1
|
Bale NJ, Koenen M, Ding S, Sinninghe Damsté JS. N-glyceroyl alkylamine phosphoglycolipids dominate the lipidome of several Bacillota bacteria. Syst Appl Microbiol 2025; 48:126609. [PMID: 40339506 DOI: 10.1016/j.syapm.2025.126609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
Elucidation of the membrane lipid composition of bacteria can help to better understand how bacterial cells interact with their surroundings, adapt to environmental stress, and resist antimicrobial agents. Here we describe for the first time the detection of a wide array of N-glyceroyl alkylamine phosphoglycolipids (NGAPs) in a range of Bacillota bacteria (formerly Firmicutes). Bacillota includes a diverse range of bacteria that are typically highly resistant to harsh conditions such as heat, radiation, and pH, allowing the bacteria to survive in unfavorable environments. In 9 out 18 investigated strains of Bacillota, spread across 5 orders (Thermoanaerobacterales, Thermosediminibacterales, Eubacteriales, Halanaerobiales, and Sulfobacillia) mild acid hydrolysis released N-glyceroyl alkylamines (NGAs), which were detectable by gas chromatography-mass spectrometry (GC-MS) during routine fatty acid analysis. One strain, Moorella thermoacetica was found to produce long-chain NGAs (C30-C32), which are postulated to have isodiabolic acid-like structures. A wide variety of intact polar NGAPs were identified using ultra-high pressure liquid chromatography high resolution multi-stage mass spectrometry (UHPLC-HRMSn). These include many previously undescribed lipids with a variety of sugar moieties and glycerol-bound core lipid moieties, including ether-bound components and alkyl 1,2-diols. The NGAPs constituted the majority of the intact polar lipid composition of these strains and presumably contribute to their tough cell membranes. The presence of NGAs in Bacillota appears to be associated with thermophilia. Both the hydrolysis-derived NGAs and intact polar NGAPs have potential to be biomarkers for extremophilic and, in particular, thermophilic bacteria.
Collapse
Affiliation(s)
- Nicole J Bale
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, the Netherlands.
| | - Michel Koenen
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, the Netherlands
| | - Su Ding
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, the Netherlands
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, the Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Morono Y, Wishart JR, Ito M, Ijiri A, Hoshino T, Torres M, Verba C, Terada T, Inagaki F, Colwell FS. Microbial Metabolism and Community Dynamics in Hydraulic Fracturing Fluids Recovered From Deep Hydrocarbon-Rich Shale. Front Microbiol 2019; 10:376. [PMID: 30915042 PMCID: PMC6422894 DOI: 10.3389/fmicb.2019.00376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/13/2019] [Indexed: 11/29/2022] Open
Abstract
Hydraulic fracturing is a prominent method of natural gas production that uses injected, high-pressure fluids to fracture low permeability, hydrocarbon rich strata such as shale. Upon completion of a well, the fluid returns to the surface (produced water) and contains natural gas, subsurface constituents, and microorganisms (Barbot et al., 2013; Daly et al., 2016). While the microbial community of the produced fluids has been studied in multiple gas wells, the activity of these microorganisms and their relation to biogeochemical activity is not well understood. In this experiment, we supplemented produced fluid with 13C-labeled carbon sources (glucose, acetate, bicarbonate, methanol, or methane), and 15N-labeled ammonium chloride in order to isotopically trace microbial activity over multiple day in anoxic incubations. Nanoscale secondary ion mass spectrometry (NanoSIMS) was used to generate isotopic images of 13C and 15N incorporation in individual cells, while isotope ratio monitoring–gas chromatography–mass spectrometry (IRM–GC–MS) was used to measure 13CO2, and 13CH4 as metabolic byproducts. Glucose, acetate, and methanol were all assimilated by microorganisms under anoxic conditions. 13CO2 production was only observed with glucose as a substrate indicating that catabolic activity was limited to this condition. The microbial communities observed at 0, 19, and 32 days of incubation did not vary between different carbon sources, were low in diversity, and composed primarily of the class Clostridia. The primary genera detected in the incubations, Halanaerobium and Fusibacter, are known to be adapted to harsh physical and chemical conditions consistent with those that occur in the hydrofracturing environment. This study provides evidence that microorganisms in produced fluid are revivable in laboratory incubations and retained the ability to metabolize added carbon and nitrogen substrates.
