on demand, one containing a trapped cell with another containing a chemical that perturbs cellular excitability, to reveal how aneural microorganisms adapt their locomotor patterns in real-time.
Collapse
Affiliation(s)
- Samuel A Bentley
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Mathematics and Statistics, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Hannah Laeverenz-Schlogelhofer
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Mathematics and Statistics, University of ExeterExeterUnited Kingdom
| | - Vasileios Anagnostidis
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
- Physics and Astronomy, University of ExeterExeterUnited Kingdom
| | - Jan Cammann
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough UniversityLoughboroughUnited Kingdom
| | - Marco G Mazza
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough UniversityLoughboroughUnited Kingdom
- Max Planck Institute for Dynamics and Self-Organization (MPIDS)GöttingenGermany
| | - Fabrice Gielen
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Physics and Astronomy, University of ExeterExeterUnited Kingdom
| | - Kirsty Y Wan
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Mathematics and Statistics, University of ExeterExeterUnited Kingdom
| |
Collapse
|
8
|
Diaz K, Robinson TL, Aydin YO, Aydin E, Goldman DI, Wan KY. A minimal robophysical model of quadriflagellate self-propulsion. BIOINSPIRATION & BIOMIMETICS 2021; 16:066001. [PMID: 34359055 DOI: 10.1088/1748-3190/ac1b6e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Locomotion at the microscale is remarkably sophisticated. Microorganisms have evolved diverse strategies to move within highly viscous environments, using deformable, propulsion-generating appendages such as cilia and flagella to drive helical or undulatory motion. In single-celled algae, these appendages can be arranged in different ways around an approximately 10 μm long cell body, and coordinated in distinct temporal patterns. Inspired by the observation that some quadriflagellates (bearing four flagella) have an outwardly similar morphology and flagellar beat pattern, yet swim at different speeds, this study seeks to determine whether variations in swimming performance could arise solely from differences in swimming gait. Robotics approaches are particularly suited to such investigations, where the phase relationships between appendages can be readily manipulated. Here, we developed autonomous, algae-inspired robophysical models that can self-propel in a viscous fluid. These macroscopic robots (length and width = 8.5 cm, height = 2 cm) have four independently actuated 'flagella' (length = 13 cm) that oscillate under low-Reynolds number conditions (Re∼O(10-1)). We tested the swimming performance of these robot models with appendages arranged two distinct configurations, and coordinated in three distinct gaits. The gaits, namely the pronk, the trot, and the gallop, correspond to gaits adopted by distinct microalgal species. When the appendages are inserted perpendicularly around a central 'body', the robot achieved a net performance of 0.15-0.63 body lengths per cycle, with the trot gait being the fastest. Robotic swimming performance was found to be comparable to that of the algal microswimmers across all gaits. By creating a minimal robot that can successfully reproduce cilia-inspired drag-based swimming, our work paves the way for the design of next-generation devices that have the capacity to autonomously navigate aqueous environments.
Collapse
Affiliation(s)
- Kelimar Diaz
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Tommie L Robinson
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Yasemin Ozkan Aydin
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Enes Aydin
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Daniel I Goldman
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Kirsty Y Wan
- Living Systems Institute & College of Engineering, Mathematics, and Physical Sciences, University of Exeter, EX4 4QD, United Kingdom
| |
Collapse
|
9
|
Byron ML, Murphy DW, Katija K, Hoover AP, Daniels J, Garayev K, Takagi D, Kanso E, Gemmell BJ, Ruszczyk M, Santhanakrishnan A. Metachronal motion across scales: current challenges and future directions. Integr Comp Biol 2021; 61:1674-1688. [PMID: 34048537 DOI: 10.1093/icb/icab105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Metachronal motion is used across a wide range of organisms for a diverse set of functions. However, despite its ubiquity, analysis of this behavior has been difficult to generalize across systems. Here we provide an overview of known commonalities and differences between systems that use metachrony to generate fluid flow. We also discuss strategies for standardizing terminology and defining future investigative directions that are analogous to other established subfields of biomechanics. Lastly, we outline key challenges that are common to many metachronal systems, opportunities that have arisen due to the advent of new technology (both experimental and computational), and next steps for community development and collaboration across the nascent network of metachronal researchers.
