1
|
Yang Y, Chen Q, Pan J, Liu Y, Luigi NF. Growing status rather than temperature was more associated with phytoplankton stoichiometry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125175. [PMID: 40188754 DOI: 10.1016/j.jenvman.2025.125175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/27/2025]
Abstract
Phytoplankton growth is regulated primarily by temperature and nutrient availability. Due to the increasing trend of global warming and eutrophication, it is important to unravel the responses of phytoplankton to varying temperatures and nutrients. This study investigated the interactive effects of temperature (15 °C vs 25 °C) and nitrogen/phosphorus availability (N/P ratios: 13-77) on phytoplankton stoichiometry and community assembly in subtropical reservoir communities. We assumed that (1) Temperature effect on stoichiometry would intensify under nutrient limitation due to altered metabolic demands. Phosphorus limitation would dominate at higher temperatures through growth rate-mediated utilization; (2) Stoichiometric homeostasis would primarily reflect growth phase rather than thermal regime. Results demonstrated that temperature-nutrient interactions shape cellular stoichiometry through growth dynamics. Biomass increased with warming and nutrient enrichment, particularly under P-repleted conditions. Alkaline phosphatase, acting as a strategy for P-limitation, showed temperature-dependent, phase-specific patterns. Cellular elemental contents exhibited greater thermal sensitivity during the exponential growth, aligning with ribosomal investment demands. The homeostasis of phytoplankton was growth-phase dependent, with stationary-phase communities showing plasticity at 25 °C and stability at 15 °C. Temperature affected the stoichiometry indirectly by adjusting the growth rate and metabolism which changes the nutrient demand and resource allocation within cells. Cyanobacteria dominated warmer treatments through enhanced P-use efficiency. This study highlighted temperature-mediated shifts in nutrient limitation thresholds and homeostasis strategies, which provides evidences for predicting bloom dynamic under eutrophication and climate change in this region.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, China; Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, 550025, Guiyang, China
| | - Qinglan Chen
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, China
| | - Jingyun Pan
- South China Sea Institute of Planning and Environmental Research, 510300, Guangzhou, China
| | - Yingliang Liu
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, China; Guizhou Key Laboratory of Forest Cultivation in Plateau Mountain, 550025, Guiyang, China.
| | - Naselli-Flores Luigi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi, 28, 90123, Palermo, Italy
| |
Collapse
|
2
|
de Oliveira Muniz Cunha PM, de Sousa JSD, da Cruz MCS, Coutinho R, Domingos P, Krepsky N, Hauser-Davis RA, Marques M, Saggioro EM, de Sá Salomão AL. Environmental risk assessment methodology for urban tropical lagoons based on feasible lines of evidence under limited resources conditions: Jacarepaguá Lagoon/Brazil. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:539-553. [PMID: 39821579 DOI: 10.1007/s10646-025-02854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Determining environmental risk levels posed to different urban lagoon can provide an important overview regarding the relative severity of the environmental degradation of these ecosystems, increasing the risks visibility, which can be used as an important decision-making tool to prioritize investments. Jacarepaguá Lagoon (JPAL) is part of a coastal lagoon system comprising four interconnected lagoons in Rio de Janeiro city, Southeastern Brazil. Real estate speculation and insufficient sanitation infrastructure resulted in untreated sewage discharge into this ecologically sensitive lagoon system. An Environmental Risk Assessment for Jacarepaguá lagoon was carried out integrating three Lines of Evidence (LoE): (i) Water Quality LoE; (ii) Ecotoxicological LoE; (iii) Ecological LoE to estimate an Environmental Risk Index (EnvRI) for this area. Surface water samples were collected during four bimonthly campaigns at five JPAL sampling points as well as an upstream reference area. The Water Quality LoE based on physicochemical parameters was used to estimate the Water Quality Risk Index (WQRI); the Ecotoxicological LoE based on two chronic ecotoxicity bioassays was used to estimate the Ecotoxicological Risk Index (EcotoxRI); and the Ecological LoE based on the richness and the abundance of phytoplankton taxa was used to estimate the Ecological Risk Index (EcoRI). The final EnvRI was then estimated by integrating these three Risk Indices. The WQRI (0.79 ± 0.07), as well as the EcotoxRI (0.80 ± 0.21), and the EcoRI (0.78 ± 0.13), were all in the range classified as very high. The EnvRI for JPAL was consequently also very high (0.81 ± 0.12), which indicates urgent intervention. EnvRI combined with high concentrations of organic compounds directly affected the diversity of phytoplankton species; however, it was observed that the high content of phytoplankton biomass also represents a part of the organic matter in question. The final goal was achieved: a feasible risk assessment tool available for comparison of different aquatic ecosystems, to facilitate decision making establishing priorities of investments under a limited resources scenario.
Collapse
Affiliation(s)
| | | | - Maria Carolina Souza da Cruz
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University-UERJ, Rio de Janeiro, CEP, Brazil
| | - Rodrigo Coutinho
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University-UERJ, Rio de Janeiro, CEP, Brazil
| | - Patricia Domingos
- Department of Plant Biology, Rio de Janeiro State University-UERJ, Rio de Janeiro, CEP, Brazil
| | - Natascha Krepsky
- Department of Environmental Sciences, Federal University of the State of Rio de Janeiro-Unirio, Rio de Janeiro, CEP, Brazil
| | - Rachel Ann Hauser-Davis
- Environmental Health Assessment and Promotion Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, CEP, Brazil
| | - Marcia Marques
- Department Sanitary and Environ Engineering, Rio de Janeiro State University-UERJ, Rio de Janeiro, CEP, Brazil
| | - Enrico Mendes Saggioro
- Environmental Health Assessment and Promotion Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, CEP, Brazil
| | - André Luís de Sá Salomão
- Department Sanitary and Environmental Engineering, Rio de Janeiro State University-UERJ, Rio de Janeiro, CEP, Brazil
| |
Collapse
|
3
|
Patonai K, Lanzoni M, Castaldelli G, Jordán F, Gavioli A. Eutrophication triggered changes in network structure and fluxes of the Comacchio Lagoon (Italy). PLoS One 2025; 20:e0313416. [PMID: 39774449 PMCID: PMC11981538 DOI: 10.1371/journal.pone.0313416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/24/2024] [Indexed: 01/11/2025] Open
Abstract
Coastal lagoons, which cover about 13% of coastline, are among the most productive ecosystems worldwide. However, they are subject to significant stressors, both natural and anthropogenic, which can alter ecosystem services and functioning and food web structure. In the Comacchio Lagoon (Northern Italy), eutrophication, among other minor factors, transformed the ecosystem in the early 1980s. Here, we compiled available data for the lagoon into trophic networks (pre- and post-transformation), analyzed the ecosystem using local and global network analysis, and computed trophic fluxes of the two periods. For comparability, the networks of two periods (i.e., pre- and post- transformation) were aggregated into food webs with 23 nodes. We found differences in the trophic networks before and after eutrophication, resulting in some decrease in complexity, increase of flow diversity, and an overall shortening of the food chain. A crucial aspect of this change is the disappearance of submerged vegetation in the lagoon and the increased importance of cyanobacteria in the post-eutrophication period. We provide an approach to better understand ecosystem changes after severe disturbances which can be extended to biodiversity conservation and for the management of coastal resources in general.
Collapse
Affiliation(s)
- Katalin Patonai
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Département de Sciences Biologiques, Université de Montréal, Montréal, Canada
| | - Mattia Lanzoni
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Giuseppe Castaldelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Ferenc Jordán
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Institute of Biological Research (NIRDBS), Cluj-Napoca, Romania
| | - Anna Gavioli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Ju Z, Lee SS, Chen J, Deng L, Zhang X, Xu Z, Liu H. Deciphering the key stressors shaping the relative success of core mixoplankton across spatiotemporal scales. ISME COMMUNICATIONS 2025; 5:ycaf053. [PMID: 40270584 PMCID: PMC12017963 DOI: 10.1093/ismeco/ycaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/13/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
Deciphering the spatiotemporal dynamics and relative competitive advantages of trophic functional traits under multiple stressors has been a long-standing challenge. Here, we integrated the core taxa identification with robust simulation modeling to reveal key environmental factors influencing the three core trophic groups (autotroph, heterotroph, and mixotroph), with a particular focus on mixoplankton. Temporally, core mixoplankton exhibited a higher relative proportion in spring and winter in contrast to core heterotrophs and a more uniform spatial distribution pattern. While seasonal patterns were observed in the environmental responses of the trophic groups, temperature, dissolved oxygen (DO), and nitrate (NO3-N) were identified as the key drivers affecting the core mixoplankton by random forest. Furthermore, through univariate regression and generalized additive mixed model (GAMM), we captured the niche preferences of core mixoplankton across three stressors gradients and characterized the coupled additive or antagonistic effects. Notably, the potential optimal threshold for core mixoplankton was a high level of NO3-N (0.64 mg/L), lower temperature (18.6°C), and DO (3.5 mg/L), which contrasted with the results obtained from single-factor regression analyses. Specifically, GAMM indicated that the preferred niche shifted upward for NO3-N and downward for DO when three drivers were included simultaneously, while temperature remained constant. Our study linked the ecological niche preference of core mixoplankton with key stressors, facilitating a more precise monitoring and comprehension of spatiotemporal dynamics of trophic functional groups under scenarios of escalating global climate change and anthropogenic disturbances.