Collapse
Affiliation(s)
- Yuki Morono
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Jessie R Wishart
- National Energy Technology Laboratory, United States Department of Energy, Albany, OR, United States
| | - Motoo Ito
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Akira Ijiri
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Marta Torres
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - Circe Verba
- National Energy Technology Laboratory, United States Department of Energy, Albany, OR, United States
| | | | - Fumio Inagaki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan.,Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| | - Frederick S Colwell
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
3
|
Lee HW, Choi YJ, Hwang IM, Hong SW, Lee MA. Relationship between chemical characteristics and bacterial community of a Korean salted-fermented anchovy sauce, Myeolchi-Aekjeot. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Harrison JP, Dobinson L, Freeman K, McKenzie R, Wyllie D, Nixon SL, Cockell CS. Aerobically respiring prokaryotic strains exhibit a broader temperature-pH-salinity space for cell division than anaerobically respiring and fermentative strains. J R Soc Interface 2016; 12:0658. [PMID: 26354829 DOI: 10.1098/rsif.2015.0658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division.
Collapse
Affiliation(s)
- Jesse P Harrison
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK
| | - Luke Dobinson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK
| | - Kenneth Freeman
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK
| | - Ross McKenzie
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK
| | - Dale Wyllie
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK
| | - Sophie L Nixon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Edinburgh EH9 3FD, UK
| |
Collapse
|
5
|
Stevenson A, Cray JA, Williams JP, Santos R, Sahay R, Neuenkirchen N, McClure CD, Grant IR, Houghton JDR, Quinn JP, Timson DJ, Patil SV, Singhal RS, Antón J, Dijksterhuis J, Hocking AD, Lievens B, Rangel DEN, Voytek MA, Gunde-Cimerman N, Oren A, Timmis KN, McGenity TJ, Hallsworth JE. Is there a common water-activity limit for the three domains of life? THE ISME JOURNAL 2015; 9:1333-51. [PMID: 25500507 PMCID: PMC4438321 DOI: 10.1038/ismej.2014.219] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/07/2014] [Accepted: 10/16/2014] [Indexed: 01/09/2023]
Abstract
Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (a(w)) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650-0.605 a(w). Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 a(w)). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 aw for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (∼0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 a(w) for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life.
Collapse
Affiliation(s)
- Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jonathan A Cray
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jim P Williams
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ricardo Santos
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
- Laboratório de Análises, Instituto Superior Técnico, Lisboa, Portugal
| | - Richa Sahay
- University of Essex, School of Biological Sciences, Colchester, Essex, UK
| | - Nils Neuenkirchen
- University of Essex, School of Biological Sciences, Colchester, Essex, UK
| | - Colin D McClure
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Irene R Grant
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jonathan DR Houghton
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - John P Quinn
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - David J Timson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Satish V Patil
- School of Life Sciences, North Maharashtra University, Jalgaon, Maharashtra, India
| | - Rekha S Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Josefa Antón
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | | | - Ailsa D Hocking
- CSIRO Food and Nutrition, North Ryde, New South Wales, Australia
| | - Bart Lievens
- Microbial Ecology and Biorational Control, Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Drauzio E N Rangel
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | | | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Aharon Oren
- Hebrew University of Jerusalem, Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
| | - Kenneth N Timmis
- University of Essex, School of Biological Sciences, Colchester, Essex, UK
- Institute of Microbiology, Technical University Braunschweig, Braunschweig, Germany
| | - Terry J McGenity
- University of Essex, School of Biological Sciences, Colchester, Essex, UK
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, Northern Ireland, UK
- University of Essex, School of Biological Sciences, Colchester, Essex, UK
| |
Collapse
|
6
|