Collapse
Affiliation(s)
| | - David W Murphy
- University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Kakani Katija
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | | | - Joost Daniels
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Kuvvat Garayev
- University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Daisuke Takagi
- University of Hawaii at Manoa, 2500 Campus Rd, Honolulu, HI, 96822
| | - Eva Kanso
- University of Southern California, University Park, Los Angeles, CA, 90007
| | | | - Melissa Ruszczyk
- Georgia Institute of Technology, 310 Ferst Dr, Atlanta, GA, 30332, USA
| | | |
Collapse
|
10
|
Gallagher MT, Smith DJ. The art of coarse Stokes: Richardson extrapolation improves the accuracy and efficiency of the method of regularized stokeslets. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210108. [PMID: 34084547 PMCID: PMC8150023 DOI: 10.1098/rsos.210108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The method of regularized stokeslets is widely used in microscale biological fluid dynamics due to its ease of implementation, natural treatment of complex moving geometries, and removal of singular functions to integrate. The standard implementation of the method is subject to high computational cost due to the coupling of the linear system size to the numerical resolution required to resolve the rapidly varying regularized stokeslet kernel. Here, we show how Richardson extrapolation with coarse values of the regularization parameter is ideally suited to reduce the quadrature error, hence dramatically reducing the storage and solution costs without loss of accuracy. Numerical experiments on the resistance and mobility problems in Stokes flow support the analysis, confirming several orders of magnitude improvement in accuracy and/or efficiency.
Collapse
Affiliation(s)
- M. T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK
| | - D. J. Smith
- School of Mathematics, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Hamilton E, Cicuta P. Changes in geometrical aspects of a simple model of cilia synchronization control the dynamical state, a possible mechanism for switching of swimming gaits in microswimmers. PLoS One 2021; 16:e0249060. [PMID: 33831025 PMCID: PMC8031381 DOI: 10.1371/journal.pone.0249060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/10/2021] [Indexed: 12/23/2022] Open
Abstract
Active oscillators, with purely hydrodynamic coupling, are useful simple models to understand various aspects of motile cilia synchronization. Motile cilia are used by microorganisms to swim and to control the flow fields in their surroundings; the patterns observed in cilia carpets can be remarkably complex, and can be changed over time by the organism. It is often not known to what extent the coupling between cilia is due to just hydrodynamic forces, and neither is it known if it is biological or physical triggers that can change the dynamical collective state. Here we treat this question from a very simplified point of view. We describe three possible mechanisms that enable a switch in the dynamical state, in a simple scenario of a chain of oscillators. We find that shape-change provides the most consistent strategy to control collective dynamics, but also imposing small changes in frequency produces some unique stable states. Demonstrating these effects in the abstract minimal model proves that these could be possible explanations for gait switching seen in ciliated micro organisms like Paramecium and others. Microorganisms with many cilia could in principle be taking advantage of hydrodynamic coupling, to switch their swimming gait through either a shape change that manifests in decreased coupling between groups of cilia, or alterations to the beat style of a small subset of the cilia.
Collapse
Affiliation(s)
- Evelyn Hamilton
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Abstract
All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
13
|
Guo H, Man Y, Wan KY, Kanso E. Intracellular coupling modulates biflagellar synchrony. J R Soc Interface 2021; 18:20200660. [PMID: 33435844 DOI: 10.1098/rsif.2020.0660] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Beating flagella exhibit a variety of synchronization modes. This synchrony has long been attributed to hydrodynamic coupling between the flagella. However, recent work with flagellated algae indicates that a mechanism internal to the cell, through the contractile fibres connecting the flagella basal bodies, must be at play to actively modulate flagellar synchrony. Exactly how basal coupling mediates flagellar coordination remains unclear. Here, we examine the role of basal coupling in the synchronization of the model biflagellate Chlamydomonas reinhardtii using a series of mathematical models of decreasing levels of complexity. We report that basal coupling is sufficient to achieve inphase, antiphase and bistable synchrony, even in the absence of hydrodynamic coupling and flagellar compliance. These modes can be reached by modulating the activity level of the individual flagella or the strength of the basal coupling. We observe a slip mode when allowing for differential flagellar activity, just as in experiments with live cells. We introduce a dimensionless ratio of flagellar activity to basal coupling that is predictive of the mode of synchrony. This ratio allows us to query biological parameters which are not yet directly measurable experimentally. Our work shows a concrete route for cells to actively control the synchronization of their flagella.