Collapse
Affiliation(s)
- Zhicheng Ju
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Sangwook Scott Lee
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Lixia Deng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Xiaodong Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Zhimeng Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong SAR, 510000, China
| |
Collapse
|
5
|
Meeda Y, Harrison E, Monier A, Wheeler G, Helliwell KE. Crossed wires: diatom phosphate sensing mechanisms coordinate nitrogen metabolism. PLANT SIGNALING & BEHAVIOR 2024; 19:2404352. [PMID: 39356627 PMCID: PMC11448323 DOI: 10.1080/15592324.2024.2404352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Phytoplankton can encounter dynamic changes in their environment including fluctuating nutrient supply, and therefore require survival mechanisms to compete for such growth-limiting resources. Diatoms, single-celled eukaryotic microalgae, are typically first responders when crucial macronutrients phosphorus (P) and nitrogen (N) enter the marine environment and therefore must have tightly regulated nutrient sensory systems. While nutrient starvation responses have been described, comparatively little is known about diatom nutrient sensing mechanisms. We previously identified that the model diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana use calcium (Ca2+) ions as a rapid intracellular signaling response following phosphate resupply. This response is evident only in phosphate deplete conditions, suggesting that it is coordinated in P-starved cells. Rapid increases in N uptake and assimilation pathways observed following phosphate resupply, indicate tight interplay between P and N signaling. To regulate such downstream changes, Ca2+ ions must bind to Ca2+ sensors following phosphate induced Ca2+ signals, yet this molecular machinery is unknown. Here, we describe our findings in relation to known diatom P starvation signaling mechanisms and discuss their implications in the context of environmental macronutrient metadata and in light of recent developments in the field. We also consider the importance of studying phytoplankton nutrient signaling systems in the face of future ocean conditions.
Collapse
Affiliation(s)
- Yasmin Meeda
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Marine Biological Association, Citadel Hill, Plymouth, UK
| | - Ellen Harrison
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Adam Monier
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Glen Wheeler
- Marine Biological Association, Citadel Hill, Plymouth, UK
| | - Katherine E Helliwell
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Marine Biological Association, Citadel Hill, Plymouth, UK
| |
Collapse
|
6
|
Roche KM, Church IN, Sterling AR, Rynearson TA, Bertin MJ, Kim AM, Kirk RD, Jenkins BD. Connectivity of toxigenic Pseudo-nitzschia species assemblages between the Northeast U.S. continental shelf and an adjacent estuary. HARMFUL ALGAE 2024; 139:102738. [PMID: 39567077 DOI: 10.1016/j.hal.2024.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
Pseudo-nitzschia harmful algal blooms have recently caused elevated domoic acid in coastal environments of the Northeast United States. In 2017, the toxigenic species P. australis was observed in Narragansett Bay, Rhode Island, a temperate estuarine ecosystem, for the first time since 2009 when DNA monitoring for Pseudo-nitzschia species began. This highly toxic species likely contributed to toxin-related shellfish harvest closures and is hypothesized to have been introduced by an offshore source. Little is known about offshore Pseudo-nitzschia spp. populations in the Northeast Continental Shelf marine ecosystem or how often toxigenic species enter Narragansett Bay through physical processes. Here, we collected filtered biomass samples from multiple time series sites within Narragansett Bay and along the Northeast U.S. Shelf Long-Term Ecological Research transect in winter and summer to investigate the frequency and seasonality of potential Pseudo-nitzschia spp. inflow from the continental shelf to the estuary. Species were taxonomically identified using DNA sequencing of the ITS1 region and domoic acid concentrations were quantified by liquid chromatography with tandem mass spectrometry and multiple reaction monitoring. During six years of sampling, Pseudo-nitzschia species assemblages were more similar between Narragansett Bay and the Northeast shelf in winter than summer, suggesting greater ecosystem connectivity in winter. These winter assemblages were often accompanied by higher domoic acid. Several Pseudo-nitzschia species co-occurred most often with domoic acid and were likely responsible for toxin production in this region, including P. pungens var. pungens, P. multiseries, P. calliantha, P. plurisecta, P. australis, and P. fraudulenta. Domoic acid was detected during periods of relatively low macronutrient concentrations in both seasons, warmer sea surface temperatures in winter, and colder temperatures in summer within this dataset. This study represents some of the first domoic acid measurements on the offshore Northeast U.S. Continental Shelf, a region that supplies water to other coastal environments and could seed future harmful algal blooms. The elevated domoic acid and frequency of hypothesized inflow of toxigenic Pseudo-nitzschia spp. from the Northeast continental shelf to Narragansett Bay in winter indicate the need to monitor coastal and offshore environments for toxins and harmful algal bloom taxa during colder months.
Collapse
Affiliation(s)
- Katherine M Roche
- Graduate School of Oceanography, University of Rhode Island, Narragansett 02882, RI, United States.
| | - Isabella N Church
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston 02881, RI, United States
| | - Alexa R Sterling
- Region 1, U.S. Environmental Protection Agency, Boston 02109, MA, United States
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett 02882, RI, United States
| | - Matthew J Bertin
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston 02881, RI, United States; Department of Chemistry, Case Western Reserve University, Cleveland 44106, OH, United States
| | - Andrew M Kim
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston 02881, RI, United States
| | - Riley D Kirk
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston 02881, RI, United States
| | - Bethany D Jenkins
- Graduate School of Oceanography, University of Rhode Island, Narragansett 02882, RI, United States; Department of Cell and Molecular Biology, University of Rhode Island, Kingston 02881, RI, United States.
| |
Collapse
|
7
|
Khairy HM, Senousy HH, Faragallah HM, Keshta AE, Elshobary ME. Dynamics of phytoplankton community in the Eastern Harbor and Qaitbay Bay, Alexandria, Egypt: Seasonal abundance and ecological insights. EGYPTIAN JOURNAL OF AQUATIC RESEARCH 2024; 50:309-317. [DOI: 10.1016/j.ejar.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
|
8
|
Selden CR, LaBrie R, Ganley LC, Crocker DR, Peleg O, Perry DC, Reich HG, Sasaki M, Thibodeau PS, Isanta-Navarro J. Is our understanding of aquatic ecosystems sufficient to quantify ecologically driven climate feedbacks? GLOBAL CHANGE BIOLOGY 2024; 30:e17351. [PMID: 38837306 DOI: 10.1111/gcb.17351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
The Earth functions as an integrated system-its current habitability to complex life is an emergent property dependent on interactions among biological, chemical, and physical components. As global warming affects ecosystem structure and function, so too will the biosphere affect climate by altering atmospheric gas composition and planetary albedo. Constraining these ecosystem-climate feedbacks is essential to accurately predict future change and develop mitigation strategies; however, the interplay among ecosystem processes complicates the assessment of their impact. Here, we explore the state-of-knowledge on how ecological and biological processes (e.g., competition, trophic interactions, metabolism, and adaptation) affect the directionality and magnitude of feedbacks between ecosystems and climate, using illustrative examples from the aquatic sphere. We argue that, despite ample evidence for the likely significance of many, our present understanding of the combinatorial effects of ecosystem dynamics precludes the robust quantification of most ecologically driven climate feedbacks. Constraining these effects must be prioritized within the ecological sciences for only by studying the biosphere as both subject and arbiter of global climate can we develop a sufficiently holistic view of the Earth system to accurately predict Earth's future and unravel its past.
Collapse
Affiliation(s)
- Corday R Selden
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey, USA
| | - Richard LaBrie
- Interdisciplinary Environmental Research Centre, TU Bergakademie Freiberg, Freiberg, Germany
| | - Laura C Ganley
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts, USA
| | - Daniel R Crocker
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Ohad Peleg
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Danielle C Perry
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, USA
| | - Hannah G Reich
- Department of Biological Sciences, Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Matthew Sasaki
- Department of Marine Sciences, University of Connecticut, Mansfield, Connecticut, USA
| | - Patricia S Thibodeau
- School of Marine and Environmental Programs, University of New England, Biddeford, Maine, USA
| | | |
Collapse
|
9
|
Zhang Y, Nair S, Zhang Z, Zhao J, Zhao H, Lu L, Chang L, Jiao N. Adverse Environmental Perturbations May Threaten Kelp Farming Sustainability by Exacerbating Enterobacterales Diseases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5796-5810. [PMID: 38507562 DOI: 10.1021/acs.est.3c09921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Globally kelp farming is gaining attention to mitigate land-use pressures and achieve carbon neutrality. However, the influence of environmental perturbations on kelp farming remains largely unknown. Recently, a severe disease outbreak caused extensive kelp mortality in Sanggou Bay, China, one of the world's largest high-density kelp farming areas. Here, through in situ investigations and simulation experiments, we find indications that an anomalously dramatic increase in elevated coastal seawater light penetration may have contributed to dysbiosis in the kelp Saccharina japonica's microbiome. This dysbiosis promoted the proliferation of opportunistic pathogenic Enterobacterales, mainly including the genera Colwellia and Pseudoalteromonas. Using transcriptomic analyses, we revealed that high-light conditions likely induced oxidative stress in kelp, potentially facilitating opportunistic bacterial Enterobacterales attack that activates a terrestrial plant-like pattern recognition receptor system in kelp. Furthermore, we uncover crucial genotypic determinants of Enterobacterales dominance and pathogenicity within kelp tissue, including pathogen-associated molecular patterns, potential membrane-damaging toxins, and alginate and mannitol lysis capability. Finally, through analysis of kelp-associated microbiome data sets under the influence of ocean warming and acidification, we conclude that such Enterobacterales favoring microbiome shifts are likely to become more prevalent in future environmental conditions. Our study highlights the need for understanding complex environmental influences on kelp health and associated microbiomes for the sustainable development of seaweed farming.
Collapse
Affiliation(s)
- Yongyu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China
| | - Shailesh Nair
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China
| | - Zenghu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China
| | - Jiulong Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China
| | - Hanshuang Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longfei Lu
- Weihai Changqing Ocean Science Technology Co., Ltd., Rongcheng 264300, China
| | - Lirong Chang
- Weihai Changqing Ocean Science Technology Co., Ltd., Rongcheng 264300, China
| | - Nianzhi Jiao
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361100, China
| |
Collapse
|
10
|
Liu Y, Mao Y, Gui J, Long Y, Wen Y, Xie S, Sun J. Stratification of dissolved organic matter in the upper 5000 m water column in the western Pacific Ocean. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106346. [PMID: 38215625 DOI: 10.1016/j.marenvres.2024.106346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
Marine dissolved organic matter (DOM) is a principal reservoir involved in biogeochemical cycles and exerts a pivotal influence on global carbon flux dynamics. In this study, excitation-emission matrix fluorescence spectroscopy combined with parallel factor analysis (EEM-PARAFAC) was conducted on 230 DOM samples collected from 21 sites between February and April 2022 in the Western Pacific Ocean (WPO). We identified five distinct fluorescence peaks (peaks B, T, A, C, and M), predominantly protein-like and humic-like components. These findings, marked by significant differences (p < 0.01) in fluorescence intensities and spectral indices, characterized the transformation of DOM with ocean depth, illustrating a transition from active to recalcitrant forms. Additionally, random forest analysis (RFA) identified depth as a key factor influencing marine dissolved organic carbon (DOC), with a 32.59% importance value. Correlations between hydrological and fluorescent parameters underscored the complexity of DOM sources and influencing processes. Overall, this work broadens our understanding of DOM variability in the upper 5000 m of the WPO, enhancing our knowledge of the marine environment's role in the global carbon cycle.