Ben Abdallah M, Karray F, Mhiri N, Cayol JL, Tholozan JL, Alazard D, Sayadi S. Characterization of Sporohalobacter salinus sp. nov., an anaerobic, halophilic, fermentative bacterium isolated from a hypersaline lake. Int J Syst Evol Microbiol 2015; 65:543-548. [DOI: 10.1099/ijs.0.066845-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Halophilic, obligately anaerobic, Gram-stain-negative bacterial strains were isolated from a sediment sample taken from under the salt crust of El-Jerid hypersaline lake in southern Tunisia by using tryptone or glucose as the substrate. One strain, CEJFT1BT, was characterized phenotypically and phylogenetically. Cells were non-motile, non-spore-forming, short rods. Strain CEJFT1BT was able to grow in the presence of 5–30 % (w/v) NaCl (optimum 20 %) and at 30–60 °C (optimum 45 °C). It grew at pH 5.5–7.8 and the optimum pH for growth was 6.8. The isolate required yeast extract for growth. Substrates utilized by strain CEJFT1BT as the sole carbon source included glucose, fructose, sucrose, pyruvate, Casamino acids and starch. Individual amino acids such as glutamate, lysine, methionine, serine, tyrosine, and amino acid mixtures formed by the Stickland reaction such as alanine-glycine, valine-proline, leucine-proline, isoleucine-proline were also utilized. Products of glucose fermentation were acetate (major product), butyrate, H2 and CO2. The genomic DNA G+C content of strain CEJFT1BT was 32.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CEJFT1BT should be assigned to the genus
Sporohalobacter
. The sequence similarity between strain CEJFT1BT and
Sporohalobacter lortetii
was 98.5 %, but DNA–DNA hybridization between the two strains revealed a relatedness value of 56.4 %, indicating that they are not related at the species level. The combination of phylogenetic analysis, DNA–DNA hybridization data, and differences in substrate utilization support the view that strain CEJFT1BT represents a novel species of the genus
Sporohalobacter
, for which the name Sporohalobacter salinus sp. nov. is proposed. The type strain is CEJFT1BT ( = DSM 26781T = JCM 19279T).
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratoire des Bio-Procédés Environnementaux, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax, Tunisia
- IRD, Aix-Marseille Université, Université de Toulon, CNRS, MIO, UM 110, 13288 Marseille cedex 09, France
| | - Fatma Karray
- Laboratoire des Bio-Procédés Environnementaux, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Najla Mhiri
- Laboratoire des Bio-Procédés Environnementaux, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Jean-Luc Cayol
- IRD, Aix-Marseille Université, Université de Toulon, CNRS, MIO, UM 110, 13288 Marseille cedex 09, France
| | - Jean-Luc Tholozan
- IRD, Aix-Marseille Université, Université de Toulon, CNRS, MIO, UM 110, 13288 Marseille cedex 09, France
| | - Didier Alazard
- Laboratoire des Bio-Procédés Environnementaux, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax, Tunisia
- IRD, Aix-Marseille Université, Université de Toulon, CNRS, MIO, UM 110, 13288 Marseille cedex 09, France
| | - Sami Sayadi
- Laboratoire des Bio-Procédés Environnementaux, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax, Tunisia
| |
Collapse
|
7
|
Stevenson A, Hallsworth JE. Water and temperature relations of soil Actinobacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:744-55. [PMID: 25132485 DOI: 10.1111/1758-2229.12199] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/31/2014] [Indexed: 05/22/2023]
Abstract
Actinobacteria perform essential functions within soils, and are dependent on available water to do so. We determined the water-activity (aw ) limits for cell division of Streptomyces albidoflavus, Streptomyces rectiviolaceus, Micromonospora grisea and Micromonospora (JCM 3050) over a range of temperatures, using culture media supplemented with a biologically permissive solute (glycerol). Each species grew optimally at 0.998 aw (control; no added glycerol) and growth rates were near-optimal in the range 0.971-0.974 (1 M glycerol) at permissive temperatures. Each was capable of cell division at 0.916-0.924 aw (2 M glycerol), but only S. albidoflavus grew at 0.895 or 0.897 aw (3 M glycerol, at 30 and 37°C respectively). For S. albidoflavus, however, no growth occurred on media at ≤ 0.870 (4 M glycerol) during the 40-day assessment period, regardless of temperature, and a theoretical limit of 0.877 aw was derived by extrapolation of growth curves. This level of solute tolerance is high for non-halophilic bacteria, but is consistent with reported limits for the growth and metabolic activities of soil microbes. The limit, within the range 0.895-0.870 aw , is very much inferior to those for obligately halophilic bacteria and extremely halophilic or xerophilic fungi, and is inconsistent with earlier reports of cell division at 0.500 aw . These findings are discussed in relation to planetary protection policy for space exploration and the microbiology of arid soils.