Collapse
Affiliation(s)
- Hanliang Guo
- Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA.,Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yi Man
- Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Kirsty Y Wan
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Eva Kanso
- Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
14
|
Bassani I, Larousse M, Tran QD, Attard A, Galiana E. Phytophthora zoospores: From perception of environmental signals to inoculum formation on the host-root surface. Comput Struct Biotechnol J 2020; 18:3766-3773. [PMID: 33304469 PMCID: PMC7718214 DOI: 10.1016/j.csbj.2020.10.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
To explore moist soils and to target host plants, phytopathogenic Phytophthora species utilize the sensory and propulsion capabilities of the biflagellate unicellular zoospores they produce. Zoospore motion and interactions with the microenvironment are of primary importance for Phytophthora physiology. These are also of critical significance for plant pathology in early infection sequential events and their regulation: the directed zoospore migration toward the host, the local aggregation and adhesion at the host penetration site. In the soil, these early events preceding the root colonization are orchestrated by guidance factors, released from the soil particles in water films, or emitted within microbiota and by host plants. This signaling network is perceived by zoospores and results in coordinated behavior and preferential localization in the rhizosphere. Recent computational and structural studies suggest that rhizospheric ion and plant metabolite sensing is a key determinant in driving zoospore motion, orientation and aggregation. To reach their target, zoospores respond to various molecular, chemical and electrical stimuli. However, it is not yet clear how these signals are generated in local soil niches and which gene functions govern the sensing and subsequent responses of zoospores. Here we review studies on the soil, microbial and host-plant factors that drive zoospore motion, as well as the adaptations governing zoospore behavior. We propose several research directions that could be explored to characterize the role of zoospore microbial ecology in disease.
Collapse
Affiliation(s)
- Ilaria Bassani
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis 06903, France
| | - Marie Larousse
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis 06903, France
| | - Quang D Tran
- Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Nice 06108, France
| | - Agnès Attard
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis 06903, France
| | - Eric Galiana
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis 06903, France
| |
Collapse
|
15
|
Gong A, Rode S, Kaupp UB, Gompper G, Elgeti J, Friedrich BM, Alvarez L. The steering gaits of sperm. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190149. [PMID: 31884910 PMCID: PMC7017342 DOI: 10.1098/rstb.2019.0149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2019] [Indexed: 11/25/2022] Open
Abstract
Sperm are highly specialized cells, which have been subject to substantial evolutionary pressure. Whereas some sperm features are highly conserved, others have undergone major modifications. Some of these variations are driven by adaptation to mating behaviours or fitness at the organismic level. Others represent alternative solutions to the same task. Sperm must find the egg for fertilization. During this task, sperm rely on long slender appendages termed flagella that serve as sensory antennas, propellers and steering rudders. The beat of the flagellum is periodic. The resulting travelling wave generates the necessary thrust for propulsion in the fluid. Recent studies reveal that, for steering, different species rely on different fundamental features of the beat wave. Here, we discuss some examples of unity and diversity across sperm from different species with a particular emphasis on the steering mechanisms. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- A. Gong
- Center of Advanced European Studies and Research (CAESAR), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - S. Rode
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - U. B. Kaupp
- Center of Advanced European Studies and Research (CAESAR), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - G. Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - J. Elgeti
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - B. M. Friedrich
- Biological Algorithms Group, TU Dresden, Biological Systems Path of the Center for Advancing Electronics Dresden (CFAED), Helmholtzstrasse 18, 01069 Dresden, Germany
| | - L. Alvarez
- Center of Advanced European Studies and Research (CAESAR), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
16
|
Abstract
Cilia are specialized cellular organelles that are united in structure and implicated in diverse key life processes across eukaryotes. In both unicellular and multicellular organisms, variations on the same ancestral form mediate sensing, locomotion and the production of physiological flows. As we usher in a new, more interdisciplinary era, the way we study cilia is changing. This special theme issue brings together biologists, biophysicists and mathematicians to highlight the remarkable range of systems in which motile cilia fulfil vital functions, and to inspire and define novel strategies for future research. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|