Collapse
Affiliation(s)
- Yang Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yingjie Mao
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430074, PR China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiang Gui
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430074, PR China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yi Long
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430074, PR China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yujian Wen
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430074, PR China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
11
|
Landuyt D, Perring MP, Blondeel H, De Lombaerde E, Depauw L, Lorer E, Maes SL, Baeten L, Bergès L, Bernhardt-Römermann M, Brūmelis G, Brunet J, Chudomelová M, Czerepko J, Decocq G, den Ouden J, De Frenne P, Dirnböck T, Durak T, Fichtner A, Gawryś R, Härdtle W, Hédl R, Heinrichs S, Heinken T, Jaroszewicz B, Kirby K, Kopecký M, Máliš F, Macek M, Mitchell FJG, Naaf T, Petřík P, Reczyńska K, Schmidt W, Standovár T, Swierkosz K, Smart SM, Van Calster H, Vild O, Waller DM, Wulf M, Verheyen K. Combining multiple investigative approaches to unravel functional responses to global change in the understorey of temperate forests. GLOBAL CHANGE BIOLOGY 2024; 30:e17086. [PMID: 38273496 DOI: 10.1111/gcb.17086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Plant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global-change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.
Collapse
Affiliation(s)
- Dries Landuyt
- Forest&Nature Lab, Department of Environment, Ghent University, Melle, Belgium
| | - Michael P Perring
- UK Centre for Ecology and Hydrology (UKCEH), Bangor, UK
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| | - Haben Blondeel
- Forest&Nature Lab, Department of Environment, Ghent University, Melle, Belgium
| | - Emiel De Lombaerde
- Forest&Nature Lab, Department of Environment, Ghent University, Melle, Belgium
| | - Leen Depauw
- Forest&Nature Lab, Department of Environment, Ghent University, Melle, Belgium
| | - Eline Lorer
- Forest&Nature Lab, Department of Environment, Ghent University, Melle, Belgium
| | - Sybryn L Maes
- Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Lander Baeten
- Forest&Nature Lab, Department of Environment, Ghent University, Melle, Belgium
| | - Laurent Bergès
- Laboratoire ecosystèmes et sociétés en montagne (LESSEM), National Research Institute for Agriculture, Food and the Environment (INRAE), St-Martin d'Hères, France
| | - Markus Bernhardt-Römermann
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | | | - Jörg Brunet
- Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, Lomma, Sweden
| | | | | | | | - Jan den Ouden
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Pieter De Frenne
- Forest&Nature Lab, Department of Environment, Ghent University, Melle, Belgium
| | | | - Tomasz Durak
- Institute of Biology, University of Rzeszów, Rzeszów, Poland
| | - Andreas Fichtner
- Institute of Ecology, Leuphana University Lüneburg, Lüneburg, Germany
| | | | - Werner Härdtle
- Institute of Ecology, Leuphana University Lüneburg, Lüneburg, Germany
| | - Radim Hédl
- Institute of Botany, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Steffi Heinrichs
- Department Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Thilo Heinken
- General Botany, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Bogdan Jaroszewicz
- Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Białowieża, Poland
| | - Keith Kirby
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Martin Kopecký
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | | | - Martin Macek
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Fraser J G Mitchell
- Botany Department, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Tobias Naaf
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Petr Petřík
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Kamila Reczyńska
- Department of Botany, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Wolfgang Schmidt
- Department Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Tibor Standovár
- Department of Plant Systematics, Ecology and Theoretical Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Krzysztof Swierkosz
- Museum of Natural History, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Simon M Smart
- UK Centre for Ecology & Hydrology (UKCEH), Lancaster University, Bailrigg, UK
| | | | - Ondřej Vild
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Donald M Waller
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Monika Wulf
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Kris Verheyen
- Forest&Nature Lab, Department of Environment, Ghent University, Melle, Belgium
| |
Collapse
|
12
|
Krishnapriya MS, Varikoden H, Anjaneyan P, Kuttippurath J. Marine heatwaves during the pre-monsoon season and their impact on Chlorophyll-a in the north Indian Ocean in 1982-2021. MARINE POLLUTION BULLETIN 2023; 197:115783. [PMID: 37988881 DOI: 10.1016/j.marpolbul.2023.115783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
Indian Ocean has been undergoing rapid warming in recent years, which increases the likelihood of Marine heatwave (MHW). MHWs are extreme warm ocean surface conditions in which temperature exceeds the 95th percentile for three or more consecutive days. We investigate MHW events occurred in Arabian Sea (AS) and Bay of Bengal (BoB) during pre-monsoon for 1982-2021 period, their impact on Chlorophyll-a (Chl-a) and net primary productivity (NPP). There were 42 (68) MHW events with a significant trend of 8.1 (6.3) MHW days dec-1 in AS (BoB). There is a distinct decrease in Chl-a concentration associated with MHW, especially in medium and long duration events. In general, AS and BoB have witnessed more frequent and long-lasting MHWs in the 2002-2021 period, which reduce NPP of north Indian Ocean. A decrease in Chl-a and NPP, 10 % in AS and 2 % in BoB, is estimated, but only severe MHWs inflict a notable reduction.
Collapse
Affiliation(s)
- M S Krishnapriya
- Dept. of Physical Oceanography, Cochin University of Sciences and Technology, Kochi 682016, India; Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune 411008, India
| | - Hamza Varikoden
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune 411008, India.
| | - P Anjaneyan
- CORAL, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| | - J Kuttippurath
- CORAL, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
| |
Collapse
|
13
|
von Arx JN, Kidane AT, Philippi M, Mohr W, Lavik G, Schorn S, Kuypers MMM, Milucka J. Methylphosphonate-driven methane formation and its link to primary production in the oligotrophic North Atlantic. Nat Commun 2023; 14:6529. [PMID: 37845220 PMCID: PMC10579326 DOI: 10.1038/s41467-023-42304-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023] Open
Abstract
Methylphosphonate is an organic phosphorus compound used by microorganisms when phosphate, a key nutrient limiting growth in most marine surface waters, becomes unavailable. Microbial methylphosphonate use can result in the formation of methane, a potent greenhouse gas, in oxic waters where methane production is traditionally unexpected. The extent and controlling factors of such aerobic methane formation remain underexplored. Here, we show high potential net rates of methylphosphonate-driven methane formation (median 0.4 nmol methane L-1 d-1) in the upper water column of the western tropical North Atlantic. The rates are repressed but still quantifiable in the presence of in-situ or added phosphate, suggesting that some methylphosphonate-driven methane formation persists in phosphate-replete waters. The genetic potential for methylphosphonate utilisation is present in and transcribed by key photo- and heterotrophic microbial taxa, such as Pelagibacterales, SAR116, and Trichodesmium. While the large cyanobacterial nitrogen-fixers dominate in the surface layer, phosphonate utilisation by Alphaproteobacteria appears to become more important in deeper depths. We estimate that at our study site, a substantial part (median 11%) of the measured surface carbon fixation can be sustained by phosphorus liberated from phosphonate utilisation, highlighting the ecological importance of phosphonates in the carbon cycle of the oligotrophic ocean.
Collapse
Affiliation(s)
- Jan N von Arx
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Abiel T Kidane
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Miriam Philippi
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Wiebke Mohr
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Gaute Lavik
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sina Schorn
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Jana Milucka
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
14
|
Walworth NG, Espinoza JL, Argyle PA, Hinners J, Levine NM, Doblin MA, Dupont CL, Collins S. Genus-Wide Transcriptional Landscapes Reveal Correlated Gene Networks Underlying Microevolutionary Divergence in Diatoms. Mol Biol Evol 2023; 40:msad218. [PMID: 37874344 PMCID: PMC10595192 DOI: 10.1093/molbev/msad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
Marine microbes like diatoms make up the base of marine food webs and drive global nutrient cycles. Despite their key roles in ecology, biogeochemistry, and biotechnology, we have limited empirical data on how forces other than adaptation may drive diatom diversification, especially in the absence of environmental change. One key feature of diatom populations is frequent extreme reductions in population size, which can occur both in situ and ex situ as part of bloom-and-bust growth dynamics. This can drive divergence between closely related lineages, even in the absence of environmental differences. Here, we combine experimental evolution and transcriptome landscapes (t-scapes) to reveal repeated evolutionary divergence within several species of diatoms in a constant environment. We show that most of the transcriptional divergence can be captured on a reduced set of axes, and that repeatable evolution can occur along a single major axis of variation defined by core ortholog expression comprising common metabolic pathways. Previous work has associated specific transcriptional changes in gene networks with environmental factors. Here, we find that these same gene networks diverge in the absence of environmental change, suggesting these pathways may be central in generating phenotypic diversity as a result of both selective and random evolutionary forces. If this is the case, these genes and the functions they encode may represent universal axes of variation. Such axes that capture suites of interacting transcriptional changes during diversification improve our understanding of both global patterns in local adaptation and microdiversity, as well as evolutionary forces shaping algal cultivation.
