1
|
Deletion of the human cytomegalovirus US17 gene increases the ratio of genomes per infectious unit and alters regulation of immune and endoplasmic reticulum stress response genes at early and late times after infection. J Virol 2013; 88:2168-82. [PMID: 24335296 DOI: 10.1128/jvi.02704-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human cytomegalovirus (HCMV) employs numerous strategies to combat, subvert, or co-opt host immunity. One evolutionary strategy for this involves capture of a host gene and then its successive duplication and divergence, forming a family of genes, many of which have immunomodulatory activities. The HCMV US12 family consists of 10 tandemly arranged sequence-related genes in the unique short (US) region of the HCMV genome (US12 to US21). Each gene encodes a protein possessing seven predicted transmembrane domains, patches of sequence similarity with cellular G-protein-coupled receptors, and the Bax inhibitor 1 family of antiapoptotic proteins. We show that one member, US17, plays an important role during virion maturation. Microarray analysis of cells infected with a recombinant HCMV isolate with a US17 deletion (the ΔUS17 mutant virus) revealed blunted host innate and interferon responses at early times after infection (12 h postinfection [hpi]), a pattern opposite that previously seen in the absence of the immunomodulatory tegument protein pp65 (pUL83). Although the ΔUS17 mutant virus produced numbers of infectious particles in fibroblasts equal to the numbers produced by the parental virus, it produced >3-fold more genome-containing noninfectious viral particles and delivered increased amounts of pp65 to newly infected cells. These results suggest that US17 has evolved to control virion composition, to elicit an appropriately balanced host immune response. At later time points (96 hpi), ΔUS17 mutant-infected cells displayed aberrant expression of several host endoplasmic reticulum stress response genes and chaperones, some of which are important for the final stages of virion assembly and egress. Our results suggest that US17 modulates host pathways to enable production of virions that elicit an appropriately balanced host immune response.
Collapse
|
2
|
Genetic analysis of Mps3 SUN domain mutants in Saccharomyces cerevisiae reveals an interaction with the SUN-like protein Slp1. G3-GENES GENOMES GENETICS 2012; 2:1703-18. [PMID: 23275891 PMCID: PMC3516490 DOI: 10.1534/g3.112.004614] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/26/2012] [Indexed: 01/16/2023]
Abstract
In virtually all eukaryotic cells, protein bridges formed by the conserved inner nuclear membrane SUN (for Sad1-UNC-84) domain-containing proteins and their outer nuclear membrane binding partners span the nuclear envelope (NE) to connect the nucleoplasm and cytoplasm. These linkages are important for chromosome movements within the nucleus during meiotic prophase and are essential for nuclear migration and centrosome attachment to the NE. In Saccharomyces cerevisiae, MPS3 encodes the sole SUN protein. Deletion of MPS3 or the conserved SUN domain is lethal in three different genetic backgrounds. Mutations in the SUN domain result in defects in duplication of the spindle pole body, the yeast centrosome-equivalent organelle. A genome-wide screen for mutants that exhibited synthetic fitness defects in combination with mps3 SUN domain mutants yielded a large number of hits in components of the spindle apparatus and the spindle checkpoint. Mutants in lipid metabolic processes and membrane organization also exacerbated the growth defects of mps3 SUN domain mutants, pointing to a role for Mps3 in nuclear membrane organization. Deletion of SLP1 or YER140W/EMP65 (for ER membrane protein of 65 kDa) aggravated growth of mps3 SUN domain mutants. Slp1 and Emp65 form an ER-membrane associated protein complex that is not required directly for spindle pole body duplication or spindle assembly. Rather, Slp1 is involved in Mps3 localization to the NE.
Collapse
|
3
|
Abstract
Human cytomegalovirus (HCMV) exhibits an exceptionally broad cellular tropism as it is capable of infecting most major organ systems and cell types. Definitive proof of an essential role for a cellular molecule that serves as an entry receptor has proven very challenging. It is widely hypothesized that receptor utilization, envelope glycoprotein requirements and entry pathways may all vary according to cell type, which is partially supported by the data. What has clearly emerged in recent years is that virus entry is not going undetected by the host. Robust and rapid induction of innate immune response is intimately associated with entry-related events. Here we review the state of knowledge on HCMV cellular entry mediators confronting the scientific challenges by accruing a definitive data set. We also review the roles of pattern recognition receptors such as Toll-like receptors in activation of specific innate immune response and discuss how entry events are tightly coordinated with innate immune initiation steps.