Collapse
Affiliation(s)
- Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, UK
| | | |
Collapse
|
8
|
Kim MS, Park EJ. Bacterial Communities of Traditional Salted and Fermented Seafoods from Jeju Island of Korea Using 16S rRNA Gene Clone Library Analysis. J Food Sci 2014; 79:M927-34. [DOI: 10.1111/1750-3841.12431] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 02/04/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Min-Soo Kim
- Dept. of Life and Nanopharmaceutical Sciences and Dept. of Biology; Kyung Hee Univ; 1 Hoegi-dong, Dongdaemun-gu Seoul 130-701 Republic of Korea
| | - Eun-Jin Park
- Dept. of Food Bioengineering; Jeju Natl. Univ; Jeju 690-756 Republic of Korea
| |
Collapse
|
9
|
Halanaerobium sehlinense sp. nov., an extremely halophilic, fermentative, strictly anaerobic bacterium from sediments of the hypersaline lake Sehline Sebkha. Int J Syst Evol Microbiol 2013; 63:2069-2074. [DOI: 10.1099/ijs.0.040139-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic, extremely halophilic, Gram-positive, rod-shaped bacterium was isolated from the hypersaline (>20 % NaCl) surface sediments of Sehline Sebkha in Tunisia. The strain, designated 1SehelT, was strictly halophilic and proliferated at NaCl concentrations of between 5 % and 30 % (saturation), with optimal growth at 20 % NaCl. Strain 1SehelT was non-spore-forming, non-motile, appearing singly or in pairs, or occasionally as long chains and measured 0.5–0.8 µm by 3–10 µm. Strain 1SehelT grew optimally at pH values of 7.4 but had a very broad pH range for growth (pH 5.2–9.4). It grew at temperatures between 20 and 50 °C with an optimum at 43 °C. Strain 1SehelT required yeast extract for growth. The isolate fermented glucose, galactose, fructose, glycerol, mannose, maltose, ribose, pyruvate and sucrose. The fermentation products from glucose utilization were lactate, acetate, formate, ethanol, CO2 and H2. The G+C ratio of the DNA was 32.7 mol%. The major fatty acids were C15 : 1ω6c/7c, C16 : 1ω7c, C16 : 0 and C15 : 0. On the basis of phylogenetic and physiological properties, strain 1SehelT ( = DSM 25582T = JCM 18213T) is proposed as the type strain of Halanaerobium sehlinense sp. nov., within the family
Halanaerobiaceae
.