Collapse
Affiliation(s)
- Nathan G Walworth
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
- J.Craig Venter Institute, La Jolla, CA 92037, USA
| | | | - Phoebe A Argyle
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jana Hinners
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Naomi M Levine
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | | | - Sinéad Collins
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
15
|
Jaspers C, Hopcroft RR, Kiørboe T, Lombard F, López-Urrutia Á, Everett JD, Richardson AJ. Gelatinous larvacean zooplankton can enhance trophic transfer and carbon sequestration. Trends Ecol Evol 2023; 38:980-993. [PMID: 37277269 DOI: 10.1016/j.tree.2023.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023]
Abstract
Larvaceans are gelatinous zooplankton abundant throughout the ocean. Larvaceans have been overlooked in research because they are difficult to collect and are perceived as being unimportant in biogeochemical cycles and food-webs. We synthesise evidence that their unique biology enables larvaceans to transfer more carbon to higher trophic levels and deeper into the ocean than is commonly appreciated. Larvaceans could become even more important in the Anthropocene because they eat small phytoplankton that are predicted to become more prevalent under climate change, thus moderating projected future declines in ocean productivity and fisheries. We identify critical knowledge gaps and argue that larvaceans should be incorporated into ecosystem assessments and biogeochemical models to improve predictions of the future ocean.
Collapse
Affiliation(s)
- Cornelia Jaspers
- Centre for Gelatinous Plankton Ecology & Evolution, Technical University of Denmark, DTU Aqua, Kongens Lyngby, Denmark; Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Fabien Lombard
- Sorbonne Université, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Ángel López-Urrutia
- Centro Oceanográfico de Gijón, Instituto Español de Oceanografia, IEO-CSIC, Gijón, Asturias, Spain
| | - Jason D Everett
- School of Environment, University of Queensland, Brisbane, QLD, Australia; CSIRO Environment, Queensland Biosciences Precinct, St Lucia, QLD, Australia; Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Anthony J Richardson
- School of Environment, University of Queensland, Brisbane, QLD, Australia; CSIRO Environment, Queensland Biosciences Precinct, St Lucia, QLD, Australia
| |
Collapse
|
16
|
Masuda T, Inomura K, Mareš J, Kodama T, Shiozaki T, Matsui T, Suzuki K, Takeda S, Deutsch C, Prášil O, Furuya K. Coexistence of Dominant Marine Phytoplankton Sustained by Nutrient Specialization. Microbiol Spectr 2023; 11:e0400022. [PMID: 37458590 PMCID: PMC10441275 DOI: 10.1128/spectrum.04000-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/07/2023] [Indexed: 08/19/2023] Open
Abstract
Prochlorococcus and Synechococcus are the two dominant picocyanobacteria in the low-nutrient surface waters of the subtropical ocean, but the basis for their coexistence has not been quantitatively demonstrated. Here, we combine in situ microcosm experiments and an ecological model to show that this coexistence can be sustained by specialization in the uptake of distinct nitrogen (N) substrates at low-level concentrations that prevail in subtropical environments. In field incubations, the response of both Prochlorococcus and Synechococcus to nanomolar N amendments demonstrates N limitation of growth in both populations. However, Prochlorococcus showed a higher affinity to ammonium, whereas Synechococcus was more adapted to nitrate uptake. A simple ecological model demonstrates that the differential nutrient preference inferred from field experiments with these genera may sustain their coexistence. It also predicts that as the supply of NO3- decreases, as expected under climate warming, the dominant genera should undergo a nonlinear shift from Synechococcus to Prochlorococcus, a pattern that is supported by subtropical field observations. Our study suggests that the evolution of differential nutrient affinities is an important mechanism for sustaining the coexistence of genera and that climate change is likely to shift the relative abundance of the dominant plankton genera in the largest biomes in the ocean. IMPORTANCE Our manuscript addresses the following fundamental question in microbial ecology: how do different plankton using the same essential nutrients coexist? Prochlorococcus and Synechococcus are the two dominant picocyanobacteria in the low-nutrient surface waters of the subtropical ocean, which support a significant amount of marine primary production. The geographical distributions of these two organisms are largely overlapping, but the basis for their coexistence in these biomes remains unclear. In this study, we combined in situ microcosm experiments and an ecosystem model to show that the coexistence of these two organisms can arise from specialization in the uptake of distinct nitrogen substrates; Prochlorococcus prefers ammonium, whereas Synechococcus prefers nitrate when these nutrients exist at low concentrations. Our framework can be used for simulating and predicting the coexistence in the future ocean and may provide hints toward understanding other similar types of coexistence.
Collapse
Affiliation(s)
- Takako Masuda
- Department of Aquatic Bioscience, The University of Tokyo, Bunkyo, Tokyo, Japan
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czechia
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Jan Mareš
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czechia
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budejovice, Czechia
- Department of Botany, University of South Bohemia, Faculty of Science, České Budejovice, Czechia
| | - Taketoshi Kodama
- Department of Aquatic Bioscience, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Takuhei Shiozaki
- Department of Aquatic Bioscience, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Takato Matsui
- Graduate School of Environmental Science/Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Koji Suzuki
- Graduate School of Environmental Science/Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Shigenobu Takeda
- Department of Aquatic Bioscience, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Curtis Deutsch
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czechia
| | - Ken Furuya
- Department of Aquatic Bioscience, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
17
|
Lopez LK, Gil MA, Crowley PH, Trimmer PC, Munson A, Ligocki IY, Michelangeli M, Sih A. Integrating animal behaviour into research on multiple environmental stressors: a conceptual framework. Biol Rev Camb Philos Soc 2023; 98:1345-1364. [PMID: 37004993 DOI: 10.1111/brv.12956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
While a large body of research has focused on the physiological effects of multiple environmental stressors, how behavioural and life-history plasticity mediate multiple-stressor effects remains underexplored. Behavioural plasticity can not only drive organism-level responses to stressors directly but can also mediate physiological responses. Here, we provide a conceptual framework incorporating four fundamental trade-offs that explicitly link animal behaviour to life-history-based pathways for energy allocation, shaping the impact of multiple stressors on fitness. We first address how small-scale behavioural changes can either mediate or drive conflicts between the effects of multiple stressors and alternative physiological responses. We then discuss how animal behaviour gives rise to three additional understudied and interrelated trade-offs: balancing the benefits and risks of obtaining the energy needed to cope with stressors, allocation of energy between life-history traits and stressor responses, and larger-scale escape from stressors in space or time via large-scale movement or dormancy. Finally, we outline how these trade-offs interactively affect fitness and qualitative ecological outcomes resulting from multiple stressors. Our framework suggests that explicitly considering animal behaviour should enrich our mechanistic understanding of stressor effects, help explain extensive context dependence observed in these effects, and highlight promising avenues for future empirical and theoretical research.
Collapse
Affiliation(s)
- Laura K Lopez
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- National Centre for Immunisation Research and Surveillance, Kids Research, Sydney Children's Hospitals Network, Corner Hawkesbury Road & Hainsworth Street, Westmead, New South Wales, 2145, Australia
| | - Michael A Gil
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N122/Campus Box 334, Boulder, CO, 80309-0334, USA
| | - Philip H Crowley
- Department of Biology, University of Kentucky, 195 Huguelet Drive, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506-0225, USA
| | - Pete C Trimmer
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Psychology, University of Warwick, University Road, Coventry, CV4 7AL, UK
| | - Amelia Munson
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
| | - Isaac Y Ligocki
- Department of Biology, Millersville University of Pennsylvania, Roddy Science Hall, PO Box 1002, Millersville, PA, 17551, USA
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 318 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Marcus Michelangeli
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, SE-907 36, Sweden
| | - Andrew Sih
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
18
|
Seifert M, Nissen C, Rost B, Vogt M, Völker C, Hauck J. Interaction matters: Bottom-up driver interdependencies alter the projected response of phytoplankton communities to climate change. GLOBAL CHANGE BIOLOGY 2023; 29:4234-4258. [PMID: 37265254 DOI: 10.1111/gcb.16799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
Phytoplankton growth is controlled by multiple environmental drivers, which are all modified by climate change. While numerous experimental studies identify interactive effects between drivers, large-scale ocean biogeochemistry models mostly account for growth responses to each driver separately and leave the results of these experimental multiple-driver studies largely unused. Here, we amend phytoplankton growth functions in a biogeochemical model by dual-driver interactions (CO2 and temperature, CO2 and light), based on data of a published meta-analysis on multiple-driver laboratory experiments. The effect of this parametrization on phytoplankton biomass and community composition is tested using present-day and future high-emission (SSP5-8.5) climate forcing. While the projected decrease in future total global phytoplankton biomass in simulations with driver interactions is similar to that in control simulations without driver interactions (5%-6%), interactive driver effects are group-specific. Globally, diatom biomass decreases more with interactive effects compared with the control simulation (-8.1% with interactions vs. no change without interactions). Small-phytoplankton biomass, by contrast, decreases less with on-going climate change when the model accounts for driver interactions (-5.0% vs. -9.0%). The response of global coccolithophore biomass to future climate conditions is even reversed when interactions are considered (+33.2% instead of -10.8%). Regionally, the largest difference in the future phytoplankton community composition between the simulations with and without driver interactions is detected in the Southern Ocean, where diatom biomass decreases (-7.5%) instead of increases (+14.5%), raising the share of small phytoplankton and coccolithophores of total phytoplankton biomass. Hence, interactive effects impact the phytoplankton community structure and related biogeochemical fluxes in a future ocean. Our approach is a first step to integrate the mechanistic understanding of interacting driver effects on phytoplankton growth gained by numerous laboratory experiments into a global ocean biogeochemistry model, aiming toward more realistic future projections of phytoplankton biomass and community composition.
Collapse
Affiliation(s)
- Miriam Seifert
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Cara Nissen
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Björn Rost
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- FB2, Universität Bremen, Bremen, Germany
| | - Meike Vogt
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Christoph Völker
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Judith Hauck
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| |
Collapse
|
19
|
Pulina S, Satta CT. New Insights on Phytoplankton Morpho-Functional Traits. Microorganisms 2023; 11:1545. [PMID: 37375047 DOI: 10.3390/microorganisms11061545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The pelagic environment is characterized by a great spatial and temporal heterogeneity [...].