Collapse
|
4
|
Howell GR, Shindo M, Murray S, Gridley T, Wilson LA, Schimenti JC. Mutation of a ubiquitously expressed mouse transmembrane protein (Tapt1) causes specific skeletal homeotic transformations. Genetics 2006; 175:699-707. [PMID: 17151244 PMCID: PMC1800629 DOI: 10.1534/genetics.106.065177] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
L5Jcs1 is a perinatal lethal mutation uncovered in a screen for ENU-induced mutations on mouse chromosome 5. L5Jcs1 homozygotes exhibit posterior-to-anterior transformations of the vertebral column midsection, similar to mice deficient for Hoxc8 and Hoxc9. Positional cloning efforts identified a mutation in a novel, evolutionarily conserved, and ubiquitously expressed gene dubbed Tapt1 (Transmembrane anterior posterior transformation 1). TAPT1 is predicted to contain several transmembrane domains, and part of the gene is orthologous to an unusual alternatively spliced human transcript encoding the cytomegalovirus gH receptor. We speculate that TAPT1 is a downstream effector of HOXC8 that may act by transducing or transmitting extracellular information required for axial skeletal patterning during development.
Collapse
|
5
|
Gerna G, Percivalle E, Lilleri D, Lozza L, Fornara C, Hahn G, Baldanti F, Revello MG. Dendritic-cell infection by human cytomegalovirus is restricted to strains carrying functional UL131-128 genes and mediates efficient viral antigen presentation to CD8+ T cells. J Gen Virol 2005; 86:275-284. [PMID: 15659746 DOI: 10.1099/vir.0.80474-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) genetic determinants of endothelial-cell tropism and virus transfer to leukocytes (both polymorphonuclear and monocyte) have been recently identified in the UL131-128 genes. Here it is documented that the same genetic determinants of HCMV are responsible for monocyte-derived dendritic-cell (DC) tropism, i.e. all endotheliotropic and leukotropic strains of HCMV are also DC-tropic (or dendrotropic). In fact, all recent clinical HCMV isolates and deletion mutants sparing the UL131-128 locus as well as the endotheliotropic revertants AD169 and Towne were able to productively infect DC following co-culture with infected endothelial cells. On the contrary, the same clinical isolates extensively propagated in human fibroblasts, the UL131-128 deletion mutants and the reference laboratory strains were not. Peak extracellular virus titres in DC were reached 4-7 days post-infection (p.i.). Viral proteins pp65 and p72 were detected 1-3 h p.i., involving the great majority of DC 24 h p.i., while gB was abundantly detected 96 h p.i., when a cytopathic effect first appeared. Infection of DC with cell-free virus released into the medium could only be achieved with HCMV strains extensively adapted to growth in endothelial cells, reaching the peak titres 10 days p.i. DC infected for 24 h with cell-free virus and incubated for 16 h with autologous peripheral blood mononuclear cells were found to act as a potent stimulator of both HCMV-specific CD4+- and CD8+-mediated immune responses, as determined by cytokine flow cytometry. DC incubated with inactivated crude whole viral antigen preparations were only capable of eliciting a significant CD4+-mediated immune response.
Collapse
Affiliation(s)
- Giuseppe Gerna
- Servizio di Virologia, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Elena Percivalle
- Servizio di Virologia, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Daniele Lilleri
- Servizio di Virologia, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Laura Lozza
- Servizio di Virologia, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chiara Fornara
- Servizio di Virologia, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gabriele Hahn
- Max von Pettenkofer Institut, Abteilung Virologie, LMU-München, Germany
| | - Fausto Baldanti
- Servizio di Virologia, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - M Grazia Revello
- Servizio di Virologia, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
6
|
Cheshenko N, Del Rosario B, Woda C, Marcellino D, Satlin LM, Herold BC. Herpes simplex virus triggers activation of calcium-signaling pathways. ACTA ACUST UNITED AC 2003; 163:283-93. [PMID: 14568989 PMCID: PMC2173509 DOI: 10.1083/jcb.200301084] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)-sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy.