Collapse
|
10
|
Jung JY, Lee SH, Lee HJ, Jeon CO. Microbial succession and metabolite changes during fermentation of saeu-jeot: traditional Korean salted seafood. Food Microbiol 2013; 34:360-8. [PMID: 23541203 DOI: 10.1016/j.fm.2013.01.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/02/2013] [Accepted: 01/16/2013] [Indexed: 01/13/2023]
Abstract
Saeu-jeot is made by the fermentation of highly salted [approximately 25% (w/v)] shrimp in Korea. Saeu-jeot samples were prepared in triplicate and their cell number, bacterial community, and metabolites were monitored periodically for 183 days. Quantitative PCR showed that bacterial populations were much more abundant than archaeal populations during the entire saeu-jeot fermentation period, which suggested that bacterial populations, not archaeal populations, might be primarily responsible for saeu-jeot fermentation. Pyrosequencing analysis revealed that Proteobacteria were dramatically replaced with halophilic Firmicutes as the fermentation progressed and members of Pseudoalteromonas, Staphylococcus, Salimicrobium, and Alkalibacillus were sequentially dominant and, eventually, Halanaerobium predominated after 66 days of fermentation. Halophilic archaeal genera, Halorubrum, Halolamina, Halobacterium, Haloarcula, and Haloplanus belonging to Euryarchaeota, were dominant, but their communities were relatively constant over the entire fermentation period. Metabolite analysis using a (1)H NMR spectroscopy showed that the amount of metabolites including amino acids, glycerol, and nitrogen compounds rapidly increased during the early fermentation stage, but their levels were relatively constant or they decreased after approximately 49 days of fermentation. A statistical analysis based on bacterial communities and metabolites demonstrated that members of Halanaerobium might be responsible for the production of acetate, butyrate, and methylamines after 66 days of fermentation, which could be considered as a potential indicator to decide the appropriate seafood fermentation time. This study will provide insights into the microbial succession and metabolites of fermented seafood and allow for a greater understanding of the relationships between the microbial community and metabolites in seafood fermentation.
Collapse
Affiliation(s)
- Ji Young Jung
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| | | | | | | |
Collapse
|
11
|
Rittmann S, Herwig C. A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact 2012; 11:115. [PMID: 22925149 PMCID: PMC3443015 DOI: 10.1186/1475-2859-11-115] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/03/2012] [Indexed: 01/25/2023] Open
Abstract
Biohydrogen production (BHP) can be achieved by direct or indirect biophotolysis, photo-fermentation and dark fermentation, whereof only the latter does not require the input of light energy. Our motivation to compile this review was to quantify and comprehensively report strains and process performance of dark fermentative BHP. This review summarizes the work done on pure and defined co-culture dark fermentative BHP since the year 1901. Qualitative growth characteristics and quantitative normalized results of H2 production for more than 2000 conditions are presented in a normalized and therefore comparable format to the scientific community.Statistically based evidence shows that thermophilic strains comprise high substrate conversion efficiency, but mesophilic strains achieve high volumetric productivity. Moreover, microbes of Thermoanaerobacterales (Family III) have to be preferred when aiming to achieve high substrate conversion efficiency in comparison to the families Clostridiaceae and Enterobacteriaceae. The limited number of results available on dark fermentative BHP from fed-batch cultivations indicates the yet underestimated potential of this bioprocessing application. A Design of Experiments strategy should be preferred for efficient bioprocess development and optimization of BHP aiming at improving medium, cultivation conditions and revealing inhibitory effects. This will enable comparing and optimizing strains and processes independent of initial conditions and scale.