Collapse
Affiliation(s)
- Silvia Pulina
- Aquatic Ecology Group, Department of Architecture, Design and Urban Planning, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy
| | - Cecilia Teodora Satta
- Aquatic Ecology Group, Department of Architecture, Design and Urban Planning, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy
| |
Collapse
|
20
|
Huapaya K, Echeveste P. Physiological responses of Humboldt current system diatoms to Fe and Cu co-limitation. MARINE ENVIRONMENTAL RESEARCH 2023; 187:105937. [PMID: 36958199 DOI: 10.1016/j.marenvres.2023.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Diatoms account for ∼20% of global primary production, often limited by the availability of Fe and other trace nutrients such as Cu. The present study examined the role of both metals in the physiology of two diatoms isolated from the Humboldt Currents System, the centric Chaetoceros c.f. dicipiens and the pennate Nitzschia c.f. draveillensis. Under Fe limitation, a decrease in specific growth rates and sizes of both species was observed, especially in Chaetoceros. However, regarding different photosynthetic parameters, Nitzschia was more impacted. The increase in Cu concentrations improved the physiology of both diatoms, mostly of Chaetoceros. When grown in mixed cultures and under co-limiting conditions, both species remained competive due to morphological advantages (i.e., lower cell size). These results may suggest that the increase of Cu under Fe limitation benefited C. c.f. dicipiens over N. c.f. draveillensis.
Collapse
Affiliation(s)
- Katiuska Huapaya
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias Del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.
| | - Pedro Echeveste
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias Del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile; Instituto Milenio de Oceanografía, Chile
| |
Collapse
|
21
|
Rindi L, Benedetti-Cecchi L. Short-term stability of rocky intertidal biofilm to nitrogen and phosphorus pulses. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105795. [PMID: 36379170 DOI: 10.1016/j.marenvres.2022.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Coastal environments experience both natural and anthropogenic inputs of nitrogen (N) and phosphorus (P). Agricultural fertilisers, organic run-offs, and edaphic characteristics of coastal environments may generate mosaics of nutrient concentrations that ultimately influence the coastal primary productivity. Here, we experimentally assessed the effects of repeated pulses of N and P on multiple components of ecological stability (sensitivity, resilience, temporal stability and recovery) of phototrophic rocky intertidal biofilm. We performed a repeated-pulses factorial experiment crossing increasing N and P concentrations chosen to reflect a range of nutrient enrichment conditions, from oligotrophic to eutrophic. N and P, regardless of concentration or whether they occurred in isolation or combination, enhanced biofilm's sensitivity (increased biomass or physiological performance compared to controls) without altering resilience. Our experiment illustrates how the stability of an essential coastal primary producer responds to increasing N and P supply levels. Furthermore, notwithstanding the importance of decomposing the multiple dimensions of stability, the transitory increase of the sole sensitivity indicated that rocky shore biofilm is robust against a wide range of nutrient enrichment.
Collapse
Affiliation(s)
- L Rindi
- Department of Biology, University of Pisa, CoNISMa, Via Derna 1, Pisa, Italy.
| | - L Benedetti-Cecchi
- Department of Biology, University of Pisa, CoNISMa, Via Derna 1, Pisa, Italy
| |
Collapse
|
22
|
Liu L, Fan M, Kang Y. Effect of nutrient supply on cell size evolution of marine phytoplankton. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:4714-4740. [PMID: 36896519 DOI: 10.3934/mbe.2023218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The variation of nutrient supply not only leads to the differences in the phytoplankton biomass and primary productivity but also induces the long-term phenotypic evolution of phytoplankton. It is widely accepted that marine phytoplankton follows Bergmann's Rule and becomes smaller with climate warming. Compared with the direct effect of increasing temperature, the indirect effect via nutrient supply is considered to be an important and dominant factor in the reduction of phytoplankton cell size. In this paper, a size-dependent nutrient-phytoplankton model is developed to explore the effects of nutrient supply on the evolutionary dynamics of functional traits associated with phytoplankton size. The ecological reproductive index is introduced to investigate the impacts of input nitrogen concentration and vertical mixing rate on the persistence of phytoplankton and the distribution of cell size. In addition, by applying the adaptive dynamics theory, we study the relationship between nutrient input and the evolutionary dynamics of phytoplankton. The results show that input nitrogen concentration and vertical mixing rate have significant effects on the cell size evolution of phytoplankton. Specifically, cell size tends to increase with the input nutrient concentration, as does the diversity of cell sizes. In addition, a single-peaked relationship between vertical mixing rate and cell size is observed. When the vertical mixing rate is too low or too high, only small individuals are dominant in the water column. When the vertical mixing rate is moderate, large individuals can coexist with small individuals, so the diversity of phytoplankton is elevated. We predict that reduced intensity of nutrient input due to climate warming will lead to a trend towards smaller cell size and will reduce the diversity of phytoplankton.
Collapse
Affiliation(s)
- Lidan Liu
- School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin 130024, China
| | - Meng Fan
- School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yun Kang
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA
| |
Collapse
|
23
|
Quantitative Analysis of the Trade-Offs of Colony Formation for Trichodesmium. Microbiol Spectr 2022; 10:e0202522. [PMID: 36374046 PMCID: PMC9769814 DOI: 10.1128/spectrum.02025-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is considerable debate about the benefits and trade-offs for colony formation in a major marine nitrogen fixer, Trichodesmium. To quantitatively analyze the trade-offs, we developed a metabolic model based on carbon fluxes to compare the performance of Trichodesmium colonies and free trichomes under different scenarios. Despite reported reductions in carbon fixation and nitrogen fixation rates for colonies relative to free trichomes, we found that model colonies can outperform individual cells in several cases. The formation of colonies can be advantageous when respiration rates account for a high proportion of the carbon fixation rate. Negative external influence on vital rates, such as mortality due to predation or micronutrient limitations, can also create a net benefit for colony formation relative to individual cells. In contrast, free trichomes also outcompete colonies in many scenarios, such as when respiration rates are equal for both colonies and individual cells or when there is a net positive external influence on rate processes (i.e., optimal environmental conditions regarding light and temperature or high nutrient availability). For both colonies and free trichomes, an increase in carbon fixation relative to nitrogen fixation rates would increase their relative competitiveness. These findings suggest that the formation of colonies in Trichodesmium might be linked to specific environmental and ecological circumstances. Our results provide a road map for empirical studies and models to evaluate the conditions under which colony formation in marine phytoplankton can be sustained in the natural environment. IMPORTANCE Trichodesmium is a marine filamentous cyanobacterium that fixes nitrogen and is an important contributor to the global nitrogen cycle. In the natural environment, Trichodesmium can exist as individual cells (trichomes) or as colonies (puffs and tufts). In this paper, we try to answer a longstanding question in marine microbial ecology: how does colony formation benefit the survival of Trichodesmium? To answer this question, we developed a carbon flux model that utilizes existing published rates to evaluate whether and when colony formation can be sustained. Enhanced respiration rates, influential external factors such as environmental conditions and ecological interactions, and variable carbon and nitrogen fixation rates can all create scenarios for colony formation to be a viable strategy. Our results show that colony formation is an ecologically beneficial strategy under specific conditions, enabling Trichodesmium to be a globally significant organism.
Collapse
|
24
|
Sengupta A, Dhar J, Danza F, Ghoshal A, Müller S, Kakavand N. Active reconfiguration of cytoplasmic lipid droplets governs migration of nutrient-limited phytoplankton. SCIENCE ADVANCES 2022; 8:eabn6005. [PMID: 36332020 PMCID: PMC11633079 DOI: 10.1126/sciadv.abn6005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Nutrient availability, along with light and temperature, drives marine primary production. The ability to migrate vertically, a critical trait of motile phytoplankton, allows species to optimize nutrient uptake, storage, and growth. However, this traditional view discounts the possibility that migration in nutrient-limited waters may be actively modulated by the emergence of energy-storing organelles. Here, we report that bloom-forming raphidophytes harness energy-storing cytoplasmic lipid droplets (LDs) to biomechanically regulate vertical migration in nutrient-limited settings. LDs grow and translocate directionally within the cytoplasm, steering strain-specific shifts in the speed, trajectory, and stability of swimming cells. Nutrient reincorporation restores their swimming traits, mediated by an active reconfiguration of LD size and coordinates. A mathematical model of cell mechanics establishes the mechanistic coupling between intracellular changes and emergent migratory behavior. Amenable to the associated photophysiology, LD-governed behavioral shift highlights an exquisite microbial strategy toward niche expansion and resource optimization in nutrient-limited oceans.
Collapse
Affiliation(s)
- Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
| | - Jayabrata Dhar
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
| | - Francesco Danza
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
| | - Arkajyoti Ghoshal
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
| | - Sarah Müller
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
- Swiss Nanoscience lnstitute, University of Basel, 82, Klingelbergslrasse, 4056 Basel, Switzerland
| | - Narges Kakavand
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
| |
Collapse
|
25
|
Fernández-González C, Tarran GA, Schuback N, Woodward EMS, Arístegui J, Marañón E. Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic. Commun Biol 2022; 5:1035. [PMID: 36175608 PMCID: PMC9522883 DOI: 10.1038/s42003-022-03971-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Temperature and nutrient supply interactively control phytoplankton growth and productivity, yet the role of these drivers together still has not been determined experimentally over large spatial scales in the oligotrophic ocean. We conducted four microcosm experiments in the tropical and subtropical Atlantic (29°N-27°S) in which surface plankton assemblages were exposed to all combinations of three temperatures (in situ, 3 °C warming and 3 °C cooling) and two nutrient treatments (unamended and enrichment with nitrogen and phosphorus). We found that chlorophyll a concentration and the biomass of picophytoplankton consistently increase in response to nutrient addition, whereas changes in temperature have a smaller and more variable effect. Nutrient enrichment leads to increased picoeukaryote abundance, depressed Prochlorococcus abundance, and increased contribution of small nanophytoplankton to total biomass. Warming and nutrient addition synergistically stimulate light-harvesting capacity, and accordingly the largest biomass response is observed in the warmed, nutrient-enriched treatment at the warmest and least oligotrophic location (12.7°N). While moderate nutrient increases have a much larger impact than varying temperature upon the growth and community structure of tropical phytoplankton, ocean warming may increase their ability to exploit events of enhanced nutrient availability. Microcosm experiments in the tropical and subtropical Atlantic reveal consistent responses of phytoplankton to changing temperature and nutrient availability, with implications for the impacts of ocean warming in oligotrophic ecosystems.