Collapse
Affiliation(s)
- Natalia Cheshenko
- Deparment of Pediatrics and Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
7
|
Scanlan PM, Tiwari V, Bommireddy S, Shukla D. Cellular expression of gH confers resistance to herpes simplex virus type-1 entry. Virology 2003; 312:14-24. [PMID: 12890617 DOI: 10.1016/s0042-6822(03)00176-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Entry of herpes simplex virus-1 (HSV-1) into cells requires a concerted action of four viral glycoproteins gB, gD, and gH-gL. Previously, cell surface expression of gD had been shown to confer resistance to HSV-1 entry. To investigate any similar effects caused by other entry glycoproteins, gB and gH-gL were coexpressed with Nectin-1 in Chinese hamster ovary (CHO) cells. Interestingly, cellular expression of gB had no effect on HSV-1(KOS) entry. In contrast, entry was significantly reduced in cells expressing gH-gL. This effect was further analyzed by expressing gH and gL separately. Cells expressing gL were normally susceptible, whereas gH-expressing cells were significantly resistant. Further experiments suggested that the gH-mediated interference phenomenon was not specific to any particular gD receptor and was also observed in gH-expressing HeLa cells. Moreover, contrary to a previous report, gL-independent cell surface expression of gH was detected in stably transfected CHO cells, possibly implicating cell surface gH in the interference phenomenon. Thus, taken together these findings indicate that cellular expression of gH interferes with HSV-1 entry.
Collapse
Affiliation(s)
- Perry M Scanlan
- Department of Microbiology-Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
8
|
Beisser PS, Goh CS, Cohen FE, Michelson S. Viral chemokine receptors and chemokines in human cytomegalovirus trafficking and interaction with the immune system. CMV chemokine receptors. Curr Top Microbiol Immunol 2002; 269:203-34. [PMID: 12224510 DOI: 10.1007/978-3-642-59421-2_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ubiquitous, opportunistic pathogen human cytomegalovirus (CMV) encodes several proteins homologous to those of the host organism. Four different CMV genes encode chemokine receptor-like peptides. These genes, UL33, UL78, US27, and US28, are expressed at various stages of infection in vitro. Their functions remain largely unknown. To date, chemokine binding and signalling has only been demonstrated for the US28 gene product. Putative ligands for the other CMV-encoded chemokine receptors are discussed on basis of phylogenetic analysis. The potential roles of these receptors in virus trafficking, persistence, and immune evasion are summarized. Similarly, modulation of expression of the host chemokines IL-8, MCP-1a and RANTES in relation to viral dissemination and persistence is reviewed.
Collapse
Affiliation(s)
- P S Beisser
- Unité d'Immunologie Virale, Institut Pasteur, 28 Rue du Docteur Roux, 75274 Paris, France
| | | | | | | |
Collapse
|
9
|
McWatters BJP, Stenberg RM, Kerry JA. Characterization of the human cytomegalovirus UL75 (glycoprotein H) late gene promoter. Virology 2002; 303:309-16. [PMID: 12490392 DOI: 10.1006/viro.2002.1614] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycoprotein H (gH, UL75) of human cytomegalovirus (HCMV) is an essential envelope glycoprotein that functions in viral entry and the activation of gene expression. To understand the regulation of this important viral gene, the promoter of the UL75 late gene was characterized in HCMV-infected cells at the late stages of viral infection. Primer extension analysis revealed a single major start site located 26 bp downstream of a putative TATA element. Deletion analysis showed the presence of a dominant activation domain from +14 to +35 that masked regulatory sequences upstream of the TATA element. Mutational analysis demonstrated that a PEA3-like element in this downstream domain was important for promoter activation. In addition, gel shift analysis revealed direct protein binding to the PEA3-like element. Together, these studies reveal that the gH promoter is regulated in a complex manner with sequences both upstream and downstream of the cap site influencing promoter activation.