Collapse
Affiliation(s)
- Simon Rittmann
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorferstraße 1a, Vienna University of Technology, Vienna, 1060, Austria
| | - Christoph Herwig
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorferstraße 1a, Vienna University of Technology, Vienna, 1060, Austria
| |
Collapse
|
12
|
Ivanova N, Sikorski J, Chertkov O, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Huntemann M, Liolios K, Pagani I, Mavromatis K, Ovchinikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Brambilla EM, Kannan KP, Rohde M, Tindall BJ, Göker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A. Complete genome sequence of the extremely halophilic Halanaerobium praevalens type strain (GSL). Stand Genomic Sci 2011; 4:312-21. [PMID: 21886858 PMCID: PMC3156398 DOI: 10.4056/sigs.1824509] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Halanaerobium praevalens Zeikus et al. 1984 is the type species of the genus Halanaerobium, which in turn is the type genus of the family Halanaerobiaceae. The species is of interest because it is able to reduce a variety of nitro-substituted aromatic compounds at a high rate, and because of its ability to degrade organic pollutants. The strain is also of interest because it functions as a hydrolytic bacterium, fermenting complex organic matter and producing intermediary metabolites for other trophic groups such as sulfate-reducing and methanogenic bacteria. It is further reported as being involved in carbon removal in the Great Salt Lake, its source of isolation. This is the first completed genome sequence of a representative of the genus Halanaerobium and the second genome sequence from a type strain of the family Halanaerobiaceae. The 2,309,262 bp long genome with its 2,110 protein-coding and 70 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
13
|
Kivistö A, Santala V, Karp M. Hydrogen production from glycerol using halophilic fermentative bacteria. BIORESOURCE TECHNOLOGY 2010; 101:8671-8677. [PMID: 20615687 DOI: 10.1016/j.biortech.2010.06.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/07/2010] [Accepted: 06/11/2010] [Indexed: 05/29/2023]
Abstract
Glycerol-based hydrogen production by the halophilic bacteria Halanaerobium saccharolyticum subspecies saccharolyticum and senegalensis was studied as batch experiments. The main metabolites of glycerol fermentation of both strains were hydrogen, carbon dioxide, and acetate. Subspecies saccharolyticum also produced 1,3-propanediol (1,3-PD), butyrate, and ethanol. The highest hydrogen yields were achieved with 2.5g/l glycerol and 150g/l salt at pH 7.4 (subsp. saccharolyticum, yield 0.6mol/mol glycerol) and at pH 7.0 (subsp. senegalensis, yield 1.6mol/mol glycerol). The hydrogen yield of subsp. senegalensis has potential for practical applications after scale-up and bioprocess optimizations and metabolic engineering after genome-wide sequencing could be applied to improve the yield of subsp. saccharolyticum.
Collapse
Affiliation(s)
- Anniina Kivistö
- Tampere University of Technology, Department of Chemistry and Bioengineering, Tampere, Finland.
| | | | | |
Collapse
|
14
|
Kivistö AT, Karp MT. Halophilic anaerobic fermentative bacteria. J Biotechnol 2010; 152:114-24. [PMID: 20804793 DOI: 10.1016/j.jbiotec.2010.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 08/17/2010] [Accepted: 08/23/2010] [Indexed: 10/19/2022]
Abstract
In hypersaline environments bacteria are exposed to a high osmotic pressure caused by the surrounding high salt concentrations. Halophilic microorganisms have specific strategies for balancing the osmotic pressure and surviving in these extreme conditions. Halophilic fermentative bacteria form taxonomically and phylogenetically a coherent group mainly belonging to the order Halanaerobiales. In this review, halophilic anaerobic fermentative bacteria in terms of taxonomy and phylogeny, special characteristics, survival strategies, and potential for biotechnological applications in a wide variety of branches, such as production of hydrogen, are discussed.
Collapse
Affiliation(s)
- Anniina T Kivistö
- Tampere University of Technology, Department of Chemistry and Bioengineering, Tampere, Finland.
| | | |
Collapse
|
15
|
Bowers KJ, Mesbah NM, Wiegel J. Biodiversity of poly-extremophilic Bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? SALINE SYSTEMS 2009; 5:9. [PMID: 19930649 PMCID: PMC2785825 DOI: 10.1186/1746-1448-5-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 11/23/2009] [Indexed: 11/10/2022]
Abstract
Bacterial microorganisms that grow optimally at Na+ concentrations of 1.7 M, or the equivalent of 10% (w/v) NaCl, and greater are considered to be extreme halophiles. This review focuses on the correlation between the extent of alkaline pH and elevated temperature optima and the extent of salt tolerance of extremely halophilic eubacteria; the focus is on those with alkaline pH optima, above 8.5, and elevated temperature optima, above 50°C. If all three conditions are required for optimal growth, these microorganisms are termed "poly-extremophiles". However, only a very few extreme halophiles able to grow optimally under alkaline conditions as well as at elevated temperatures have been isolated so far. Therefore the question is: do the combined extreme growth conditions of the recently isolated poly-extremophiles, i.e., anaerobic halophilic alkalithermophiles, approach a physico-chemical boundary for life? These poly-extremophiles are of interest, as their adaptive mechanisms give insight into organisms' abilities to survive in environments which were previously considered prohibitive to life, as well as to possible properties of early evolutionary and extraterrestrial life forms.