Collapse
Affiliation(s)
- Cristina Fernández-González
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, Spain.,Centro de Investigacións Mariñas, Universidade de Vigo, Vigo, Spain
| | | | | | | | - Javier Arístegui
- Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Emilio Marañón
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, Spain. .,Centro de Investigacións Mariñas, Universidade de Vigo, Vigo, Spain.
| |
Collapse
|
26
|
Zhang M, Yang Z, Shi X, Yu Y. The synergistic effect of rising temperature and declining light boosts the dominance of bloom-forming cyanobacteria in spring. HARMFUL ALGAE 2022; 116:102252. [PMID: 35710204 DOI: 10.1016/j.hal.2022.102252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Global warming and eutrophication result in rising temperature and declining underwater light, respectively, which affect the shift of the phytoplankton community in spring. However, knowledge of how temperature and light synergistically impact phytoplankton community shifts and cyanobacterial dominance is limited. In this study, we performed a long-term data analysis and an outdoor mesocosm experiment to detect the synergistic effect of temperature and light on shift of phytoplankton community and dominance of bloom-forming cyanobacteria in Lake Taihu, China. The results showed that cyanobacterial biomass was boosted alone and jointly by increased temperature and decreased light levels (sunshine hours and light intensity), and the interaction might be more important than temperature or light levels independently. Chlorophyta biomass was driven by the joint effect of temperature and light levels. Bacillariophyta biomass was mainly affected by light levels, and decreased with declining light levels. Our results emphasize that the interactions of temperature and light have an important impact on the shift of the phytoplankton community in spring. Increasing temperature and declining underwater light boosted the flourishing of cyanobacteria, especially Microcystis, and were adverse to the development of diatoms in spring. Our findings contribute to an increased understanding of the effects of temperature and light on phytoplankton composition shifts and the development of cyanobacterial dominance in spring.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China.
| | - Zhen Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| | - Xiaoli Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| | - Yang Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; Jiangsu Key Laboratory for Eco-Agriculture Biotechnology Around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| |
Collapse
|
27
|
Phytoplankton Communities and Their Relationship with Environmental Factors in the Waters around Macau. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137788. [PMID: 35805446 PMCID: PMC9265806 DOI: 10.3390/ijerph19137788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
An investigation of the waters around Macau collected 43 phytoplankton species belonging to 29 genera and 5 phyla, including 32 species from 22 genera of Bacillariophyta, 7 species from 3 genera of Pyrrophyta, 2 species from 2 genera of Cyanophyta, and 1 genus and 1 species from both Euglenophyta and Chromophyta. The dominant phytoplankton species in the study areas were Skeletonema costatum (Greville) Cleve, Aulacoseira granulata (Ehrenberg) Simonsen, Thalassiothrix frauenfeidii Grunow, and Thalassionema nitzschioides Grunow. The phytoplankton abundance in the waters around Macau was between 46,607.14 and 1,355,000 cells/m3, with the highest abundance noted in station S8. Diatoms were the main contributor to phytoplankton abundance in station S8, accounting for 96.2% of the total abundance. Station S4 exhibited the lowest phytoplankton abundance of 46,607.1 cells/m3, with diatoms and Chromophytaaccounting for 58.6% and 29.9% of the total phytoplankton abundance, respectively. Biodiversity analysis results showed that the phytoplankton richness index was 1.18−3.61, the uniformity index was 0.24−0.78, and the Shannon−Wiener index was 0.94−3.41. Correlation analysis revealed that ammonia nitrogen was significantly negatively correlated with the phytoplankton richness, uniformity, and Shannon−Wiener indices. Nitrite nitrogen, nitrate nitrogen, inorganic nitrogen, salinity, turbidity, and pH were positively correlated with the phytoplankton evenness index and Shannon−Wiener index. Cluster and non-metric multidimensional scaling analyses demonstrated that the phytoplankton community structure in the waters around Macau could be divided into three groups, with A. granulata, S. costatum, T. frauenfeidii, T. nitzschioides, Chaetoceros curvisetus Cleve, and Chaetoceros diadema (Ehrenberg) Gran being predominant in different grouping communities (contribution% > 10%). Biota-Environment Stepwise Analysis (BIOENV) showed a significant correlation between the phytoplankton community and nitrite nitrogen content in the waters around Macau (correlation: 0.5544, Mantel test: statistic 0.4196, p = 0.009), which was consistent with the results of the canonical correspondence analysis.
Collapse
|
28
|
Bannon C, Rapp I, Bertrand EM. Community Interaction Co-limitation: Nutrient Limitation in a Marine Microbial Community Context. Front Microbiol 2022; 13:846890. [PMID: 35711751 PMCID: PMC9196195 DOI: 10.3389/fmicb.2022.846890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/29/2022] [Indexed: 11/20/2022] Open
Abstract
The simultaneous limitation of productivity by two or more nutrients, commonly referred to as nutrient co-limitation, affects microbial communities throughout the marine environment and is of profound importance because of its impacts on various biogeochemical cycles. Multiple types of co-limitation have been described, enabling distinctions based on the hypothesized mechanisms of co-limitation at a biochemical level. These definitions usually pertain to individuals and do not explicitly, or even implicitly, consider complex ecological dynamics found within a microbial community. However, limiting and co-limiting nutrients can be produced in situ by a subset of microbial community members, suggesting that interactions within communities can underpin co-limitation. To address this, we propose a new category of nutrient co-limitation, community interaction co-limitation (CIC). During CIC, one part of the community is limited by one nutrient, which results in the insufficient production or transformation of a biologically produced nutrient that is required by another part of the community, often primary producers. Using cobalamin (vitamin B12) and nitrogen fixation as our models, we outline three different ways CIC can arise based on current literature and discuss CIC's role in biogeochemical cycles. Accounting for the inherent and complex roles microbial community interactions play in generating this type of co-limitation requires an expanded toolset - beyond the traditional approaches used to identify and study other types of co-limitation. We propose incorporating processes and theories well-known in microbial ecology and evolution to provide meaningful insight into the controls of community-based feedback loops and mechanisms that give rise to CIC in the environment. Finally, we highlight the data gaps that limit our understanding of CIC mechanisms and suggest methods to overcome these and further identify causes and consequences of CIC. By providing this framework for understanding and identifying CIC, we enable systematic examination of the impacts this co-limitation can have on current and future marine biogeochemical processes.
Collapse
Affiliation(s)
- Catherine Bannon
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | - Insa Rapp
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Erin M. Bertrand
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
29
|
Reduced H + channel activity disrupts pH homeostasis and calcification in coccolithophores at low ocean pH. Proc Natl Acad Sci U S A 2022; 119:e2118009119. [PMID: 35522711 PMCID: PMC9171652 DOI: 10.1073/pnas.2118009119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coccolithophore calcification is a major ocean biogeochemical process. While this process is likely to be sensitive to acidification-driven changes in ocean carbonate chemistry, incomplete understanding of the underlying mechanisms and constraints is a major bottleneck in predicting ocean acidification effects on calcification. We report severe disruption of pH homeostasis linked to a loss of H+ channel function in the coccolithophore Coccolithus braarudii acclimated to seawater pH values that are likely to be encountered currently in localized regions and more widely in future oceans. This disruption leads to specific defects in coccolith morphology. These findings provide mechanistic insight into how calcification in different coccolithophores is affected by changes in seawater carbonate chemistry. Coccolithophores are major producers of ocean biogenic calcite, but this process is predicted to be negatively affected by future ocean acidification scenarios. Since coccolithophores calcify intracellularly, the mechanisms through which changes in seawater carbonate chemistry affect calcification remain unclear. Here we show that voltage-gated H+ channels in the plasma membrane of Coccolithus braarudii serve to regulate pH and maintain calcification under normal conditions but have greatly reduced activity in cells acclimated to low pH. This disrupts intracellular pH homeostasis and impairs the ability of C. braarudii to remove H+ generated by the calcification process, leading to specific coccolith malformations. These coccolith malformations can be reproduced by pharmacological inhibition of H+ channels. Heavily calcified coccolithophore species such as C. braarudii, which make the major contribution to carbonate export to the deep ocean, have a large intracellular H+ load and are likely to be most vulnerable to future decreases in ocean pH.
Collapse
|
30
|
Collins S, Whittaker H, Thomas MK. The need for unrealistic experiments in global change biology. Curr Opin Microbiol 2022; 68:102151. [PMID: 35525129 DOI: 10.1016/j.mib.2022.102151] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022]
Abstract
Climate change is an existential threat, and our ability to conduct experiments on how organisms will respond to it is limited by logistics and resources, making it vital that experiments be maximally useful. The majority of experiments on phytoplankton responses to warming and CO2 use only two levels of each driver. However, to project the characters of future populations, we need a mechanistic and generalisable explanation for how phytoplankton respond to concurrent changes in temperature and CO2. This requires experiments with more driver levels, to produce response surfaces that can aid in the development of predictive models. We recommend prioritising experiments or programmes that produce such response surfaces on multiple scales for phytoplankton.