Collapse
Affiliation(s)
- Bernard J P McWatters
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23501, USA
| | | | | |
Collapse
|
10
|
Harman A, Browne H, Minson T. The transmembrane domain and cytoplasmic tail of herpes simplex virus type 1 glycoprotein H play a role in membrane fusion. J Virol 2002; 76:10708-16. [PMID: 12368313 PMCID: PMC136627 DOI: 10.1128/jvi.76.21.10708-10716.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus glycoprotein H (gH) is one of the four virion envelope proteins which are required for virus entry and for cell-cell fusion in a transient system. In this report, the role of the transmembrane and cytoplasmic tail domains of gH in membrane fusion was investigated by generating chimeric constructs in which these regions were replaced with analogous domains from other molecules and by introducing amino acid substitutions within the membrane-spanning sequence. gH molecules which lack the authentic transmembrane domain or cytoplasmic tail were unable to mediate cell-cell fusion when coexpressed with gB, gD, and gL and were unable to rescue the infectivity of a gH-null virus as efficiently as a wild-type gH molecule. Many amino acid substitutions of specific amino acid residues within the transmembrane domain also affected cell-cell fusion, in particular, those introduced at a conserved glycine residue. Some gH mutants that were impaired in cell-cell fusion were nevertheless able to rescue the infectivity of a gH-negative virus, but these pseudotyped virions entered cells more slowly than wild-type virions. These results indicate that the fusion event mediated by the coexpression of gHL, gB, and gD in cells shares common features with the fusion of the virus envelope with the plasma membrane, they point to a likely role for the membrane-spanning and cytoplasmic tail domains of gH in both processes, and they suggest that a conserved glycine residue in the membrane-spanning sequence is crucial for efficient fusion.
Collapse
Affiliation(s)
- Andrew Harman
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | | | |
Collapse
|
11
|
Halary F, Amara A, Lortat-Jacob H, Messerle M, Delaunay T, Houlès C, Fieschi F, Arenzana-Seisdedos F, Moreau JF, Déchanet-Merville J. Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 2002; 17:653-64. [PMID: 12433371 DOI: 10.1016/s1074-7613(02)00447-8] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cytomegalovirus (CMV) infection is characterized by host immunosuppression and multiorganic involvement. CMV-infected dendritic cells (DC) were recently shown to display reduced immune functions, but their role in virus dissemination is not clear. In this report, we demonstrated that CMV could be captured by DC through binding on DC-SIGN and subsequently transmitted to permissive cells. Moreover, blocking DC-SIGN by specific antibodies inhibited DC infection by primary CMV isolates and expression of DC-SIGN or its homolog DC-SIGNR rendered susceptible cells permissive to CMV infection. We demonstrated that CMV envelope glycoprotein B is a viral ligand for DC-SIGN and DC-SIGNR. These results provide new insights into the molecular interactions contributing to cell infection by CMV and extend DC-SIGN implication in virus propagation.
Collapse
Affiliation(s)
- Franck Halary
- Laboratoire d'immunologie, CNRS UMR 5540, Université Bordeaux 2, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Paterson DA, Dyer AP, Milne RSB, Sevilla-Reyes E, Gompels UA. A role for human cytomegalovirus glycoprotein O (gO) in cell fusion and a new hypervariable locus. Virology 2002; 293:281-94. [PMID: 11886248 DOI: 10.1006/viro.2001.1274] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cell fusion assay using fusion-from-without (FFWO) recombinant adenoviruses (RAds) and specific antibody showed a role in fusion modulation for glycoprotein gO, the recently identified third component of the gH/gL gCIII complex of human cytomegalovirus (HCMV). As in HCMV, RAd gO expressed multiple glycosylated species with a mature product of 125 kDa. Coexpression with gH/gL RAds showed gCIII reconstitution in the absence of other HCMV products and stabilisation by intermolecular disulfide bonds. Properties of HCMV clinical isolate, Pt, also implicated gO in cell spread. Compared to laboratory strain AD169, Pt was resistant to gH antibody plaque inhibition, but mature gH was identical. However, the gO sequences were highly divergent (20%), with further variation in laboratory strain Towne gO (34%). Thus, gO forms gCIII with gH/gL, performs in cell fusion, and is a newly identified HCMV hypervariable locus which may influence gCIII's function in mediating infection.