Collapse
Affiliation(s)
- Karen J Bowers
- Department of Microbiology, University of Georgia, Athens, GA, USA.
| | | | | |
Collapse
|
16
|
Hedi A, Fardeau ML, Sadfi N, Boudabous A, Ollivier B, Cayol JL. Characterization of Halanaerobaculum tunisiense gen. nov., sp. nov., a new halophilic fermentative, strictly anaerobic bacterium isolated from a hypersaline lake in Tunisia. Extremophiles 2008; 13:313-9. [PMID: 19115035 DOI: 10.1007/s00792-008-0218-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 11/27/2008] [Indexed: 11/28/2022]
Abstract
A new halophilic anaerobe was isolated from the hypersaline surface sediments of El-Djerid Chott, Tunisia. The isolate, designated as strain 6SANG, grew at NaCl concentrations ranging from 14 to 30%, with an optimum at 20-22%. Strain 6SANG was a non-spore-forming, non-motile, rod-shaped bacterium, appearing singly, in pairs, or occasionally as long chains (0.7-1 x 4-13 microm) and showed a Gram-negative-like cell wall pattern. It grew optimally at pH values between 7.2 and 7.4, but had a very broad pH range for growth (5.9-8.4). Optimum temperature for growth was 42 degrees C (range 30-50 degrees C). Strain 6SANG required yeast extract for growth on sugars. Glucose, sucrose, galactose, mannose, maltose, cellobiose, pyruvate, and starch were fermented. The end products from glucose fermentation were acetate, butyrate, lactate, H(2), and CO(2). The G + C ratio of the DNA was 34.3 mol%. Strain 6SANG exhibited 16S rRNA gene sequence similarity values of 91-92% with members of the genus Halobacteroides, H. halobius being its closest phylogenetic relative. Based on phenotypic and phylogenetic characteristics, we propose that this bacterium be classified as a novel species of a novel genus, Halanaerobaculum tunisiense gen. nov., sp. nov. The type strain is 6SANG(T) (=DSM 19997(T)=JCM 15060(T)).
Collapse
Affiliation(s)
- Abdeljabbar Hedi
- Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisia
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
|
19
|
Jiang H, Dong H, Zhang G, Yu B, Chapman LR, Fields MW. Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol 2006; 72:3832-45. [PMID: 16751487 PMCID: PMC1489620 DOI: 10.1128/aem.02869-05] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We employed culture-dependent and -independent techniques to study microbial diversity in Lake Chaka, a unique hypersaline lake (32.5% salinity) in northwest China. It is situated at 3,214 m above sea level in a dry climate. The average water depth is 2 to 3 cm. Halophilic isolates were obtained from the lake water, and halotolerant isolates were obtained from the shallow sediment. The isolates exhibited resistance to UV and gamma radiation. Microbial abundance in the sediments ranged from 10(8) cells/g at the water-sediment interface to 10(7) cells/g at a sediment depth of 42 cm. A major change in the bacterial community composition was observed across the interface. In the lake water, clone sequences affiliated with the Bacteroidetes were the most abundant, whereas in the sediments, sequences related to low G+C gram-positive bacteria were predominant. A similar change was also present in the archaeal community. While all archaeal clone sequences in the lake water belonged to the Halobacteriales, the majority of the sequences in the sediments were related to those previously obtained from methanogenic soils and sediments. The observed changes in the microbial community structure across the water-sediment interface were correlated with a decrease in salinity from the lake water (32.5%) to the sediments (approximately 4%). Across the interface, the redox state also changed from oxic to anoxic and may also have contributed to the observed shift in the microbial community.