Collapse
Affiliation(s)
- Sinéad Collins
- University of Edinburgh, Institute of Evolutionary Biology, The King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Harriet Whittaker
- University of Edinburgh, Institute of Evolutionary Biology, The King's Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Mridul K Thomas
- University of Geneva, Department F.-A. Forel for Environmental and Aquatic Sciences and Institute for Environmental Sciences, CH-1211 Geneva, Switzerland
| |
Collapse
|
31
|
Cabrerizo MJ, Medina-Sánchez JM, González-Olalla JM, Sánchez-Gómez D, Carrillo P. Microbial plankton responses to multiple environmental drivers in marine ecosystems with different phosphorus limitation degrees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151491. [PMID: 34752863 DOI: 10.1016/j.scitotenv.2021.151491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Multiple drivers are threatening the functioning of the microbial food webs and trophic interactions. Our understanding about how temperature, CO2, nutrient inputs, and solar ultraviolet radiation (UVR) availability interact to alter ecosystem functioning is scarce because research has focused on single and double interactions. Moreover, the role that the degree of in situ nutrient limitation could play in the outcome of these interactions has been largely neglected, despite it is predominant in marine ecosystems. We address these uncertainties by combining remote-sensing analyses, and a collapsed experimental design with natural microbial communities from Mediterranean Sea and Atlantic Ocean exposed to temperature, nutrients, CO2, and UVR interactions. At the decade scale, we found that more intense and frequent (and longer lasting) Saharan dust inputs (and marine heatwaves) were only coupled with reduced phytoplankton biomass production. When microbial communities were concurrently exposed to future temperature, CO2, nutrient, and UVR conditions (i.e. the drivers studied over long-term scales), we found shifts from net autotrophy [primary production:respiration (PP:R) ratio > 1] towards a metabolic equilibrium (PP:R ratio ~ 1) or even a net heterotrophy (PP:R ratio < 1), as P-limitation degree was higher (i.e. Atlantic Ocean). These changes in the metabolic balance were coupled with a weakened phytoplankton-bacteria interaction (i.e. bacterial carbon demand exceeded phytoplankton carbon supply. Our work reveals that an accentuated in situ P limitation may promote reductions both in carbon uptake and fluxes between trophic levels in microbial plankton communities under global-change conditions. We show that considering long-term series can aid in identifying major local environmental drivers (i.e. temperature and nutrients in our case), easing the design of future global-change studies, but also that the abiotic environment to which microbial plankton communities are acclimated should be taken into account to avoid biased predictions concerning the effects of multiple interacting global-change drivers on marine ecosystems.
Collapse
Affiliation(s)
- Marco J Cabrerizo
- Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidad de Vigo, Campus Lagoas Marcosende s/n, 36310 Vigo, Spain; Centro de Investigación Mariña, Universidad de Vigo (CIM-UVigo), Illa de Toralla s/n, 36331 Vigo, Spain; Departamento de Ecología, Universidad de Granada, Campus Fuentenueva s/n, 18071 Granada, Spain.
| | - Juan Manuel Medina-Sánchez
- Departamento de Ecología, Universidad de Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; Instituto Universitario de Investigación del Agua, C/Ramón y Cajal, n 4, 18071 Granada, Spain
| | | | - Daniel Sánchez-Gómez
- Instituto Universitario de Investigación del Agua, C/Ramón y Cajal, n 4, 18071 Granada, Spain
| | - Presentación Carrillo
- Instituto Universitario de Investigación del Agua, C/Ramón y Cajal, n 4, 18071 Granada, Spain
| |
Collapse
|
32
|
Schulhof MA, Van de Waal DB, Declerck SAJ, Shurin JB. Phytoplankton functional composition determines limitation by nutrients and grazers across a lake productivity gradient. Ecosphere 2022. [DOI: 10.1002/ecs2.4008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Marika A. Schulhof
- Division of Biological Sciences Section of Ecology, Behavior & Evolution, University of California San Diego La Jolla California USA
- Department of Aquatic Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Dedmer B. Van de Waal
- Department of Aquatic Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Steven A. J. Declerck
- Department of Aquatic Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
- Laboratory of Aquatic Ecology Evolution and Conservation, KU Leuven Leuven Belgium
| | - Jonathan B. Shurin
- Division of Biological Sciences Section of Ecology, Behavior & Evolution, University of California San Diego La Jolla California USA
| |
Collapse
|
33
|
Evolution of Phytoplankton as Estimated from Genetic Diversity. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10040456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phytoplankton are photosynthetic, single-celled organisms producing almost half of all oxygen on Earth and play a central role as prey for higher organisms, making them irreplaceable in the marine food web. As Global Change proceeds, imposing rapidly intensifying selection pressures, phytoplankton are forced to undergo evolution, local extinction, or redistribution, with potentially cascading effects throughout the marine ecosystem. Recent results from the field of population genetics display high levels of standing genetic diversity in natural phytoplankton populations, providing ample ‘evolutionary options’ and implying high adaptive potential to changing conditions. This potential for adaptive evolution is realized in several studies of experimental evolution, even though most of these studies investigate the evolution of only single strains. This, however, shows that phytoplankton not only evolve from standing genetic diversity, but also rely on de novo mutations. Recent global sampling campaigns show that the immense intraspecific diversity of phytoplankton in the marine ecosystem has been significantly underestimated, meaning we are only studying a minor portion of the relevant variability in the context of Global Change and evolution. An increased understanding of genomic diversity is primarily hampered by the low number of ecologically representative reference genomes of eukaryotic phytoplankton and the functional annotation of these. However, emerging technologies relying on metagenome and transcriptome data may offer a more realistic understanding of phytoplankton diversity.
Collapse
|
34
|
Hamer J, Matthiessen B, Pulina S, Hattich GSI. Maintenance of Intraspecific Diversity in Response to Species Competition and Nutrient Fluctuations. Microorganisms 2022; 10:113. [PMID: 35056562 PMCID: PMC8779635 DOI: 10.3390/microorganisms10010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/10/2022] Open
Abstract
Intraspecific diversity is a substantial part of biodiversity, yet little is known about its maintenance. Understanding mechanisms of intraspecific diversity shifts provides realistic detail about how phytoplankton communities evolve to new environmental conditions, a process especially important in times of climate change. Here, we aimed to identify factors that maintain genotype diversity and link the observed diversity change to measured phytoplankton morpho-functional traits Vmax and cell size of the species and genotypes. In an experimental setup, the two phytoplankton species Emiliania huxleyi and Chaetoceros affinis, each consisting of nine genotypes, were cultivated separately and together under different fluctuation and nutrient regimes. Their genotype composition was assessed after 49 and 91 days, and Shannon's diversity index was calculated on the genotype level. We found that a higher intraspecific diversity can be maintained in the presence of a competitor, provided it has a substantial proportion to total biovolume. Both fluctuation and nutrient regime showed species-specific effects and especially structured genotype sorting of C. affinis. While we could relate species sorting with the measured traits, genotype diversity shifts could only be partly explained. The observed context dependency of genotype maintenance suggests that the evolutionary potential could be better understood, if studied in more natural settings including fluctuations and competition.
Collapse
Affiliation(s)
- Jorin Hamer
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany; (B.M.); (G.S.I.H.)
| | - Birte Matthiessen
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany; (B.M.); (G.S.I.H.)
| | - Silvia Pulina
- Aquatic Ecology Group, Department of Architecture, Design and Urban Planning, University of Sassari, 07100 Sassari, Italy;
| | - Giannina S. I. Hattich
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany; (B.M.); (G.S.I.H.)
- Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
35
|
Aluru N, Fields DM, Shema S, Skiftesvik AB, Browman HI. Gene expression and epigenetic responses of the marine Cladoceran, Evadne nordmanni, and the copepod, Acartia clausi, to elevated CO 2. Ecol Evol 2021; 11:16776-16785. [PMID: 34938472 PMCID: PMC8668794 DOI: 10.1002/ece3.8309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/10/2022] Open
Abstract
Characterizing the capacity of marine organisms to adapt to climate change related drivers (e.g., pCO2 and temperature), and the possible rate of this adaptation, is required to assess their resilience (or lack thereof) to these drivers. Several studies have hypothesized that epigenetic markers such as DNA methylation, histone modifications and noncoding RNAs, act as drivers of adaptation in marine organisms, especially corals. However, this hypothesis has not been tested in zooplankton, a keystone organism in marine food webs. The objective of this study is to test the hypothesis that acute ocean acidification (OA) exposure alters DNA methylation in two zooplanktonic species-copepods (Acartia clausii) and cladocerans (Evadne nordmanii). We exposed these two species to near-future OA conditions (400 and 900 ppm pCO2) for 24 h and assessed transcriptional and DNA methylation patterns using RNA sequencing and Reduced Representation Bisulfite Sequencing (RRBS). OA exposure caused differential expression of genes associated with energy metabolism, cytoskeletal and extracellular matrix functions, hypoxia and one-carbon metabolism. Similarly, OA exposure also caused altered DNA methylation patterns in both species but the effect of these changes on gene expression and physiological effects remains to be determined. The results from this study form the basis for studies investigating the potential role of epigenetic mechanisms in OA induced phenotypic plasticity and/or adaptive responses in zooplanktonic organisms.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | | | - Steven Shema
- Institute of Marine ResearchAustevoll Research Station, Ecosystem Acoustics GroupStorebøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine ResearchAustevoll Research Station, Ecosystem Acoustics GroupStorebøNorway
| | - Howard I. Browman
- Institute of Marine ResearchAustevoll Research Station, Ecosystem Acoustics GroupStorebøNorway
| |
Collapse
|
36
|
Sill SR, Dawson TP. Climate change impacts on the ecological dynamics of two coral reef species, the humphead wrasse (Cheilinus undulatus) and crown-of-thorns starfish (Ancanthaster planci). ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Tang Y, Chen C, Sheng Y, Ding P, Wu X, Beardall J, Wu Y. The inhibitory effects of the antifouling compound Irgarol 1051 on the marine diatom Skeletonema sp. across a broad range of photosynthetically active radiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48535-48542. [PMID: 33909247 DOI: 10.1007/s11356-021-14135-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The release of anthropogenic organic pollutants has resulted in extensive environmental risks to coastal waters. Among pollutants released, the most common antifoulant, Irgarol 1051, is an effective inhibitor of photosystem II of photoautotrophs; thus, the continuous release of this compound into surrounding seawater would potentially threaten marine algae. To investigate this, we grew the model marine diatom Skeletonema sp. at different concentrations of Irgarol 1051 and levels of photosynthetically active radiation (PAR). Irgarol did not affect the photochemical capacity when cells were incubated in the dark, but photochemical yields all significantly decreased, and relative inhibition by Irgarol increased once cells were exposed to even the lowest PAR, with lower photochemical yields observed under increased level of Irgarol. In addition, the rate of decrease in yield increased with Irgarol concentration but was unchanged among PAR treatments. The growth rates showed a similar pattern to photochemical yields, with lower values under higher Irgarol concentrations, but with no significant differences in the effect of Irgarol observed between the light levels employed. The ratio of repair to damage rates of PSII clearly shows that this ratio decreased with light intensity, largely due to increases in damage rates and that the PAR level at which repair balanced damage decreased under a high level of Irgarol. Our results suggest that the inhibitory effects of Irgarol become obvious after PAR exposure even at a relatively low light level, suggesting that Irgarol would affect phytoplankton throughout the daytime, and may therefore have a broad environmental risk, potentially limiting coastal primary production.