Collapse
Affiliation(s)
- David A Paterson
- Pathogen Molecular Biology and Biochemistry Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, University of London, Keppel Street, London WC1E 7HT, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Schmidt J, Gerdts V, Beyer J, Klupp BG, Mettenleiter TC. Glycoprotein D-independent infectivity of pseudorabies virus results in an alteration of in vivo host range and correlates with mutations in glycoproteins B and H. J Virol 2001; 75:10054-64. [PMID: 11581374 PMCID: PMC114580 DOI: 10.1128/jvi.75.21.10054-10064.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2001] [Accepted: 08/08/2001] [Indexed: 11/20/2022] Open
Abstract
Infection of cells by herpesviruses is initiated by the interaction of viral envelope glycoproteins with cellular receptors. In the alphaherpesvirus pseudorabies virus (PrV), the causative agent of Aujeszky's disease in pigs, the essential glycoprotein D (gD) mediates secondary attachment of virions to target cells by binding to newly identified cellular receptors (R. J. Geraghty, C. Krummenacher, G. H. Cohen, R. J. Eisenberg, and P. G. Spear, Science 280:1618-1620, 1998). However, in the presence of compensatory mutations, infection can also occur in the absence of gD, as evidenced by the isolation in cell culture of an infectious gD-negative PrV mutant (PrV-gD(-) Pass) (J. Schmidt, B. G. Klupp, A. Karger, and T. C. Mettenleiter, J. Virol. 71:17-24, 1997). PrV-gD(-) Pass is replication competent with an only moderate reduction in specific infectivity but appears to bind to receptors different from those recognized by wild-type PrV (A. Karger, J. Schmidt, and T. C. Mettenleiter, J. Virol. 72:7341-7348, 1998). To analyze whether this alteration in receptor usage in vitro influences infection in vivo, the model host mouse and the natural host pig were intranasally infected with PrV-gD(-) Pass and were compared to animals infected by wild-type PrV. For mice, a comparable progress of disease was observed, and all animals infected with mutant virus died, although they exhibited a slight delay in the onset of symptoms and, correspondingly, a longer time to death. In contrast, whereas wild-type PrV-infected pigs showed clinical signs and histological and histopathological findings typical of PrV infection, no signs of disease were observed after infection with PrV-gD(-) Pass. Moreover, in these animals, virus-infected cells were not detectable by immunohistochemical staining of different organ samples and no virus could be isolated from nasal swabs. Mutations in glycoproteins B and H were found to correlate with, and probably contribute to, gD-independent infectivity. In conclusion, although PrV-gD(-) Pass is virulent in mice, it is apparently unable to infect the natural host, the pig. This altered host range in vivo correlates with a difference of receptor usage in vitro and demonstrates for the first time the importance of gD receptors in alphaherpesvirus infection of an animal host.
Collapse
Affiliation(s)
- J Schmidt
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | | | | | |
Collapse
|
14
|
Newkirk MM, van Venrooij WJ, Marshall GS. Autoimmune response to U1 small nuclear ribonucleoprotein (U1 snRNP) associated with cytomegalovirus infection. ARTHRITIS RESEARCH 2001; 3:253-8. [PMID: 11438044 PMCID: PMC34115 DOI: 10.1186/ar310] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Revised: 03/30/2001] [Accepted: 04/03/2001] [Indexed: 11/15/2022]
Abstract
The induction of autoantibodies to U1 small nuclear ribonucleoprotein (U1 snRNP) complexes is not well understood. We present evidence that healthy individuals with cytomegalovirus (CMV) infection have an increased frequency and quantity of antibodies to ribonucleoprotein, directed primarily against the U1-70k protein. A significant association between the presence of antibodies to CMV and antibodies to the total RNP targeted by the immune response to the spliceosome (to both the Sm and RNP; Sm/RNP) was found for patients with systemic lupus erythematosus (SLE) but not those with mixed connective-tissue disease. CMV thus may play a role in inducing autoimmune responses in a subset of patients with systemic lupus erythematosus.
Collapse
Affiliation(s)
- M M Newkirk
- Division of Rheumatology, The Montreal General Hospital, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|