Collapse
Affiliation(s)
- Hongchen Jiang
- Department of Geology, Miami University, Oxford, OH 45056, USA
| | | | | | | | | | | |
Collapse
|
20
|
Eder W, Jahnke LL, Schmidt M, Huber R. Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 2001; 67:3077-85. [PMID: 11425725 PMCID: PMC92984 DOI: 10.1128/aem.67.7.3077-3085.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The brine-seawater interface of the Kebrit Deep, northern Red Sea, was investigated for the presence of microorganisms using phylogenetic analysis combined with cultivation methods. Under strictly anaerobic culture conditions, novel halophiles were isolated. The new rod-shaped isolates belong to the halophilic genus Halanaerobium and are the first representatives of the genus obtained from deep-sea, anaerobic brine pools. Within the genus Halanaerobium, they represent new species which grow chemoorganotrophically at NaCl concentrations ranging from 5 to 34%. The cellular fatty acid compositions are consistent with those of other Halanaerobium representatives, showing unusually large amounts of Delta7 and Delta11 16:1 fatty acids. Phylogenetic analysis of the brine-seawater interface sample revealed the presence of various bacterial 16S rRNA gene sequences dominated by cultivated members of the bacterial domain, with the majority affiliated with the genus Halanaerobium. The new Halanaerobium 16S rRNA clone sequences showed the highest similarity (99.9%) to the sequence of isolate KT-8-13 from the Kebrit Deep brine. In this initial survey, our polyphasic approach demonstrates that novel halophiles thrive in the anaerobic, deep-sea brine pool of the Kebrit Deep, Red Sea. They may contribute significantly to the anaerobic degradation of organic matter enriched at the brine-seawater interface.
Collapse
Affiliation(s)
- W Eder
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, D-93053 Regensburg, Germany.
| | | | | | | |
Collapse
|
21
|
Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 2000; 66:3052-7. [PMID: 10877805 PMCID: PMC92110 DOI: 10.1128/aem.66.7.3052-3057.2000] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is generally assumed that hypersaline environments with sodium chloride concentrations close to saturation are dominated by halophilic members of the domain Archaea, while Bacteria are not considered to be relevant in this kind of environment. Here, we report the high abundance and growth of a new group of hitherto-uncultured Bacteria in crystallizer ponds (salinity, from 30 to 37%) from multipond solar salterns. In the present study, these Bacteria constituted from 5 to 25% of the total prokaryotic community and were affiliated with the Cytophaga-Flavobacterium-Bacteroides phylum. Growth was demonstrated in saturated NaCl. A provisional classification of this new bacterial group as "Candidatus Salinibacter gen. nov." is proposed. The perception that Archaea are the only ecologically relevant prokaryotes in hypersaline aquatic environments should be revised.
Collapse
Affiliation(s)
- J Antón
- División de Microbiología, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080 Alicante, Spain.
| | | | | | | |
Collapse
|
22
|
Kobayashi T, Kimura B, Fujii T. Strictly anaerobic halophiles isolated from canned Swedish fermented herrings (Surströmming). Int J Food Microbiol 2000; 54:81-9. [PMID: 10746577 DOI: 10.1016/s0168-1605(99)00172-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Strictly anaerobic halophiles were isolated from canned Swedish fermented herrings (Surströmming). All isolates were phenotypically uniform with some exceptions and were identified as the genus Haloanaerobium and assigned to either Haloanaerobium praevalens or Haloanaerobiuim alcaliphilum. A comparative analysis of 16S rDNA sequences revealed that the representative strain S-8 of the isolates was identical to that of Haloanaerobium praevalens DSM 2228T. Furthermore, this strain exhibited high levels (> 80%) of DNA-DNA homology with Haloanaerobium praevalens DSM 2228T. This is a novel report of halophilic anaerobes isolated from a food product. Such anaerobes may contribute to the intense flavor and the swollen can characteristics of Swedish fermented herring.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Food Science and Technology, Tokyo University of Fisheries, Japan.
| | | | | |
Collapse
|