Collapse
Affiliation(s)
- Yao Tang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Cheng Chen
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yangjie Sheng
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Peijian Ding
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinyu Wu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Yaping Wu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
38
|
Citizens and scientists collect comparable oceanographic data: measurements of ocean transparency from the Secchi Disk study and science programmes. Sci Rep 2021; 11:15499. [PMID: 34326437 PMCID: PMC8322096 DOI: 10.1038/s41598-021-95029-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Marine phytoplankton accounts for approximately 50% of all photosynthesis on Earth, underpins the marine food chain and plays a central role in the Earth’s biogeochemical cycles and climate. In situ measurements of ocean transparency can be used to estimate phytoplankton biomass. The scale and challenging conditions of the ocean make it a difficult environment for in situ studies, however. Here, we show that citizen scientists (seafarers) using a simple white Secchi Disk can collect ocean transparency data to complement formal scientific efforts using similar equipment. Citizen scientist data can therefore help understand current climate-driven changes in phytoplankton biomass at a global scale.
Collapse
|
39
|
Cabrerizo MJ, Marañón E. Temperature fluctuations in a warmer environment: impacts on microbial plankton. Fac Rev 2021; 10:9. [PMID: 33659927 PMCID: PMC7894268 DOI: 10.12703/r/10-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Warming can cause changes in the structure and functioning of microbial food webs. Experimental studies quantifying such impacts on microbial plankton have tended to consider constant temperature conditions. However, Jensen's inequality (or the fallacy of the average) recognizes that organism performance under constant conditions is seldom equal to the mean performance under variable conditions, highlighting the need to consider in situ fluctuations over a range of time scales. Here we review some of the available evidence on how warming effects on the abundance, diversity, and metabolism of microbial plankton are altered when temperature fluctuations are considered. We found that fluctuating temperatures may accentuate warming-mediated reductions in phytoplankton evenness and gross photosynthesis while synergistically increasing phytoplankton growth. Also, fluctuating temperatures have been shown to reduce the positive warming effect on cyanobacterial biomass production and recruitment and to reverse a warming effect on cellular nutrient quotas. Other reports have shown that fluctuations in temperature did not alter plankton responses to constant warming. These investigations have mostly focused on a few phytoplankton species (i.e. diatoms and haptophytes) in temperate and marine ecosystems and considered short-term and transient responses. It remains unknown whether the same responses apply to other species and ecosystems and if evolutionary change in thermally varying environments could alter the magnitude and direction of the responses to warming observed over short-term scales. Thus, future research efforts should address the role of fluctuations in environmental drivers. We stress the need to study responses over different biological organization and trophic levels, nutritional modes, temporal scales, and ecosystem types.
Collapse
Affiliation(s)
- Marco J Cabrerizo
- Departamento de Ecología y Biología Animal, Universidade de Vigo, Facultad de Ciencias del Mar, Campus Lagoas Marcosende s/n, 36310 Vigo, Spain
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, 36331, Vigo, Spain
| | - Emilio Marañón
- Departamento de Ecología y Biología Animal, Universidade de Vigo, Facultad de Ciencias del Mar, Campus Lagoas Marcosende s/n, 36310 Vigo, Spain
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, 36331, Vigo, Spain
| |
Collapse
|
40
|
Brandenburg KM, Krock B, Klip HCL, Sluijs A, Garbeva P, Van de Waal DB. Intraspecific variation in multiple trait responses of Alexandrium ostenfeldii towards elevated pCO 2. HARMFUL ALGAE 2021; 101:101970. [PMID: 33526186 DOI: 10.1016/j.hal.2020.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Dissolved oceanic CO2 concentrations are rising as result of increasing atmospheric partial pressure of CO2 (pCO2), which has large consequences for phytoplankton. To test how higher CO2 availability affects different traits of the toxic dinoflagellate Alexandrium ostenfeldii, we exposed three strains of the same population to 400 and 1,000 µatm CO2, and measured traits including growth rate, cell volume, elemental composition, 13C fractionation, toxin content, and volatile organic compounds (VOCs). Strains largely increased their growth rates and particulate organic carbon and nitrogen production with higher pCO2 and showed significant changes in their VOC profile. One strain showed a significant decrease in both PSP and cyclic imine content and thereby in cellular toxicity. Fractionation against 13C increased in response to elevated pCO2, which may point towards enhanced CO2 acquisition and/or a downscaling of the carbon concentrating mechanisms. Besides consistent responses in some traits, other traits showed large variation in both direction and strength of responses towards elevated pCO2. The observed intraspecific variation in phenotypic plasticity of important functional traits within the same population may help A. ostenfeldii to negate the effects of immediate environmental fluctuations and allow populations to adapt more quickly to changing environments.
Collapse
Affiliation(s)
- Karen M Brandenburg
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, Netherlands.
| | - Bernd Krock
- Section Ecological Chemistry, Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Helena C L Klip
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, Netherlands; Section Shelf Sea System Ecology, Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung (AWI), Biologische Anstalt Helgoland (BAH), Kurpromenade 201, 27498 Helgoland, Germany
| | - Appy Sluijs
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708PB Wageningen, Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, Netherlands
| |
Collapse
|
41
|
Seifert M, Rost B, Trimborn S, Hauck J. Meta-analysis of multiple driver effects on marine phytoplankton highlights modulating role of pCO 2. GLOBAL CHANGE BIOLOGY 2020; 26:6787-6804. [PMID: 32905664 DOI: 10.1111/gcb.15341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Responses of marine primary production to a changing climate are determined by a concert of multiple environmental changes, for example in temperature, light, pCO2 , nutrients, and grazing. To make robust projections of future global marine primary production, it is crucial to understand multiple driver effects on phytoplankton. This meta-analysis quantifies individual and interactive effects of dual driver combinations on marine phytoplankton growth rates. Almost 50% of the single-species laboratory studies were excluded because central data and metadata (growth rates, carbonate system, experimental treatments) were insufficiently reported. The remaining data (42 studies) allowed for the analysis of interactions of pCO2 with temperature, light, and nutrients, respectively. Growth rates mostly respond non-additively, whereby the interaction with increased pCO2 profusely dampens growth-enhancing effects of high temperature and high light. Multiple and single driver effects on coccolithophores differ from other phytoplankton groups, especially in their high sensitivity to increasing pCO2 . Polar species decrease their growth rate in response to high pCO2 , while temperate and tropical species benefit under these conditions. Based on the observed interactions and projected changes, we anticipate primary productivity to: (a) first increase but eventually decrease in the Arctic Ocean once nutrient limitation outweighs the benefits of higher light availability; (b) decrease in the tropics and mid-latitudes due to intensifying nutrient limitation, possibly amplified by elevated pCO2 ; and (c) increase in the Southern Ocean in view of higher nutrient availability and synergistic interaction with increasing pCO2 . Growth-enhancing effect of high light and warming to coccolithophores, mainly Emiliania huxleyi, might increase their relative abundance as long as not offset by acidification. Dinoflagellates are expected to increase their relative abundance due to their positive growth response to increasing pCO2 and light levels. Our analysis reveals gaps in the knowledge on multiple driver responses and provides recommendations for future work on phytoplankton.
Collapse
Affiliation(s)
- Miriam Seifert
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Björn Rost
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- Universität Bremen, Bremen, Germany
| | - Scarlett Trimborn
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- Universität Bremen, Bremen, Germany
| | - Judith Hauck
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| |
Collapse
|
42
|
Multiple interacting environmental drivers reduce the impact of solar UVR on primary productivity in Mediterranean lakes. Sci Rep 2020; 10:19812. [PMID: 33188224 PMCID: PMC7666193 DOI: 10.1038/s41598-020-76237-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/23/2020] [Indexed: 11/25/2022] Open
Abstract
Increases in rainfall, continental runoff, and atmospheric dust deposition are reducing water transparency in lakes worldwide (i.e. higher attenuation Kd). Also, ongoing alterations in multiple environmental drivers due to global change are unpredictably impacting phytoplankton responses and lakes functioning. Although both issues demand urgent research, it remains untested how the interplay between Kd and multiple interacting drivers affect primary productivity (Pc). We manipulated four environmental drivers in an in situ experiment—quality of solar ultraviolet radiation (UVR), nutrient concentration (Nut), CO2 partial pressure (CO2), and light regime (Mix)—to determine how the Pc of nine freshwater phytoplankton communities, found along a Kd gradient in Mediterranean ecosystems, changed as the number of interacting drivers increased. Our findings indicated that UVR was the dominant driver, its effect being between 3–60 times stronger, on average, than that of any other driver tested. Also, UVR had the largest difference in driver magnitude of all the treatments tested. A future UVR × CO2 × Mix × Nut scenario exerted a more inhibitory effect on Pc as the water column became darker. However, the magnitude of this synergistic effect was 40–60% lower than that exerted by double and triple interactions and by UVR acting independently. These results illustrate that although future global-change conditions could reduce Pc in Mediterranean lakes, multiple interacting drivers can temper the impact of a severely detrimental driver (i.e. UVR), particularly as the water column darkens.
Collapse
|
43
|
Prosser JI, Martiny JBH. Conceptual challenges in microbial community ecology. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190241. [PMID: 32200750 DOI: 10.1098/rstb.2019.0241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- James I Prosser
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
| | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|